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Abstract. Mathematical models of biological processes, whether they
be the dynamics of populations of individuals, cell populations within
an organism, or reactions between different chemical species within a
cell, are traditionally formulated in terms of differential equations. For
a given model, specified by a system of differential equations, in the
generic situation one is unable to solve the equations explicitly, and one
must resort to numerical integration methods. There are many standard
numerical techniques, both in the literature and in readily available soft-
ware packages. However, these techniques do not always reproduce the
required qualitative features of the solutions, particularly if the system
shows regular oscillations and the integration is performed over long time
periods. This article highlights some non-standard discretization meth-
ods appearing in the work of Kahan, Mickens and others, which have the
potential to be extremely useful in modelling biological systems.

1 Introduction

The purpose of this article is to draw attention to some interesting developments
in numerical analysis, and more specifically in numerical integration methods for
ordinary differential equations, which have taken place over the last twenty years
or so, but have only started to filter into the wider scientific community more
recently. There is a vast literature on numerical integration, and the standard
methods for integrating ordinary differential equations, namely Euler’s method,
Runge-Kutta methods and their adaptive versions (Runge-Kutta-Fehlberg), and
multi-step methods (Adams-Bashforth-Moulton) are described in many intro-
ductory texts on differential equations (e.g. [30]) and have been implemented
in numerous software packages that are both highly sophisticated and readily
available. While the aforementioned techniques are rather successful at dealing
with generic differential equations, they can often come unstuck for some par-
ticular problems of interest that arise in applications, particularly when such
problems exhibit special properties such as symmetries or conservation laws, or
when there are solutions with some special structure. Indeed, standard numer-
ical integrators can completely fail to capture the correct qualitative nature of
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the solutions of such problems, and can be extremely inefficient at providing
accurate results. In contrast, for numerical integration of differential equations
that preserve a measure or symplectic structure [29], and those that have con-
served quantities [27] or are even completely integrable [28], there are a variety
of ad hoc methods that give more accurate and qualitatively correct solutions
with greater efficiency, because they retain the same features as the original
differential equations. A general approach to numerical integration based on in-
corporating the symmetry structure of a problem into a numerical scheme is
known as geometric integration [4]. While symmetries and conservation laws are
common in physics, and especially in mechanics, most differential equation mod-
els of biological systems do not exhibit any particular symmetry. Nevertheless,
these biological models can have particular special solutions (which, most im-
portantly, are often attractors in the space of all solutions) whose features are
missed by conventional numerical integrators. For such systems, some relevant
techniques for constructing non-standard or unconventional integration methods
has been developed in various works by Mickens, Kahan and other researchers.
It is the latter set of techniques that are outlined here.

To understand some of the problems that can arise with numerical integration
schemes, it is instructive to consider a very simple example, namely the ordinary
differential equation describing the logistic growth of a population:

ṙ = ρr(1 − r/K). (1)

In the above, r = r(t) denotes the size of a population with linear growth
rate ρ > 0, ṙ = dr/dt is the rate of change of the population, and K > 0
is the carrying capacity, which is the stable limiting population size as t →
∞. If one performs a numerical integration of this system using the simplest
technique available, namely the forward Euler method, then one obtains the
logistic difference equation

rt+h − rt
h

= ρrt(1 − rt/K), (2)

where rt ≈ r(t) denotes the approximation to the solution of the ordinary differ-
ential equation at time t. The important thing to notice about (2) is that, while
it gives reasonable approximations to the solutions of (1) for small enough h,
it also displays behaviour not present in the original model: as h increases the
steady state K becomes unstable and goes through an infinite series of period-
doubling bifurcations leading to chaos [7]. Although the Euler method is the
crudest possible technique for numerical integration, this example illustrates the
point that discretization can introduce properties of the solutions that are not
present in the original continuous system.

In the next section, to set the scene, Kahan’s unconventional discretization
[24] of the classic Lotka-Volterra predator-prey model is presented, and the
solutions of this discrete model are compared with the results of solving the
corresponding ordinary differential equation using a standard numerical pack-
age, namely Maple, implementing the Fehlberg fourth-fifth order Runge-Kutta



(RKF45) method. Kahan’s general technique for discretizing quadratic vector
fields is described, and another non-standard discretization of the same system,
due to Mickens, is also mentioned for comparison. The third section is concerned
with a model of a trimolecular reaction that exhibits a Hopf bifurcation and a
limit cycle (for a suitable range of parameters). By following the guidelines for
discretization due to Mickens, a discrete version of this trimolecular reaction
model is obtained, and the properties of its solutions are compared with the
continuous case. The final section contains some conclusions.

