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Abstract

A two-parameter family of discrete models describing a predator-
prey interaction is considered, which generalizes a model presented by
Murray, consisting of two coupled nonlinear difference equations. In
contrast to the original case treated by Murray, where the two popu-
lations either die out or may display unbounded growth, the general
member of this family displays a somewhat wider range of behaviour.
In particular, the model has a nontrivial steady state which is stable
for a certain range of parameter values, which is explicitly determined,
and also undergoes a Neimark-Sacker bifurcation that produces an at-
tracting invariant curve in some areas of the parameter space, and a
repelling one in others.
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1 Introduction

Murray’s book [7] is one of the classics of mathematical biology. The range
of topics and examples covered reflects the wide-ranging interests of the au-
thor. It is one of the first text books to include a detailed account of the
theory of bifurcations and chaos for real one-dimensional maps (or equiva-
lently, for first-order difference equations) at a level that is accessible to the
student or non-expert who wishes to understand how this theory may be ap-
plied to model the dynamics of a single population. However, when it comes
to discrete models for interacting populations, it is fair to say that both the
original book and the updated two-volume version [8] provide a rather terse
account, and mainly concentrate on the stability analysis of fixed points
via linearization. (Although the latest version [8] does include a new fifth
chapter on the application of difference equations to marital interaction.) A
much fuller account of the theory of difference equations and their applica-
tions to diverse areas of science (including biology) is provided by Elaydi’s
two books [2, 3]; the first of these texts deals primarily with linear theory,
while the second one covers bifurcations and chaos in nonlinear maps.

A very simple discrete model of the interaction between a predator P
and a prey N, where it is assumed that the predator can consume the prey
without limit, is given by

Nit1 = rNpexp(—bP), (1)
Piy1 = Ni(1-—exp(-aP)),

where a,b,r > 0. In chapter 4 of Murray’s book [7], this system is given
in the special case b = a, and it is noted that the model is unrealistic in
the sense that solutions can grow unboundedly with ¢. (The linear stability
analysis for this special case is also the third problem given in the exercises
for section 4.11, chapter 4 of [3].) Here we consider the model (1) in the case
where b = 1. In fact, there is no loss of generality in doing this: by rescaling
N; and P; by the same factor (i.e. by nondimensionalizing), it is always
possible to arrange it so that the parameter inside the first exponential is 1;
but the parameter in the other exponential (which will still be denoted a)
cannot be simultaneously removed.
Henceforth we consider the model in the nondimensional form

Ttr1 = rmtexp(—yt), (2)
Y1 = (1 —exp(—ay)),

which contains the two positive parameters a, 7 (which cannot be removed by
rescaling). The original discrete predator-prey model discussed by Murray
corresponds to the special case a = 1. Further analysis of this generalized
model reveals a richness of behaviour not present in the original model.
For the special case a = 1 the dynamics is uninteresting in the sense that



either the two species can both die out, or the solutions can grow without
bound. However, in general the model displays the more biologically relevant
possibilities that the two populations can asymptotically approach positive
steady state values, or move towards an attracting invariant curve in the
phase plane. The latter scenario arises from a Neimark-Sacker bifurcation
that takes place in the (r,a) parameter space.

The Hopf bifurcation is a well known phenomenon for a system of ordi-
nary differential equations in two or more dimensions, whereby, when some
parameter is varied, a pair of complex conjugate eigenvalues of the Jacobian
at a fixed point crosses the imaginary axis, so that the fixed point changes
its behaviour from stable to unstable and a limit cycle appears. In the dis-
crete setting, the Neimark-Sacker bifurcation is the analogue of the Hopf
bifurcation.

