
Expliit multipeakon solutions of Novikov'subially nonlinear integrable Camassa�Holmtype equationAndrew N. W. Hone∗ Hans Lundmark† Jaek Szmigielski‡Marh 17, 2009AbstratReently Vladimir Novikov found a new integrable analogue of theCamassa�Holm equation, admitting peaked soliton (peakon) solutions,whih has nonlinear terms that are ubi, rather than quadrati. In thispaper, the expliit formulas for multipeakon solutions of Novikov's ubi-ally nonlinear equation are alulated, using the matrix Lax pair foundby Hone and Wang. By a transformation of Liouville type, the assoiatedspetral problem is related to a ubi string equation, whih is dual tothe ubi string that was previously found in the work of Lundmark andSzmigielski on the multipeakons of the Degasperis�Proesi equation.1 IntrodutionIntegrable PDEs with nonsmooth solutions have attrated muh attention inreent years, sine the disovery of the Camassa�Holm shallow water waveequation and its peak-shaped soliton solutions alled peakons [5℄. Our pur-pose in this paper is to expliitly ompute the multipeakon solutions of a newintegrable PDE, equation (3.1) below, whih is of the Camassa�Holm form
ut − uxxt = F (u, ux, uxx, . . . ), but has ubially nonlinear terms instead ofquadrati. This equation was found by Vladimir Novikov, and published in areent paper by Hone and Wang [17℄.We will apply inverse spetral methods. The spatial equation in the Laxpair for Novikov's equation turns out to be equivalent to what we all the dualubi string, a spetral problem losely related to the ubi string that wasused for �nding the multipeakon solutions to the Degasperis�Proesi equation

∗Institute of Mathematis, Statistis & Atuarial Siene, University of Kent, CanterburyCT2 7NF, United Kingdom; anwh�kent.a.uk
†Department of Mathematis, Linköping University, SE-581 83 Linköping, Sweden;halun�mai.liu.se
‡Department of Mathematis and Statistis, University of Saskathewan, 106 WigginsRoad, Saskatoon, Saskathewan, S7N 5E6, Canada; szmigiel�math.usask.a1



[25, 26, 21℄. One this relation is established, the Novikov peakon solution anbe derived in a straightforward way using the results obtained in [21℄. Theonstants of motion have a more ompliated struture than in the Camassa�Holm and Degasperis�Proesi ases, and the study of this gives as an interestingby-produt a ombinatorial identity onerning the sum of all minors in a sym-metri matrix, whih we have dubbed the Canada Day Theorem (Theorem 4.1,proved in Appendix A).The peakon problem for Novikov's equation presents in addition one impor-tant hallenge. Unlike its Camassa�Holm or Degasperis�Proesi ounterparts,the Lax pair for the Novikov equation is originally ill-de�ned in the peakon se-tor. The problem is aused by terms whih involve multipliation of a singularmeasure by a disontinuous funtion. We prove in Appendix B that there ex-ists a regularization of the Lax pair whih preserves integrability of the peakonsetor, thus allowing us to use spetral and inverse spetral methods to obtainthe multipeakon solutions to the Novikov equation. This regularization problemhas a subtle but nevertheless real impat on the formulas. In general, the use ofLax pairs to onstrut distributional solutions to nonlinear equations whih areLax integrable in the smooth setor but may not be so in the whole non-smoothsetor is relatively unharted territory, and the ase of Novikov's equation mayprovide some relevant insight in this regard.2 BakgroundThe main example of a PDE admitting peaked solitons is the family
ut − uxxt + (b+ 1)uux = buxuxx + uuxxx, (2.1)often written as
mt +mxu+ bmux = 0, m = u− uxx, (2.2)whih was introdued by Degasperis, Holm and Hone [8℄, and is Hamiltonian forall values of b [15℄. It inludes the Camassa�Holm equation as the ase b = 2,and another integrable PDE alled the Degasperis�Proesi equation [9, 8℄ as thease b = 3. These are the only values of b for whih the equation is integrable,aording to a variety of integrability tests [9, 28, 16, 18℄. (However, we notethat the ase b = 0 is exluded from the aforementioned integrability tests;yet this ase provides a regularization of the invisid Burgers equation that isHamiltonian and has lassial solutions globally in time [4℄.) Multipeakons areweak solutions of the form

u(x, t) =
n∑

i=1

mi(t) e
−|x−xi(t)|, (2.3)formed through superposition of n peakons (peaked solitons of the shape e−|x|).This ansatz satis�es the PDE (2.2) if and only if the positions (x1, . . . , xn) and2



momenta (m1, . . . ,mn) of the peakons obey the following system of 2n ODEs:
ẋk =

n∑

i=1

mi e
−|xk−xi|, ṁk = (b−1)mk

n∑

i=1

mi sgn(xk−xi) e
−|xk−xi|. (2.4)Here, sgnx denotes the signum funtion, whih is +1, −1 or 0 depending onwhether x is positive, negative or zero. In shorthand notation, with 〈f(x)

〉denoting the average of the left and right limits,
〈
f(x)

〉
=

1

2

(
f(x−) + f(x+)

)
, (2.5)the ODEs an be written as

ẋk = u(xk), ṁk = −(b− 1)mk

〈
ux(xk)

〉
. (2.6)In the Camassa�Holm ase b = 2, this is a anonial Hamiltonian system gen-erated by h = 1

2

∑n
j,k=1mj mk e

−|xj−xk|. Expliit formulas for the n-peakonsolution of the Camassa�Holm equation were derived by Beals, Sattinger andSzmigielski [1, 2℄ using inverse spetral methods, and the same thing for theDegasperis�Proesi equation was aomplished by Lundmark and Szmigielski[25, 26℄.It requires some are to speify the exat sense in whih the peakon solu-tions satisfy the PDE. The formulation (2.2) su�ers from the problem that theprodut mux is ill-de�ned in the peakon ase, sine the quantity m = u−uxx =
2
∑n

i=1mi δxi
is a disrete measure, and it is multiplied by a funtion ux whihhas jump disontinuities exatly at the points xk where the Dira deltas in themeasure m are situated. To avoid this problem, one an instead rewrite (2.1) as

(1 − ∂2
x)ut + (b+ 1 − ∂2

x) ∂x

(
1
2 u

2
)

+ ∂x

(
3−b
2 u2

x

)
= 0. (2.7)Then a funtion u(x, t) is said to be a solution if

• u(·, t) ∈ W 1,2
loc (R) for eah �xed t, whih means that u(·, t)2 and ux(·, t)2are loally integrable funtions, and therefore de�ne distributions of lass

D′(R) (i.e., ontinuous linear funtionals ating on ompatly supported
C∞ test funtions on the real line R),

• the time derivative ut(·, t), de�ned as the limit of a di�erene quotient,exists as a distribution in D′(R) for all t,
• equation (2.7), with ∂x taken to mean the usual distributional derivative,is satis�ed for all t in the sense of distributions in D′(R).It is worth mentioning that funtions in the spae W 1,2

loc (R) are ontinuous, bythe Sobolev embedding theorem. However, the term u2
x is absent from equation(2.7) if b = 3, so in that partiular ase one requires only that u(·, t) ∈ L2

loc(R);this means that the Degasperis�Proesi an admit solutions u that are notontinuous [6, 7, 24℄. 3



3 Novikov's equationThe new integrable equation found by Vladimir Novikov is
ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx, (3.1)whih an be written as

mt + (mxu+ 3mux)u = 0, m = u− uxx, (3.2)to highlight the similarity in form to the Degasperis�Proesi equation, or as
(1 − ∂2

x)ut + (4 − ∂2
x) ∂x

(
1
3 u

3
)

+ ∂x

(
3
2 uu

2
x

)
+ 1

2 u
3
x = 0 (3.3)in order to rigorously de�ne weak solutions as above, exept that here one re-quires that u(·, t) ∈ W 1,3

loc (R) for all t, so that u3 and u3
x are loally integrableand therefore de�ne distributions in D′(R); it then follows from Hölder's in-equality with the onjugate indies 3 and 3/2 that uu2

x is loally integrable aswell, and (3.3) an thus be interpreted as a distributional equation. Sine fun-tions in W 1,p
loc (R) with p ≥ 1 are automatially ontinuous, Novikov's equationis similar to the Camassa�Holm equation in that it only admits ontinuous dis-tributional solutions (as opposed to the Degasperis�Proesi equation, whih hasdisontinuous solutions as well).Like the equations in the b-family (2.1), Novikov's equation admits (in theweak sense just de�ned) multipeakon solutions of the form (2.3), but in thisase the ODEs for the positions and momenta are

ẋk = u(xk)2 =

(
n∑

i=1

mi e
−|xk−xi|

)2

,

ṁk = −mk u(xk)
〈
ux(xk)

〉

= mk

(
n∑

i=1

mi e
−|xk−xi|

)


n∑

j=1

mj sgn(xk − xj) e
−|xk−xj|


 .

(3.4)These equations were stated in [17℄, where it was also shown that they onstitutea Hamiltonian system ẋk = {xk, h}, ṁk = {mk, h}, generated by the sameHamiltonian h = 1
2

∑n
j,k=1mjmk e

−|xj−xk| as the Camassa�Holm peakons, butwith respet to a di�erent, non-anonial, Poisson struture given by
{xj , xk} = sgn(xj − xk)

(
1 − E2

jk

)
,

{xj ,mk} = mkE
2
jk,

{mj ,mk} = sgn(xj − xk)mjmkE
2
jk, where Ejk = e−|xj−xk|. (3.5)As will be shown below, (3.4) is a Liouville integrable system (Theorem 4.7); infat, it is even expliitly solvable in terms of elementary funtions (Theorem 9.1).4



4 Forward spetral problemIn order to integrate the Novikov peakon ODEs, we are going to make use ofthe matrix Lax pair found by Hone and Wang [17℄, spei�ed by the followingmatrix linear system:
∂

∂x



ψ1

ψ2

ψ3


 =




0 zm 1
0 0 zm
1 0 0





ψ1

ψ2

ψ3


 , (4.1)

∂

∂t




ψ1

ψ2

ψ3



 =




−uux uxz

−1 − u2mz u2
x

uz−1 −z−2 −uxz
−1 − u2mz

−u2 uz−1 uux








ψ1

ψ2

ψ3



 . (4.2)(Compared with referene [17℄ we have added a onstant multiple of the identityto the matrix on the right hand side of (4.2), and used z in plae of λ.) Inthe peakon ase, when u =
∑n

i=1mi e
−|x−xi|, the quantity m = u − uxx =

2
∑n

i=1mi δxi
is a disrete measure. We assume that x1 < x2 < · · · < xn(whih at least remains true for a while if it is true for t = 0). These pointsdivide the x axis into n + 1 intervals whih we number from 0 to n, so thatthe kth interval runs from xk to xk+1, with the onvention that x0 = −∞ and

xn+1 = +∞. Sinem vanishes between the point masses, equation (4.1) reduesto ∂xψ1 = ψ3, ∂xψ2 = 0 and ∂xψ3 = ψ1 in eah interval, so that in the kthinterval we have


ψ1

ψ2

ψ3


 =



Ak e

x + z2 Ck e
−x

2z Bk

Ak e
x − z2 Ck e

−x


 for xk < x < xk+1, (4.3)where the fators ontaining z have been inserted for later onveniene. Thesepieewise solutions are then glued together at the points xk. The proper inter-pretation of (4.1) at these points turns out to be that ψ3 must be ontinuous,while ψ1 and ψ2 are allowed to have jump disontinuities; moreover, in theterm zmψ2, one should take ψ2(x)δxk

to mean 〈ψ2(xk)
〉
δxk

. This point is fullyexplained in Appendix B. This leads to


Ak

Bk

Ck


 =




1 − λm2
k −2λmk e

−xk −λ2m2
k e

−2xk

mk e
xk 1 λmk e

−xk

m2
k e

2xk 2mk e
xk 1 + λm2

k





Ak−1

Bk−1

Ck−1




=: Sk(λ)



Ak−1

Bk−1

Ck−1


 , where λ = −z2.