2 Discretization of predator-prey models

The classic Lotka-Volterra model for the interaction between a predator popu-
lation P (t) and its prey N(t), both specified at time t, has the form

Ṅ = N(a− bP ), Ṗ = P (cN − d)

for positive parameters a, b, c, d. Upon rescaling N,P and t it can be reduced to
the dimensionless form

ẋ = x(1 − y), ẏ = y(x− α), (3)

which depends on the single parameter α > 0. For the interpretation as a
predator-prey model the variables x, y are considered only in the positive quad-
rant x ≥ 0, y ≥ 0. There are two steady states of the system: the fixed point
(steady state) at the origin (0, 0) is an unstable saddle point, while linearization
around the steady state at (α, 1) gives imaginary eigenvalues and hence a neu-
trally stable centre. (The reader who is unfamiliar with linear stability analysis
should consult the first volume of [18], or [11].)

A complex conjugate pair of imaginary eigenvalues of the Jacobian, at a
fixed point in the plane, corresponds to periodic orbits around this point in
the linearized system, but then the linear analysis is insufficient to determine
the nature of the orbits for the original nonlinear system. However, in this case
it turns out that all the non-trivial orbits for the nonlinear system (3) in the
interior of the positive quadrant are actually periodic, lying on closed curves
H = H(x, y) = constant encircling the point (α, 1), where

H = log(xαy) − x− y. (4)

The shape of twenty of these orbits can be seen in figure 1, in the case α = 1.
The quantity H is conserved along trajectories, and in fact the system can be
written in the non-canonical Hamiltonian form

ẋ = xy
∂H

∂y
, ẏ = −xy

∂H

∂x
,

so that (3) is analogous to a conservative system in classical mechanics, with H
corresponding to the “energy” (which is neither created nor destroyed). Moreover



the oriented area element (symplectic form)

ω =
1

xy
dx ∧ dy

is preserved by the flow.
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Fig. 1. Twenty orbits of the predator-prey system (3) with α = 1, generated with
Kahan’s discretization (5).

Standard numerical integration schemes reproduce the shape of the orbits of
(3) for relatively short times, but a well known problem is that such schemes
do not preserve energy, so that over long times the orbits produced numerically
either spiral inwards or outwards. To see an example of this, here version 10 of
Maple was used to integrate the system for α = 1 with the command dsolve,
which uses the RFK45 method (an adaptive version of the Runge-Kutta method)
and the default initial stepsize h = 10−7. From a plot of the first part of a single
orbit, as in figure 2, one can see that the curve is somewhat thickened compared
with the curves in figure 1. The reason for this is that the energy H actually
increases monotonically with t when the RFK45 method is applied to the system
(3). With α = 1 and the initial condition (x(0), y(0)) = (0.9, 0.8), it took Maple
50 seconds on a three-year-old laptop to generate 5000 points {(xt, yt)}

5000
t=0 of

the numerical solution, which produced figure 2. Using these values the energy
Ht = H(xt, yt) was calculated and found to increase linearly with t, as in figure



3, which shows the energy difference Ht − H0, with the initial energy being
H0 ≈ 2.0285041. (20-digit floating point numbers have been used to perform all
numerical calculations with Maple, set with the Digits command.) For longer
and longer integration times, the numerically calculated orbit spirals outwards,
so that the points (xt, yt) lie in an increasingly thick band around the actual
solution curve H = H0.
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Fig. 2. Numerical integration of the predator-prey system (3) with α = 1 and initial
point (0.9, 0.8), using the RKF45 method up to t = 5000.