The Neimark-Sacker bifurcation occurs for a discrete system depending
on a parameter, € say, with a fixed point whose Jacobian has a pair of com-
plex conjugate eigenvalues A(€), A(e) which cross the unit circle transversally
at € = 0; so p = |)| satisfies p(0) = 1, p'(0) # 0. In the two-dimensional
case of a map in the (z,y) plane, if the origin of coordinates is chosen to be
at the fixed point, then upon taking a complex coordinate z = x + iy it can
be shown that locally (near the fixed point) the map is conjugate to one of
the form

Zt+1 = /\Zt+,3|2t|22t+0(|2t|4), (3)

provided that certain resonance conditions do not hold. To be more precise,
any such map has the normal form (3) near € = 0 provided that A\(0)* # 1
for k = 1,2,3,4. Subject to the further condition that Re(5(0)/A(0)) # 0,
for sufficiently small € the map has an invariant closed curve enclosing the
origin when e/Re((e)/A(e)) < 0. In the case that Re(8(0)/A(0)) < O,
the bifurcation is said to be supercritical, and there is a stable attracting
invariant curve for small enough € > 0, while a subcritical bifurcation arises
for Re(5(0)/A(0)) > 0, when there is a repelling invariant curve for small
€ < 0. (For more details see Theorem 5.11 in [3], and Theorems 4.5 and 4.6
in [4].)

The rest of this article is concerned with the analysis of the predator-
prey model (2). In the next section we consider the realistic steady states
of the model, determining their linear stability. It is easily seen that apart
from the origin (0,0), the model has another realistic steady state (z*,y*)
for r > 1 only, and to study this it is more convenient to use a together with
the quantity

v=r*—1, v >0, (4)

instead of r, as a parameter in this range. The Neimark-Sacker bifurca-
tion around this fixed point occurs along the curve a = as(v) in the (v, a)



parameter space, where

The main result proved is the following.

Theorem 1.1. For sufficiently small €, with

- (aiv) " 10g(16+ fu))_l’ (6)

there is a number v* =~ 90.494 such that the discrete predator-prey model (2)
has an invariant closed curve encircling a positive steady state (x*,y*) in
each of the following cases: (i) v > v*, € > 0; (i) 0 < v < v*, € < 0. In the
first case the curve is attracting, and in the second case it is repelling.

The third section is devoted to proving the above result, and some con-
clusions are given in the final section.

2 Steady state analysis

We consider the discrete predator-prey system in the positive quadrant
R220 = {(z,y) € R%z > 0,y > 0}; the equations (2) define a map from
RZ, to itself. The system has a steady state at (0,0), and the linearized
equations around this point take the form

Tpy1 = T4, Ui+1 = 0.

This linear system is already in diagonal form, with eigenvalues r, 0, and so
it is clear that for r < 1 the origin is an asymptotically stable fixed point
for the nonlinear system, while it is unstable for r > 1.

If z* # 0 then the steady state values (z*,y*) must satisfy

l=re ¥, yvr=x(1—e ). (7)
Thus there are no realistic (non-negative) steady states apart from the origin
if r < 1, while for r > 1 we have
. Tr%logr

&= y* = logr. (8)

Henceforth we will use (z*,y*) to denote these values. Using the equations
(7), the community matrix A (the Jacobian) at this fixed point can be
written concisely as



In order to analyze the characteristic polynomial det(4 — A1) = A2 —
tr A\ + det A for > 1, it is most convenient to use the quantity v defined
by (4), so that we have

log(1 + v)
v

trA=14+az*r *=1+ >0

and L1
det A=z"(1+ (a —1)r ) = (a + 5) log(1+wv) >0

for a and v both positive. The discriminant of the characteristic quadratic

is
2
A= (1 - M) — glog(l-i—'u).
v

Performing a Taylor expansion in v around v = 0, we find A = —4v/a +
O(v?), so that for a > 0 we have A(v) < 0 for small enough v > 0. More
precisely, for each value of a there is a small enough value of v such that the
eigenvalues A, u of A are a complex conjugate pair.