(4.4)We impose the boundary ondition (A0, B0, C0) = (1, 0, 0), whih is onsistentwith the time evolution given by (4.2) for x < x1. Then all (Ak, Bk, Ck) aredetermined by suessive appliation of the jump matries Sk(λ) as in (4.4).For x > xn, equation (4.2) implies that (A,B,C) := (An, Bn, Cn) evolves as
Ȧ = 0, Ḃ =

B −AM+

λ
, Ċ =

2M+ (B −AM+)

λ
, (4.5)5



where M+ =
∑N

k=1mk e
xk . Thus A is invariant. It is the (1, 1) entry of thetotal jump matrix
S(λ) = Sn(λ) . . . S2(λ)S1(λ), (4.6)and therefore it is a polynomial in λ of degree n,

A(λ) =
n∑

k=0

Hk(−λ)k =

(
1 − λ

λ1

)
. . .

(
1 − λ

λn

)
, (4.7)where H0 = 1 (sine S(0) = I, the identity matrix), and where the other oe�-ientsH1, . . . , Hn are Poisson ommuting onstants of motion (see Theorems 4.2and 4.7 below).The �rst linear equation (4.1), together with the boundary onditions ex-pressed by the requirements that B0 = C0 = 0 and An(λ) = 0, is a spetralproblem whih has the zeros λ1, . . . , λn of A(λ) as its eigenvalues. (To be pre-ise, one should perhaps say that it is the orresponding values of z = ±

√
−λthat are the eigenvalues, but we will soon show that the λk are positive, at leastin the pure peakon ase, and therefore more onvenient to work with than thepurely imaginary values of z; see (4.19) below.)Elimination of ψ1 from (4.1) gives ∂xψ2 = zmψ3 and (∂2

x − 1)ψ3 = zmψ2,and the boundary onditions above imply that (ψ2, ψ3) → (0, 0) as x → −∞and ψ3 → 0 as x→ +∞. Using the Green's funtion −e−|x|/2 for the operator
∂2

x − 1 with vanishing boundary onditions, we an rephrase the problem as asystem of integral equations,
ψ2(x) = z

∫ x

−∞

ψ3(y) dm(y),

ψ3(x) = −z
∫ ∞

−∞

1

2
e−|x−y|ψ2(y) dm(y),

(4.8)with integrals taken with respet to the disrete measure m = 2
∑n

i=1mi δxi
.Here, there is again the problem of Dira deltas multiplying a funtion ψ2 withjump disontinuities, and we take ψ2(x)δxk

to mean the average 〈ψ2(xk)
〉
δxk

,in full agreement with the earlier de�nition of the singular term appearing inthe spetral problem. Then
〈
ψ2(xj)

〉
= z

(
2

j−1∑

k=1

ψ3(xk)mk + ψ3(xj)mj

)
,

ψ3(xj) = −z
n∑

k=1

e−|xj−xk|
〈
ψ2(xk)

〉
mk,

(4.9)whih an be written in blok matrix notation as
(〈

Ψ2

〉

Ψ3

)
= z

(
0 TP

−EP 0

)(〈
Ψ2

〉

Ψ3

)
, (4.10)6



where
Ψ3 =

(
ψ3(x1), . . . , ψ3(xn)

)t
,

〈
Ψ2

〉
=
(〈
ψ2(x1)

〉
, . . . ,

〈
ψ2(xn)

〉)t
,

P = diag(m1, . . . ,mn),

E = (Ejk)n
j,k=1, where Ejk = e−|xj−xk|,

T = (Tjk)n
j,k=1, where Tjk = 1 + sgn(j − k).

(4.11)(In words, T is the lower triangular n×n matrix that has 1 on the main diagonaland 2 everywhere below it.) In terms of 〈Ψ2

〉 alone, we have
〈
Ψ2

〉
= −z2TPEP

〈
Ψ2

〉
, (4.12)so the eigenvalues are given by 0 = det(I + z2TPEP ) = det(I − λTPEP ),where of ourse I denotes the n× n identity matrix. Sine the eigenvalues arethe zeros of A(λ), and sine A(0) = 1, it follows that

A(λ) = det(I − λTPEP ). (4.13)This gives us a fairly onrete representation of the onstants of motion Hk,whih by de�nition are the oe�ients of A(λ) (see (4.7)), and it an be madeeven more expliit thanks to the urious ombinatorial result in Theorem 4.1.We remind the reader that a k×k minor of an n×n matrix X is, by de�nition,the determinant of a submatrixXIJ = (Xij)i∈I, J∈J whose rows and olumns areseleted among those of X by two index sets I, J ⊆ {1, . . . , n} with k elementseah, and a prinipal minor is one for whih I = J . Compare the result ofthe theorem with the well-known fat that the oe�ient of sk in det(I + sX)equals the sum of all prinipal k × k minors of X , regardless of whether X issymmetri or not.Theorem 4.1 (�The Canada Day Theorem�). Let the matrix T be de�ned asin (4.11) above. Then, for any symmetri n× n matrix X, the oe�ient of skin the polynomial det(I + s TX) equals the sum of all k × k minors (prinipaland non-prinipal) of X.Proof. The proof is presented in Appendix A. It relies on the Cauhy�Binetformula, Lindström's Lemma, and some rather intriate dependenies amongthe minors of X due to the symmetry of the matrix.Theorem 4.1 is named after the date when we started trying to prove it:July 1, 2008, Canada's national day. (It turned out that the proof was moredi�ult than we expeted, so we didn't �nish it until a few days later.) Summa-rizing the results so far, we now have the following desription of the onstantsof motion:Theorem 4.2. The Novikov peakon ODEs (3.4) admit n onstants of motion
H1, . . . , Hn, where Hk equals the sum of all k × k minors (prinipal and non-prinipal) of the n× n symmetri matrix PEP = (mjmkEjk)n

j,k=1. (See (4.11)for notation.) 7



Proof. This follows at one from (4.7), (4.13), and Theorem 4.1.Example 4.3. The sum of all 1 × 1 minors of PEP is of ourse just the sumof all entries,
H1 =

n∑

j,k=1

mjmkEjk =

n∑

j,k=1

mjmk e
−|xj−xk|, (4.14)and the Hamiltonian of the peakon ODEs (3.4) is h = 1

2H1. Higher orderminors of PEP are easily omputed using Lindström's Lemma, as explained inSetion A.3 in the appendix. In partiular, the onstant of motion of highestdegree in the mk is
Hn = det(PEP ) =

n−1∏

j=1

(1 − E2
j,j+1)

n∏

j=1

m2
j . (4.15)Example 4.4. Written out in full, the onstants of motion in the ase n = 3are

H1 = m2
1 +m2

2 +m2
3 + 2m1m2E12 + 2m1m3E13 + 2m2m3E23,

H2 = (1 − E2
12)m

2
1m

2
2 + (1 − E2

13)m
2
1m

2
3 + (1 − E2

23)m
2
2m

2
3

+ 2(E23 − E12E13)m
2
1m2m3 + 2(E12 − E13E23)m1m2m

2
3,

H3 = (1 − E2
12)(1 − E2

23)m
2
1m

2
2m

2
3.

(4.16)From now on we mainly restrit ourselves to the pure peakon ase when
mk > 0 for all k (no antipeakons). Our �rst reason for this is that we an thenuse the positivity of H1 and Hn to show global existene of peakon solutions.Theorem 4.5. Let

P = {x1 < · · · < xn, all mk > 0} (4.17)be the phase spae for the Novikov peakon system (3.4) in the pure peakon ase.If the initial data are in P, then the solution (x(t),m(t)) exists for all t ∈ R,and remains in P.Proof. Loal existene in P is automati in view of the smoothness of the ODEsthere. By (4.14) and (4.15), both H1 and Hn are stritly positive on P . Sine
m2

k < H1, all mk remain bounded from above. The positivity of Hn ensuresthat themk are bounded away from zero, and that the positions remain ordered.The veloities ẋk are all bounded by (
∑
mk)2, hene 0 < ẋk ≤ C for someonstant C, and the positions xk(t) are therefore �nite for all t ∈ R. Sineneither xk nor mk an blow up in �nite time, the solution exists globally intime.Remark 4.6. The peakon ODEs (3.4) are invariant under the transformation

(m1, . . . ,mn) 7→ (−m1, . . . ,−mn), so the analogous result holds also when all
mk are negative. 8



Theorem 4.7. The onstants of motion H1, . . . , Hn of Theorem 4.2 are fun-tionally independent and ommute with respet to the Poisson braket (3.5), sothe Novikov peakon system (3.4) is Liouville integrable on the phase spae P.Proof. To prove funtional independene, one should hek that J := dH1 ∧
dH2 ∧ . . . ∧ dHn does not vanish on any open set in P . Sine J is rational inthe variables {mk, e

xk}n
k=1, it vanishes identially if it vanishes on an open set,so it is su�ient to show that J is not identially zero. To see this, note that
Hk = ek(m2

1, . . . ,m
2
n) +O(Epq), (4.18)where ek denotes the kth elementary symmetri funtion in n variables, and

O(Epq) denotes terms involving exponentials of the positions xj . It is wellknown that the �rst n elementary symmetri funtions are independent (theyprovide a basis for symmetri funtions of n variables [27℄), and therefore theleading part of J (negleting the O(Epq) terms) does not vanish. Sine the
O(Epq) terms an be made arbitrarily small by taking the xk far apart, we seethat there is a region in P where J does not vanish, and we are done.To prove that the quantitiesHk Poisson ommute with respet to the braket(3.5), it is onvenient to adapt some arguments of Moser that he applied to thesattering of partiles in the Toda lattie and the rational Calogero�Moser sys-tem [29℄. The Poisson braket of two onstants of motion is itself a onstant ofmotion, so {Hj , Hk} is independent of time. Consider now this braket at a �xedpoint (x0,m0) := (x0

1, x
0
2, . . . , x

0
n,m

0
1,m

0
2, . . .m

0
n) ∈ P whih we onsider as aninitial ondition for the peakon �ow (x(t),m(t)), whih exists globally in timeby Theorem 4.5. Theorem 9.4, whih will be proved later without using what weare proving here, shows that the peakons satter as t→ −∞; more preisely, m2

ktends to 1/λk, while the xk move apart, so that the terms O(Epq) tend to zero.(It should also be possible to prove these sattering properties diretly fromthe peakon ODEs, along the lines of what was done for the Degasperis�Proesiequation in [26, Theorem 2.4℄, but we have not done that.) Thus, from (4.18),
{Hj, Hk}(x0,m0) = {Hj , Hk}(x(t),m(t)) = limt→−∞{Hj , Hk}(x(t),m(t)) =
limt→−∞{ej, ek}(x(t),m(t)). Now the Poisson brakets of these symmetrifuntions are given by linear ombinations of the Poisson brakets {mj ,mk}with oe�ients dependent only on the amplitudes. However, from (3.5) itis lear that {mj,mk}(x(t),m(t)) = O(Epq) → 0, from whih it follows that
{ej, ek}(x(t),m(t)) → 0 as t → −∞, and hene {Hj, Hk}(x0,m0) = 0 as re-quired.Remark 4.8. Sine the vanishing of the Poisson braket is a purely algebrairelation, the Hk Poisson ommute at eah point of R2n, not just in the region P .The λk, whih are de�ned as the zeros of A(λ), are the eigenvalues of theinverse of the matrix TPEP , sine A(λ) = det(I − λTPEP ). Another reasonwhy we restrit our attention to the ase with all mk > 0 is that the matrix
TPEP an then be shown to be osillatory (see Setion A.2 in the appendix),whih implies that its eigenvalues are positive and simple. Consequently, the9



