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Abstract. If f : C → Pn is a holomorphic curve of hyper-order less than
one for which 2n + 1 hyperplanes in general position have forward invariant
preimages with respect to the translation τ(z) = z + c, then f is periodic with
period c ∈ C. This result, which can be described as a difference analogue of
M. Green’s Picard-type theorem for holomorphic curves, follows from a more
general result presented in this paper. The proof relies on a new version of
Cartan’s second main theorem for the Casorati determinant and an extended
version of the difference analogue of the lemma on the logarithmic derivatives,
both of which are proved here. Finally, an application to the uniqueness theory
of meromorphic functions is given, and the sharpness of the obtained results
is demonstrated by examples.

1. Introduction

According to Picard’s theorem all holomorphic mappings f : C → P1 \ {a, b, c}
are constants. For holomorphic curves in Pn where n ≥ 2 Bloch [5] and Cartan
[6] showed that if a non-constant holomorphic mapping f : C → Pn misses n + 2
hyperplanes in general position, then the image of f lies in a proper linear subspace
of Pn. Here a hyperplane H is the set of all points x ∈ Pn, x = [x0 : · · · : xn], such
that

(1.1) α0x0 + · · ·+ αnxn = 0,

where αj ∈ C for j = 0, . . . , n. The hyperplanes Hk, k = 0, . . . ,m, defined by
α0,kx0 + · · ·+ αn,kxn = 0 are said to be in general position if m ≥ n and any n + 1
of the vectors αk = (α0,k, . . . , αn,k) ∈ Cn+1 are linearly independent.

Another natural generalization of Picard’s theorem was given by Fujimoto [14]
and Green [17], who showed that if f : C→ Pn omits n + p hyperplanes in general
position where p ∈ {1, . . . , n + 1}, then the image of f is contained in a linear
subspace at most of dimension [n/p]. In particular, by taking p = n + 1 it follows
that if the image of a holomorphic function f : C → Pn lies in the complement
of 2n + 1 hyperplanes in general position, then f must be a constant. Further
extensions of Picard’s theorem for holomorphic curves missing hyperplanes can be
found, for instance, in [15, 18, 19].
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We say that the preimage of the hyperplane H ⊂ Pn under f is forward invariant
with respect to the translation τ(z) = z + c if τ(f−1({H})) ⊂ f−1({H}) where
f−1({H}) and τ(f−1({H})) are multisets in which each point is repeated according
to its multiplicity. Let, for instance, ϕ(z) be an entire function given by the pullback
divisor of the hyperplane H. If

ϕ(z) =
ϕ(m)(z0)

m!
(z − z0)m + O((z − z0)m+1), ϕ(m)(z0) 6= 0,

and

ϕ(z + c) =
ϕ(n)(z0)

n!
(z − z0)n + O((z − z0)n+1), ϕ(n)(z0) 6= 0,

for all z in a neighborhood of z0 and n ≥ m > 0, the point z0 is a forward invariant
element in a preimage of H with respect to τ(z), while if m > n then z0 is not
a forward invariant element. By this definition the preimages of the usual Picard
exceptional hyperplanes of f are special cases of forward invariant preimages since
in this case f−1({H}) = ∅. One of the purposes of this paper is to show that
analogous results to Picard’s theorem for holomorphic curves f : C → Pn can be
obtained even if the image of f intersects with the target hyperplanes in general
position, provided that at the same time the preimages of these hyperplanes under f
are forward invariant with respect to a translation, and the considered holomorphic
curve does not grow too fast.

The growth is classified by the means of Nevanlinna theory in the following
way. The order of growth of a holomorphic curve f : C → Pn with homogeneous
coordinate f = [f0 : · · · : fn] is defined by

(1.2) σ(f) = lim sup
r→∞

log+ Tf (r)
log r

,

where log+ x = max{0, log x} for all x ≥ 0, and

(1.3) Tf (r) :=
∫ 2π

0

u(reiθ)
dθ

2π
− u(0), u(z) = sup

k∈{0,...,n}
log |fk(z)|,

is the Cartan characteristic function of f . Note here that this representation of f
is to be reduced in the sense that the n+1 functions fj are entire functions without
common zeros. The hyper-order of a holomorphic curve f : C→ Pn is defined by

(1.4) ς(f) = lim sup
r→∞

log+ log+ Tf (r)
log r

and the usual Nevanlinna hyper-order is

ρ2(w) = lim sup
r→∞

log+ log+ T (r, w)
log r

,

where w is meromorphic in the complex plane and T (r, w) is the Nevanlinna char-
acteristic function. Since, by writing w = [w0 : w1] where w0 and w1 are entire
functions without common zeros, it follows that ρ2(w) = ς(w), we will use the no-
tation ς(w) from now on to denote the hyper-order of the meromorphic function w.

Let c ∈ C, and let P1
c be the field of period c meromorphic functions defined

in C of hyper-order strictly less than one. The following theorem is a difference
analogue of Picard’s theorem for holomorphic curves.
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Theorem 1.1. Let f : C → Pn be a holomorphic curve such that ς(f) < 1, let
c ∈ C and let p ∈ {1, . . . , n + 1}. If n + p hyperplanes in general position have
forward invariant preimages under f with respect to the translation τ(z) = z + c,
then the image of f is contained in a projective linear subspace over P1

c of dimension
≤ [n/p].

The following example shows that the growth condition ς(f) < 1 in Theorem 1.1
cannot be replaced by ς(f) ≤ 1.

Example 1.2. Put ω = 2πi/(2 log 6) and consider a linearly non-degenerate holo-
morphic curve

f := [− sin2 ωz : − cos2 ωz : (sin2 ωz) exp ez : (cos2 ωz) exp ez] : C→ P3,

which is not (2 log 6)-periodic and has the hyper-order ς(f) = 1. Take the following
seven hyperplanes located in general position in P3:

H1 = {w |h1(w) := w0 = 0} ,

H2 = {w |h2(w) := w1 = 0} ,

H3 = {w |h3(w) := w2 = 0} ,

H4 = {w |h4(w) := w3 = 0} ,

H5 = {w |h5(w) := w0 + w1 + w2 + w3 = 0} ,

H6 = {w |h6(w) := w0 + η5w1 + η2
5w2 + η3

5w3 = 0} ,

H7 = {w |h7(w) := w0 + η7w1 + η2
7w2 + η3

7w3 = 0} ,

where w = [w0 : w1 : w2 : w3] and η5 and η7 are the primitive fifth and seventh
root of unity, respectively. Then we have

h1(f) = − sin2 ωz , h2(f) = − cos2 ωz ,

h3(f) = (sin2 ωz) exp ez , h4(f) = (cos2 ωz) exp ez,

all of whose zero preimages are forward invariant with respect to τ(z) = z +2 log 6,
while

h5(f) = (sin2 ωz + cos2 ωz)(exp ez − 1) ,

h6(f) = η2
5(sin2 ωz + η5 cos2 ωz)(exp ez − η3

5) ,

h7(f) = η2
7(sin2 ωz + η7 cos2 ωz)(exp ez − η5

7) ,

each of whose zeros have forward invariant preimages with respect to τ(z) = z +
2 log 6, or are points such that exp ez = α for some α ∈ {1, η3

5 , η5
7}. Then α is a

35th root of unity and thus all preimages of these hyperplanes are (2 log 6)-forward
invariant. On the other hand, the image of f is contained in a projective linear
subspace over P1

2 log 6 of dimension 1 (even though f is linearly non-degenerate in
the usual sense) but ‘[n/p]’ in Theorem 1.1 satisfies [n/p] = [3/(7− 3)] = 0. In fact
the image is on the projective line described by the two hyperplanes (cos2 ωz)w0−
(sin2 ωz)w1 = 0 and (cos2 ωz)w2 − (sin2 ωz)w3 = 0 over P1

2 log 6, and also it does
not degenerate into a singleton in the space, since exp ez 6∈ P1

2 log 6.

An example demonstrating the sharpness of the upper bound [n/p] in Theo-
rem 1.1 is given in section 7 below. The following corollary is immediately obtained
by applying Theorem 1.1 with p = n + 1.
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Corollary 1.3. Let f : C→ Pn be a holomorphic curve such that ς(f) < 1, and let
c ∈ C. If 2n + 1 hyperplanes in general position have forward invariant preimages
under f with respect to the translation τ(z) = z+c, then f is periodic with period c.

If the preimage of a hyperplane under a holomorphic curve f : C→ Pn is empty,
then it is clearly forward invariant with respect to all translations of the complex
plane. Therefore, if f omits 2n + 1 hyperplanes in general position, then it follows
by Corollary 1.3 that f is, in fact, a periodic holomorphic curve with all periods
c ∈ C. This is, of course, only possible when f is a constant function. We have just
shown that Corollary 1.3 implies M. Green’s Picard-type theorem for holomorphic
curves [17] in the special case ς(f) < 1.