In general, to see where the eigenvalues are real/complex, it suffices to
consider the vanishing of the discriminant, A = A(a,v) = 0, which defines
a curve in the (v,a) parameter space. Upon solving the latter equation for
a, this curve is given by

41og(1 + v)
— .
log(1+v
(1 Og(v ))

The function aq(v) is positive for v > 0, and has the asymptotic behaviour
a1(v) ~ 16/v — oo as v — 0+, and a1 (v) ~ 4log(l + v), as v — oo. The
uppermost curve in Figure 1 is the graph of the function a;(v); it has an
unique local minimum at the point (vf,a!) in the parameter space, where

(9)

a=ai(v) =

ai(vh) =0, vl ~ 10.955, a1 (vf) = af ~ 16.587

(with the numerical values, found with Maple, being given to 3 d.p.). Clearly
the eigenvalues of A are always complex for a < af. Now since the discrim-
inant can be written as A = 4log(1 + v)(ay(v)™! —a™!), it is clear that the
eigenvalues are complex for a < a1(v) and real for a > a;1(v). The case of
complex eigenvalues will be the most interesting for the sequel, but first we

consider the case of real eigenvalues.

Proposition 2.1. For v > 0 the fized point (z*,y*) of the system (2) is a
stable node whenever a > a1(v).

Proof: When a > a1(v) the real eigenvalues of A are A = J(tr A + VA),
p=1itrA- VA), with A = (tr A)> —4det A > 0, and since both the trace
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Figure 1: The curves a = a1(v) (topmost curve) and a = az(v) (bottom
curve). For the points above the top curve, the steady state (z*,y*) is a
stable node, while in the region in between the curves it is a stable spiral,
and below the bottom curve it is an unstable spiral.

and determinant are positive it is clear that A > y > 0. A direct calculation
shows that 2(1 = \) +vVA =1—v"log(1+v) > 0, and (2(1 —\) +VA)? —
A = 4a 'log(1 + v) > 0, so the largest eigenvalue is A < 1 and the result
follows. O

A particular example of a stable node is illustrated in Figure 2, showing an
orbit of the system for v = 2, a = 40, which converges to the fixed point at
(z*,y*) = (0.04,0.03).

Having dealt with the regime where the eigenvalues are real, we now
treat the complex case where = X\, A < 0. The fixed point (z*,y*) is
a spiral in this case, and in order to determine its stability it is necessary
to consider when the pair of eigenvalues have modulus one, that is when
det A = |A\|?2 = |u|? = 1, which gives (a~! +v 1) log(1 + v) = 1. Solving the
latter equation for a yields the curve a = ay(v) in the parameter space, with
ay as defined in (5). This function satisfies a9(0) = 2, and upon writing

h(v)

—94
az(v) oz log(1+v)’

h(v) = (v+2)log(l +v) — 2v

one sees that h'(v) = ﬁ +log(14+wv) —1, A'(0) =0 and h"(v) = ﬁ >0
for v > 0, so that A’ is monotone increasing in this range, and hence also h is,

which implies that a(v) > 2 for all positive v. Furthermore we have as(v) ~
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Figure 2: An orbit of the system (2) with a = 40, r = 3'/*0 and initial values
Ty = 0.5 = Yo-

log(1 +v) as v — oo, and since |A| = 3tr A < 1 on a = a;(v), by continuity
it follows that the graphs of a; and as can never meet; the two graphs are
compared in Figure 1. The next two statements follow immediately from
these observations.

Proposition 2.2. For v > 0 the fized point (z*,y*) of the system (2) is a
stable spiral whenever as(v) < a < a1(v), and an unstable spiral for a <

as(v).

Corollary 2.3. When 0 < a < 2 the steady state (z*,y*) is unstable for all
values of v > 0.

Remark 2.4. The preceding statement includes the special case treated by
Murray [7], that is the model (2) with a =1, for r > 1.

A particular example of a stable spiral is illustrated in Figure 3, showing
an orbit of the system for v = 8, a = 10, which converges to the fixed point
at (z*,y*) = (0.25,0.22).