λk are also positive and simple, and for de�niteness we will number them suhthat
0 < λ1 < · · · < λn. (4.19)(For another proof that the spetrum is positive and simple, see Theorem 6.1.)Turning now to B = S(λ)21 and C = S(λ)31, we �nd from (4.6) and (4.4)that they are polynomials in λ of degree n−1, with B(0) = M+ and C(0) = M2

+,where M+ =
∑N

k=1mk e
xk as before. This means that the two Weyl funtions

ω(λ) = −B(λ)

A(λ)
and ζ(λ) = − C(λ)

2A(λ)
(4.20)are rational funtions of order O(1/λ) as λ → ∞, having poles at the eigen-values λk. Let bk and ck denote the residues,

ω(λ) =
n∑

k=1

bk
λ− λk

, ζ(λ) =
n∑

k=1

ck
λ− λk

. (4.21)The time evolution of (A,B,C), given by (4.5), translates into
ω̇(λ) =

ω(λ) − ω(0)

λ
, ζ̇(λ) = −ω(0) ω̇(λ). (4.22)Comparing residues on both sides in (4.22) gives

ḃk =
bk
λk
, ċk = −ω(0)

bk
λk

=
n∑

m=1

bmbk
λmλk

. (4.23)This at one implies bk(t) = bk(0) et/λk , and integrating ċk(τ) from τ = −∞(assuming that ck vanishes there) to τ = t then gives
ck =

n∑

m=1

bmbk
λm + λk

. (4.24)A purely algebrai proof of this relation between the Weyl funtions, not relyingon time dependene and integration, will be given below; see Theorem 6.1. Wenote the identities ∑n
1 ck/λk = 1

2 (
∑n

1 bk/λk)2 and ∑n
1 λkck = 1

2 (
∑n

1 bk)2.The multipeakon solution is obtained as follows. The initial data xk(0),
mk(0) (for k = 1, . . . , n) determine initial spetral data λk(0), bk(0), whihafter time t have evolved to λk(t) = λk(0), bk(t) = bk(0) et/λk (sine the λk arethe zeros of the time-invariant polynomial A(λ), and sine the bk satisfy (4.23)).Solving the inverse spetral problem for these spetral data at time t gives thesolution xk(t), mk(t). The remainder of the paper is devoted to this inversespetral problem.
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5 The dual ubi stringJust like for the Camassa�Holm and Degasperis�Proesi equations, some termsin the Lax pair's spatial equation (equation (4.1) in this ase, repeated as (5.1)below) an be removed by a hange of both dependent and independent vari-ables. We refer to this as a Liouville transformation, sine it is reminisent ofthe transformation used for bringing a seond-order Sturm�Liouville operatorto a simple normal form. This simpli�ation reveals an interesting onnetionbetween the Novikov equation and the Degasperis�Proesi equation, and allowsus to solve the inverse spetral problem by making use of the tools developedin the study of the latter.Theorem 5.1. The spetral problem
∂

∂x



ψ1

ψ2

ψ3


 =




0 zm(x) 1
0 0 zm(x)
1 0 0





ψ1

ψ2

ψ3


 (5.1)on the real line x ∈ R, with boundary onditions

ψ2(x) → 0, as x→ −∞,

exψ3(x) → 0, as x→ −∞,

e−xψ3(x) → 0, as x→ +∞,

(5.2)is equivalent (for z 6= 0), under the hange of variables
y = tanhx,

φ1(y) = ψ1(x) coshx− ψ3(x) sinh x,

φ2(y) = z ψ2(x),

φ3(y) = z2 ψ3(x)/ coshx,

g(y) = m(x) cosh3 x,

λ = −z2,

(5.3)to the �dual ubi string� problem
∂

∂y



φ1

φ2

φ3


 =




0 g(y) 0
0 0 g(y)
−λ 0 0





φ1

φ2

φ3


 (5.4)on the �nite interval −1 < y < 1, with boundary onditions

φ2(−1) = φ3(−1) = 0 φ3(1) = 0. (5.5)In the disrete ase m = 2
∑n

k=1mk δxk
, the relation between the measures mand g should be interpreted as

g(y) =

n∑

k=1

gkδyk
, yk = tanhxk, gk = 2mk coshxk. (5.6)11



Proof. Straightforward omputation using the hain rule and, for the disretease, δxk
= dy

dx(xk) δyk
.Remark 5.2. The ubi string equation, whih plays a ruial role in thederivation of the Degasperis�Proesi multipeakon solution [26℄, is

∂3
yφ = −λgφ, (5.7)whih an be written as a system by letting Φ = (φ1, φ2, φ3) = (φ, φy , φyy):

∂

∂y



φ1

φ2

φ3


 =




0 1 0
0 0 1

−λg(y) 0 0





φ1

φ2

φ3


 . (5.8)The duality between (5.4) and (5.8) manifests itself in the disrete ase as aninterhange of the roles of masses gk and distanes lk = yk+1−yk; see Setion 6.When the mass distribution is given by a ontinuous funtion g(y) > 0, thesystems are instead related via the hange of variables de�ned by

dỹ

dy
= g(y) =

1

g̃(ỹ)
, (5.9)where y and g(y) refer to the primal ubi string (5.8), and ỹ and g̃(ỹ) to thedual ubi string (5.4) (or the other way around; the transformation (5.9) isobviously symmetri in y and ỹ, so that the dual of the dual is the originalubi string again).Remark 5.3. The onept of a dual string �gures prominently in the work ofKrein on the ordinary string equation ∂2

yφ = −λgφ (as opposed to the ubistring). For a omprehensive aount of Krein's theory, see [10℄.Remark 5.4. As a motivation for the transformation (5.3), we note that one aneliminate ψ1 from (5.1), whih gives ∂xψ2 = zmψ3, (∂2
x − 1)ψ3 = zmψ2. Fromthe study of Camassa�Holm peakons [2℄ it is known that the transformation

y = tanhx, φ(y) = ψ(x)/ coshx takes the expression (∂2
x − 1)ψ to a multipleof φyy , so it is not far-fethed to try something similar on ψ3 while leaving ψ2essentially unhanged.From now on we onentrate on the disrete ase. The Liouville transfor-mation maps the pieewise de�ned (ψ1, ψ2, ψ3) given by (4.3) to



φ1

φ2

φ3


 =




Ak(λ) − λCk(λ)
−2λBk(λ)

−λAk(λ) (1 + y) − λ2 Ck(λ) (1 − y)


 for yk < y < yk+1. (5.10)The initial values (A0, B0, C0) = (1, 0, 0) thus orrespond to Φ(−1;λ) = (1, 0, 0)t,where Φ(y;λ) =

(
φ1, φ2, φ3

)t, and at the right endpoint y = 1 we have
Φ(1;λ) =




An(λ) − λCn(λ)

−2λBn(λ)
−2λAn(λ)



 . (5.11)12



In partiular, the ondition An(λ) = 0 de�ning the spetrum orresponds to
φ3(1;λ) = 0, exept that the latter ondition gives an additional eigenvalue
λ0 = 0 whih is only present on the �nite interval. (This is not a ontradition,sine the Liouville transformation from the line to the interval is not invertiblewhen z = −λ2 = 0.)The omponent φ3 is ontinuous and pieewise linear, while φ1 and φ2 arepieewise onstant with jumps at the points yk where the measure g is supported.More preisely, at point mass number k we have

φ1(y
+
k ) − φ1(y

−
k ) = gk

〈
φ2(yk)

〉
,

φ2(y
+
k ) − φ2(y

−
k ) = gk φ3(yk),

(5.12)and in interval number k, with length lk = yk+1 − yk,
φ3(y

−
k+1) − φ3(y

+
k ) = lk ∂yφ3(y

+
k ) = −λ lk φ1(y

+
k ). (5.13)In terms of the vetor Φ these relations take the form

Φ(y+
k ) =




1 gk

1
2g

2
k

0 1 gk

0 0 1



Φ(y−k ), (5.14)and
Φ(y−k+1) =




1 0 0
0 1 0

−λlk 0 1


Φ(y+

k ), (5.15)respetively. If we introdue the notation
G(x, λ) =




1 0 0
0 1 0

−λx 0 1


 , L(x) =




1 x 1
2x

2

0 1 x
0 0 1


 , (5.16)it follows immediately that

Φ(1;λ) = G(ln, λ) L(gn) . . . G(l2, λ) L(g2) G(l1, λ) L(g1) G(l0, λ)
(

1
0
0

)
.(5.17)We de�ne the Weyl funtions W and Z of the dual ubi string to be

W (λ) = −φ2(1;λ)

φ3(1;λ)
, Z(λ) = −φ1(1;λ)

φ3(1;λ)
. (5.18)It is lear from (5.11) that they are related to the Weyl funtions ω and ζpreviously de�ned on the real line (see (4.20)) as follows:

W (λ) = −Bn(λ)

An(λ)
= ω(λ) =

n∑

k=1

bk
λ− λk

,

Z(λ) =
An(λ) − λCn(λ)

2λAn(λ)
=

1

2λ
+ ζ(λ) =

1

2λ
+

n∑

k=1

ck
λ− λk

.

(5.19)13



6 Relation to the Neumann-like ubi stringKohlenberg, Lundmark and Szmigielski [21℄ studied the disrete ubi stringwith Neumann-like boundary onditions. We will brie�y reall some resultsfrom that paper, with notation and sign onventions slightly altered to suit ourneeds here. The spetral problem in question is
φyyy(y) = −λg(y)φ(y) for y ∈ R,

φy(−∞) = φyy(−∞) = 0, φyy(∞) = 0,
(6.1)where g =

∑n
k=0 gk δyk

is a disrete measure with n+ 1 point masses g0, . . . , gnat positions y0 < y1 < · · · < yn; between these points are n �nite intervals oflength l1, . . . , ln (where lk = yk − yk−1). Sine φyyy = 0 away from the pointmasses, the boundary onditions an equally well be written as
φy(y−0 ) = φyy(y−0 ) = 0, φyy(y+

n ) = 0.Using the normalization φ(−∞) = 1 (or φ(y−0 ) = 1) and the notation Φ =
(φ, φy , φyy)t, one �nds

Φ(y+
n ;λ) = G(gn, λ) L(ln) . . . G(g2, λ) L(l2) G(g1, λ) L(l1) G(g0, λ)

(
1
0
0

)
,(6.2)with matries G and L as in (5.16) above. Under the assumption that all gk > 0,the zeros of φyy(y+

n ;λ), whih onstitute the spetrum, are
0 = λ0 < λ1 < · · · < λn,and the Weyl funtions are

W (λ) = − φy(y+
n ;λ)

φyy(y+
n ;λ)

=
n∑

k=1

bk
λ− λk

,

Z(λ) = − φ(y+
n ;λ)

φyy(y+
n ;λ)

=
1

γλ
+

n∑

k=1

ck
λ− λk

, γ =

n∑

k=0

gk,

(6.3)with all bk > 0. They satisfy the identity
Z(λ) + Z(−λ) +W (λ)W (−λ) = 0, (6.4)from whih it follows, by taking the residue at λ = λk, that

ck =

n∑

m=1

bmbk
λm + λk

. (6.5)Thus Z(λ) is uniquely determined by the funtion W (λ) and the onstant γ.Now note that (6.2) is exatly the same kind of relation as (5.17), exept thatthe roles of gk and lk are interhanged, and the right endpoint is alled y = y+
n14



instead of y = 1. The de�nitions of the Weyl funtions (6.3) also orrespondperfetly to the Weyl funtions (5.18) for the dual ubi string. Therefore, allthe results above are also true in the setting of the dual ubi string. Theassumption that the n distanes lk and the n+1 point masses gk are all positivefor the Neumann ubi string orresponds of ourse to the requirement that the
n point masses gk and the n + 1 distanes lk are positive for the dual ubistring. The onstant γ =

