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Abstract

A self-adaptive mesh method is proposed for the numerical simulations of the
Camassa-Holm equation based on its integrable semi-discretization. It is an in-
tegrable scheme, possessing the N -soliton solution (see J. Phys. A, 41 355205).
Moreover, it is called a self-adaptive mesh method, because the non-uniform mesh
is driven and adapted automatically by the solution. Once the non-uniform mesh
is evolved, the solution is determined by solving a tridiagonal linear system. Due
to these two superior features of the method, the numerical results of the propaga-
tion and interactions of soliton and cuspons agree with exact ones very well even
by a small number of grid points.
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1. Introduction

The Camassa-Holm (CH) equation

uT + 2κ2uX − uTXX + 3uuX = 2uXuXX + uuXXX . (1)

has attracted considerable interest since it was derived as a model equation for
shallow water waves [1, 2]. When κ = 0, the CH equation admits peakon so-
lutions which are represented by piecewise functions [3]. When κ 6= 0, cusped
soliton (cuspon) solutions, as well as smooth soliton solutions, were found [4, 5,
6, 7, 8, 9, 10, 11].
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Several numerical schemes have been proposed for the CH equation in the
literature. These include a pseudospectral method [12], finite difference schemes
[13, 14], a finite volume method [15], a finite element method [16, 17], multi-
symplectic methods [18], and a particle method based on the formulation in terms
of characteristics based on the multi-peakon solution [19, 20, 21, 22, 23]. We
comment that the schemes in [13, 14] and in [18] can handle peakon-antipeakon
interactions. However, it still remains to be a challenging problem for the numer-
ical integration of the CH equation due to the singularities of cuspon and peakon
solutions.

In the present paper, we will study an integrable difference scheme for the CH
equation (1) based on an integrable semi-discrete CH equation proposed by the
authors [24]. The scheme consists of an algebraic equation between the solution
and the non-uniform mesh, and an evolution equation for the mesh. Since the
mesh is automatically driven and adapted by the solution, we name it the self-
adaptive mesh method hereafter.

As a matter of fact, Harten and Hyman has proposed a self-adjusting grid
method for one-dimensional hyperbolic problems [25]. Since then, there has been
significant progress in developing adaptive mesh methods for PDEs [26, 27, 28,
29, 30, 31, 32]. These methods have been successfully applied to a variety of
physical and engineering problems with singular or nearly singular solutions de-
veloped in fairly localized regions, such as shock waves, boundary layers, deto-
nation waves, etc. Recently, an adaptive unwinding method is proposed for the
CH equation [15]. The method is high resolution and stable. However, in order to
achieve a good accuracy, a large number of grid points (= 4096) has to be used.
In addition, the designed method is only suitable for the single peakon propaga-
tion and peakon-peakon interactions, not for the peakon-antipeakon interaction.
As shown subsequently, the self-adaptive mesh method gives a great accuracy by
using a small number of grid points (≈ 100) for all challenging test problems.

The remainder of this paper is organized as follows. In Section 2, we describe
the self-adaptive mesh method and show it converges to the CH equation as the
mesh size approaches to zero. Two time advancing methods in implementing the
self-adaptive mesh method are presented in Section 3. In Section 4, several numer-
ical experiments, including the propagations of “peakon” and “cuspon” solutions,
cuspon-cuspon and soliton-cuspon collisions. The conclusion and remarks are
given in Section 5.
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2. A self-adaptive mesh method for the Camassa-Holm equation

The self-adaptive mesh method we propose for the CH equation (1) is
∆2wk =

1

δk
M

(
δkMwk +

1

cδk

δ2
k/c

2 − 4a2

1/c2 − a2

)
,

∂tδk =

(
1 − δ2

k

4

)
δk∆wk ,

(2)

where c = 1/κ. On the grid points Xk with k = 1, · · · , N , the solution w(Xk, t)
is approximated by wk(t). The mesh δk = Xk+1 − Xk is non-uniform and time-
dependent. The parameter a is a small constant which gives the mesh δk = 2ac
when the solution wk remains unchanged. It was shown in [24] that the relation
between a and δk implies a discrete hodograph transformation. ∆ and M stand
for a forward difference operator and an average operator