3 Neimark-Sacker bifurcation

The Neimark-Sacker bifurcation for the system (2) occurs on the curve
a = az(v) in the parameter space, where the complex conjugate pair of
eigenvalues satisfy |A| = |u| = 1, and for fixed v the eigenvalues cross the
unit circle as the parameter a moves through the value a = a2 (v). In order to
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Figure 3: An orbit of the system (2) with a = 10, r = 9Y/'0 and initial values
xo = 2.197 = yp.

study this bifurcation it is convenient to introduce a new coordinate system
that are better adapted to the neighbourhood of the fixed point (z*,y*). To
begin with we set

z=2z"exp(X/a), y=y"+Y/a

to obtain the coordinates (X,Y) € R? whose origin coincides with (z,y) =
(z*,y*). In these new variables the pair of difference equations (2) for the
population values (z,y) = (z4,y:) at time ¢ is transformed to the system

X1 = Xi Y,

Yin = —ay*(l—exp(aXy) +d exp(aX,)(1 - exp(~Yy), 0

where the coefficients y*, d are expressed in terms of the parameters v,a by

log(1 log(1
y* = log(1 +v) U), d=d(v):= log(1 +v) +U). (11)
a v
Upon solving the first equation in (10) for Y; and substituting into the
second, the above system can also be rewritten explicitly as a single second
order recurrence relation for X;, namely

Xiv2 = Xpy1+ay*(1—exp(a™" X;)) —d exp(a™' X) (1—exp(Xp1—Xy)) (12)

The iteration ¢ — ¢+ 1 for the system (10) defines an analytic map from
the (X,Y) plane to itself, whose expansion around the fixed point at the



origin has the form

()7 (0 @) (3 ) (vwm )

where N(X,Y') denotes nonlinear terms of degree two and higher. Of course,
the eigenvalues of A are the same as the eigenvalues of the Jacobian of this
map at the fixed point (0,0), so from the 2 x 2 matrix

1 -1
= ( yr d )
on the right hand side of (13) we can read off the formulae

trA=A+p=1+d, det A= =y" +d, (14)

which agree with the previous expressions for the trace and determinant of
A.

Even more convenient is to diagonalize J and thereby replace the (X,Y)
coordinates by new variables z,Zz defined by the linear transformation

X=z+7%, Y =2(1-X)+2Z(1—p). (15)

At the level of the linearized system, this is just the transformation to the
basis of eigenvectors of J. For the case of interest here, with complex con-
jugate eigenvalues y = ), z is a complex coordinate and Z is its complex
conjugate. (However, note that the formulae are still correct when the eigen-
values are real and distinct, in which case z,Zz should be interpreted as an
independent pair of real coordinates.) The inverse of the linear change of
variables (15) is given by

e=0 - (A= wx-Y)

and the analogous (conjugate) formula for z obtained by interchanging A <>
p. Upon rewriting it in terms of z the map (13) has the form

F: Z'—)>\Z+06122+Oé222+a322+0(|z‘3)a (16)

where the coefficients «; for j = 1,2,3 are determined by the quadratic
terms in N(X,Y), and the conjugate part of the map (Z — ...) is found by
interchanging z <> Z and X\ <> p in (16). For completeness, we present the
quadratic coefficients here:

oy = ﬁ (d(1—N)? —a 1(2d(1 — \) +y*)) = —as, -
00 = ik (A1~ N~ ) —a" (d@2 ~ A~ p) +47)) =~

9



We also require the explicit form of the coefficient of the cubic term 2% in

the formula (16) for the map F', namely

B= -y (d1-22A—p) — o '(d1-NE-r-2p)

(18)
+oa2(d(3— 2\ — ) + y*)).

In order to determine the nature of the Neimark-Sacker bifurcation pre-
cisely, it is necessary to put the map F into the normal form (3) by conju-
gating it with a suitable diffeomorphism defined locally (that is, in a neigh-
bourhood of the fixed point at z = 0). This can be achieved in two stages,
which are given as exercises 15 and 16 for sections 5.4 and 5.5 in chapter
5 of [3], and also detailed in chapter 4 of [4]; however, the basic steps are
outlined here for the sake of clarity.