A simple example shows that the growth condition ς(f) < 1 in Corollary 1.3
cannot be significantly weakened. For f(z) = [exp(exp(z)) : 1] : C → P1 each of
the nth roots of unity [1 : − exp(2mπi/n)], m ∈ {1, . . . , n}, has a forward invariant
preimage with respect to τ(z) = z + log(n + 1), but nevertheless f(z) 6≡ f(z +
log(n+1)). Therefore f is an example of a holomorphic curve which has arbitrarily
many target values with forward invariant preimages, even though it just barely
fails to satisfy the condition ς(f) < 1.

Finite-order meromorphic solutions of difference equations have been under care-
ful study recently. Ruijsenaars has been studying minimal solutions of certain
classes of linear difference equations as part of a programme of developing Hilbert
space theory for analytic difference operators [37, 38]. In the nonlinear case,
Ablowitz, Halburd and Herbst [1] suggested that the existence of sufficiently many
finite-order meromorphic solutions can be used to detect difference equations of
Painlevé type. Difference quotient estimates [24, 25, 10, 9] have proved to be useful
tools in much of the recent analysis involving finite-order meromorphic solutions of
difference equations (see, e.g. [11, 26, 27, 31]) but so far there is limited amount
of information available on the behavior of fast growing solutions. Another main
purpose of this paper is to show that if f is a meromorphic function such that
ς(f) = ς < 1 and ε > 0, then

(1.5) m

(
r,

f(z + c)
f(z)

)
= o

(
T (r, f)
r1−ς−ε

)

for all r outside of a set of finite logarithmic measure (see Theorem 5.1 below). The
type of difference analogue of the lemma on the logarithmic derivatives represented
by (1.5) cannot be in general extended to meromorphic functions of hyper-order
at least one, since g(z) = exp(2z) satisfies g(z + 1)/g(z) = g(z), and so m(r, g(z +
1)/g(z)) = T (r, g).

The remainder of the paper is organized in the following way. Section 2 contains
a difference analogue of Cartan’s generalization of the second main theorem of
Nevanlinna theory, which will be applied in section 3 to obtain a difference analogue
of Borel’s theorem on linear combinations of entire functions without zeros. These
results are some of the main components in the proof of Theorem 1.1 in section 10.
Applications of these results to uniqueness theory of meromorphic functions are
discussed in section 4. The proof of the difference Cartan in section 9 relies on
a logarithmic difference estimate given in section 5, and proved in section 8. A
discussion on q-difference analogues of the above results is given in section 6, and,
finally, the sharpness of some of the main results is considered in section 7.
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2. Difference analogue of Cartan’s second main theorem

The second main theorem of Nevanlinna theory [34] is a deep generalization of
Picard’s theorem for meromorphic functions in the complex plane, and a cornerstone
on which the whole value distribution theory lies. Cartan’s version of the second
main theorem [7] is a generalization of this result to holomorphic curves [32], and
it has also turned out to be a useful tool for certain problems in the complex plane,
for instance, in considering Waring’s problem for analytic functions [29] and unique
range sets for entire functions [22, 23].

We now recall some of the known properties of the Cartan characteristic function
from [23, 32]. For instance, if g = [g0 : · · · : gn] with n ≥ 1 is a reduced repre-
sentation of g, then Tg(r) → ∞ as r → ∞, and if at least one quotient gj/gm is a
transcendental function, then Tg(r)/ log r → ∞ as r → ∞. Moreover, if f0, . . . , fq

are q + 1 linear combinations of the functions g0, . . . , gn over C, where q > n, such
that any n + 1 of the q + 1 functions f0, . . . , fq are linearly independent, then

(2.1) T

(
r,

fµ

fν

)
≤ Tg(r) + O(1)

where r →∞, and µ and ν are distinct integers in the set {0, . . . , q}. Moreover, if
n = 1, then (2.1) becomes an asymptotic identity.

The order of a holomorphic curve f : C → Pn is independent of the reduced
representation of f . For if [f0 : · · · : fn] and [F0 : · · · : Fn] are two reduced
representations of the curve f , then, since the fj ’s and Fj ’s are entire and

max
j=0,...,n

|fj(z)| 6= 0 and max
j=0,...,n

|Fj(z)| 6= 0,

it follows that there exists a nowhere vanishing entire function h such that

Fj(z) = h(z)fj(z)

for all z ∈ C and j ∈ {0, . . . , n}. By writing F = [F0 : · · · : Fn] and defining

TF (r) =
∫ 2π

0

U(reiθ)
dθ

2π
− U(0), U(z) = sup

k∈{0,...,n}
log |Fk(z)|,

it follows that

TF (r) = Tf (r) +
1
2π

∫ 2π

0

log |h(reiθ)|dθ − log |h(0)|.

However, since h(z) is entire and nowhere zero, it follows that log |h(z)| is harmonic,
and therefore

log |h(0)| = 1
2π

∫ 2π

0

log |h(reiθ)|dθ.

Hence TF (r) = Tf (r) is independent of the representation of f in terms of projective
coordinates, and so the order of f is well defined by (1.2). We refer to [32] for the
full description of Cartan’s value distribution theory, and [8, 28, 40] for the standard
notation of Nevanlinna theory.

Let g(z) be a meromorphic function, and let c ∈ C. We will use the short
notation

g(z) ≡ g, g(z + c) ≡ g, g(z + 2c) ≡ g and g(z + nc) ≡ g[n]
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to suppress the z-dependence of g(z). The Casorati determinant of g0, . . . , gn is
then defined by

C(g0, . . . , gn) =

∣∣∣∣∣∣∣∣∣

g0 g1 · · · gn

g0 g1 · · · gn
...

...
. . .

...
g
[n]
0 g

[n]
1 · · · g

[n]
n

∣∣∣∣∣∣∣∣∣
.

In Cartan’s generalization of the second main theorem the ramification term is
expressed in terms of the Wronskian determinant of a set of linearly independent
entire functions. The following theorem is a difference analogue of Cartan’s result
where the ramification term has been replaced by a quantity expressed in terms of
the Casorati determinant of functions which are linearly independent over a field
of periodic functions.

Theorem 2.1. Let n ≥ 1, and let g0, . . . , gn be entire functions, linearly indepen-
dent over P1

c , such that max{|g0(z)|, . . . , |gn(z)|} > 0 for each z ∈ C, and

(2.2) ς := ς(g) < 1, g = [g0 : · · · : gn].

Let ε > 0. If f0, . . . , fq are q+1 linear combinations of the n+1 functions g0, . . . , gn,
where q > n, such that any n + 1 of the q + 1 functions f0, . . . , fq are linearly
independent, and

(2.3) L =
f0f1f2 · · · f

[n]

n fn+1 · · · fq

C(g0, g1, . . . , gn)
,

then

(q − n)Tg(r) ≤ N

(
r,

1
L

)
−N(r, L) + o

(
Tg(r)
r1−ς−ε

)
+ O(1),

where r approaches infinity outside of an exceptional set E of finite logarithmic
measure (i.e.

∫
E∩[1,∞)

dt/t < ∞).

In [25] an analogue of the second main theorem for the difference operator ∆cf =
f(z + c) − f(z) was introduced. We will now show that, for constant targets,
Theorem 2.1 is a generalization of this result in a similar way as Nevanlinna’s
second main theorem follows by Cartan’s result.

Let w be a meromorphic function such that the usual Nevanlinna hyper-order
satisfies ς(w) < 1. Then there exist linearly independent entire functions g0 and
g1 with no common zeros such that w = g0/g1, and, according to (2.1), it follows
that ς(g) < 1 for g = [g0 : g1]. Note that in general the entire functions g0 and g1

themselves may be of hyper-order greater or equal to one (see [4]).
Let aj ∈ C for j = 0, . . . , q − 1, and denote fj = g0 − ajg1 and fq = g1. Then,

by Theorem 2.1, it follows that

(2.4) (q − 1)Tg(r) ≤ N

(
r,

1
L

)
−N(r, L) + o(Tg(r))

where
L =

f0f1 · · · fq−1g1

g0g1 − g0g1
.

We define the counting function Ñ for a ∈ C as in [25] by

(2.5) Ñ

(
r,

1
w − a

)
=

∫ r

0

ñ(r, a)− ñ(0, a)
t

dt + ñ(0, a) log r
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where ñ(r, a) counts the number of a-points of w with multiplicity of w(z0) = a
counted according to multiplicity of a at z0 minus the order of the (possible) zero
of ∆cw at z0. The pole counting function is then

(2.6) Ñ(r, w) = Ñ

(
r,

1
1/w

)
.