To produce the qualitatively more accurate plot of closed orbits shown in
figure 1, a discretization of the Lotka-Volterra system due to Kahan was used.
This discretization method, which was apparently first presented in some unpub-
lished lectures by Kahan in 1993, is directly applicable to systems of first order
ordinary differential equations whose right hand sides are at most quadratic (de-
gree two) in all dependent variables. Each derivative term on the left hand side
should be replaced by the standard forward difference (as in the Euler method),
so that e.g. ẋ becomes (xt+h − xt)/h ≡ (x̃ − x)/h, where the tilde is used to
denote the forward time shift t → t+ h. Each quadratic term is replaced by an
average involving products of variables at time t and those shifted forwards, so
e.g. xy on both right hand sides of (3) becomes 1

2 (x̃y + xỹ); linear terms are
also replaced by an average, so x (on the right hand side of the equation for ẋ)
becomes 1

2 (x̃ + x) in the discrete version. (There are no purely constant terms
in (3), but where such terms appear these should be left as they are.) Apply-
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Fig. 3. The energy difference Ht −H0 plotted against t for numerical integration using
RKF45 as in figure 2.

ing these rules of discretization to (3) with α = 1 produces the system of two
difference equations given by

x̃− x

h
=

1

2

(

x̃+ x− (x̃y + xỹ)
)

,
ỹ − y

h
=

1

2

(

x̃y + xỹ − (ỹ + y)
)

. (5)

This discretizaton can be said to be nonlocal in time, in the sense that the
forward difference of each variable (on the left) is given by a function of both
the local variables (x, y) = (xt, yt) at time t and the forward shifted variables
(x̃, ỹ) = (xt+h, yt+h) (on the right).

The above system clearly reproduces the differential equations (3) in the
continuum limit h→ 0, and has certain positive features which are immediately
obvious, perhaps the first being its inherent simplicity (especially compared with
the complexity of Runge-Kutta schemes, for instance). A second important as-
pect is that the above discretization scheme always has the same fixed points
as the original differential equation (these being (0, 0) and (1, 1) in the case at
hand) and does not introduce any extra ones. Thirdly, the two equations (5)
are both polynomial in x, y, x̃, ỹ, and the system is linear in both pairs of vari-
ables x̃, ỹ and x, y, which means that it can be solved to give the updated x̃, ỹ
as explicit rational functions of x, y, and (vice-versa) the inverse transformation
is also given by explicit rational functions, so it constitutes a birational map
of the (x, y) plane (also known as a Cremona transformation; see e.g. [3] and



references). Upon solving (5) for x̃, ỹ the following expressions are obtained:

x̃ =
x

(

4+(4−2x−2y)h+(1−x+y)h2

)

(

4+(2y−2x)h+(x+y−1)h2

) ,

ỹ =
y

(

4+(2x+2y−4)h+(1+x−y)h2

)

(

4+(2y−2x)h+(x+y−1)h2

) .

(6)

Each of the orbits shown in figure 1 was produced from 10000 iterations of
the transformation (6) with timestep h = 0.1, by starting with twenty different
initial conditions (x, y) = (x0, y0). Each orbit appears to lie on a closed curve
encircling the fixed point (1, 1), as is required for an accurate representation of
the solution of (3).

In order to probe the properties of Kahan’s discretization more closely, the
same initial condition (x0, y0) = (0.9, 0.8) was taken as for the RKF45 method,
and then 50000 iterations of (6) were applied with timestep h = 0.1 (to give
a total time of length 5000 as before). With this much simpler scheme (and
relatively large timestep) this took only 22 seconds on the same machine. The
energy of the iterates for Kahan’s scheme was calculated and the difference
Ht −H0 was plotted against time as in figure 4; the results are seen to be quite
different. While for the RKF45 method the value of the energy has increased by
more than 3×10−4 after time 5000 (and carries on increasing linearly), Kahan’s
method in contrast gives an oscillating energy value that never increases or
decreases by more than 10−5 within the same length of time. This would be
a consequence of the system (6) having closed orbits lying on curves that are
close to the original orbits of (3), since in that case the oscillations in energy
would be bounded above and below. In [24], Sanz-Serna observed that Kahan’s
discrete Lotka-Volterra system is also symplectic, in that it preserves the same
area form as the original differential equation i.e. 1

x̃ỹ
dx̃ ∧ dỹ = 1

xy
dx ∧ dy holds.

Since the differential equation is Hamiltonian and has one degree of freedom, it
is completely integrable, so that (as also mentioned in [1]) one can apply KAM
theory in the neighbourhood of the elliptic fixed point at (1, 1). Nevertheless, the
stability of Kahan’s discretization of the Lotka-Volterra model as a numerical
scheme seems quite remarkable.