The first stage is to obtain the map G = ¢! - F - ¢, by conjugating with

g: Z z+clz2+02z§+0322,

where the coefficients c; are chosen in order to remove the quadratic terms
appearing in (16), so that G has the form

G: 2z Az 4+ 0(|z]?). (19)

A short calculation shows that this is possible provided that A = 1 is not a
kth root of unity for K = 1 or 3, in which case the quadratic coefficients of
g are given by

(%1 (6% a3
NEUEETY C =7 3= 75 v
AA=1) Ap —1) (12 —A)

Moreover, the coefficients of the cubic terms in G are altered compared with
those in F, so that the coefficient of 22z in the formula (19) is

C1 —

B = B + 2a1¢9 + az(c1 + C2) + 2a3¢3. (20)

The second stage is to conjugate once more by a suitable diffeomorphism

h: z+ z+ O(|z?) in the neighbourhood of z = 0, so that H = h~!-G - h
has the form

H:  zw=Xz+B2%2+0(z]h). (21)

Provided that A = @ is not a kth root of unity for £ = 2 or 4, this normal
form can always be obtained by making a suitable choice of cubic coefficients
in h. Furthermore, it is important to note that /3, the coefficient of 2z in
the formula (21), is the same as the corresponding coefficient for G, as given
in (20). Thus for practical purposes it is sufficient to perform only the first
stage of the procedure (as long as A is not a small root of unity). If it further
holds that A is not a 5th root of unity, then it is possible to conjugate again

10



and reduce the map to the form z — Xz + 822z + O(|2]%) (see exercise 17 at
the end of chapter 5 in [3]); Theorem 5.11 in [3] is stated under this slightly
more stringent assumption, but the condition A3 # 1 is not necessary for
the conclusion.

Having found the normal form of the map in the neighbourhood of the
fixed point, we can now describe the bifurcation that occurs near the curve
a = a2(v) in parameter space. If a new parameter € is introduced so that a
is given by (6), then we can regard the set of pairs (v, €) as the parameter
space for (2), since the transformations from (r,a) to (v,a) and from (v, a)
to (v,e) are invertible, and € = 0 corresponds precisely to the bifurcation
along a = az(v). Then by setting p = |A| = |ul|, 0 = arg\ = —argu, we see
from (14) that

prP=1+e¢, 2pcosf =d+ 1. (22)

In order for the complex conjugate pair of eigenvalues to approach the unit
circle transversally, it is sufficient to keep v fixed and just vary e. Then
p = ple) = 1+ e satisfies p(0) = 1, p'(0) # 0 as required, and if the
argument of A is chosen as § = 6(¢) € [0,7n] (with the dependence on v
suppressed) then from (22) it is clear that cos §(0) = (d+1)/2and 0 < d < 1
for v > 0, so that 0 < #(0) < 7/3, and hence A(0) = exp(i6(0)) is not a kth
root of unity for k = 1,2, 3,4.

Finally, in order to check whether the bifurcation is supercritical or sub-
critical, it is necessary to find the parameter 8 appearing in the normal
form (21) explicitly as a function of v and €, so that the sign of Re(8/))
at € = 0 can be determined. Indeed, in general, with z = Rexp(i¢) and
v = /A the normal form of such a map can be rewritten as Rexp(i¢) —
ARexp(ig)(1 + vR?) + O(R?), so that the radial part becomes

R — |AR(1 4 Re(y)R?) + O(RY).

Thus from the leading order terms one sees that for |A| > 1 and Re(y) < 0
there is a stable invariant curve which is approximately a circle of radius
/(1 —|A])/Re(7), corresponding to the supercritical case, while for || < 1
and Re(y) > 0 there is an unstable invariant curve, approximately circular
with the radius given by the same formula, which corresponds to the sub-
critical bifurcation. By continuity it suffices to determine the sign of 7 at
e = 0, provided that (0) # 0.