Since ς(w) < 1 it follows by Lemma 8.3 below that N(r, w) ≤ N(r + |c|, w) =
N(r, w)+ o(N(r, w)) outside of a possible exceptional set of finite logarithmic mea-
sure. Therefore, by interpreting (2.4) in terms of the counting functions (2.5) and
(2.6), and using (2.1) we have

(q − 1)T (r, w) ≤ Ñ(r, w) +
q−1∑

j=0

Ñ

(
r,

1
w − aj

)
−N0

(
r,

1
∆cw

)
+ o(T (r, w))

where N0(r, 1/∆cw) counts the number of those zeros of ∆cw which do not coincide
with any of the aj-points or poles of w, and r runs to infinity outside of a set of
finite logarithmic measure. This is an extension of [25, Theorem 2.5] as desired.

3. Difference analogue of Borel’s theorem

According to Borel’s theorem, if h0, . . . , hn are entire functions without zeros,
then the only possible solutions of the equation

(3.1) h0 + · · ·+ hn = 0

are trivial solutions of the form

h0 + · · ·+ hn =
l∑

k=1

∑

i∈Sk

ci,jk
hjk

,

where Sk, k = 1, . . . , l, is the partition of {0, . . . , n} formed so that i and j are in
Sk if and only if hi/hj ∈ C, and

∑
i∈Sk

ci,jk
= 0 for all k = 1, . . . , l (see, e.g. [32,

p. 186] or [36, p. 124]). The following difference analogue of Borel’s theorem will
be one of the key results needed in the proof of Theorem 1.1.

Theorem 3.1. Let c ∈ C, and let g = [g0 : · · · : gn] be a holomorphic curve such
that ς(g) < 1 and such that preimages of all zeros of g0, . . . , gn are forward invariant
with respect to the translation τ(z) = z + c. Let

S1 ∪ · · · ∪ Sl

be the partition of {0, . . . , n} formed in such a way that i and j are in the same
class Sk if and only if gi/gj ∈ P1

c . If

(3.2) g0 + . . . + gn = 0,

then ∑

i∈Sk

gi = 0

for all k ∈ {1, . . . , l}.
For the proof of Theorem 3.1 we need two lemmas. The first one classifies linear

dependence of the coordinate functions of g over the field P1
c .
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Lemma 3.2. If the holomorphic curve g = [g0 : · · · : gn] satisfies ς(g) < 1 and
if c ∈ C, then C(g0, . . . , gn) ≡ 0 if and only if the entire functions g0, . . . , gn are
linearly dependent over the field P1

c .

Since the periodic functions P1
c are constants with respect to the difference op-

erator ∆cf = f(z + c) − f(z), Lemma 3.2 is a natural difference analogue of the
fact that entire functions f0, . . . , fn are linearly dependent over C if and only if the
Wronskian W (f0, . . . , fn) vanishes identically.

Proof of Lemma 3.2: Suppose first that g0, . . . , gn are linearly dependent over P1
c .

Then there exist A0, . . . , An ∈ P1
c such that A0g0 + · · ·+ Angn = 0, and so

(3.3)





A0g0 + · · ·+ Angn = 0
A0g0 + · · ·+ Angn = 0

...
A0g

[n]
0 + · · ·+ Ang

[n]
n = 0.

The determinant of the coefficient matrix corresponding to the system (3.3) is
the Casoratian C(g0, . . . , gn). Since (3.3) has a nontrivial solution, it follows that
C(g0, . . . , gn) ≡ 0.

We apply induction on n to prove the converse assertion. In the case n = 1
suppose that C(g0, g1) ≡ 0, and consider the system of equations

(3.4)
{

A0g0 + A1g1 = 0
A0g0 + A1g1 = 0

which is equivalent to {
A0g0 + A1g1 = 0
A1C(g0, g1) = 0.

Since C(g0, g1) ≡ 0, it follows that A0 = g1/g0 and A1 = −1 is a solution of
(3.4). Moreover, since ς(g) < 1 by assumption, also ς(g̃) < 1 where g̃ = [g0 :
g1]. Therefore, by (2.1), the usual Nevanlinna hyper-order of A0 satisfies ς(A0) =
ς(g1/g0) ≤ ς(g̃) ≤ ς(g) < 1. Since clearly A1 ∈ P1

c , all we need to do to complete
the proof in the case n = 1 is to show that A0 is periodic with period c. By applying
the difference operator ∆cf = f(z + c)−f(z) to the first equation in (3.4), we have

(3.5) A0∆cg0 + g0∆cA0 −∆cg1 = 0.

On the other hand, (3.4) yields

A0∆cg0 −∆cg1 = 0,

which, combined with (3.5), implies that ∆cA0 ≡ 0. We conclude that A0 ∈ P1
c .

Suppose now that C(g0, . . . , gj) ≡ 0 implies that g0, . . . , gj are linearly dependent
over P1

c for all j ∈ {1, . . . , k − 1} where k ≤ n, and assume that C(g0, . . . , gk) ≡ 0.
Then the linear system

(3.6)





A0g0 + · · ·+ Akgk = 0
A0g0 + · · ·+ Akgk = 0

...
A0g

[k]
0 + · · ·+ Akg

[k]
k = 0
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has at least one redundant equation and can be written as

(3.7)





A0g0 + · · ·+ Ak−1gk−1 = gk

A0g0 + · · ·+ Ak−1gk−1 = gk
...

A0g
[k−1]
0 + · · ·+ Ak−1g

[k−1]
k−1 = g

[k−1]
k

where we have made the choice Ak = −1. If C(g0, . . . , gk−1) ≡ 0, then g0, . . . , gk−1

(and thus also g0, . . . , gk) are linearly dependent over P1
c by the induction assump-

tion. If C(g0, . . . , gk−1) 6≡ 0, then by Cramer’s rule for each i = 0, . . . , k − 1 we
have

Ai =
C(g0, . . . , gk, . . . , gk−1)

C(g0, . . . , gk−1)
,

where gk occurs in the ith entry of the Casorati determinant in the numerator
instead of gi. By writing Ai in the form

Ai =
gigi · · · g[k−1]

i C(g0/gi, . . . , gk/gi, . . . , gk−1/gi)

gkgk · · · g[k−1]
k C(g0/gk, . . . , gk−1/gk)

it can be seen that

T (r,Ai) = O




k∑

j=0

k−1∑

l=0

(
T

(
r,

g
[l]
j

g
[l]
i

)
+ T

(
r,

g
[l]
j

g
[l]
k

))


for all i = 0, . . . , k− 1. Now, since T (r, f(z + c)) = O(T (r + |c|, f)) for all functions
f(z) meromorphic in the complex plane (see, e.g., [16, pp. 66–67]) it follows by the
assumption ς(g) < 1 and (2.1) that ς(Ai) < 1 for all i = 0, . . . , k − 1.

We still need to prove that Ai is periodic with period c for all i = 0, . . . , k − 1
(Ak ≡ −1 and so it is trivially periodic). By applying the operator ∆c to all
equations in the system (3.7), it follows that
(3.8)



A0∆cg0 + · · ·+ Ak−1∆cgk−1 + g0∆cA0 + · · ·+ gk−1∆cAk−1 = ∆cgk

A0∆cg0 + · · ·+ Ak−1∆cgk−1 + g0∆cA0 + · · ·+ gk−1∆cAk−1 = ∆cgk
...

A0∆cg
[k−1]
0 + · · ·+ Ak−1∆cg

[k−1]
k−1 + g

[k]
0 ∆cA0 + · · ·+ g

[k]
k−1∆cAk−1 = ∆cg

[k−1]
k .

On the other hand, from (3.6), we obtain

(3.9)





A0∆cg0 + · · ·+ Ak−1∆cgk−1 = ∆cgk

A0∆cg0 + · · ·+ Ak−1∆cgk−1 = ∆cgk
...

A0∆cg
[k−1]
0 + · · ·+ Ak−1∆cg

[k−1]
k−1 = ∆cg

[k−1]
k .

By combining (3.8) and (3.9) we finally obtain

(3.10)





g0∆cA0 + · · ·+ gk−1∆cAk−1 = 0
g0∆cA0 + · · ·+ gk−1∆cAk−1 = 0

...
g
[k]
0 ∆cA0 + · · ·+ g

[k]
k−1∆cAk−1 = 0
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which has only the trivial solution if C(g0, . . . , gk−1) 6≡ 0. Therefore ∆cA0 ≡ · · · ≡
∆cAk−1 ≡ 0, and so Ai ∈ P1

c for all i = 0, . . . , k−1. In the case C(g0, . . . , gk−1) ≡ 0
the functions g0, . . . , gk−1 are linearly dependent over P1

c by the induction assump-
tion. 2

Lemma 3.3. Let c ∈ C, and let g = [g0 : · · · : gn] be a holomorphic curve such that
ς(g) < 1 and such that preimages of all zeros of g0, . . . , gn are forward invariant
with respect to the translation τ(z) = z + c. If gi/gj 6∈ P1

c for all i, j ∈ {0, . . . , n}
such that i 6= j, then g0, . . . , gn are linearly independent over P1

c .