∆Fk =
Fk+1 − Fk

δk
, MFk =

Fk + Fk+1

2
,

respectively.
Equation (2) is also called a semi-discrete CH equation in [24]. It was shown

that the equation (2) has the N -soliton solution which, in the continuous limit,
approach the N -soliton solution of the CH equation including the N -cuspon so-
lution. Therefore, the equation (2) is an integrable semi-discretization of the CH
equation. The N -soliton solution is of the form

wk =

(
log

gk

hk

)
t

, (3)

with
fk = τ0(k) , gk = τ1(k) , hk = τ−1(k) ,

τn(k) =

∣∣∣∣∣∣∣∣∣
ψ

(n)
1 ψ

(n+1)
1 · · · ψ

(n+N−1)
1

ψ
(n)
2 ψ

(n+1)
2 · · · ψ

(n+N−1)
2

...
...

...
ψ

(n)
N ψ

(n+1)
N · · · ψ

(n+N−1)
N

∣∣∣∣∣∣∣∣∣
where

ψ
(n)
i = ai,1(pi − c)n(1 − api)

−keξi + ai,2(−pi − c)n(1 + api)
−keηi ,
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ξi =
1

pi − c
t+

1

(pi − c)2
s+ ξi0 ,

ηi = − 1

pi + c
t+

1

(pi + c)2
s+ ηi0 ,

c =
1

κ
.

See [24] for the detailed proof.
Next, let us show that in the continuous limit, a → 0 (δk → 0), the proposed

scheme is consistent with the CH equation. To this end, the equation (2) is rewrit-
ten as

−2

δk + δk−1

(∆wk − ∆wk−1) +
δkMwk

δk + δk−1

+
δk−1Mwk−1

δk + δk−1

+
1

c(1 − a2c2)

=
4a2c

1 − a2c2
1

δkδk−1

,

∂tδk =

(
1 − δ2

k

4

)
(wk+1 − wk) .

By taking logarithmic derivative of the first equation, we get

∂t

{
2

δk + δk−1

(∆wk − ∆wk−1) −
δkMwk

δk + δk−1

− δk−1Mwk−1

δk + δk−1

}
2

δk + δk−1

(∆wk − ∆wk−1) −
δkMwk

δk + δk−1

− δk−1Mwk−1

δk + δk−1

− 1

c(1 − a2c2)

= −∂tδk
δk

− ∂tδk−1

δk−1

,

∂tδk =

(
1 − δ2

k

4

)
(wk+1 − wk) .

Thus, we have

∂t

{
2

δk + δk−1

(∆wk − ∆wk−1) −
δkMwk

δk + δk−1

− δk−1Mwk−1

δk + δk−1

}
2

δk + δk−1

(∆wk − ∆wk−1) −
δkMwk

δk + δk−1

− δk−1Mwk−1

δk + δk−1

− 1

c(1 − a2c2)

= −
(

1 − δ2
k

4

)
∆wk −

(
1 −

δ2
k−1

4

)
∆wk−1 .
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The dependent variable w is a function of k and t, and we regard them as a
function of X and T , where X is the space coordinate of the k-th lattice point and
T is the time, defined by

X = X0 +
k−1∑
j=0

δj , T = t .

Then in the continuous limit, a→ 0 (δk → 0), we have

wk+1 − wk

δk
→ ∂w

∂X
,

wk+1 + wk

2
→ w ,

∂X

∂t
=
∂X0

∂t
+

k−1∑
j=0

∂δj
∂t

=
∂X0

∂t
+

k−1∑
j=0

(
1 −

δ2
j

4

)
(wj+1 − wj) → w ,

∂t = ∂T +
∂X

∂t
∂X → ∂T + w∂X ,

where the origin of space coordinate X0 is taken so that
∂X0

∂t
cancels w0. Then

the above semi-discrete CH equation converges to the CH equation

(∂T + w∂X)(wXX − w)

wXX − w − 1

c

= −2wX ,

i.e.