For the particular system under consideration, after a certain amount of
algebra, substituting the explicit formulae (17) and (18) into (20) and then
using (14) to express the numerator in terms of a and d, an expression of
the form

€ €)a~! €)a=?
Re(y(e)) = Co(e) + 01(1))(6) + Cs(e) (23)

results, where a should be regarded as a function of v and e according to
(6), and the C; and D are certain other functions of these parameters. The

11
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Figure 4: Part of the graph of the function f(v), defined by (24), whose sign
determines the nature of the Neimark-Sacker bifurcation for the map (2). It
crosses the horizontal azis at v = v* =~ 90.494, marking the change from a
subcritical to a supercritical bifurcation.

denominator D is given explicitly in terms of A and u by

D = —4\p*(A - M)Q(/\_Z)— #2) (=X)L = X1 - p)
AN = APIA = X721 = A2 >0,

so it has no effect on the sign of Re(y). Upon setting e = 0 in (23), the
numerator becomes

Ny == Co(0) + C1(0)ay " + C2(0)ay® = (1 — d)*(2+ d)*(3 + d) f(v),

where Co(0) = d(1—d)’(2-+d)?(3+d), C1(0) = d?(3—2d) (1—d)® (2+d)?(3+d),
Co(0) = (d® —d? —d — 1)(1 — d)?(2 + d)*(3 + d), and f = f(v) is given by

f:=d(1 —d)? +a5'd*(3 — 2d) + a5 *(d® — d*> —d — 1). (24)

Since 0 < d < 1 for v > 0, the prefactor in front of f(v) in the numerator
Ny is always positive, so the sign of Re(y(0)) just depends on the function
f(v) defined by (24) with d = d(v) as in (11) and ay = a2(v) given by (5).
By expanding the terms in (24) around v = 0, one sees that this function
has the leading order behaviour f(v) = 75v 4+ O(v?), and hence is positive
for small v > 0, while for v — oo the main contribution to its asymptotics
comes from a5 2, so that f(v) ~ —1/(log(1+v))? — 0— and hence is negative

12



for large enough v. So by the intermediate value theorem, there is a positive
value v* where f(v*) = 0, and numerically we find an unique zero of f, that
is at v = v* =~ 90.494 (to 3 d.p.). Further numerical calculations reveal
that f has two stationary points, namely a maximum at v ~ 3.753 and a
minimum at v &~ 954.695, the former being visible (as well as the zero at v*)
in Figure 4. Hence we see that on the one hand, f is positive for 0 < v < v*,
corresponding to a subcritical Neimark-Sacker bifurcation for (2), where
an unstable invariant curve encircles a stable fixed point for small enough
€ < 0; and on the other hand, f is negative for v > v*, implying that in this
range the bifurcation is supercritical and yields a stable invariant curve for
sufficiently small € > 0. Thus the proof of Theorem 1.1 is complete.

Remark 3.1. The Neimark-Sacker bifurcation occurs in codimension one
in the two-dimensional parameter space of the map (2), along the curve
a = ay(v) in the (v,a) plane. The change from subcritical to supercritical
behaviour is a codimension two phenomenon that takes place at the point
(v*,a*), with a* = ay(v*) =~ 4.754. Further numerical studies of particular
orbits for parameter values near to this point confirm the change in stability
of the invariant curves. However, empirically we find that the behaviour of
the map is much more evident further away from this double bifurcation; for
instance, in Figure 5, with v = 3*0 — 1, a = 40, the stable invariant curve
around the unstable fized point at (x*,y*) =~ (1.10,1.10) is clearly visible.