∑n
k=0 gk in the term 1/γλ in (6.3) orresponds to theonstant 2 in the term 1/2λ in (5.19), sine ∑n

k=0 lk = 2 is the length of theinterval −1 < y < 1. In summary:Theorem 6.1. Assume that all point masses gk are positive. Then the disretedual ubi string of Theorem 5.1 has nonnegative and simple spetrum, witheigenvalues 0 = λ0 < λ1 < · · · < λn, and its Weyl funtions (5.18) havepositive residues and satisfy (6.4) and (6.5). In partiular, the seond Weylfuntion Z(λ) is uniquely determined by the �rst Weyl funtion W (λ).7 Inverse spetral problemThe inverse spetral problem for the disrete dual ubi string onsists in re-overing the positions and masses {yk, gk}n
k=1 given the spetral data onsistingof eigenvalues and residues {λk, bk}n

k=1 (or, equivalently, given the �rst Weylfuntion W (λ)). The orresponding problem for the Neumann-like ubi stringwas solved in [21℄, and we need only translate the results, as in Setion 6. Seealso [26℄ for more information about inverse problems of this kind and [3℄ forthe underlying theory of Cauhy biorthogonal polynomials.To begin with, we state the result in terms of the bimoment determinants
D(ab)

m and D′
m de�ned below. Things will beome more expliit in the nextsetion (Corollary 8.4), where the determinants are expressed diretly in termsof the λk and bk.De�nition 7.1. Suppose µ is a measure on R+ (the positive part of the realline) suh that its moments,

βa =

∫
κa dµ(κ), (7.1)and its bimoments with respet to the Cauhy kernel K(x, y) = 1/(x+ y),

Iab = Iba =

∫∫
κa λb

κ+ λ
dµ(κ) dµ(λ), (7.2)are �nite. For m ≥ 1, let D(ab)

m denote the determinant of the m×m bimomentmatrix whih starts with Iab in the upper left orner:
D(ab)

m =

∣∣∣∣∣∣∣∣∣∣∣

Iab Ia,b+1 . . . Ia,b+m−1

Ia+1,b Ia+1,b+1 . . . Ia+1,b+m−1

Ia+2,b Ia+2,b+1 . . . Ia+2,b+m−1... ...
Ia+m−1,b Ia+m−1,b+1 . . . Ia+m−1,b+m−1

∣∣∣∣∣∣∣∣∣∣∣

= D(ba)
m . (7.3)15



Let D(ab)
0 = 1, and D(ab)

m = 0 for m < 0.Similarly, for m ≥ 2, let D′
m denote the m×m determinant

D′
m =

∣∣∣∣∣∣∣∣∣∣∣

β0 I10 I11 . . . I1,m−2

β1 I20 I21 . . . I2,m−2

β2 I30 I31 . . . I3,m−2... ...
βm−1 Im0 Im1 . . . Im,m−2

∣∣∣∣∣∣∣∣∣∣∣

, (7.4)and de�ne D′
1 = β0 and D′

m = 0 for m < 1.Theorem 7.2. Given onstants 0 < λ1 < · · · < λn and b1, . . . , bn > 0, de�nethe spetral measure
µ =

n∑

i=1

bi δλi
, (7.5)and let Iab be its bimoments,

Iab =

∫∫
κa λb

κ+ λ
dµ(κ) dµ(λ) =

n∑

i=1

n∑

j=1

λa
i λ

b
j

λi + λj
bibj . (7.6)Then the unique disrete dual ubi string (with positive masses gk) having theWeyl funtion

W (λ) =

n∑

k=1

bk
λ− λk

=

∫
dµ(κ)

λ− κis given by
yk′ =

D(00)
k − 1

2D
(11)
k−1

D(00)
k + 1

2D
(11)
k−1

, gk′ = 2
D(00)

k + 1
2D

(11)
k−1

D′
k

, (7.7)where k′ = n+ 1− k for k = 0, . . . , n+ 1. The distanes between the masses aregiven by
lk′−1 = yk′ − yk′−1 =

(
D(10)

k

)2

(
D(00)

k + 1
2D

(11)
k−1

)(
D(00)

k+1 + 1
2D

(11)
k

) . (7.8)Proof. For 0 ≤ k ≤ n, let a(2k+1)(λ) be the produt of the �rst 2k + 1 fatorsin (5.17),
a(2k+1)(λ) = G(ln, λ) L(gn) G(ln−1, λ) L(gn−1) . . .

. . . G(lk′ , λ) L(gk′) G(lk′−1, λ), (7.9)16



where k′ = n+1− k. By Lemma 4.1 and Theorem 4.2 in [21℄, the entries in the�rst olumn of a = a(2k+1)(λ),


a11

a21

a31


 =:



P̂
P
Q


 ,satisfy what in [21℄ was alled a �Type I� approximation problem. This meansthat (P̂ (λ), P (λ), Q(λ)) are polynomials in λ of degree k, k, k+ 1, respetively,satisfying the normalization onditions

P̂ (0) = 1, P (0) = 0, Q(0) = 0,the approximation onditions
Q(λ)W (λ) + P (λ) = O(1), Q(λ)Z(λ) + P̂ (λ) = O(λ−1), as λ→ ∞,and the symmetry ondition

Q(λ)Z(−λ) − P (λ)W (−λ) − P̂ (λ) = O(λ−k−1), as λ→ ∞.Aording to Theorem 4.15 in [21℄, this determines (P̂ , P,Q) uniquely; in par-tiular, the oe�ients of a(2k+1)
31 (λ) = Q(λ) =

∑k+1
i=1 qiλ

i are given by thenonsingular linear system



I00 + 1
2 I01 · · · I0k

I10 I11 · · · I1k

I20 I21 · · · I2k... ...
Ik0 Ik1 · · · Ikk







q1
q2
q3...
qk+1




= −




1
0
0...
0



. (7.10)From (7.9) one �nds that

a
(2k+1)
31 (λ) = (−λ)(ln + ln−1 + · · · + lk′−1) + . . .

+ (−λ)k+1

(
g2

n

2

g2
n−1

2
. . .

g2
k′

2
lnln−1 . . . lk′−1

)
,

(7.11)and the lowest and highest oe�ients are then extrated from (7.10) usingCramer's rule:
−q1 =

D(11)
k

D(00)
k+1 + 1

2D
(11)
k

=
n∑

j=k′−1

lj = 1 − yk′−1,

(−1)k+1qk+1 =
D(10)

k

D(00)
k+1 + 1

2D
(11)
k

=




n∏

j=k′

g2
j lj

2



 lk′−1.

(7.12)The �rst equation gives a formula for yk′−1 right away, and of ourse also for yk′(with 1 ≤ k ≤ n + 1) after renumbering. This formula (7.7) for yk′ holds also17



for k = 0, sine it gives y0′ = yn+1 = +1 beause of the way D(ab)
m is de�nedfor m ≤ 0. (That it indeed gives y(n+1)′ = y0 = −1 when k = n + 1 is notas obvious; this depends on D(00)

n+1 being zero when the measure µ is supportedon only n points. See [21, Appendix B℄.) Subtration gives a formula for lk′−1whih simpli�es to (7.8) with the help of �Lewis Carroll's identity� [22, Prop. 10℄applied to the determinant D(00)
k+1:

D(00)
k+1D

(11)
k−1 = D(00)

k D(11)
k −D(10)

k D(01)
k . (7.13)Finally, the seond formula in (7.12), divided by the orresponding formula with

k replaed by k − 1, gives an expression for 1
2 g

2
k′ lk′−1 from whih one obtains

gk′ =
(
D(00)

k +
1

2
D(11)

k−1

)√ 2

D(10)
k D(10)

k−1

.The formula for gk′ presented in (7.7) now follows from the identity (D′
k)2 =

2D(10)
k D(10)

k−1 and the positivity of D′
k, whih are immediate onsequenes of (8.6)below. (The determinant identity an also be proved diretly by expanding D′

kalong the �rst olumn, squaring, and using βiβj = Ii+1,j + Ii,j+1.)Remark 7.3. We take this opportunity to orret a ouple of mistakes in [21℄:the formula in Corollary 4.17 should read [Q3k+2] = (−1)k+1Dk/Ak+1, andonsequently it should be mn−k =
D2

k

2Ak+1Ak
in (4.54).8 Evaluation of bimoment determinantsThe aim of this setion is just to state some formulas for the bimoment determi-nants D(ab)

m and D′
m, taken from [26, Lemma 4.10℄ and [21, Appendix B℄. Quitea lot of notation is needed.De�nition 8.1. For k ≥ 1, let
tk =

1

k!

∫

Rk

∆(x)2

Γ(x)

dµk(x)

x1x2 . . . xk
,

uk =
1

k!

∫

Rk

∆(x)2

Γ(x)
dµk(x),

vk =
1

k!

∫

Rk

∆(x)2

Γ(x)
x1x2 . . . xk dµ

k(x),

(8.1)where
∆(x) = ∆(x1, . . . , xk) =

∏

i<j

(xi − xj),

Γ(x) = Γ(x1, . . . , xk) =
∏

i<j

(xi + xj).
(8.2)18



(When k = 0 or 1, let ∆(x) = Γ(x) = 1.) Also let t0 = u0 = v0 = 1, and
tk = uk = vk = 0 for k < 0.When µ =

∑n
k=1 bk δλk

, the integrals tk, uk, vk redue to the sums Tk, Uk,
Vk below.De�nition 8.2. For k ≥ 0, let ([1,n]

k

) denote the set of k-element subsets I =

{i1 < · · · < ik} of the integer interval [1, n] = {1, . . . , n}. For I ∈
(
[1,n]

k

), let
∆I = ∆(λi1 , . . . , λik

), ΓI = Γ(λi1 , . . . , λik
), (8.3)with the speial ases ∆∅ = Γ∅ = ∆{i} = Γ{i} = 1. Furthermore, let

λI =
∏

i∈I

λi, bI =
∏

i∈I

bi,with λ∅ = b∅ = 1. Using the abbreviation ΨI =
∆2

I

ΓI
, let

Tk =
∑

I∈([1,n]
k )

ΨIbI
λI

, Uk =
∑

I∈([1,n]
k )

ΨIbI , Vk =
∑

I∈([1,n]
k )

ΨIλIbI , (8.4)and
Wk =

∣∣∣∣
Uk Vk−1

Uk+1 Vk

∣∣∣∣ = UkVk − Uk+1Vk−1,

Zk =

∣∣∣∣
Tk Uk−1

Tk+1 Uk

∣∣∣∣ = TkUk − Tk+1Uk−1.

(8.5)(To be expliit, U0 = V0 = T0 = 1, and Uk = Vk = Tk = 0 for k < 0 or k > n.)We an now �nally state the promised formulas for the bimoment determi-nants.Lemma 8.3. For all m,
D(00)

m =

∣∣∣∣
tm um−1

tm+1 um

∣∣∣∣
2m

, D(11)
m =

∣∣∣∣
um vm−1

um+1 vm

∣∣∣∣
2m

,

D(10)
m =

(um)
2

2m
, D′

m =
umum−1

2m−1
.