Kahan’s method for discretizing quadratic vector fields is mentioned in some
of his published work with Li (see [12], and also [13], where it is described how
to turn it into a higher order method). More recently, it has been applied to
Lotka-Volterra models with three species [23], and it has been shown that also
in that case it correctly reproduces the same qualitative features of the dynamics
as are present in the corresponding continuous systems. In fact, Kahan’s method
for systems with quadratic right hand sides was later rediscovered by Hirota and
Kimura in the context of integrable systems in classical mechanics, when they
discovered a new completely integrable discretization of the Euler equations for
a rigid body rotating about a fixed point [9]. A variety of new discrete integrable
mechanical systems have been discovered very recently via this approach [6,
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Fig. 4. The energy difference Ht − H0 plotted against t for numerical integration of
(3) using Kahan’s discretization (5).

10, 21], and the precise properties preserved by Kahan’s scheme are currently
the subject of theoretical investigation. However, it is fair to say that Kahan’s
method fits in with a rather broad set of principles for discretizing differential
equations that was developed somewhat earlier by Mickens, and is formulated
in his book [17]. Mickens has used his approach to study a wide variety of
ordinary (and partial) differential equations, and his non-standard methods have
been implemented by a number of researchers in different areas of science and
engineering; an extensive review can be found in [19].

Mickens has also applied his general guiding principles for discretization to
the same predator-prey model (3) in the case α = 1 [16]. Rather than just
replacing the linear term x by the average (x̃ + x)/2, one can consider more
general (asymmetric) replacements x → Ax̃ + (1 − A)x, and similarly for the
quadratic terms. Moreover, in the forward difference Mickens takes a general
denominator function φ(h) = h + O(h2); while this has little effect for small h,
it becomes important as h increases (and for certain systems there are explicit
exact discretizations for which the choice of φ is crucial). The particular discrete
predator-prey system given in [16] has the form

x̃− x

φ
= 2x− x̃− x̃y,

ỹ − y

φ
= −ỹ + 2x̃y − x̃ỹ. (7)

Although the overall system is not linear in x̃, ỹ, the first equation can be solved
for x̃ and this can be put back into the second equation to find ỹ, so that



this gives another explicit birational map of the plane. Numerical results show
that the discrete system (7) also has closed orbits in a large neighbourhood of
(1, 1) for small values of h. It is straightforward to verify that the map of the
plane defined by the above equations for x̃, ỹ preserves the same symplectic form
ω = 1

xy
dx ∧ dy as before, which is an indication of why its stability properties

appear to be the same as for (6). The application of Mickens’ methodology to
other Lotka-Volterra systems in the plane is treated in [1] and [5]. For an implicit
discretization of the Lotka-Volterra predator-prey model, that conserves energy,
see [27].

As already mentioned, models in terms of conservative systems are rather rare
in ecology or biochemistry (although enzymatic reactions do involve conservation
of total enzyme [26]). The Lotka-Volterra model for predator-prey interaction is
somewhat unrealistic, because it predicts that any non-zero pair of populations
will go through periodic cycles, and thus always return to their initial values
after a fixed time. A more realistic scenario is that there is a single attracting
periodic cycle which all solutions approach asymptotically, namely a limit cycle.
In the next section, limit cycles in reaction kinetics are considered.

3 Trimolecular reaction model

Biological systems that are close to equilibrium can be modelled extremely effec-
tively by linear differential equations [2]. The disadvantage of using linear models
is that a linear differential equation of the form ẋ = Mx, with a state vector x

and matrix M , has only a single fixed point at x = 0 (at least generically, when
M has no non-trivial kernel). Thus in order to allow the possibility of multi-
ple equilibria, one should use nonlinear systems. For nonlinear systems that are
close to an equilibrium of node, spiral or saddle point type, the linearized system
provides correct qualitative information about solutions in the neighbourhood of
the fixed point [11]. The Euler method is exact for homogeneous autonomous lin-
ear systems, so standard numerical integration methods are usually completely
adequate for modelling systems close to equilibrium. Therefore in order to see
novel phenomena that are inherently nonlinear, and thus more difficult to ana-
lyze numerically, one should consider nonlinear models away from equilibrium.
In this section we consider the application of nonstandard integration schemes
to nonlinear systems with limit cycles.