(∂T + w∂X)(wXX − w) = −2wX

(
wXX − w − 1

c

)
. (4)

Setting c = 1/κ, w = u/κ, T = κT̃ , we obtain the standard form of the CH
equation

uT̃ + 2κ2uX − uT̃XX + 3uuX = 2uXuXX + uuXXX . (5)

3. Implementation of the self-adaptive mesh method

First, we discuss how to implement the self-adaptive method in actual com-
putations. Generally, given an arbitrary initial condition w(X, 0) = w0(X), the
initial non-uniform mesh δk can be obtained by solving the nonlinear algebraic
equations by Newton’s iteration method. However, for the propagation or inter-
action of solitons or cuspons, which are challenging problems numerically, the
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initial condition wk can be calculated by (3) from gk and hk by putting t = 0,
which are obtainable from the corresponding determinant solutions. The initial
non-uniform mesh δk can also be calculated by [24]

δk = 2
(1 + ac)gk+1hk − (1 − ac)gkhk+1

(1 + ac)gk+1hk + (1 − ac)gkhk+1

. (6)

On the other hand, once the non-uniform mesh δk is known, the solution wk

can be easily obtained by solving a tridiagonal linear system based on the first
equation of the scheme.

alw
n+1
l−1 + blw

n+1
l + clw

n+1
l+1 = dl, (7)

where

al = 0.5δn+1
k−1−

2

δn+1
k−1

; bl = 0.5(δn+1
k−1 +δn+1

k )+
2

δn+1
k−1

+
2

δn+1
k

; cl = 0.5δn+1
k − 2

δn+1
k

;

and

dl =
4a2c

1 − a2c2

(
1

δn+1
k

+
1

δn+1
k−1

)
−
δn+1
k−1 + δn+1

k

c(1 − a2c2)
.

In regard to the evolution of δk, we propose two time advancing methods.
The first is the modified forward Euler method, where we assume wk remains
unchanged in one time step. Integrating once, we have

δn+1
k = 2

cnke
(wn

k+1−wn
k )∆t − 1

cnke
(wn

k+1−wn
k )∆t + 1

, (8)

where cnk = (2 + δn
k )/(2 − δn

k ). The second is the classical 4th-order Runge-
Kutta method, where wk can be viewed as a function of δk by solving the above
tridiagonal linear system. Therefore, in one time step, we have to solve tridiagonal
linear system four times.

In summary, the numerical computation in one time-step only involves a ODE
solver for non-uniform mesh and a tridiagonal linear system solver. Hence, the
computation cost is much less than other existing numerical methods. A Matlab
code is made to perform all the computations. Iterative methods, for instance,
the Bi-conjugate gradient method bicg in Matlab are used to solve the tridiagonal
system.

Finally, we list exact one- and two- soliton/cuspon and peakon solutions for
the use of numerical experiments in the subsequent section.
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(1). One soliton/cuspon solution: The τ -functions for the one soliton/cuspon
solution are

g ∝ 1 ±
(
c− p1

c+ p1

)
eξ1 , h ∝ 1 ±

(
c+ p1

c− p1

)
eξ1 , (9)

with ξ1 = p1(2x− v1t− x10), v1 = 2/(c2 − p2
1). This leads to a solution

w(x, t) =
2p2

1cv1

(c2 + p2
1) ± (c2 − p2

1) cosh ξ1
, (10)

X = 2cx+ log
(g
h

)
, T = t , (11)

where the positive case in Eq.(10) stands for the one smooth soliton solution when
p1 < c, while the negative case in Eq.(10) stands for the one-cuspon solution when
p1 > c. Otherwise, the solution is singular. Thus Eq.(10) for nonsingular cases
can be expressed by

w(x, t) =
2p2

1cv1

(c2 + p2
1) + |c2 − p2

1| cosh ξ1
. (12)