(8.6)In the disrete ase when µ =

n∑

k=1

bk δλk
, this redues to

D(00)
m =

Zm

2m
, D(11)

m =
Wm

2m
, D(10)

m =
(Um)

2

2m
, D′

m =
UmUm−1

2m−1
. (8.7)19



Corollary 8.4. The solution to the inverse spetral problem for the disretedual ubi string (Theorem 7.2) an be expressed as
yk′ =

Zk −Wk−1

Zk +Wk−1
, gk′ =

Zk +Wk−1

UkUk−1
, (8.8)

lk′−1 = yk′ − yk′−1 =
2 (Uk)4

(Zk +Wk−1)(Zk+1 +Wk)
. (8.9)The expression Wk an be evaluated expliitly in terms of λk and bk, al-though the formula is somewhat involved [26, Lemma 2.20℄:

Wk =
∑

I∈([1,n]
k )

∆4
I

Γ2
I

λIb
2
I

+

k∑

m=1

∑

I∈([1,n]
k−m)

J∈([1,n]
2m )

I∩J=∅

b2IbJ

{
2m+1

∆4
I∆

2
I,JλI∪J

ΓI ΓI∪J

(
∑

C∪D=J
|C|=|D|=m

min(C)<min(D)

∆2
C∆2

DΓCΓD

)}
,(8.10)where ∆2

I,J =
∏

i∈I,j∈J

(λi − λj)
2. The orresponding formula for Zk is obtainedby replaing bi with bi/λi everywhere.9 The multipeakon solutionIn order to obtain the solution to the inverse spetral problem on the real line,whih provides the multipeakon solution, we merely have to map the formulasfor the interval (Corollary 8.4) bak to the line via the Liouville transformation(5.6).We remind the reader that in this paper we primarily study the pure peakonase where it is assumed that all mk > 0 and also that x1 < · · · < xn. Thisassumption guarantees that the solutions are globally de�ned in time (Theo-rem 4.5) and, regarding the spetral data, that all bk > 0 and 0 < λ1 < · · · < λn(Theorem 6.1). Details regarding mixed peakon-antipeakon solutions are left forfuture researh, but we point out that sine the veloity ẋk = u(xk)2 is alwaysnonnegative, Novikov antipeakons move to the right just like peakons (unlikethe b-family (2.1), where pure peakons move to the right and antipeakons to theleft, if they are su�iently far apart). Nevertheless, peakons and antipeakonsmay ollide after �nite time also for the Novikov equation, ausing division byzero in the solution formula for mk in (9.1) below, and this breakdown leadsto the usual subtle questions regarding ontinuation of the solution beyond theollision. 20



Theorem 9.1. In the notation of Setion 8, the n-peakon solution of Novikov'sequation is given by
xk′ =

1

2
ln

Zk

Wk−1
, mk′ =

√
ZkWk−1

UkUk−1
, (9.1)where k′ = n+ 1 − k for k = 1, . . . , n, and where the time evolution is given by

bk(t) = bk(0) et/λk . (9.2)Proof. The inverse of the oordinate transformation (5.6) is
xk =

1

2
ln

1 + yk

1 − yk
, mk =

gk

√
1 − y2

k

2
,whih upon inserting (8.8) gives (9.1) at one. The evolution of bk omes fromequation (4.23).Example 9.2. The two-peakon solution is

x1 =
1

2
ln
Z2

W1
=

1

2
ln

(λ1 − λ2)
4

(λ1 + λ2)2λ1λ2
b21b

2
2

λ1 b
2
1 + λ2 b

2
2 +

4λ1λ2

λ1 + λ2
b1b2

,

x2 =
1

2
ln
Z1

W0
=

1

2
ln

(
b21
λ1

+
b22
λ2

+
4

λ1 + λ2
b1b2

)
,

m1 =

√
Z2W1

U2U1
=

[
(λ1 − λ2)

4 b21b
2
2

(λ1 + λ2)2λ1λ2

(
λ1 b

2
1 + λ2 b

2
2 +

4λ1λ2

λ1 + λ2
b1b2

)]1/2

(λ1 − λ2)
2 b1b2

λ1 + λ2
(b1 + b2)

=

(
λ1 b

2
1 + λ2 b

2
2 +

4λ1λ2

λ1 + λ2
b1b2

)1/2

√
λ1λ2 (b1 + b2)

,

m2 =

√
Z1W0

U1U0
=

(
b21
λ1

+
b22
λ2

+
4

λ1 + λ2
b1b2

)1/2

b1 + b2
,

(9.3)
where the simpler of the two expressions form1 is obtained under the assumptionthat all spetral data are positive, and therefore only an be trusted in the purepeakon ase. This way of writing the solution is simpler and more expliitthan that found in [17℄. In order to translate (9.3) to the notation used there,write (qk, pk) instead of (xk,mk), ck instead of 1/λk, and t0 instead of (λ−1

1 −
λ−1

2 )−1 ln b2(0)
b2(0)

; then tanhT = (b1−b2)/(b1+b2) and cosh−2 T = 4b1b2/(b1+b2)
2,where T = 1

2 (c1 − c2)(t− t0). 21



Example 9.3. The three-peakon solution is
x1 =

1

2
ln
Z3

W2
, x2 =

1

2
ln
Z2

W1
, x3 =

1

2
ln
Z1

W0
,

m1 =

√
Z3W2

U3U2
, m2 =

√
Z2W1

U2U1
, m3 =

√
Z1W0

U1U0
,

(9.4)where U0 = W0 = 1,
U1 = b1 + b2 + b3,

U2 = Ψ12 b1b2 + Ψ13 b1b3 + Ψ23 b2b3,

U3 = Ψ123 b1b2b3,

(9.5)
W1 = λ1 b

2
1 + λ2 b

2
2 + λ3 b

2
3

+
4λ1λ2

λ1 + λ2
b1b2 +

4λ1λ3

λ1 + λ3
b1b3 +

4λ2λ3

λ2 + λ3
b2b3,

W2 = Ψ2
12 λ1λ2 b

2
1b

2
2 + Ψ2

13 λ1λ3 b
2
1b

2
3 + Ψ2

23 λ2λ3 b
2
2b

2
3

+
4 Ψ13Ψ23 λ1λ2λ3

λ1 + λ2
b1b2b

2
3 +

4 Ψ12Ψ23 λ1λ2λ3

λ1 + λ3
b1b

2
2b3

+
4 Ψ12Ψ13 λ1λ2λ3

λ2 + λ3
b21b2b3,

(9.6)
Z1 =

b21
λ1

+
b22
λ2

+
b23
λ3

+
4

λ1 + λ2
b1b2 +

4

λ1 + λ3
b1b3 +

4

λ2 + λ3
b2b3,

Z2 =
Ψ2

12

λ1λ2
b21b

2
2 +

Ψ2
13

λ1λ3
b21b

2
3 +

Ψ2
23

λ2λ3
b22b

2
3

+
4 Ψ13Ψ23

(λ1 + λ2)λ3
b1b2b

2
3 +

4 Ψ12Ψ23

(λ1 + λ3)λ2
b1b

2
2b3 +

4 Ψ12Ψ13

(λ2 + λ3)λ1
b21b2b3,

Z3 =
Ψ2

123

λ1λ2λ3
b21b

2
2b

2
3,

(9.7)
and

Ψ12 =
(λ1 − λ2)

2

λ1 + λ2
, Ψ13 =

(λ1 − λ3)
2

λ1 + λ3
, Ψ23 =

(λ2 − λ3)
2

λ2 + λ3
,

Ψ123 =
(λ1 − λ2)

2(λ1 − λ3)
2(λ2 − λ3)

2

(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)
.

(9.8)Theorem 9.4 (Asymptotis). Let the eigenvalues be numbered so that 0 < λ1 <
· · · < λn. Then
xk(t) ∼ t

λk
+ log bk(0) − 1

2
lnλk +

n∑

i=k+1

ln
(λi − λk)2

(λi + λk)λi
, as t→ −∞,

xk′ (t) ∼ t

λk
+ log bk(0) − 1

2
lnλk +

k−1∑

i=1

ln
(λi − λk)2

(λi + λk)λi
, as t→ +∞,

(9.9)22



where k′ = n+ 1 − k. Moreover,
lim

t→−∞
mk(t) =

1√
λk

= lim
t→+∞

mk′(t). (9.10)In words: asymptotially as t → ±∞, the kth fastest peakon has veloity 1/λkand amplitude 1/
√
λk.Proof. This is just a matter of identifying the dominant terms; b1(t) = b1(0) et/λ1grows muh faster as t→ +∞ than b2(t), whih in turn grows muh faster than

b3(t), et., and as t → −∞ it is the other way around. Thus, for example,
Uk ∼ Ψ12...k b1b2 . . . bk as t → +∞. A similar analysis of Wk and Zk leadsquikly to the stated formulas.The only di�erene ompared to the xk asymptotis for Degasperis�Proesipeakons [26, Theorem 2.25℄ is that (9.9) ontains an additional term − 1

2 lnλk.Sine this term anels in the subtration, the phase shifts for Novikov peakonsare exatly the same as for Degasperis�Proesi peakons [26, Theorem 2.26℄:
lim

t→∞

(
xk′ (t) − t

λk

)
− lim

t→−∞

(
xk(t) − t

λk

)
=

=
k−1∑

i=1

log
(λi − λk)2

(λi + λk)λi
−

n∑

i=k+1

log
(λi − λk)2

(λi + λk)λi
. (9.11)A Combinatorial resultsThis appendix ontains some material related to the ombinatorial struture ofthe onstants of motion H1, . . . , Hn of the Novikov peakon ODEs; see Setion 4,and in partiular Theorem 4.2. Reall that

A(λ) = 1 − λH1 + · · · + (−λ)nHn = det(I − λTPEP ),where I is the n × n identity matrix, and T , E, P are n × n matries de�nedby Tjk = 1 + sgn(j − k), Ejk = e−|xj−xk|, and P = diag(m1, . . . ,mn). The�rst thing to prove is that the matrix TPEP is osillatory if all mk > 0, whihshows that the zeros of A(λ) are positive and simple. Then we show how to easilyompute the minors of PEP , and �nally we prove the �Canada Day Theorem�(Theorem 4.1) whih implies that Hk equals the sum of all k×k minors of PEP .A.1 PreliminariesIn this setion we have olleted some fats about total positivity [19, 13, 11℄that will be used below.De�nition A.1. If X is a matrix and I and J are index sets, the submatrix
(Xij)i∈I,j∈J will be denoted by XIJ (or sometimes XI,J). The set of k-elementsubsets of the integer interval [1, n] = {1, 2, . . . , n} will be denoted ([1,n]

k

), and23



elements of suh a subset I will always be assumed to be numbered in asendingorder i1 < · · · < ik.De�nition A.2. A square matrix is said to be totally positive if all its minorsof all orders are positive. It is alled totally nonnegative if all its minors arenonnegative. A matrix is osillatory if it is totally nonnegative and some powerof it is totally positive.Theorem A.3. All eigenvalues of a totally positive matrix are positive and ofalgebrai multipliity one, and likewise for osillatory matries. All eigenval-ues of a totally nonnegative matrix are nonnegative, but in general of arbitrarymultipliity.Theorem A.4. The produt of an osillatory matrix and a nonsingular totallynonnegative matrix is osillatory.De�nition A.5. A planar network (Γ, ω) of order n is an ayli planar diretedgraph Γ with arrows going from left to right, with n soures (verties withoutgoing arrows only) on the left side, and with n sinks (verties with inomingarrows only) on the right side. The soures and sinks are numbered 1 to n,from bottom to top, say. All other verties have at least one arrow oming inand at least one arrow going out. Eah edge e of the graph Γ is assigned asalar weight ω(e). The weight of a direted path in Γ is the produt of all theweights of the edges of that path. The weighted path matrix Ω(Γ, ω) is the n×nmatrix whose (i, j) entry Ωij is the sum of the weights of the possible pathsfrom soure i to sink j.The following theorem was disovered by Lindström [23℄ and made famousby Gessel and Viennot [14℄. A similar theorem also appeared earlier in the workof Karlin and MGregor on birth and death proesses [20℄.Theorem A.6 (Lindström's Lemma). Let I and J be subsets of {1, . . . , n} withthe same ardinality. The minor detΩIJ of the weighted path matrix Ω(Γ, ω)of a planar network is equal to the sum of the weights of all possible families ofnoninterseting paths (i.e., paths having no verties in ommon) onneting thesoures labelled by I to the sinks labelled by J . (The weight of a family of pathsis de�ned as the produt of the weights of the individual paths.)Corollary A.7. If all weights ω(e) are nonnegative, then the weighted pathmatrix is totally nonnegative.Remark A.8. Beware that having positive weights does not in general implytotal positivity of the path matrix Ω, sine some minors detΩIJ may be zerodue to absene of noninterseting path families from I to J , in whih ase Ω isonly totally nonnegative.A.2 Proof that TPEP is osillatoryThe matrix T is the path matrix of the planar network whose struture isillustrated below for the ase n = 4 (with all edges, and therefore all paths andfamilies of paths, having unit weight):24