Proof. We will show that if g0, . . . , gn are linearly dependent over P1
c , then it follows

that there exist i, j ∈ {0, . . . , n}, i 6= j, such that gi/gj ∈ P1
c . Towards that end,

suppose that A0, . . . , An ∈ P1
c such that

(3.11) A0g0 + · · ·+ An−1gn−1 = Angn

and not all Aj are identically zero. Without loss of generality we may assume that
none of the functions Aj are identically zero. From the assumptions of the lemma
and from the fact that A0, . . . , An are periodic, it follows that there exists a mero-
morphic function F (z) such that FA0g0, . . . , FAngn are entire functions without
common zeros and such that the preimages of all zeros of FA0g0, . . . , FAngn are for-
ward invariant with respect to the translation τ(z). Moreover, since A0, . . . , An ∈
P1

c , the function F (z) satisfies

(3.12) lim sup
r→∞

log+ log+ (N(r, F ) + N(r, 1/F ))
log r

< 1

(but in general the hyper-order of F might not be less than 1). We define G =
[FA0g0 : · · · : FAn−1gn−1]. Since FA0g0, . . . , FAngn do not have any common
zeros, it follows from (3.11) that FA0g0, . . . , FAn−1gn−1 cannot have any common
zeros either. Therefore the TG(r) is well defined. Furthermore

TG(r) =
∫ 2π

0

sup
k∈{0,...,n−1}

log |FAkgk(reiθ)| dθ

2π
+ O(1)

=
∫ 2π

0

sup
k∈{0,...,n−1}

(log |gk(reiθ)|+ log |Ak(reiθ)|) dθ

2π

+
∫ 2π

0

log |F (reiθ)| dθ

2π
+ O(1)

≤ Tg(r) +
n−1∑

j=0

m(r,Aj) +
∫ 2π

0

log |F (reiθ)| dθ

2π
+ O(1).

(3.13)

Since Poisson-Jensen formula implies that

(3.14)
∫ 2π

0

log |F (reiθ)| = N

(
r,

1
F

)
−N(r, F ) + O(1),

and since A0, . . . , An−1 ∈ P1
c , it follows by combining (3.12) and (3.13) that ς(G) <

1. Suppose that FA0g0, . . . , FAn−1gn−1 are linearly independent over P1
c . Then,

C(FA0g0, . . . , FAn−1gn−1) 6≡ 0 by Lemma 3.2, and so Theorem 2.1 applied with
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G and FA0g0, . . . , FAngn yields

TG(r) ≤
n−1∑

j=0

N
(
r, 1/FAjg

[j]
j

)
+ N (r, 1/FAngn)

−N (r, 1/C(FA0g0, . . . , FAn−1gn−1)) + o(TG(r)) + O(1)

(3.15)

for all r outside of an exceptional set of finite logarithmic measure.
Since the preimages of all zeros of FA0g0, . . . , FAngn are forward invariant with

respect to τ(z), all zeros of FAjgj , j = 0, . . . , n−1, are zeros of the Casorati deter-
minant C(FA0g0, . . . , FAn−1gn−1) with the same or higher multiplicity. Moreover,
since FA0g0, . . . , FAngn do not have any common zeros, it follows in particular
that for each z0 ∈ C such that FAngn(z0) = 0 with multiplicity m0 there exist
k0 ∈ {0, . . . , n− 1} such that FAk0gk0(z0) 6= 0. Using (3.11) we may write

C(FA0g0, . . . , FAn−1gn−1)

= C(FA0g0, . . . , FAk0−1gk0−1, FAngn, FAk0+1gk0+1, . . . , FAn−1gn−1)

which implies that C(FA0g0, . . . , FAn−1gn−1) has a zero at z0 with multiplicity
m0 at least. Also, at any common zero the functions FAjk

gjk
with multiplicities

mjk
, k = 1, . . . , `, where {j1, . . . , j`} ⊂ {1, . . . , n} and ` ≤ n − 2, the Casorati

determinant C(FA0g0, . . . , FAn−1gn−1) has a zero of multiplicity ≥ ∑`
k=1 mjk

.
Therefore,

n−1∑

j=0

N
(
r, 1/FAjg

[j]
j

)
+ N (r, 1/FAngn) ≤ N (r, 1/C(FA0g0, . . . , FAn−1gn−1)) ,

and so inequality (3.15) yields TG(r) = O(1). But this is only possible when G is a
constant curve, which implies that g0, . . . , gn−1 (and so also FA0g0, . . . , FAn−1gn−1)
are linearly dependent over P1

c . Therefore there exist B0, . . . , Bn−1 ∈ P1
c such that

B0g0 + · · ·+ Bn−2gn−2 = Bn−1gn−1,

where not all Bj are identically zero. By continuing in this fashion it follows after
at most n− 2 iterations of the above reasoning that gi/gj ∈ P1

c for some i 6= j. ¤

Proof of Theorem 3.1: Using the fact that gi = Ai,jk
gjk

for some Ai,jk
∈ P1

c

whenever the indexes i and jk are in the same class Sk, equation (3.2) may be
written as

n∑

k=0

gk =
l∑

k=1

∑

i∈Sk

Ai,jk
gjk

=
l∑

k=1

Bkgjk
= 0,

where Bk =
∑

i∈Sk
Ai,jk

. By Lemma 3.3 Bk ≡ 0 for all k = 1, . . . , l, and so
∑

i∈Sk

gi =
∑

i∈Sk

Ai,jk
gjk

= Bkgjk
= 0

for all k = 1, . . . , l. 2

4. Applications to the uniqueness of meromorphic functions

Nevanlinna has shown that if two non-constant meromorphic functions f and g
share five distinct values ignoring multiplicities (IM), then f ≡ g. Similarly, if f
and g share four values counting multiplicities (CM), then there exists a Möbius
transformation T such that f ≡ T ◦g. These results are known as Nevanlinna’s five
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and four values theorems, respectively [35]. Gundersen has proved that the assertion
of the four values theorem remains valid when it is assumed that two values are
shared IM and two are shared CM [21]. He has also given a counterexample which
demonstrates that in general this assumption cannot be further weakened to 4 IM
[20]. The case where one value is shared CM and three values IM is still open.

A difference analogue of the five value theorem states that if instead of mul-
tiplicities we ignore those values which have forward invariant preimages, then
either f ≡ g or both f and g are periodic functions [25]. In this section we apply
Lemma 3.3 to show that the assumption 4 CM can be weakened to a difference
analogue of the 4 IM assumption for meromorphic functions of hyper-order strictly
less that one.

We denote by S(f) the set of all meromorphic functions a such that T (r, a) =
o(T (r, f)) where r approaches infinity outside of a set of finite logarithmic measure.
Functions in the set S(f) are called small compared to f , or slowly moving with
respect to f . Moreover, we say that two meromorphic functions f and g share
a periodic function a ∈ P1

c \ {∞}, ignoring c-separated pairs (IcP), when for all
z ∈ C exactly one of the following assertions is valid for the ratio r(z) := {f(z) −
a(z)}/{g(z)− a(z)}.

(i) r(z) is regular and does not vanish,
(ii) r(z) vanishes but r(z + c)/r(z) is regular,
(iii) r(z) has a pole but r(z)/r(z + c) is regular.

We say also that two non-constant meromorphic functions f and g share the con-
stant function a(z) ≡ ∞ IcP, if their reciprocals 1/f and 1/g share the constant 0
IcP, that is, if for all z ∈ C we have exactly one of the followings.

(i) both f(z) and g(z) are regular,
(ii) f(z) is not regular but f(z)g(z + c)/f(z + c)g(z) is regular,
(iii) g(z) is not regular but f(z + c)g(z)/f(z)g(z + c) is regular.

The following theorem is a difference analogue of the four value theorem where
4 CM has been replaced by 4 IcP.

Theorem 4.1. Let c ∈ C \ {0}, and let f and g be meromorphic functions such
that max{ς(f), ς(g)} < 1. If f and g share the distinct functions a1, a2, a3, a4 ∈ P1

c

IcP, then

(4.1) f =
Ag + B

Cg + D
,

where A,B,C, D ∈ P1
c .

Note that the functions a1, a2, a3, a4 need not be small compared to f or g. The
following example shows that the transformation (4.1) cannot be replaced by the
identity f = g.