Similarly, for the semi-discrete case, we have

gk ∝ 1 +

∣∣∣∣c− p1

c+ p1

∣∣∣∣ (
1 + ap1

1 − ap1

)k

eξ1 , hk ∝ 1 +

∣∣∣∣c+ p1

c− p1

∣∣∣∣ (
1 + ap1

1 − ap1

)k

eξ1 ,

(13)
with ξ1 = p1(−v1t− x10), resulting a solution of the form

wk(t) =
2p2

1cv1

(c2 + p2
1) + |c2 − p2

1|
[((

1+ap1

1−ap1

)−k

e−ξ1 +
(

1+ap1

1−ap1

)k

eξ1

)
/2

] , (14)

in conjunction with a transform between an uniform mesh (“a”) and a non-uniform
mesh

δk = 2
(1 + ac)gk+1hk − (1 − ac)gkhk+1

(1 + ac)gk+1hk + (1 − ac)gkhk+1

. (15)

Equation (14) corresponds to the 1-soliton solution when p < c, the 1-cuspon
solution when p > c.

(2). Two soliton/cuspon solutions: The τ -functions for the two soliton/cuspon
solution are

g ∝ 1 +

∣∣∣∣c1 − p1

c1 + p1

∣∣∣∣ eξ1 +

∣∣∣∣c2 − p2

c2 + p2

∣∣∣∣ eξ2 +

∣∣∣∣(c1 − p1)(c2 − p2)

(c1 + p1)(c2 + p2)

∣∣∣∣ (
p1 − p2

p1 + p2

)2

eξ1+ξ2 ,
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h ∝ 1 +

∣∣∣∣c1 + p1

c1 − p1

∣∣∣∣ eξ1 +

∣∣∣∣c2 + p2

c2 − p2

∣∣∣∣ eξ2 +

∣∣∣∣ (c1 + p1)(c2 + p2)

(c1 − p1)(c2 − p2)

∣∣∣∣ (
p1 − p2

p1 + p2

)2

eξ1+ξ2 ,

with ξ1 = p1(2x − v1t − x10), ξ2 = p2(2x − v2t − x20), v1 = 2/(c21 − p2
1),

v2 = 2/(c22 − p2
2). The parametric solution can be calculated through

w(x, t) =
(
log

g

h

)
t
, X = 2cx+ log

(g
h

)
, T = t , (16)

whose form is complicated and is omitted here. Note that the above expression
includes the two-soliton solution (p1 < c1, p2 < c2), the two-cuspon solution
(p1 > c1, p2 > c2), or the soliton-cuspon solution (p1 < c1, p2 > c2).

Similarly, for the semi-discrete case, we have

gk ∝ 1 +

∣∣∣∣c1 − p1

c1 + p1

∣∣∣∣ (
1 + ap1

1 − ap1

)k

eξ1 +

∣∣∣∣c2 − p2

c2 + p2

∣∣∣∣ (
1 + ap2

1 − ap2

)k

eξ2

+

∣∣∣∣(c1 − p1)(c2 − p2)

(c1 + p1)(c2 + p2)

∣∣∣∣ (
p1 − p2

p1 + p2

)2 (
1 + ap1

1 − ap1

)k (
1 + ap2

1 − ap2

)k

eξ1+ξ2 ,

hk ∝ 1 +

∣∣∣∣c1 + p1

c1 − p1

∣∣∣∣ (
1 + ap1

1 − ap1

)k

eξ1 +

∣∣∣∣c2 + p2

c2 − p2

∣∣∣∣ (
1 + ap2

1 − ap2

)k

eξ2

+

∣∣∣∣ (c1 + p1)(c2 + p2)

(c1 − p1)(c2 − p2)

∣∣∣∣ (
p1 − p2

p1 + p2

)2 (
1 + ap1

1 − ap1

)k (
1 + ap2

1 − ap2

)k

eξ1+ξ2 ,

with ξ1 = p1(−v1t − x10), ξ2 = p2(−v2t − x20). The solution can be calculated
through

w(x, t) =

(
log

gk

hk

)
t

, (17)

with a transform

δk = 2
(1 + ac)gk+1hk − (1 − ac)gkhk+1

(1 + ac)gk+1hk + (1 − ac)gkhk+1

. (18)