It is worth emphasizing that quadratically nonlinear systems of differential
equations arise immediately when one considers reaction kinetics in chemistry,
or biochemistry, where the fundamental processes are all dimolecular, involving
reactions of the form A+B→C, A→B+C, or A+B→C+D, where A,B,C,D
represent different molecular species. Upon applying the Law of Mass Action to
such reaction schemes, the equation for the rate of change of concentration of
each reactant is given by a sum of linear and quadratric terms in the concen-
trations. Thus Kahan’s discretization method, making symmetric replacements
of variables, that is x → (x̃ + x)/2 for linear terms and xy → (x̃y + xỹ)/2 for
quadratric terms, is ideally suited to numerical integration of reaction kinetics



models (where the variables x, y etc. would correspond to concentrations). For
the situation where N , the number of variables, is large, it is no longer practical
to solve the system for the upshifted variables explicitly, as was done to obtain
(6) from the original form (5) of the discrete system, because this requires in-
version of an N ×N matrix whose entries are polynomial in the variables; this
becomes an increasingly difficult problem in symbolic algebra as N increases.
However, the system for the upshifted variables x̃, ỹ, . . . is always linear, so with
numerical values of the iterates there are efficient algorithms for solving such
systems, which will be stable when h is small, because in that case the N ×N
matrix to be inverted (with numerical entries) is a small perturbation of the
identity.

In order to illustrate a simple example of a reaction scheme that includes
a limit cycle, i.e. an isolated periodic solution corresponding to a closed curve
in the phase space, it is not sufficient to consider dimolecular reactions with
two reactants, because limit cycles cannot occur. Indeed, one can write down a
general two-species reaction model with variables x, y and (by carefully studying
all possible quadratic, linear, and even constant terms) check that limit cycles
never appear; in [18] the first derivation of this result is attributed to Hanusse [8].
Thus in order to see periodic oscillations (which are not orbits in a conservative
system, as for the predator-prey system in the previous prey system) one should
either consider three or more species, or allow trimolecular reactions, which can
arise by reduction from a system of higher order. Here the latter option is taken,
but first it is instructive to use a toy model to illustrate how standard numerical
integration methods fare with limit cycle solutions.

A simple toy model of a limit cycle in the plane is provided by the pair of
differential equations

ṙ = r(1 − r), θ̇ = 1 + r2, (8)

which is written in terms of polar coordinates r, θ to represent the evolution of
the point (x, y) = (r cos θ, r sin θ) in the plane. The first equation is just the
continuous logistic growth model, and has the explicit general solution

r(t) = 1/(1 + ke−t) → 1 as t→ ∞

(with arbitrary constant k). Thus the point (x(t), y(t)) approaches the unit circle
r = 1 as t → ∞, which is the limit cycle given by the exact periodic solution
(x, y) = (cos(2t), sin(2t)). Moreover, trajectories that start inside the cycle re-
main inside (see figure 5), so r(t) < 1 for all t, while those that begin outside
approach it with r(t) > 1 always. However, upon performing a numerical integra-
tion of the system (8) with the RKF45 method in Maple version 10, it is observed
that, after an initial period of rapid change (starting from r0 = r(0) = 0.8 in the
example illustrated in figure 6), the value of the approximation rt ≈ r(t) oscil-
lates indefinitely between several different values, both above and below r = 1.
For an iterative integration method with fixed floating point precision, one is
dealing with a map in a finite state space, so all iterations must either reach a
fixed point or be periodic in the long run [22].
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Fig. 5. Numerical integration of (8) using the discretization (9) with stepsize h = 0.1 for
2000 iterations starting from r = 0.1, θ = −π/2 (and plotting (x, y) = (r cos θ, r sin θ)).
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Fig. 6. Plot of rt against t for 50 ≤ t ≤ 10000 from numerical integration of (8) using
the RFK45 method.



Alternatively, upon applying Kahan’s unconventional discretization method
to (8) one obtains the discrete system

r̃ − r

h
=
r̃ + r

2
− r̃r,

θ̃ − θ

h
= 1 + r̃r, (9)

from which the equation for r decouples as

r̃ =
r(2 + h)

2 + (2r − 1)h
.