Example 4.2. Denote by sn(z, k) ≡ sn(z) the elliptic function with the elliptic
modulus k ∈ (0, 1) and the complete elliptic integral K. The function sn(z) is
periodic with the periods 4K and 2iK ′, and it attains the value zero at points
2nK + 2miK ′ and has its poles at 2nK + (2m + 1)iK ′, where n,m ∈ Z. Therefore
the meromorphic functions

f(z) =
cos2(πz/K) + sin2(πz/K) sn(z)
cos(πz/K) + sin(πz/K) sn(z)
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and

g(z) =
cos2(πz/K) sn(z) + sin2(πz/K)
cos(πz/K) sn(z) + sin(πz/K)

share four small periodic functions sin(πz/K), cos(πz/K),

cos(πz/K) + sin(πz/K) and
1

cos(πz/K) + sin(πz/K)

ignoring 2K-separated pairs.

Proof of Theorem 4.1: By using a Möbius transformation over the field P1
c (i.e. a

so called quasi-Möbius transformation), if necessary, we may assume that f and g
share 0, 1, a,∞ IcP, where a ∈ P1

c \ {0, 1,∞}. Therefore, by [33, Theorem 1]

(4.2)
f

g
=

π1

κ1
,

f − 1
g − 1

=
π2

κ2
,

f − a

g − a
=

π3

κ3
,

where the preimages of the zeros of the entire functions πj and κj are forward
invariant and ς(πj) < 1 and ς(κj) < 1 for j = 1, 2, 3. Note that in general the
functions πj and κj may have common zeros for j = 1, 2, 3. From (4.2) it follows
that

(4.3) (1− a)π1κ2κ3 + aπ2κ1κ3 − π1π2κ3 = π3κ1κ2 − aπ1π3κ2 + (a− 1)π2π3κ1,

and so, by denoting

g0 := (1− a)π1κ2κ3, g1 := aπ2κ1κ3, g2 := −π1π2κ3,

g3 := −π3κ1κ2, g4 := aπ1π3κ2, g5 := (a− 1)π2π3κ1,
(4.4)

it follows that

(4.5) g5 = g0 + g1 + g2 + g3 + g4.

Let F (z) be a meromorphic function such that Fg0, . . . , Fg5 are entire functions
without common zeros. Then, similarly as in (3.12), (3.13) and (3.14), it follows
that the holomorphic curve G = [Fg0 : · · · : Fg5] satisfies ς(G) < 1. Therefore,
since Fg0, . . . , Fg5 are linearly dependent by (4.5), it follows by Lemma 3.3 that
there exists a β ∈ P1

c such that gk = βg` for some `, k ∈ {0, . . . , 5} where ` 6= k.
We may assume without a loss of generality that ` > k, and therefore by recalling
the definition (4.4) it follows that β is one of the functions

g0

g1
=

(1− a)π1κ2

aπ2κ1
,

g0

g2
=

(a− 1)κ2

π2
,

g0

g3
=

(a− 1)π1κ3

π3κ1
,

g0

g4
=

(1− a)κ3

aπ3
,

g0

g5
= −π1κ2κ3

π2π3κ1
,

g1

g2
= −aκ1

π1
,

g1

g3
= −aπ2κ3

π3κ2
,

g1

g4
=

π2κ1κ3

π1π3κ2
,

g1

g5
=

aκ3

(a− 1)π3
,

g2

g3
=

π1π2κ3

π3κ1κ2
,

g2

g4
= − π2κ3

aπ3κ2
,

g2

g5
=

π1κ3

(1− a)π3κ1
,

g3

g4
= − κ1

aπ1
,

g3

g5
=

κ2

(1− a)π2
,

g4

g5
=

aπ1κ2

(a− 1)π2κ1
.

(4.6)

Substituting (4.2) into (4.6) yields the desired quasi-Möbius transformation (4.1)
in all cases β = gk/g` where (k, `) is not one of the pairs (0, 5), (1, 4) and (2, 3).
In order to deal with the remaining cases, suppose first that β = g0/g5. Then, by
(4.5) it follows that

(4.7) (1− β)g5 = g1 + g2 + g3 + g4.
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By applying the early part of the proof to equation (4.7) instead of (4.5), it follows
that gk̃ = ζg˜̀ for some meromorphic function ζ ∈ P1

c and distinct indexes k̃, ˜̀ ∈
{1, . . . , 5}. If (k̃, ˜̀) is neither (1, 4), nor (2, 3) then we are lead to one of the quasi-
Möbius cases of (4.6). Assume therefore that (k̃, ˜̀) = (1, 4), which takes equation
(4.7) in the form

(4.8) (1− β)g5 = g2 + g3 + (1 + ζ)g4

Now there are two possibilities. If at least one of the factors (1−β) and (1+ζ) is non-
zero, then there are at least three identically non-zero terms in the equation (4.8),
and the early part of the proof can be again applied to deduce that gk̂ = λgˆ̀ for
some meromorphic function λ ∈ P1

c and distinct indexes k̂, ˆ̀∈ {2, . . . , 5}. The only
possible non-quasi-Möbius case left in (4.6) is now (k̂, ˆ̀) = (2, 3), which, combined
with equation (4.8), yields

(4.9) (1− β)g5 = (1 + λ)g3 + (1 + ζ)g4.

By performing the reduction operation one more time to equation (4.9) yields one
of the quasi-Möbius cases of (4.6).

We still need to consider the case where (1 − β) and (1 + ζ) both vanish. But
then g0 = g5 and g1 = −g4, which, together with (4.4) and (4.6) imply that

(4.10)
π3

κ3
=

κ3

π3
.

By combining (4.2) and (4.10) it finally follows that either f = g, or f = −g + 2a.
2

5. Logarithmic difference estimate with applications to difference
equations

A difference analogue of the lemma on the logarithmic derivative for finite-order
meromorphic functions was proved independently by Halburd and Korhonen [24,
Lemma 2.3], [25, Theorem 2.1] and Chiang and Feng [10, Theorem 2.4]. The
following theorem is an extension of these results to the case of hyper-order less
than one.

Theorem 5.1. Let f be a non-constant meromorphic function and c ∈ C. If f is
of finite order, then

(5.1) m

(
r,

f(z + c)
f(z)

)
= O

(
log r

r
T (r, f)

)

for all r outside of a set E satisfying

(5.2) lim sup
r→∞

∫
E∩[1,r)

dt/t

log r
= 0,

i.e., outside of a set E of zero logarithmic density. If ς(f) = ς < 1 and ε > 0, then

(5.3) m

(
r,

f(z + c)
f(z)

)
= o

(
T (r, f)
r1−ς−ε

)

for all r outside of a set of finite logarithmic measure.
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In the finite-order case we have aimed for the cleanest possible statement with
the expense of allowing a slightly larger exceptional set. By following the proof of
(5.3) in Theorem 5.1, it follows that for all finite-order meromorphic functions f
the estimate

m

(
r,

f(z + c)
f(z)

)
≤ (log r)3+ε

r
T (r, f)

holds outside of an exceptional set of finite logarithmic measure. Concerning the
sharpness of these estimates, the gamma function Γ(z), for instance, satisfies

m

(
r,

Γ(z + 1)
Γ(z)

)
= log r ∼= T (r,Γ)

r

as r approaches infinity. It is not clear, however, whether or not the factor log r
can be removed in (5.1).

Concerning the estimate (5.3), by defining g(z) := exp(2z), it follows that

m

(
r,

g(z + 1)
g(z)

)
= T (r, g)

which shows that the growth condition ς(f) < 1 cannot be essentially weakened.
Also if σ(f) < ∞, then ς(f) = 0, and (5.3) reduces precisely into [25, Theorem 2.1].

We will now briefly discuss some applications of Theorem 5.1 in the theory
of difference equations. Yanagihara [39] has shown that if w is a non-rational
meromorphic solution of the difference equation

(5.4) w(z + 1) = R(z, w),

where R(z, w) is rational in w having rational coefficients, then, for any ε > 0 and
r sufficiently large, T (r, w) ≥ [(1−ε) degw(R)]r. Therefore, if (5.4) has at least one
non-rational meromorphic solution w of hyper-order strictly less than one, it follows
that degw(R) = 1, that is, equation (5.4) reduces to the difference Riccati equation.
This result is sharp in the sense that the difference equation w(z + 1) = w(z)2 is
satisfied by w(z) = exp(2z), which has hyper-order exactly one. In the second-order
case, it follows by the proof of [1, Theorem 3] that if

(5.5) w(z + 1) + w(z − 1) = R(z, w)

has a meromorphic solution of hyper-order less than one, then degw(R) ≤ 2. In
[26] it was shown that if (5.5) has at least one admissible finite-order meromorphic
solution w, then either w satisfies a difference Riccati equation, or equation (5.5)
can be transformed into one in a list of equations consisting of difference Painlevé
equations and linear equations. Recall that a meromorphic solution w of a difference
(or differential) equation is called admissible if all coefficients of the equation are
in S(w). Following [26], and by applying Theorem 5.1 instead of [24, Lemma 2.3],
the following version of [26, Theorem 1.1] is obtained.