1

2

3

4

1

2

3

4

Indeed, there is learly one path from soure i to sink j if i = j, two paths if
i > j, and none if i < j, and this agrees with

Tij = 1 + sgn(i− j) =






1, i = j,

2, i > j,

0, i < j.Similarly one an hek that the matrix PEP is the weighted path matrix ofthe planar network illustrated below for the ase n = 5 (we are assuming that
x1 < · · · < xn, so that E12E23 = ex1−x2ex2−x3 = E13, et.):

1

2

3

4

5

1

2

3

4

5

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

E12 E12

1 − E2
12

E23 E23

1 − E2
23

E34 E34

1 − E2
34

E45 E45

1 − E2
45

By Corollary A.7, both T and PEP are totally nonnegative (if all mk > 0).Furthermore, (PEP )N is the weighted path matrix of the planar network ob-tain by onneting N opies of the network for PEP in series, and if N is largeenough, there is learly enough wiggle room in this network to �nd a nonin-terseting path family from any soure set I to any sink set J with |I| = |J |.Thus (PEP )N is totally positive for su�iently large N ; in other words, PEPis osillatory. (Another way to see this is to use a riterion [13, Chapter II,Theorem 10℄ whih says that a totally nonnegative matrix X is osillatory ifand only if it is nonsingular and Xij > 0 for |i− j| = 1.) Sine T is nonsingular,Theorem A.4 implies that TPEP is osillatory, whih was the �rst thing wewanted to prove.
25



A.3 Minors of PEPHaving a planar network for PEP makes it easy to ompute its minors usingLindström's Lemma.Example A.9. Consider the onstant of motion H3 in the ase n = 6.For soures I = {1, 2, 3} and sinks J = {1, 2, 3} there is only one family ofnoninterseting paths, namely the paths going straight aross. The weights ofthese paths are m1m1, m2(1−E2
12)m2 and m3(1−E2

23)m3, and the total weightof that family is therefore (1 − E2
12)(1 − E2

23)m
2
1m

2
2m

2
3, whih will be the �rstterm in H3.A similar term results whenever I = J . For instane, when I = J = {1, 2, 4}the paths starting at soures 1 and 2 must go straight aross, while the pathfrom soure 4 to to sink 4 an go straight aross, or down to line 3 and up again.The ontributions from these two possible noninterseting path families add upto

m1m1 ·m2(1 − E2
12)m2 ·

(
m4(1 − E2

34)m4 +m4E34(1 − E2
23)E34m4

)

= (1 − E2
12)(1 − E2

24)m
2
1m

2
2m

2
4.From I = {1, 2, 3} to J = {1, 2, 4} there is one noninterseting path family,and there is another one with the same weight from I = {1, 2, 4} to J = {1, 2, 3};the two add up to the term 2(1 − E2

12)(1 − E2
23)E24m

2
1m

2
2m3m4.Continuing like this, one �nds that the types of terms that appear in H3 are

H3 = (1 − E2
12)(1 − E2

23)m
2
1m

2
2m

2
3 + . . .

+ 2(1 − E2
12)(1 − E2

23)E34m
2
1m

2
2m3m4 + . . .

+ 4(1 − E2
12)(1 − E2

34)E23E45m
2
1m2m3m4m5 + . . .

+ 8 (1 − E2
23)(1 − E2

45)E12E34E56m1m2m3m4m5m6.

(A.1)The last term omes from the 8 possible noninterseting path families from
I = {i1, i2, i3} to J = {j1, j2, j3} where (i1, j1) = (1, 2) or (2, 1), (i2, j2) = (3, 4)or (4, 3), and (i3, j3) = (5, 6) or (6, 5).Remark A.10. Alternatively, the mk an be fatored out from any minor of
PEP , leaving the orresponding minor of E, whih an be omputed using aresult from Gantmaher and Krein [13, Setion II.3.5℄, sine the matrix E iswhat they all a single-pair matrix. This means a symmetri n × n matrix Xwith entries

Xij =

{
ψiχj , i ≤ j,

ψjχi, i ≥ j.
(A.2)The k×k minors of a single-pair matrix are given by the following rule: detXIJ =

0, unless I, J ∈
(
[1,n]

k

) satisfy the ondition
(i1, j1) < (i2, j2) < · · · < (ik, jk), (A.3)26



where the notation means that both numbers in one pair must be less than bothnumbers in the following pair; in this ase,
detXIJ = ψα1

∣∣∣∣
χβ1 χα2

ψβ1 ψα2

∣∣∣∣

∣∣∣∣
χβ2 χα3

ψβ2 ψα3

∣∣∣∣ . . .
∣∣∣∣
χβk−1

χαk

ψβk−1
ψαk

∣∣∣∣χβk
, (A.4)where

(αm, βm) =
(
min(im, jm),max(im, jm)

)
. (A.5)In the ase of E we have ψi = exi and χi = e−xi (assuming as usual that

x1 < · · · < xn), and (A.4) beomes
detEIJ = (1−E2

β1α2
)(1−E2

β2α3
) . . . (1−E2

βk−1αk
)Eα1β1Eα2β2 . . . Eαkβk

. (A.6)A.4 Proof of the �Canada Day Theorem�The result to be proved (Theorem 4.1) is that for any symmetri n×nmatrix X ,the oe�ient of sk in the polynomial det(I + s TX) equals the sum of all k× kminors of X :
det(I + s TX) = 1 +

n∑

k=1




∑

I∈([1,n]
k )

∑

J∈([1,n]
k )

detXIJ


 sk. (A.7)We start from the elementary fat that for any matrix Y , the oe�ients in itsharateristi polynomial are given by the sums of the prinipal minors,

det(I + s Y ) = 1 +

n∑

k=1




∑

J∈([1,n]
k )

detYJJ


 sk.Applying this to Y = TX and omputing the minors of TX using the Cauhy�Binet formula [12, Ch. I, � 2℄

det(TX)AB =
∑

I∈([1,n]
k )

detTAI detXIB, for A,B ∈
(
[1,n]

k

)
, (A.8)we �nd that

det(I + s TX) = 1 +

n∑

k=1




∑

I∈([1,n]
k )

∑

J∈([1,n]
k )

det TJI detXIJ


 sk.Comparing this to (A.7), it is lear that what we need to show is that, for any k,

∑

I∈([1,n]
k )

∑

J∈([1,n]
k )

detTJI detXIJ =
∑

I∈([1,n]
k )

∑

J∈([1,n]
k )

detXIJ . (A.9)The �rst thing to do is alulate the minors detTJI .27



De�nition A.11. Given I, J ∈
(
[1,n]

k

), the set I is said to interlae with theset J , denoted I ≤ J , if
i1 ≤ j1 ≤ i2 ≤ j2 ≤ . . . ≤ ik ≤ jk. (A.10)If all the inequalities are strit, then I is said to stritly interlae with J , in whihase we write I < J . If I ≤ J , then I ′ and J ′ denote the stritly interlaingsubsets (possibly empty)

I ′ = I \ (I ∩ J), J ′ = J \ (I ∩ J), (A.11)whose ardinality (possibly zero) will be denoted by
p(I, J) = |I ′| = |J ′| . (A.12)Lemma A.12. For I, J ∈

(
[1,n]

k

), the orresponding k × k minor of T is
detTJI =

{
2p(I,J), if I ≤ J,

0, otherwise. (A.13)Proof. We will use Lindström's Lemma (Theorem A.6) on the planar networkfor T given in Setion A.2 above; the minor detTJI equals the total numberof families of noninterseting paths onneting the soure nodes (on the left)indexed by J to the sink nodes (on the right) indexed by I.The proof proeeds by indution on the size n of T . The laim is triviallytrue for n = 1. Consider an arbitrary n > 1, and suppose the laim is true forsize n− 1. If neither I nor J ontain n, the laim follows immediately from theindution hypothesis, and likewise if I and J both ontain n, beause there isonly one path onneting soure n to sink n. If I ontains n but J does not,then detTJI = 0 beause there are no paths going upward; this agrees with thelaim, sine in this ase I does not interlae with J .The only remaining ase is therefore J = J1∪{n}, I = I1∪{ik}, with ik < n.But then
detTJI = detTJ1I1 ×






2, if jk−1 < ik,

1, if jk−1 = ik,

0, if jk−1 > ik,depending on whether the path onneting soure n with sink ik has to rossthe jk−1 level; if it does not, there are two available paths, if it does, there isonly one available path provided jk−1 = in, otherwise the path intersets thepath oming from soure jk−1. In the last instane, I does not interlae with J ,while in the other two I ≤ J if and only if I1 ≤ J1, thus proving the laim.Aording to this lemma, the struture of (A.9) (whih is what we want toprove) is ∑

I,J∈([1,n]
k )

I≤J

2p(I,J) detXIJ =
∑

A,B∈([1,n]
k )

detXAB, (A.14)28



and we must show that those terms detXIJ that our more than one on theleft-hand side exatly ompensate for those that are absent. This will followfrom another tehnial lemma:Lemma A.13 (Relations between k×k minors of a symmetri matrix). Suppose
I, J ∈

(
[1,n]

k

) and I ≤ J . Then, for any symmetri n× n matrix X,
∑

A,B∈(I∪J

k )
A∩B=I∩J

detXAB = 2p(I,J) detXIJ . (A.15)Before proving Lemma A.13, we will use it to �nish the proof of the maintheorem. The two lemmas above show that the sum on the left-hand side of(A.14) equals
∑

I,J∈([1,n]
k )

I≤J

2p(I,J) detXIJ =
∑

I,J∈([1,n]
k )

I≤J




∑

A,B∈(I∪J

k )
A∩B=I∩J

detXAB


 , (A.16)whih in turn equals the sum on the right-hand side of (A.14),

∑

A,B∈([1,n]
k )

detXAB. (A.17)Thus (A.14) holds, and the theorem is proved. The �nal step from (A.16) to(A.17) is justi�ed by the observation that any given pair (A,B) of the typesummed over in (A.17) appears exatly one in the right-hand side of (A.16),namely for the sets I and J de�ned as follows. Let M = A ∩ B, A′ = A \M ,
B′ = B \M , and let p ≥ 0 be the ardinality of the disjoint sets A′ and B′(they are empty sets if p = 0). Then de�ne I ′ and J ′ by enumerating the 2pelements of A′ ∪B′ in the stritly interlaing order I ′ < J ′, and let I = M ∪ I ′and J = M ∪ J ′. Conversely, no other terms than these appear in the righthand side of (A.16), and it is therefore indeed equal to (A.17).Proof of Lemma A.13. The sets I ≤ J and I ′ < J ′ (as in De�nition A.11), with

|I| = |J | = k, |I ′| = |J ′| = p(I, J) = p,will be �xed throughout the proof, and for onveniene we also introdue M =
I ∩ J and U = I ∪ J , with |M | = k − p and |U | = k + p. We an assume that
p > 0, sine the ase p = 0 is trivial; it ours when I = J , and then both sidesof (A.15) simply equal detXII .The set U \M onsists of the 2p numbers whih belong alternatingly to I ′and to J ′. The sum (A.15) runs over all pairs of sets (A,B) obtained by splittingthese 2p numbers into two disjoint p-sets A′ and B′ in an arbitrary way andletting A = M ∪ A′ and B = M ∪ B′. Write Q for this set; that is, Q denotes29



the set of pairs (A,B) ∈
(
[1,n]

k

)
×
(
[1,n]

k

) suh that A ∪ B = U and A ∩B = M .After expanding detXAB, we an then write the left-hand side of (A.15) as
∑