Again, the explicit form of the solution is complicated and is omitted here.
(3). Peakon solutions:
In the continuous CH equation, it is possible to construct peakon solutions

from soliton solutions by taking the peakon limit [3, 33, 4, 6, 8, 34, 35].
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For the continuous case, we can express the 1-soliton solution as

w =
2p2

1κv1

1 + p2
1κ

2 + (1 − p2
1κ

2)coshξ1
,

where κ = 1
c
, v1 = 2κ2/(1−p2

1κ
2), ξ1 = p1κ(2x/κ−(v1/κ)t−x10/κ). Taking the

peakon limit κ→ 0, p1κ→ 1, v1 = const., the solution (X(x, t), w(x, t)), where
X(x, t) = 2x/κ + log g

h
, gives the 1-peakon solution [35]. In Fig.1, one can see

that the 1-soliton solution approaches to the 1-peakon solution as κ approaches to
0.

Figure 1: 1-soliton solution for the CH equation: the left: p1 = 0.5, c = 1; the right (close to the
peakon limit): p1 = 99, c = 100.

We can also consider the peakon limit for the semi-discrete CH equation. For
the semi-discrete case, we can express the 1-soliton solution as

wk =
2p2

1κv1

1 + p2
1κ

2 + (1 − p2
1κ

2)

[((
1+ap1

1−ap1

)−k

e−ξ1 +
(

1+ap1

1−ap1

)k

eξ1

)
/2

] ,
where κ = 1

c
, v1 = 2κ2/(1 − p2

1κ
2), ξ1 = p1κ(−(v1/κ)t − x10/κ). The peakon

limit for the semi-discrete CH equation is again κ→ 0, p1κ→ 1, v1 = const. Tak-
ing the peakon limit, we expect that the solution (Xk(t), wk(t)), where Xk(t) =
X0 +

∑k−1
j=0 δj(t), gives the 1-peakon solution. In Fig.2, one can see that the

1-soliton solution approaches to the 1-peakon solution as κ approaches to 0.
From the above observation, we expect that there is an explicit form of the

peakon solution for the semi-discrete CH equation. The detail of the peakon solu-
tion for the semi-discrete CH equation will be reported in the forthcoming paper.
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Figure 2: 1-soliton solution for the semi-discrete CH equation: the left: p1 = 0.5, c = 1, a = 0.1;
the right (close to the peakon limit): p1 = 99, c = 100, a = 0.005.

4. Numerical experiments

In this section, we apply our scheme to several test problems. They include:
1) propagation and interaction of nearly-peakon solutions; 2) propagation and in-
teraction of cuspon solutions; 3) interactions of soliton-cuspon solutions; 4) non-
exact initial value problems.

4.1. Propagation and interaction of nearly-peakon solutions
Example 1: One peakon propagation. It has been shown in [34, 35] that

the analytic N -soliton solution of the CH equation converges to the nonanalytic
N -peakon solution when κ → 0 (c → ∞). To show this, we choose one soliton
solution with parameters c = 1000, p = 998.9995. Thus the speed of the soliton
(v1/2) is 1.0. Its profile is plotted and is compared with one peakon solution
u(x, t) = e−|x−t| in Fig.3. These two solutions are indistinguishable from the
graph. The error in L∞, where L∞ = max |wl − ul|, is calculated to be 0.002,
and the discrepancy for the first conserved quantity I1 =

∫
u dx is less than 0.7%.

Therefore, this soliton solution can be viewed as an approximate peakon solution
with amplitude 1.0.

The propagation of the above designed approximate peakon solution is solved
by the self-adaptive mesh scheme with two different time advancing methods:
the modified forward Euler method (MFE) and the classical Runge-Kutta method
(RK4). The computation domain is about 28.5. Figures 4 (a)-(d) display the
numerical solutions at t = 1.0, 2.0, 3.0, 4.0, together with the self-adjusted mesh.
It can be seen that the non-uniform mesh is dense around the crest. The most dense
part of the non-uniform mesh moves along with the peakon point with the same
speed. The errors in the L∞-norm and the first conserved quantity I1 =

∫
w dx are

computed and compared in Table 1. Here, L∞ = max|w̃l − wl|, where w̃l and wl
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Figure 3: Comparison between one peakon solution and one-soliton solution with c = 200.0.

represent the numerical and analytical solutions at the grid pointsXl, respectively.
Here, E1 = |Ī1 − I1|/|I1| indicates the relative error, Ī1 stands for the counterpart
of I1 by the numerical solution. Trapezoidal rule on the non-uniform mesh is
employed for the evaluation of the integrals.