1.8-
16
1.4-

0.8

04 06 08 1 12 14 16 18 2 22

Figure 5: An orbit for the system (2) with a = 40, r = 3 and initial values
zo = 1.09 = yo. The picture shows 300 iterates.
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4 Discussion

The Neimark-Sacker bifurcation is the discrete analogue of the Hopf bifur-
cation that occurs in continuous systems. It was discovered by Neimark [9],
and independently by Sacker [10, 11], who originally studied it in connec-
tion with the stability of periodic solutions of ordinary differential equations,
where it arises from the map obtained by taking a Poincaré section trans-
verse to the periodic flow. The Hopf bifurcation is extremely important in
the context of realistic continuous models of predator-prey systems and bio-
logical oscillators, where one observes periodic solutions corresponding to a
closed invariant curve (that is, a limit cycle) in the phase space; see chapter
7 in [8], for a discussion. Similarly the Neimark-Sacker bifurcation is also
highly relevant to the modelling of biological systems, both for understand-
ing the stability of periodic solutions of continuous models, and as a basic
phenomenon appearing in discrete models of such systems. However, in the
latter case there is a slight difference compared with the continuous case, in
that the generic motion on the invariant curve is not periodic in the discrete
time t, because the time step need not be commensurate with the angular
variable around the cycle. Moreover, the problem of computing approxi-
mations to the invariant curve is an interesting one [6]. Quite recently, the
Neimark-Sacker bifurcation has also appeared in discrete models of business
cycles in economics (see [12] and references).

It is worth considering the merits and disadvantages of the model (2)
treated here: can the same phenomena be described by a simpler model? A
good candidate for such a model is the system

T = 1@ — bry — ), Y41 = TelYi, (25)

which is a rescaled version of a predator-prey model given in the exercises for
chapter 5 of [3]. The steady state (1,a — b—1) undergoes a Neimark-Sacker
bifurcation along the line segment a = 2b+ 1 for 0 < b < 4 in the (a,b)
parameter space. However, the main disadvantage of this model is that the
coordinates (z,y) do not remain non-negative under iteration: while the y
coordinate of the image is positive for x,y > 0, the z coordinate of the
image is negative whenever a — bx — y < 0, and if the map is restricted to
the region where a — bx — y > 0 then it can move outside this region after
one iteration.

The system (2) has the advantage that the image of non-negative popula-
tion sizes is always non-negative, but in a certain parameter region, namely
the subset of the area 0 < a < ag(v) (at the bottom of Figure 1) where
there is neither a stable fixed point nor a stable bounded invariant curve, it
suffers from the same defect as the case a = 1 treated by Murray, namely
the fact that the solutions can display unbounded growth. The origin of this
defect is the existence of another invariant curve for the system, namely the
axis y = 0, upon which the solutions for the prey population, z; = Ar’ for

14



A > 0, go to infinity for » > 1. However, the precise nature of the dynamics
in the relevant parameter regime appears to be quite complicated. Indeed,
setting z; = Art + 24, y; = §; and linearizing gives

N N t+1 - L ta
Tpp1 =13 — Ar'T g Jir1 = Aar'yy,

and hence §j; = fo(Aa)tr'*D/2 5 0o as t — oo for > 1, so that the
solutions lying on this invariant curve are not linearly stable. However, it is
rather difficult to perform a precise numerical calculation of orbits that go
near to y = 0, because the value of y rapidly drops to zero within numerical
accuracy and thereafter the dynamics is restricted to the invariant curve;
yet more careful numerics shows that y; can continue to oscillate.

In order to have a more realistic model, one can consider the system

Niy1 = Nyexp [(7" (1 - %) — th] , (26)
Pi1 = Ni(1—exp(—aP)).
In the case b = a, this is the density-dependent predator-prey model studied
by Beddington et al. [1]. As for (1), by rescaling one can arrange it so
that b = 1, and then the behaviour of the two populations just depends
on the three positive parameters a,r, K. This system has the advantage
that the dynamics restricted to P, = 0 for all ¢ is given by the Ricker
curve Ny, = e"0=Ne/K) g0 the growth of the prey is limited and does not
become unbounded. Density-dependent models of the general form Ny 1 =
AN:g(Ny) f(Py), Piy1 = Ni(1 — f(P;)) are considered in [5], where f denotes
the fraction of prey surviving predation in each generation; but for b # a the
system (26) is not of this type. The structure of this system should include
both the features of the Neimark-Sacker bifurcation appearing in (1), and
the period-doubling bifurcations that are inherited from the Ricker curve,
so it is likely to be a rich model for further study.
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