The latter equation is of discrete Riccati type (it is a Möbius transformation),
and has the exact solution

r = rt =

(

1 + k

(

2 − h

2 + h

)t
)

−1

→ 1 as t→ ∞ whenever h > 0.

Thus the solutions of the latter discretization have precisely the same qualita-
tive behaviour as those of the original system of differential equations (8). The
discrete equation for r has the same fixed points (an unstable one at r = 0 and
a stable one at r = 1) as for ṙ = r(1− r), but from a numerical implementation
of (9) with timestep h = 0.1 and 20-digit precision in Maple 10, using the initial
value r0 = r(0) = 0.8 (as for the RKF45 method), one finds that rt < 1 holds for
all t but the radius converges prematurely (in just over 400 steps) to the false
equilibrium r∞ = .99999999999999999952 < 1. This false value is due to round-
ing errors, and can clearly be improved by performing the same calculations
using floating point numbers with successively more digits.

Having considered a toy model of a limit cycle, we now focus on the following
simple reaction scheme, including trimolecular reactions, that was presented by
Schnakenberg [25]:

X
k1

⇄

k2

A, B
k3→Y, 2X + Y

k4→ 3X.

In the above there are four molecular species A,B,X, Y and four rate constants
kj for j = 1, 2, 3, 4. If it is assumed that the concentrations of A and B are both
held constant, then upon applying the Law of Mass Action and rescaling all the
variables one obtains the dimensionless differential equations

ẋ = a− x+ x2y, ẏ = b− x2y (10)

for the scaled concentrations of X,Y (denoted x, y respectively) and the con-
stants a, b > 0 (corresponding to the fixed concentrations of A,B). The sys-
tem (10) has limit cycle solutions for the parameter range b − a > (b + a)3

with 0 < b < 1, giving a closed periodic cycle encircling the fixed point at
(a+ b, b/(a+ b)3) (see chapter 7 in [18] for details, and see figure 7 for numerical
integration of an orbit with parameters in this range).
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Fig. 7. Numerical integration of (10) with a = 1/6, b = 1/2 using the birational map
ϕh defined by (11), taking the first 5000 points on the orbit of (0.7, 1.2) with h = 0.05.

Due to the presence of the cubic (degree 3) terms x2y on the right hand
sides in (10), it is not possible to apply Kahan’s scheme for quadratic vector
fields. However, we can still obtain a non-standard discretization in the spirit of
Mickens’ approach. To do so, derivatives are replaced by forward differences, the
linear term x in the first equation of (10) is replaced by the symmetric nonlocal
expression (x̃ + x)/2, and for each cubic term we make a replacement of the
general form

x2y → (cy + dỹ)(ex2 + fxx̃+ gx̃2), c+ d = 1, e+ f + g = 1,

where the constants c, d = 1 − c, e, f, g = 1 − e − f are allowed to be different
in each of the two equations. Without any further restrictions on the latter
constants, in general one has a multivalued map for x̃, ỹ: in order to find these
upshifted variables in terms of x, y one must solve a pair of polynomial equations,
which have multiple roots. However, if it is required that the two equations have
an unique solution for x̃, ỹ, and furthermore that one can also solve uniquely for
x, y, then there are only two possible discretizations, namely

ϕh :
x̃− x

h
= a−

1

2
(x̃+ x) + xx̃ỹ,

ỹ − y

h
= b− x2ỹ, (11)

and

ψh :
x̃− x

h
= a−

1

2
(x̃+ x) + xx̃y,

ỹ − y

h
= b− x̃2y. (12)



In each case the pair of equations defines a birational map of the plane, ϕh :
(x, y) 7→ (x̃, ỹ), given by

x̃ =
2x+ h(2a− x+ 2x3) + h2(2ax2 − x3)

2 + h(1 − 2xy + 2x2) + h2(x2 − 2bx)
, ỹ =

y + hb

1 + hx2
,

and similarly for ψh. Furthermore, it is not too hard to see from (11) and (12)
that these two transformations define each other’s inverses, in the sense that
ϕ−1

h = ψ−h, so henceforth we can concentrate on ϕh.
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Fig. 8. Two solutions of (10) for a = 1/6, b = 1/2 integrated numerically using an
adaptive modification of the scheme defined by (11), taking variable stepsize hn+1 =
hndn/dn+1 with h0 = h1 = 0.01 (where dn is the distance between successive points).