Theorem 5.2. If the equation (5.5) where R(z, w) is rational in w and meromor-
phic in z, has an admissible meromorphic solution w such that ς(w) < 1, then either
w satisfies a difference Riccati equation, or equation (5.5) can be transformed by a
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linear change in w to one of the following equations:

w + w + w =
π1z + π2

w
+ κ1

w − w + w =
π1z + π2

w
+ (−1)zκ1

w + w =
π1z + π3

w
+ π2

w + w =
π1z + κ1

w
+

π2

w2

w + w =
(π1z + κ1)w + π2

(−1)−z − w2

w + w =
(π1z + κ1)w + π2

1− w2

ww + ww = p

w + w = pw + q

where w ≡ w(z + 1), w ≡ w(z − 1) and πk, κk are periodic functions with period k.

Remark 5.3. In order to prove Theorem 5.2 one needs to extend the difference
analogues of Clunie’s and Mohon’ko’s theorems used in [26] to meromorphic solu-
tions of difference equations of hyper-order strictly less than one. This can be done
by combining Theorem 5.1 with the proofs of [24, Theorem 3.1–3.2]. Similarly one
can extend the generalization of [24, Theorem 3.1] obtained in [31] to meromorphic
solutions f such that ς(f) < 1.

6. Counterparts in q-shifts

In this section we state a q-difference analogue of Theorem 1.1. Similarly to
the Casorati determinant, we define the q-Casorati determinant of entire functions
g0, . . . , gn by

Ĉ(g0(z), . . . , gn(z)) =

∣∣∣∣∣∣∣∣∣

g0(z) g1(z) · · · gn(z)
g0(qz) q1(qz) · · · gn(qz)

...
...

. . .
...

g0(qnz) g1(qnz) · · · gn(qnz)

∣∣∣∣∣∣∣∣∣
.

If q ∈ C \ {0, 1}, then the q-Casorati determinant vanishes identically on C if and
only if the functions g0, . . . , gn are linearly dependent over the field of functions
φ(z) satisfying φ(qz) ≡ φ(z). However, if |q| 6= 1, then the intersection of this field
with the field of meromorphic functions consists only of constant functions, and we
are therefore restricted to study hyperplanes over C in this context.

Theorem 6.1. Let f : C → Pn be a holomorphic curve such that σ(f) = 0, let
q ∈ C\{0, 1} and let p ∈ {1, . . . , n+1}. If n+p hyperplanes in general position have
forward invariant preimages under f with respect to the rescaling τ(z) = qz, then
the image of f is contained in a projective linear subspace of dimension ≤ [n/p].

Theorem 6.1 can be proved by finding q-analogues of Theorems 2.1 and 3.1 and
adapting of the proof of Theorem 1.1 suitably, where the q-difference analogue of the
lemma on the logarithmic derivatives from [3] is used in the place of Theorem 5.1.
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We omit further details of the proof. The following corollary is an immediate
consequence of Theorem 6.1.

Corollary 6.2. Let f : C → Pn be a holomorphic curve such that σ(f) = 0, and
let q ∈ C \ {0, 1}. If 2n + 1 hyperplanes in general position have forward invariant
preimages under f with respect to the rescaling τ(z) = qz, then f is a constant.

The order condition σ(f) = 0 in Theorem 6.1 and Corollary 6.2 cannot be simply
dropped in the following sense.

Example 6.3. Five hyperplanes in P2 given by equations h1(w) := w0 = 0, h2(w) :=
w1 = 0, h3(w) := w2 = 0, h4(w) := w0+w1+w2 = 0, h5(w) := w0+ωw1+ω2w2 = 0
in general position have forward invariant preimages under the non-constant curve
f = [1 : ω : ez] : C → P2 with ω = e2πi/3 with respect to the rescaling τ(z) = 4z.
In fact, h1(f) ≡ 1, h2(f) ≡ ω, h3(f) = ez are zero-free and the zeros of h4(f) =
ez − ω2, h5(f) = ω2(ez − ω2) are forward invariant, while σ(f) = 1.

Let f be a holomorphic curve such that σ(f) = 0 given by f(z) := [1 : ω :
Π(z) + ω2] with the infinite product Π(z) =

∏∞
j=0(1 − z/qj) when |q| > 1. This

Π(z) satisfies Π(qz) = (1 − qz)Π(z) and therefore the zeros are forward invariant
with respect to τ(z) = qz, while we have h1(f) ≡ 1, h2(f) ≡ ω again and also
h4(f) = Π(z), h5(f) = ω2Π(z) now. Of course, the zeros of h3(f) = Π(z) − ω
cannot be kept forward invariant anymore with the rescaling. This difference to
Example 6.3 appears to stem from the fact that any non-constant entire function
does not permit finite Picard exceptional values when the order of growth is less
than one. This seems to indicate that Theorem 6.1 and Corollary 6.2 should remain
true when 0 < σ(f) < 1, but at the moment we have no proof of this. Confirming
this conjecture would require a different approach to the one used here, since it
has been shown by examples that the q-difference analogue of the lemma on the
logarithmic derivative obtained in [3] cannot be extended to meromorphic functions
of non-zero order. Moreover, if g is a transcendental entire function whose zeros
are forward invariant with respect to a rescaling r(z) = qz, q 6∈ {0, 1}, then the
function φ(z) := g(ez) is entire and has the zeros that are forward invariant with
respect to the shift s(z) = z +c with c = log q 6= 0. By an estimate due to J. Clunie
in [12], it follows that

log max
|w|=er

|g(w)|+ O(1) ≥ log max
|z|=r

|φ(z)| ≥ log max
|w|=aebr

|g(w)|+ O(1)

holds for some positive constants a, b with b < 1. Therefore, we see that ς(φ) ≤ 1
if the order σ(g) of g is finite, while σ(g) = 0 if ς(φ) < 1. This delicate growth
balance between the functions g and φ must be taken into account in any attempt
trying to demonstrate the conjecture.

Note: Any automorphism of C has the form τ(z) = qz + r, q 6= 0, which is a
composition of the shift z + r/q and rescaling qz.

7. Sharpness of Theorems 1.1 and 6.1

Using similar methods to Green [17], we see that the dimension [n/p] in Theo-
rem 1.1 is the sharpest possible bound and is always attained for any given n + p
hyperplanes in general position. In fact, we only need to replace the choice of
the exponential functions exp(gm) with holomorphic mappings gm : C[n/p] → Pn
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(m = 1, . . . , [n/p] + 1) by the entire functions 1/Γ(z/c + ωm) on C with the ordi-
nary gamma function Γ(z) and the primitive ([n/p] + 1)th root of unity ω, for in-
stance. Following Green’s argument, we obtain the holomorphic curve f : C→ Pn

of order of growth one, whose image is nondegenerately included in an [n/p] di-
mensional linear subspace of Pn and under which the n + p hyperplanes over
Pf = {π ∈ Pc : T (r, π) = o(r log r)} have forward invariant preimages with re-
spect to the transformation τ(z) = z + c. A similar argument will be used to
demonstrate the sharpness of Theorem 6.1.

Let f : C→ Pn be a linearly non-degenerate holomorphic curve and {Hj}q
j=1 be

a family of hyperplanes Hj ⊂ Pn in general position. Instead of considering each
hyperplane Hj itself which is defined by

Ĥj(w) :=
n∑

k=0

hjkwk = 0 (1 ≤ j ≤ q) ,

we will mainly observe its representing vector hj = (hj0, · · · , hjn) ∈ Cn+1. Here
we recall that w = [w0 : · · · : wn] is a homogeneous coordinate system of Pn. Then
it is convenient to use a symbol (•, •) to denote a kind of ‘inner product’ in Cn+1

given by
(
hj , w

)
:=

∑n
k=0 hjkwk = Ĥj(w). Let f := [f0 : · · · : fn] be a reduced

representation of the curve f : C → Pn. Then
(
hj , f(z)

)
:=

∑n
k=0 hjkfk(z) =

Ĥj

(
f(z)

)
is an entire function on C for every j. By {ek}n

k=0 we denote the standard
basis of Cn+1 throughout in this note, so that we have (ek, f) = fk (0 ≤ k ≤ n).

Let m be a prime number and ε be a primitive mth root of unity. We take the
set of 2m vectors H := {hj : 1 ≤ j ≤ 2m} ⊂ Cm with

hj =

{
ej−1 (1 ≤ j ≤ m) ,

vj−m (m + 1 ≤ j ≤ 2m) ,

where



v1

v2

...

vj

...

vm−1

vm




=




1 1 · · · 1 · · · 1

1 ε · · · εk · · · εm−1

...
...

. . .
...

. . .
...

1 εj−1 · · · ε(j−1)k · · · ε(j−1)(m−1)

...
...

. . .
...

. . .
...