((A,B),σ)∈Q×Sk

(−1)σXa1bσ(1)
Xa2bσ(2)

. . .Xakbσ(k)
, (A.18)where Sk is the group of permutations of {1, 2, . . . , k}, and (−1)σ denotes thesign of the permutation σ.For eah ((A,B), σ) ∈ Q×Sk, we let A′ = A\M and B′ = B\M , and set up a(σ-dependent) bijetion between A′ and B′ as follows: a′ ∈ A′ is paired up with

b′ ∈ B′ if and only if the produt Xa1bσ(1)
Xa2bσ(2)

. . . Xakbσ(k)
ontains either thefator Xa′b′ or a sequene of fators Xa′r, Xrs, . . . , Xtb′ where r, s, . . . , t ∈ M .Let us say that a′ and b′ are linked if they are paired up in this manner. Alinked pair (a′, b′) ∈ A′ × B′ will be alled hostile if (a′, b′) belongs to I ′ × I ′or J ′ × J ′, and friendly if (a′, b′) belongs to I ′ × J ′ or J ′ × I ′. To eah term inthe sum (A.18) there will thus orrespond p suh linked pairs, and what we willshow is that the terms ontaining at least one hostile pair will anel out, andthat the remaining terms (with all friendly pairs) will add up to the right-handside of (A.15).Next we de�ne what we mean by �ipping a linked pair (a′, b′). This meansthat, in the produt Xa1bσ(1)

Xa2bσ(2)
. . . Xakbσ(k)

, those fators Xa′rXrs . . .Xtb′that link a′ to b′ are replaed by Xb′t . . .XsrXra′ , with all the indies in reversedorder. (When the linking involves just a single fator Xa′b′ , �ipping meansreplaing it by Xb′a′ .) Sine the matrix X is symmetri, this does not hangethe value of the produt, but it hanges the way it is indexed. The number a′whih used to be in the �rst slot (in Xa′r) is now in the seond slot (in Xra′),and vie versa for b′. The onneting indies r, s, . . . , t ∈ M do not ontributeto any hange in the indexing sets, sine, for example, the r in Xa′r is movedfrom the seond slot to the �rst, while the other r in Xrs is moved from the �rstto the seond. The new produt (the result of the �ipping) is therefore indexedby the sets (
A \ {a′}

)
∪ {b′} =: Ã = {ã1 < · · · < ãk}and (

B \ {b′}
)
∪ {a′} =: B̃ = {b̃1 < · · · < b̃k}respetively, and after reordering the fators so that the �rst indies ome inasending order, it an be written

X
ea1

ebeσ(1)
X

ea2
ebeσ(2)

. . . X
eak

ebeσ(k)for some uniquely determined permutation σ̃ ∈ Sk. Flipping a given pair thustakes ((A,B), σ) to ((Ã, B̃), σ̃). This operation is invertible, with inverse givenby simply �ipping the same pair again, now viewed as a pair (b′, a′) ∈ ((Ã)′, (B̃)′)linked via the indies t, . . . , s, r. Beause of the symmetry of the matrix X , theterm in (A.18) orresponding to ((Ã, B̃), σ̃) is equal to the term orresponding30



to ((A,B), σ), exept possibly for a di�erene in sign, depending on whether thesigns of σ and σ̃ ome out equal or not:
(−1)eσX

ea1
ebeσ(1)

X
ea2

ebeσ(2)
. . . X

eak
ebeσ(k)

= ±(−1)σXa1bσ(1)
Xa2bσ(2)

. . .Xakbσ(k)
.We will show below that the permutation σ̃ has the same sign as σ when afriendly pair is �ipped, and the opposite sign when a hostile pair is �ipped.Taking this for granted for the moment, divide the set Q×Sk into the two sets

(Q×Sk)hostile, onsisting of those ((A,B), σ) for whih at least one linked pairis hostile, and (Q × Sk)friendly, onsisting of those ((A,B), σ) for whih all plinked pairs are friendly. The mapping ��ip that out of all hostile pairs (a′, b′)for whih min(a′, b′) is smallest� is an involution on (Q×Sk)hostile that pairs upeah term with a partner term that is equal exept for having the opposite sign(sine it is a hostile pair that is �ipped). Consequently these terms anel out,and the ontribution from (Q × Sk)hostile to (A.18) is zero. The sum thereforeredues to
∑

((A,B),σ)∈(Q×Sk)friendly

(−1)σXa1bσ(1)
Xa2bσ(2)

. . . Xakbσ(k)
. (A.19)Now equip the set (Q×Sk)friendly with an equivalene relation; ((Ã, B̃), σ̃) and

((A,B), σ) are equivalent if one an go from one to another by �ipping friendlypairs. Eah equivalene lass ontains 2p elements, sine eah of the p friendlypairs an belong to either I ′ × J ′ or J ′ × I ′. Moreover, the terms orrespondingto the elements in one equivalene lass are all equal (inluding the sign, sineonly friendly pairs are �ipped), and eah lass has a �anonial� representativewith all linked pairs belonging to I ′ × J ′,
(−1)σXi1jσ(1)

Xi2jσ(2)
. . . Xikjσ(k)

,where the permutation σ is uniquely determined by the equivalene lass (andvie versa). Thus (A.19) beomes
2p
∑

σ∈Sk

(−1)σXi1jσ(1)
Xi2jσ(2)

. . . Xikjσ(k)
= 2p detXIJ , (A.20)whih is what we wanted to prove.To �nish the proof, it now remains to demonstrate the rule that σ̃ has thesame (opposite) sign as σ when a friendly (hostile) pair is �ipped. To thisend, we will represent ((A,B), σ) with a bipartite graph, with the numbers in

U = A ∪ B (in inreasing order) as nodes both on the left and on the right,and the left nodes ai ∈ A onneted by edges to the orresponding right nodes
bσ(i) ∈ B. The sign of σ will then be equal to (−1)c, where c is the rossingnumber of the graph. As an aid in explaining the ideas we will use the followingexample with U = [1, 8], where the nodes in M = A ∩ B are marked withdiamonds, and the nodes in A′ and B′ are marked with irles:31



1 12 23 34 45 56 67 78 8
A = {2, 3, 4, 5, 6, 8}

= {2, 4, 5, 8} ∪ {3, 6}
= M ∪A′

B = {1, 2, 4, 5, 7, 8}
= {2, 4, 5, 8} ∪ {1, 7}
= M ∪B′Clearly, A′ ∪ B′ = {3, 6} ∪ {1, 7} = {1, 3, 6, 7} = {i′1 < j′1 < i′2 < j′2}, so that

I ′ = {i′1, i′2} = {1, 6} and J ′ = {j′1, j′2} = {3, 7}. Consequently, I = M ∪ I ′ =
{1, 2, 4, 5, 6, 8} and J = M ∪ J ′ = {2, 3, 4, 5, 6, 7}. The hosen permutationis σ(123456) = 632415, where the notation means that σ(1) = 6, σ(2) = 3,et.; for example, the latter equality omes from the seond smallest number
a2 in A being onneted to the third smallest number b3 in B. There are
9 rossings, so σ is an odd permutation, and this graph therefore represents theterm −X28X34X42X55X61X87, appearing with a minus sign in the sum (A.18).The linked pairs (a′, b′) ∈ A′ × B′ are (6, 1) (diretly linked) and (3, 7) (linkedvia 4, 2, 8 ∈M). Both pairs are hostile, sine (6, 1) ∈ I ′×I ′ and (3, 7) ∈ J ′×J ′.We will illustrate in detail what happens when the pair (3, 7) is �ipped.The �ip is e�eted by replaing the fators X34X42X28X87 by X78X82X24X43and sorting the resulting produt so that the �rst indies ome in asend-ing order; this gives X24X43X55X61X78X82. Thus Ã = {2, 4, 5, 6, 7, 8}, B̃ =
{1, 2, 3, 4, 5, 8}, and σ̃(123456) = 435162 (an even permutation). In terms of thegraph, the nodes that are involved in the �ip are, on both sides, {2, 3, 4, 7, 8}(the two nodes in the pair being �ipped, plus the nodes linking them), and theedges involved are {34, 42, 28, 87}, whih get hanged into {43, 24, 82, 78}. Inother words, the �ip orresponds to this ative subgraph being mirror re�etedaross the entral vertial line. To understand how the proess of re�etiona�ets the rossing number, it an be broken down into two steps, as follows.On the left, node 7 is unoupied to begin with, so we an hange the edge
87 to 77. This frees node 8 on the left, so that we an hange the edge 28 to 88,whih frees node 2 on the left. (Think of this edge as a rubber band onnetedat one end to node 8 on the right; we're disonneting its other end from node32



2 on the left and sliding it past all the other nodes down to node 8 on the left.Obviously the rossing number inreases or dereases by one every time we slidepast a node that has an edge attahed to it.) Continuing like this, we get theresult illustrated in Step 1 below; the edges hanged are 87 → 77, 28 → 88,
42 → 22, 34 → 44.1 12 23 34 45 56 67 78 8Intermediate stage (after Step 1)

1 12 23 34 45 56 67 78 8Result of the �ip (after Step 2)In Step 2, we work similarly on the right-hand side: node 3 is unoupied tobegin with, so we an hange edge 44 to 43, and so on. The list of edge movesis 44 → 43, 22 → 24, 88 → 82, 77 → 78. (In the graph on the right we seethat the rossing number after the �ip is 8, verifying the laim that σ̃ is an evenpermutation.)We need to keep trak of the hanges in the rossing number aused bysliding ative edges past nodes that have edges attahed to them. This is mosteasily done by following the dotted lines in the �gures, and ounting whetherthe nodes that are marked (with irles and diamonds) are passed an even or anodd number of times. However, sine the ative subgraph simply gets re�eted,the rossings among its edges will be the same before and after the �ip, so weneed in fat only ount how many times we pass a passive marked node. (Thepassive nodes in the example are {1, 5, 6}.)If a passive node belonging to M is passed in Step 1, then it is passed thesame number of times in Step 2 as well, sine the nodes in M are marked bothon the left and on the right. Therefore they do not a�et the parity of therossing number either, and we an ignore the nodes marked with diamonds,and only look at the passive irled nodes (all the nodes in A′ and B′ exeptfor the two ative nodes that are being �ipped).Passive nodes belonging to A′ are ounted only in Step 1 and passive nodesin B′ only in Step 2; they get ounted an odd number of times if they lie betweenthe two �ipped nodes (like node 6 in the example, ounted one), and an even33



number of times otherwise (like node 1, never ounted). Consequently, whatdetermines whether the parity of the rossing number hanges is the numberof nodes between the �ipped ones that belong to A′ ∪ B′ = I ′ ∪ J ′. And for afriendly pair, this number is even, while for a hostile pair, it is odd.This shows that the rossing number keeps its parity (so that (−1)σ = (−1)eσ)when a friendly pair is �ipped, and the opposite when a hostile pair is �ipped.The proof is �nally omplete.B Veri�ation of the Lax pair for peakonsThe purpose of this appendix is to arefully verify that the Lax pair formulation(4.1)�(4.2) of the Novikov equation really is valid for the lass of distributionalsolutions that we are onsidering. This is not at all obvious, as should be learfrom the omputations below.B.1 PreliminariesWe will need to be more preise regarding the notation here than in the maintext. A word of warning right away: our notation for derivatives here will di�erfrom that used in the rest of the paper (where subsripts should be interpretedas distributional derivatives).To begin with, given n smooth funtions x = xk(t) suh that x1(t) < · · · <
xn(t), let x0(t) = −∞ and xn+1(t) = +∞, and let Ωk (for k = 0, . . . , n) denotethe region xk(t) < x < xk+1(t) in the (x, t) plane.Our omputations will deal with a lass that we denote PC∞, onsisting ofpieewise smooth funtions f(x, t) suh that the restrition of f to eah region
Ωk is (the restrition to Ωk of) a smooth funtion f (k)(x, t) de�ned on an openneighbourhood of Ωk (so that f (k) and its partial derivatives make sense onthe urves x = xk(t)). For eah �xed t, the funtion f(·, t) de�nes a regulardistribution Tf in the lass D′(R), depending parametrially on t (and written
Tf(t) where needed). After having made lear exatly what is meant, we willmostly be less strit, and write f instead of Tf for simpliity.The values of f on the urves x = xk(t) need not be de�ned; the funtion de-�nes the same distribution Tf no matter what values are assigned to f(xk(t), t).But our assumptions imply that the left and right limits of f exist, and (sup-pressing the time dependene) they will be denoted by f(x−k ) := f (k−1)(xk) and
f(x+

k ) := f (k)(xk), respetively. The jump and the average of f at xk will bedenoted by
[
f(xk)