One can perform exact analysis of the Jacobian of the map ϕh at the fixed
point (a + b, b/(a + b)3); this is along the same lines as the analysis for dis-
cretizations of Lotka-Volterra models done by Roeger [23]. Such analysis shows
that, just as the differential equation (10) undergoes a Hopf bifurcation along
the curve b− a = (b+ a)3 in the (a, b) parameter space, which produces a limit
cycle lying on an invariant curve in the (x, y) plane, for small h the map ϕh

similarly undergoes a Neimark-Sacker bifurcation to produce an invariant curve
which is at least O(h) close to the limit cycle of the differential equation. (For
technical details of Hopf and Neimark-Sacker bifurcations, see [14].) The correct
qualitative nature of the orbits of this discretization can be seen from the nu-
merical results. The first plot for (11) is the orbit of the point (0.7, 1.2), shown in



figure 7, for 5000 steps with stepsize h = 0.05, which shows convergence towards
the attracting invariant curve from the inside. In figure 8, results are shown
of applying a simple modification to the method to produce a crude adaptive
scheme, by varying the stepsize by a factor proportional to dn/dn+1 at each
step, where dn = |xn − xn−1| is the distance between successive iterates. The
latter figure shows the orbit of (0.5, 0.6) spiralling onto the invariant curve from
the outside, together with the orbit of (0.7, 1.2), taking 20000 iterations with
an initial stepsize h = 0.01. The adaptive method shows better resolution than
the non-adaptive one in places where the solution of the ordinary differential
equation is varying more rapidly.

4 Discussion

For the modelling of biological phenomena in terms of systems of differential
equations that exhibit truly nonlinear behaviour, standard techniques for numer-
ical integration can produce solutions which are qualitatively incorrect. However,
the non-standard methods developed by Mickens and Kahan (among others)
provide simple discretization schemes that manage to incorporate the correct
qualitative features of the original continuous system. Thus the unconventional
methods outlined above are worthy of consideration by anyone who is interested
in modelling with differential equations. Of course, a considerable amount of
theoretical work remains to be done in order to understand precisely when and
why such methods outperform conventional ones.

When implementing a numerical scheme, one wishes to avoid introducing
new properties into the discrete system which were not present in the original
continuous one. We have asserted that Kahan’s discrete predator-prey system
(5) reproduces the closed orbit structure of the differential equations (3), but
to be more precise one should qualify this by saying that this structure holds
only in a certain neighbourhood of the elliptic fixed point, with this region being
large when h is small. An undesirable feature of the scheme is that sufficiently
large positive values of x and y, beyond a boundary line, go outside the posi-
tive quadrant after iteration, but in fact the Kahan discretization also displays
the characteristics of a chaotic map in a fringe region before this boundary is
reached, with the size of this “chaotic fringe” increasing as h increases [20]. Of
course, for modelling predator-prey systems [15] or interacting populations in
other biological scenarios, one can avoid the problem of numerical integration
altogether by working directly with discrete models in terms of difference equa-
tions or cellular automata [22]. However, in setting up such models one is often
guided by intuition based on continuous models in terms of differential equations.

In this paper, we have illustrated how non-standard discretization methods
can be used to study the simplest type of nonlinear oscillation that is not ex-
hibited by a linear system, namely a limit cycle. As far as we are aware, the
discretization (11) for the simple trimolecular reaction equations (10) is new.
Further analysis of this discrete system will be presented elsewhere.



Finally, we should mention that although (due to the Poincaré-Bendixson
theorem [11]) only fixed points and limit cycles can arise as attractors in au-
tonomous two-dimensional systems of differential equations, in three or more
dimensions there is the possibility of strange attractors, such as the one appear-
ing in the famous Lorenz model. The Lorenz model is defined by a quadratic
vector field in three dimensions, and as such can be integrated using Kahan’s un-
conventional scheme. Indeed, the appropriate discretization has been presented
as an example in [13], and our own numerical experiments suggest that, for dif-
ferent values of the stepsize h, this discrete system in 3D contains a strange
attractor which is qualitatively like the Lorenz attractor, and converges to it as
h→ 0.
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