1 εm−2 · · · ε(m−2)k · · · ε(m−2)(m−1)

1 εm−1 · · · ε(m−1)k · · · ε(m−1)(m−1)




,

which is a regular m-matrix Vm = (ε`k) (0 ≤ `, k ≤ m−1), in fact, a Vandermonde
matrix.

Then we see that any m of the 2m vectors hj in H are linearly independent over
C in Cm, so that those 2m vectors give the family of 2m hyperplanes in Pm−1(C)
which are actually located in general position. In order to confirm this matter, we
only need to know that every minor determinant of our Vandermonde matrix Vm

does not vanish. As a matter of fact, it is only the reason why we have chosen m
as a prime number that we can apply the following lemma for the purpose:
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Lemma 7.1 ([13]). Let m be a prime and let ε be a primitive mth root of unity in
some field of characteristic zero. Suppose a1, . . . , aµ ∈ Z are pairwise incongruent
(mod m) and suppose the same for b1, . . . , bµ ∈ Z. Then the determinant of the
matrix

(
εaibj

)
does not vanish.

One sees that this is not the case unless m is prime: for example, when m = 4,
ε =

√−1, a1 = b1 = 1 and a2 = b2 = 3, then the determinant does vanish.
Now we assume concretely m = 11 so that n = 10. When p = 3, we consider

four entire functions φj(z) to be determined concretely later and define the linearly
non-degenerate holomorphic curve f : C→ P10(C) by

f(z) :=
[
c1φ1 : c2φ1 : c3φ1 : c1φ2 : c2φ2 : c3φ2 : c1φ3 : c2φ3 : c3φ3 : c1φ4 : c2φ4

]

with some non-zero constants ci (i = 1, 2, 3) and take the set of 22 vectors H :=
{hj : 1 ≤ j ≤ 22} ⊂ C11 as above:

hj =

{
ej−1 (1 ≤ j ≤ 11) ,

vj−11 (12 ≤ j ≤ 22) .

Choosing c1 = ε, c2 = −(ε + 1) and c3 = 1, we have

c1 + c2 + c3 = 0 and c1 + εc2 + ε2c3 = 0

as well as c1+c2 = −1 and c1+εc2 = −ε2. Then n+p = 13 vectors hj (1 ≤ j ≤ 13)
give (

hj , f(z)
)

= djφkj (z) (1 ≤ j ≤ 11)
with dj = ci (j ≡ i mod 3) and kj = [(j − 1)/3] + 1 (1 ≤ j ≤ 11) and also

(
h12, f(z)

)
= −φ4(z) ,

(
h13, f(z)

)
= −ε2φ4(z) ,

both of which follow from the choice of the three constants ci (i = 1, 2, 3). On
the other hand, it follows from the definition that f(C) is in the linear subspace of
P10(C) with dimension 3 = [10/3].

In the same way, given any p (1 ≤ p ≤ 10), we can obtain a desired curve
f(z) : C→ P10(C)

f(z) :=
[

p×[10/p]︷ ︸︸ ︷
c1φ1 : · · · : cpφ1︸ ︷︷ ︸

p

: · · · : c1φs−1 : · · · : cpφs−1︸ ︷︷ ︸
p

: c1φs : · · · : c11−p[10/p]φs︸ ︷︷ ︸
11−p[10/p]

]

for s = [10/p] + 1 entire functions φk (1 ≤ k ≤ s) and non-zero constants ci

(1 ≤ i ≤ p) satisfying the simultaneous linear equations
p∑

i=1

ε`(i−1)ci = 0 (0 ≤ ` ≤ p− 1),

together with p + 10 hyperplanes defined by hj (1 ≤ j ≤ p + 10) which satisfy
(
hj , f(z)

)
= djφkj (z) (1 ≤ j ≤ 11)

with dj = ci (j ≡ i mod p) and kj = [(j − 1)/p] + 1 (1 ≤ j ≤ 11) and also
(
hj , f(z)

)
= djφs(z) (12 ≤ j ≤ p + 10)

with dj = −∑11−p[10/p]
i=1 ε(j−12)(i−1)ci( 6= 0) (12 ≤ j ≤ p + 10), since 11 − p[10/p]

does not coincide with p.
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For each prime number m, we can similarly construct a corresponding holomor-
phic curve f(z) following the idea of Green. When n + 1 is not a prime, the choice
of suitable hyperplanes would be a little complicated.

Remark 7.2. According to the value of p, the number 11−p[10/p] varies as follows:

p 1 2 3 4 5 6 7 8 9 10
11− p[10/p] 1 1 2 3 1 5 4 3 2 1

Therefore, if p is not any divisor of n = 10 so that [10/p] 6= 10/p, then we can
obtain a curve g : C→ P9(C) with our desired properties by projecting the curve f
into P10(C) and p + 10 vectors hj ∈ C11 given above into the subspace

{
[w0 : w1 : · · · : w9 : 1] | [w0 : w1 : · · · : w9] ∈ P9(C)

}

and C10
11 := C10×{0}, respectively. Concretely consider the case when p = 3. Then

we give g : C→ P9(C) by

g(z) :=
[
c1φ1 : c2φ1 : c3φ1 : c1φ2 : c2φ2 : c3φ2 : c1φ3 : c2φ3 : c3φ3 : c1φ4

]

with constants c1 = ε, c2 = −(ε + 1) and c3 = 1 as well as the following 12 vectors
in C10:

ĥj =





êj−1 := ej−1 ∩ C10 (1 ≤ j ≤ 10) ,

v̂j−11 := (1, 1, · · · , 1) (j = 12) ,

v̂j−11 := (1, ε, · · · , ε9) (j = 13) .

Then we have (
ĥj , g(z)

)
= djφkj (z) (1 ≤ j ≤ 10)

with dj = ci (j ≡ i mod 3) and kj = [(j − 1)/3] + 1 (1 ≤ j ≤ 10) and also
(
ĥ12, g(z)

)
= εφ4(z) ,

(
ĥ13, g(z)

)
= ε−1φ4(z) .

On the other hand, it follows from the definition that g(C) is in the linear subspace
of P9(C) with dimension 3 = [9/3].

In general we give

g(z) :=
[

p×[10/p]︷ ︸︸ ︷
c1φ1 : · · · : cpφ1︸ ︷︷ ︸

p

: · · · : c1φs−1 : · · · : cpφs−1︸ ︷︷ ︸
p

: c1φs : · · · : c10−p[10/p]φs︸ ︷︷ ︸
10−p[10/p]

]

for s = [10/p] + 1 entire functions φk (1 ≤ k ≤ s) and non-zero constants ci

(1 ≤ i ≤ p) satisfying the simultaneous linear equations
p∑

i=1

ε`(i−1)ci = 0 (0 ≤ ` ≤ p− 1),

together with p + 9 hyperplanes defined respectively by the vector ĥj which is the
projection of hj on C10

11 for each j( 6= 11) with 1 ≤ j ≤ p + 10. They still satisfy
(
ĥj , g(z)

)
= djφkj (z) (1 ≤ j ≤ 10)

with dj = ci (j ≡ i mod p) and kj = [(j − 1)/p] + 1 (1 ≤ j ≤ 10) and also
(
ĥj , g(z)

)
= djφs(z) (12 ≤ j ≤ p + 10)

with dj = −∑10−p[10/p]
i=1 ε(j−12)(i−1)ci(6= 0) (12 ≤ j ≤ p + 10), since p > 10 −

p[10/p] > 0.
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For any q ∈ C such that |q| ∈ (0, 1) the q-Gamma function Γq(x) is defined by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1− q)1−x,

where (a; q)∞ :=
∏∞

k=0(1− aqk) [2]. By defining

γq(z) := (1− q)x−1Γq(x), z = qx,

and γq(0) := (q; q)∞, it follows that γq(z) is a zero-order meromorphic function
with no zeros and having its poles exactly at the points {q−k}∞k=0. Therefore the
preimages of the poles of γq(z) are forward invariant with respect to the rescaling
τ(z) = qz. To show the sharpness of Theorems 1.1 and 6.1, we may take the
functions φj(z) by

φj(z) =
1

Γ
(
z + (j − 1)/2

) and φj(z) =
1

γq(q(j−1)/2z)
,

respectively.

8. The proof of Theorem 5.1

Lemma 8.1. Let a ∈ C, c ∈ C and δ ∈ (0, 1). Then

(8.1)
∫ 2π

0

log+

∣∣∣∣1 +
c

reiθ − a

∣∣∣∣
dθ

2π
≤ 1

δ
log+

(
1 +

|c|δ
(1− δ)

1
rδ

)

for all r > 0.