Example 2: Two peakon interaction. For c = 1000, we initially choose two
approximate peakon solutions moving with velocity v1/2 = 2.0, and v2/2 = 1.0,
respectively. Their interaction is numerically solved by MFE and RK4, respec-
tively, with a fixed grid number of N = 101. Figure 5 displays the process of
collision at different times. Table 2 presents the errors in L∞-norm and E1. It
could be seen that, in spite of a small number of grid points and a large time
step, RK4 simulates the collision of two approximate peakons with an amazing
accuracy.

In regard to the propagation and interaction of approximate peakon solutions,
we summarize as follows:

1. Due to the integrability of the scheme and the self-adaptive feature of the
non-uniform mesh, the L∞-norm is small and the first conserved quantity is
preserved extremely well even for a small number of grid points. Almost
doubling the grid numbers from 51 to 101 doesn’t get the accuracy improved
since a grid number of 51 is already good enough for the spatial resolution.

2. The errors is mainly due to the time advancing methods. FE1 is first order in
time, so it produces relatively large L∞ and E1, roughly changing in propor-
tional with time. RK4 is fourth-order in time, so up to T = 4.0, L∞ and E1

11



0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X

w
(X

,t)

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X

w
(X

,t)

(a) (b)

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X

w
(X

,t)

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X

w
(X

,t)

(c) (d)

Figure 4: Numerical solution of one single peakon solution: (a) t = 1.0; (b) t = 2.0; (c) t = 3.0;
(c) t = 4.0.

12



Table 1: Comparison of L∞ and I1 errors by the self-adaptive mesh method

T N ∆t MFE RK4
L∞ E1 L∞ E1

2.0 51 0.01 6.6(−3) 7.6(−3) 8.5(−10) 5.6(−8)
4.0 51 0.01 1.5(−2) 1.5(−2) 9.0(−9) 1.5(−6)
2.0 51 0.05 3.4(−2) 3.9(−2) 8.4(−9) 9.2(−10)
4.0 51 0.05 7.9(−2) 8.4(−2) 1.5(−8) 1.5(−6)
2.0 101 0.01 6.8(−3) 7.6(−3) 5.6(−9) 3.3(−7)
4.0 101 0.01 1.5(−2) 1.5(−2) 5.4(−8) 3.8(−6)
2.0 101 0.05 3.5(−2) 3.8(−2) 9.4(−9) 3.3(−7)
4.0 101 0.05 8.2(−2) 8.3(−2) 5.4(−8) 3.8(−6)

Table 2: L∞ and I1 errors for two approximate peakon interaction by the self-adaptive mesh
method

∆t T L∞ E1

MFE 0.001 5.0 2.2(−2) 5.5(−3)
0.001 10.0 7.1(−2) 1.2(−2)

RK4 0.05 5.0 6.6(−7) 4.1(−7)
0.05 10.0 1.8(−7) 1.4(−5)
0.01 5.0 2.0(−9) 1.5(−7)
0.01 10.0 3.2(−9) 1.4(−5)
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Figure 5: Numerical solution for collision of two nearly-peakon with p1 = 198.9975, p2 =
199.4995 and c = 200.0: (a) t = 0.0; (b) t = 10.0; (c) t = 15.0; (d) t = 20.0; (e) t = 30.0.
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are of the orders 10−8 and 10−6 for a grid number of N = 51 and a time step
∆t = 0.05.

4.2. Propagation and interaction of cuspon solutions
The classical 4th-order Runge-Kutta method fails whenever the cuspon solu-

tion is involved. It seems that a kind of instability occurs in this case, whose
theoretical reason is still unclear. Therefore, only MFE is employed to conduct
the numerical experiments hereafter.