]
:= f(x+

k ) − f(x−k ) and 〈
f(xk)

〉
:=

f(x+
k ) + f(x−k )

2
, (B.1)respetively. They satisfy the produt rules

[
fg
]

=
〈
f
〉[
g
]
+
[
f
]〈
g
〉
,

〈
fg
〉

=
〈
f
〉〈
g
〉

+ 1
4

[
f
][
g
]
. (B.2)34



We will use subsripts to denote partial derivatives in the lassial sense, sothat (for example) fx denotes the pieewise smooth funtion whose restritionto Ωk is given by ∂f (k)/∂x (and whose values at x = xk(t) are in generalunde�ned). On the other hand, Dx will denote the distributional derivative,whih in addition piks up Dira delta ontributions from jump disontinuitiesof f at the urves x = xk(t). That is, DxTf = Tfx
+
∑n

k=1

[
f(xk)

]
δxk

, or, inless strit notation,
Dxf = fx +

n∑

k=1

[
f(xk)

]
δxk

. (B.3)The time derivative Dt is de�ned as a limit in D′(R),
DtTf (t) = lim

h→0

Tf (t+ h) − Tf (t)

h
, (B.4)and it ommutes with Dx by the ontinuity of Dx on D′(R). For our lass PC∞of pieewise smooth funtions, we have DtTf = Tft

−∑n
k=1 ẋk

[
f(xk)

]
δxk

, orsimply
Dtf = ft −

n∑

k=1

ẋk

[
f(xk)

]
δxk

, (B.5)where ẋk = dxk/dt. We also note that d
dtf(x±k (t), t) = fx(x±k (t), t) ẋk(t) +

ft(x
±
k (t), t), whih gives

d
dt

[
f(xk)

]
=
[
fx(xk)

]
ẋk +

[
ft(xk)

]
,

d
dt

〈
f(xk)

〉
=
〈
fx(xk)

〉
ẋk +

〈
ft(xk)

〉
.

(B.6)B.2 The problem of multipliationIf the funtion f is ontinuous at x = xk, then the Dira delta at xk an bemultiplied by the orresponding distribution Tf aording to the well-knownformula
Tf δx = f(xk) δxk

. (B.7)But below we will have to onsider this produt for funtions in the lass PC∞desribed above, where the value f(xk) is not de�ned. It will turn out that inthe present ontext, the right thing to do is to use the average value of f atthe jump, and thus de�ne Tf δx :=
〈
f(xk)

〉
δxk

. However, sine we want thisto be a onsequene of the analysis, rather than an a priori assumption, wewill, to begin with, just assign a hypothetial value f(xk) and use that value in(B.7). This assignment is justi�ed in the present ontext, as we will see below.However, we are not laiming that this addresses any of the deeper issues; forexample, this assignment does not respet the produt struture of pieewiseontinuous funtions. See [30, Ch. 5℄ for more information about the struturalproblems assoiated with any attempt to de�ne a produt of distributions in
D′(R). 35



B.3 Distributional Lax pairPeakon solutions
u(x, t) =

n∑

k=1

mk(t) e−|x−xk(t)| (B.8)belong to the pieewise smooth lass PC∞. They are ontinuous and satisfy
Dxu = ux =

n∑

k=1

mk sgn(xk − x) e−|x−xk|,

D2
xu = Dx(ux) = uxx +

n∑

k=1

[
ux(xk)

]
δxk

= u+

n∑

k=1

(−2mk) δxk
,whih implies

m := u−D2
xu = 2

n∑

k=1

mk δxk
. (B.9)The Lax pair (4.1)�(4.2) will involve the funtions u and Dxu, as well as thepurely singular distribution m. We will take ψ1, ψ2, ψ3 to be funtions in PC∞,and separate the regular (funtion) part from the singular (Dira delta) part.The formulation obtained in this way reads

DxΨ = L̂Ψ, DtΨ = ÂΨ, (B.10)where Ψ = (ψ1, ψ2, ψ3)
t,

L̂ = L+ 2z

(
n∑

k=1

mk δxk

)
N, L =




0 0 1
0 0 0
1 0 0


 , N =




0 1 0
0 0 1
0 0 0


 , (B.11)and̂

A = A−2z

(
n∑

k=1

mk u(xk)2δxk

)
N, A =




−uux ux/z u2

x

u/z −1/z2 −ux/z
−u2 u/z uux



 . (B.12)Note that (B.10) involves multiplying NΨ = (ψ2, ψ3, 0) by δxk
, and some value

ψ2(xk) must be assigned in order for this to be well-de�ned (we will soon see that
ψ3 must be ontinuous and therefore it is only ψ2 that presents any problems).Theorem B.1. Provided that the produt mψ2 is de�ned using the averagevalue ψ2(xk) :=

〈
ψ2(xk)

〉 at the jumps,
mψ2 := 2

n∑

k=1

mk

〈
ψ2(xk)

〉
δxk

, (B.13)the following statement holds. With u and m given by (B.8)�(B.9), and with Ψ ∈
PC∞, the Lax pair (B.10)�(B.12) satis�es the ompatibility ondition DtDxΨ =
DxDtΨ if and only if the peakon ODEs (3.4) are satis�ed: ẋk = u(xk)2 and
ṁk = −mk u(xk)

〈
ux(xk)

〉. 36



Proof. For simpliity, we will write just ∑ instead of ∑n
k=1. Identifying o-e�ients of δxk

in the two Lax equations (B.10) immediately gives [Ψ(xk)
]

=

2zmkNΨ(xk) and −ẋk

[
Ψ(xk)

]
= −2zmku(xk)2NΨ(xk), respetively. Thus,

[ψ3(xk)] = 0 (in other words, ψ3 is ontinuous) and ẋk = u(xk)2. Next weompute the derivatives of (B.10):
Dt(DxΨ) = Dt(LΨ + 2z

(∑
mk δxk

)
NΨ)

= L(ÂΨ) + 2zN
∑

d
dt

(
mkΨ(xk)

)
δxk

− 2zN
∑

mkΨ(xk)ẋkδ
′
xk
,

Dx(DtΨ) = Dx(AΨ − 2z
(∑

mk u(xk)2δxk

)
NΨ)

= (AΨ)x +
∑[

AΨ(xk)
]
δxk

− 2zN
∑

mkΨ(xk)u(xk)2δ′xk
.The regular part of (B.10) gives Ψx = LΨ, so that (AΨ)x = AxΨ + ALΨ,and it is easily veri�ed that LA = Ax + AL holds identially (sine uxx = u).This implies that the regular parts of the two expressions above are equal,and the terms involving δ′xk

are also equal sine ẋk = u(xk)2. Therefore theompatibility ondition Dt(DxΨ) = Dx(DtΨ) redues to an equality betweenthe oe�ients of δxk
,

−2zmku(xk)2LNΨ(xk) + 2zN d
dt

(
mkΨ(xk)

)
=
[
AΨ(xk)

]
. (B.14)Using the produt rule (B.2), the expression for [Ψ(xk)

] above, and [ux(xk)
]

=
−2mk, we �nd that the right-hand side of (B.14) equals
〈
A(xk)

〉
2z mkNΨ(xk) +

[
A(xk)

]〈
Ψ(xk)

〉
=

2zmk

(
0 −u

〈
ux

〉 〈
ux

〉
/z

0 u/z −1/z2

0 −u2 u/z

)

xk

Ψ(xk) + 2mk

(
u −1/z −2

〈
ux

〉

0 0 1/z
0 0 −u

)

xk

〈
Ψ(xk)

〉
. (B.15)The (3,2) entry −u2 in the matrix in the �rst term will anel against the whole�rst term on the left-hand side of (B.14), sine the only nonzero entry of LN is

(LN)32 = 1. Thus (B.14) is equivalent to
ṁk NΨ(xk) +mk N

d
dtΨ(xk) =

mk

(
0 −u

〈
ux

〉 〈
ux

〉
/z

0 u/z −1/z2

0 0 u/z

)

xk

Ψ(xk) +mk

(
u/z −1/z2 −2

〈
ux

〉
/z

0 0 1/z2

0 0 −u/z

)

xk

〈
Ψ(xk)

〉
. (B.16)To make it lear how the assumption (B.13) enters the proof, we want to avoidassigning a value to ψ2(xk) for as long as possible. Therefore we an't ompute

d
dtΨ(xk) quite yet. But 〈Ψ(xk)

〉 is well-de�ned, and its time derivative an be
37



omputed using Ψx = LΨ and Ψt = AΨ in (B.6):
N d

dt

〈
Ψ(xk)

〉
= N

〈
LΨ(xk)

〉
ẋk +N

〈
AΨ(xk)

〉

= N
(
Lu(xk)2 +

〈
A(xk)

〉)〈
Ψ(xk)

〉
+N 1

4

[
A(xk)

][
Ψ(xk)

]

=

(
u/z −1/z2 −

〈
ux

〉
/z

0 u/z u
〈

ux

〉
0 0 0

)

xk

〈
Ψ(xk)

〉
+ 1

4 N
[
A(xk)

]
N

︸ ︷︷ ︸
=0

2zmkΨ(xk).A bit of manipulation using this result, as well as 〈ψ3

〉
(xk) = ψ3(xk), showsthat the ompatibility ondition (B.16) an be written as

mkN
d
dt

(
Ψ(xk) −

〈
Ψ(xk)

〉)
+
(
ṁk +mku(xk)

〈
ux(xk)

〉)
NΨ(x)

= mk

( 0 0 0
0 u/z 0
0 0 0

)

xk

(
Ψ(xk) −

〈
Ψ(xk)

〉) (B.17)The third row is zero, and the �rst two rows say that
(
ṁk +mku(xk)

〈
ux(xk)

〉)
ψ2(xk) = −mk

d
dt

(
ψ2(xk) −

〈
ψ2(xk)

〉)
,

(
ṁk +mku(xk)

〈
ux(xk)

〉)
ψ3(xk) = 1

zmk u(xk)
(
ψ2(xk) −

〈
ψ2(xk)

〉)
.At this point we hoose to assign ψ2(xk) :=

〈
ψ2

〉
(xk), and then it is lear that(B.17) is satis�ed if and only if

ṁk = −mku(xk)
〈
ux(xk)

〉
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