Example 3: One-cuspon propagation. The parameters taken for the one-
cuspon solution are p = 10.98, c = 10.0. The number of grid is taken as 101 in
an interval of width of 4 in the x-domain. Through the hodograph transformation,
this corresponds to an interval of width 74.34 in theX-domain. Figure 6(a) shows
the initial profile and the initial mesh. Figures 6(b)-(d) display the numerical
solutions (solid line) and exact solutions (dotted line) at t = 2, 3, 4, together with
the self-adjusted mesh. It can be seen that the non-uniform mesh is dense around
the cuspon point, and moves to the left in accordance with the movement of the
cuspon point. Table 3 exhibits the results of errors in L∞-norm and E1.

Table 3: Errors in the L∞ norm and the first conservative quantity for the self-adaptive mesh
method (2.1)

∆t t L∞ E1

0.005 2.0 3.3(−2) 4.7(−2)
0.005 4.0 9.7(−2) 1.2(−1)
0.001 2.0 1.1(−2) 1.2(−2)
0.001 4.0 2.9(−2) 3.7(−2)

Example 4: Two-cuspon interaction. The parameters taken for the two-
cuspon solutions are p1 = 11.0, p2 = 10.5, c = 10.0. Figures 7(a)-(d) display
the process of collision at several different times, along with the exact solution.
Meanwhile, the self-adaptive mesh is also shown in the graph. It can be seen that
two cuspon solutions undertake elastic collision, regaining their shapes after the
collision is complete. As mentioned in [10], the two cuspon points are always
present during the collision. The grid points are automatically adapted with the
movement of the cuspons, and are always concentrated at the cuspon points. In
compared with the exact solutions, we can comment that the numerical solutions
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Figure 6: Numerical solution of one single cuspon solution: (a) t = 0.0; (b) t = 2.0; (c) t = 3.0;
(c) t = 4.0.
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are in a good agreement with exact solutions. As far as we know, what is shown
here is the first numerical demonstration for the cuspon-cuspon interaction.
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Figure 7: Numerical solution for the collision of two-cuspon solution with p1 = 11.0, p2 = 10.5,
c = 10.0: (a) t = 13.0; (b) t = 14.8; (c) t = 16.6; (d) t = 25.0.

4.3. Soliton-cuspon interactions
Here we show two examples for the soliton-cuspon interaction with c = 10.0.

In Fig.8, we plot the interaction process between a soliton of p1 = 9.12 and a
cuspon of p2 = 10.98 at several different times where the soliton and the cuspon
have almost the same amplitude. It can be seen that when the collision starts
(t = 12.0), another singularity point with infinite derivative (wx) occurs. As
collision goes on (t = 14.4, 14.6, 14.8), the soliton seems ’eats up’ the cuspon,
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and the profile looks like a complete elevation. However, the cuspon point exists
at all times, especially, at t = 14.6, the profile becomes one symmetrical hump
with a cuspon point in the middle of the hump.

In Fig.9, we present another example of a collision between a soliton (p1 =
9.12) and a cuspon (p2 = 10.5) where the cuspon has a larger amplitude (2.0)
than the soliton (1.0). Again, when the collision starts, another singularity point
appears. As collision goes on, the soliton is gradually absorbed by the cuspon.
At t = 10.3, the whole profile looks like a single cuspon when the soliton is
completely absorbed. Later on, the soliton reappears from the right until t = 16,
the soliton and cuspon recover their original shapes except for a phase shift when
the collision is complete.

4.4. Non-exact initial value problems
Here, we show that the integrable scheme can also be applied for the initial

value problem starting with non exact solutions. To the end, we choose an initial
condition whose mesh size is determined by

δk = 2 c h (1 − 0.8 sech(2kh−Wx/2)), (19)

then, the initial profile can be calculated through the second equation of the semi-
discretization, which is plotted in Fig.10 (a). Figures 10 (b), (c) and (d) show the
evolutions at t = 10, 20, 30, respectively. Note that c = 10 in this computation. It
can be seen that a soliton with large amplitude is firstly developed, and moving fast
to the right. By t = 30, a second soliton with small amplitude is to be developed.

Next, we increase the value of c to 90, which implies a very small dispersion
term, corresponding to the dispersionless CH equation. The initial profile and the
evolutions at t = 50, 150, 200 are shown in Fig.11. It is seen that four nearly-
peakons are developed from the initial profile at t = 50. Later on, an array of
nearly-peakons of seven and eight are developed at t = 150, 200, respectively.
This result is similar to the result for the KdV type equations with a small disper-
sion, i.e. the peakon trains are generated. (For the KdV type equations, soliton
trains are generated. For example, see [36, 37] for numerical simulations and [38]
for a theoretical analysis for the KdV equation.) A theoretical analysis for the dis-
persionless CH equation to explain the above intriguing numerical result is called
for.

5. Concluding Remarks

In the present paper, we have proposed a self-adaptive mesh method for the
CH equation, which based on an integrable semi-discretization of the CH equa-
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Figure 8: Numerical solution for cuspon-soliton collision with p1 = 9.12, p2 = 10.98 and c =
10.0: (a) t = 0.0; (b) t = 12.0; (c) t = 14.4; (d) t = 14.6; (e) t = 14.8; (f) t = 17.0; (g) t = 25.0.

19



0 10 20 30 40 50 60 70
−2

−1.5

−1

−0.5

0

0.5

1

X

w
(X

,t)

0 10 20 30 40 50 60 70
−2

−1.5

−1

−0.5

0

0.5

1

X

w
(X

,t)

(a) (b)

0 10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

X

w
(X

,t)

0 10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

X

w
(X

,t)

(c) (d)

0 10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

X

w
(X

,t)

0 10 20 30 40 50 60 70
−2

−1.5

−1

−0.5

0

0.5

1

X

w
(X

,t)

(e) (f)

0 10 20 30 40 50 60 70
−2

−1.5

−1

−0.5

0

0.5

1

X

w
(X

,t)

(g)

Figure 9: Numerical solution for cuspon-soliton collision with p1 = 9.12, p2 = 10.5 and c = 10.0:
(a) t = 0.0; (b) t = 9.0; (c) t = 10.0; (d) t = 10.3; (e) t = 10.6; (f) t = 11.5; (g) t = 16.0.
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Figure 10: Numerical solution starting from an initial condition (19) with c = 10: (a) t = 0.0; (b)
t = 10.0; (c) t = 20.0; (d) t = 30.0.
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Figure 11: Numerical solution starting from an initial condition (19) with c = 90: (a) t = 0.0; (b)
t = 50.0; (c) t = 150.0; (d) t = 200.0.
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tion. It has the properties: (1) it is integrable in the sense that the scheme itself
admits the N -soliton solution approaching to the N -soliton solution of the CH
equation in the limit of mesh size going to zero; (2) the mesh is non-uniform and
is automatically adjusted so that it is concentrated in the region where the solution
changed sharply, for example, the cuspon point; (3) once the non-uniform mesh
is evolved, the solution is determined from the evolved mesh by solving a tridiag-
onal linear system. Therefore, either from the accuracy or from the computation
cost, the proposed method is expected to be superior than other existing numeri-
cal methods of the CH equation. This is indeed true. The numerical results in this
paper indicate that a very good accuracy is obtained.

Two time advancing methods, the modified forward Euler method and the
classical 4th-order Runge-Kutta method, are used to solve the evolution of non-
uniform mesh. The Runge-Kutta method gains much better accuracy than the
modified forward Euler method. However, it fails for the computations of cuspons.
Using the self-adaptive mesh method for the CH equation, we have obtained in-
teresting numerical computation results starting with non-exact solutions. When
κ is very small, the peakon train is generated from the non-exact initial condition.

As further topics, it is interesting to construct a self-adaptive mesh method to
the Degasperis-Procesi (DP) equation [39]

uT + 3κ3uX − uTXX + 4uuX = 3uXuXX + uuXXX . (20)

The DP equation is also known as an integrable system sharing some common
features with the CH equation, for example, the existence of N -soliton solutions
through hodograph transformations [40, 41]. It is possible to construct an inte-
grable semi-discrete DP equation by using the same approach, which implies a
self-adaptive mesh method for the numerical simulations. We will report the re-
lated results in the near future.
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