Proof. By Jensen’s inequality [8, p. 48], it follows that
∫ 2π

0

log+

∣∣∣∣1 +
c

reiθ − a

∣∣∣∣
dθ

2π
≤ 1

δ

∫ 2π

0

log+

(
1 +

∣∣∣∣
c

reiθ − a

∣∣∣∣
δ
)

dθ

2π

≤ 1
δ

log+

∫ 2π

0

(
1 +

∣∣∣∣
c

reiθ − a

∣∣∣∣
δ
)

dθ

2π

(8.2)

for all r > 0. Since |reiθ − |a|| ≥ rθ 2
π for all 0 ≤ θ ≤ π

2 and any a ∈ C (see, e.g.,
[16, p. 118]), we have

(8.3)
∫ 2π

0

dθ

|reiθ − a|δ ≤ 4
∫ π

2

0

dθ

|reiθ − |a||δ ≤
2π

1− δ

1
rδ

whenever δ ∈ (0, 1). Inequality (8.1) follows by combining (8.2) and (8.3). ¤

The following lemma is an improved version of the inequality obtained in [24,
Lemma 2.3] (see also [10, Theorem 2.4]). Its method of proof is based on a com-
bination of the techniques used in the proofs of [30, Lemma 3] and [24, Lemma
2.3].

Lemma 8.2. Let f be a meromorphic function such that f(0) 6= 0,∞ and let c ∈ C.
Then for all α > 1, δ ∈ (0, 1) and r > 0,

m

(
r,

f(z + c)
f(z)

)
≤ K(α, δ, c)

rδ

(
T

(
α(r + |c|), f)

+ log+ 1
|f(0)|

)
,

where

K(α, δ, c) =
4|c|δ(4α + αδ + δ)
δ(1− δ)(α− 1)

.
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Proof. By the Poisson-Jensen formula [28, Theorem 1.1],

log
∣∣∣∣
f(z + c)

f(z)

∣∣∣∣ =
∫ 2π

0

log |f(seiθ)|Re
(

seiθ + z + c

seiθ − z − c
− seiθ + z

seiθ − z

)
dθ

2π

+
∑

|an|<s

log
∣∣∣∣

s(z + c− an)
s2 − ān(z + c)

· s2 − ānz

s(z − an)

∣∣∣∣

−
∑

|bm|<s

log
∣∣∣∣

s(z + c− bm)
s2 − b̄m(z + c)

· s2 − b̄mz

s(z − bm)

∣∣∣∣ ,

(8.4)

where |z| = r, s = α+1
2 (r + |c|), and {aj} and {bm} are the sequences of zeros and

poles of f , respectively. Hence, by denoting {qk} := {aj} ∪ {bm} and integrating

(8.4) over the set {ξ ∈ [0, 2π) :
∣∣∣ f(reiξ+c)

f(reiξ)

∣∣∣ ≥ 1}, it follows that

(8.5) m

(
r,

f(z + c)
f(z)

)
≤ S1(r) + S2(r),

where

S1(r) =
∫ 2π

0

∫ 2π

0

∣∣∣∣log |f(seiθ)|Re
(

2cseiθ

(seiθ − reiϕ − c)(seiθ − reiϕ)

)∣∣∣∣
dθ

2π

dϕ

2π
(8.6)

and

S2(r) =
∑

|qk|<s

∫ 2π

0

log+

∣∣∣∣1 +
c

reiϕ − qk

∣∣∣∣
dϕ

2π

+
∑

|qk|<s

∫ 2π

0

log+

∣∣∣∣1−
c

reiϕ + c− qk

∣∣∣∣
dϕ

2π

+
∑

|qk|<s

∫ 2π

0

log+

∣∣∣∣∣1 +
c

reiϕ − s2

q̄k

∣∣∣∣∣
dϕ

2π

+
∑

|qk|<s

∫ 2π

0

log+

∣∣∣∣∣1−
c

reiϕ + c− s2

q̄k

∣∣∣∣∣
dϕ

2π
.

By interchanging the order of integration in (8.6) using Fubini’s theorem, it follows
that

S1(r) =
∫ 2π

0

∣∣log |f(seiθ)|∣∣
∫ 2π

0

∣∣∣∣Re
(

2cseiθ

(seiθ − reiϕ − c)(seiθ − reiϕ)

)∣∣∣∣
dϕ

2π

dθ

2π
.

Therefore, by applying the inequality (8.3) and using the facts s = (α+1)(r+|c|)/2,
s− r − |c| = (α− 1)(r + |c|)/2 and s− r ≥ |c|, we have

S1(r) ≤ 2|c|s
(s− r − |c|)(s− r)1−δ

∫ 2π

0

∣∣log |f(seiθ)|
∣∣
∫ 2π

0

1
|seiθ − reiϕ|δ

dϕ

2π

dθ

2π

≤ 2|c|δ
(1− δ)

· α + 1
α− 1

· 1
rδ

(
m(s, f) + m

(
s,

1
f

))

≤ 4|c|δ
(1− δ)

· α + 1
α− 1

· 1
rδ

(
T (s, f) + log+ 1

|f(0)|
)

.

(8.7)
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Moreover, by using Lemma 8.1 and substituting s = α+1
2 (r + |c|), it follows that

S2(r) ≤ 4
δ

(
n(s, f) + n

(
s,

1
f

))
log+

(
1 +

|c|δ
(1− δ)

1
rδ

)

≤ 16α

(α− 1)δ

(
T (α(r + |c|), f) + log+ 1

|f(0)|
)

log+

(
1 +

|c|δ
(1− δ)

1
rδ

)

≤ 16|c|δ
δ(1− δ)

· α

α− 1
· 1
rδ

(
T (α(r + |c|), f) + log+ 1

|f(0)|
)

(8.8)

The assertion follows by combining the inequalities (8.5), (8.7) and (8.8). ¤

Proof of Theorem 5.1: If f has either a zero or a pole at the origin, then the
assertion can be proved by considering the function w(z) = zkf(z), where k ∈ Z is
chosen such that w(0) 6= 0,∞. Therefore it is sufficient to consider only the case
where f(0) 6= 0,∞. Let ξ(x) and φ(s) be positive, nondecreasing and continuous
functions defined for all sufficiently large x and s, respectively, and let C > 1. Then,
by [8, Lemma 3.3.1], we have

(8.9) T

(
s +

φ(s)
ξ(T (s, f))

, f

)
≤ C T (s, f)

for all s outside of a set E satisfying

(8.10)
∫

E∩[s0,R]

ds

φ(s)
≤ 1

log C

∫ T (R,f)

e

dx

xξ(x)
+ O(1)

where R < ∞.
Assume first that f is of finite order. By choosing φ(r) = r, ξ(x) = 1 and α = 2

in Lemma 8.2 and (8.9), it follows that

(8.11) T (α(r + |c|), f) = T

(
r + |c|+ φ(r + |c|)

ξ(T (r + |c|, f))
, f

)
≤ C T (r + |c|, f)

for all r outside of a set E which according to (8.10) satisfies

(8.12)
∫

E∩[1,R]

ds

s
≤ 1

log C

∫ Rρ

e

dx

x
+ O(1)

for some ρ > 0. Suppose that there exist a set F of strictly positive logarithmic
density d(F ), say d(F ) = ` > 0, such that

(8.13) lim sup
r→∞,
r∈F

T (2r, f)
T (r, f)

= ∞.

Then, choosing C = exp(2ρ/`), it follows by (8.12) that

d(F ) = lim sup
R→∞

∫
F∩[1,R]

ds
s

log R
≤ ρ

log C
= `/2

which contradicts the assumption d(F ) = ` > 0. Therefore, T (2r, f) = O(T (r, f))
for all r outside of an exceptional set E of zero logarithmic density, and so by
choosing δ = 1− 1/ log r in Lemma 8.2 it follows that

(8.14) m

(
r,

f(z + c)
f(z)

)
= O

(
log r

r
T (r + |c|, f)

)

as r →∞ such that r 6∈ E.
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If f is of infinite order and ς(f) < 1, then by choosing φ(r) = r, ξ(x) =
(log x)1+ε/3 and

α = 1 +
φ(r + |c|)

(r + |c|)ξ(T (r + |c|, f))
,

in Lemma 8.2 and (8.9), it follows that

(8.15) m

(
r,

f(z + c)
f(z)

)
= o

(
T (r + |c|, f)

r1−ς−ε

)

as r approaches infinity outside of an r-set of finite logarithmic measure. Asymp-
totic relations (8.14) and (8.15) together with the following lemma, which is a
generalization of [26, Lemma 2.1], yield the assertion of Theorem 5.1. 2

Lemma 8.3. Let T : [0,+∞) → [0, +∞) be a non-decreasing continuous function
and let s ∈ (0,∞). If the hyper-order of T is strictly less than one, i.e.,

(8.16) lim sup
r→∞

log log T (r)
log r

= ς < 1

and δ ∈ (0, 1− ς) then

(8.17) T (r + s) = T (r) + o

(
T (r)
rδ

)

where r runs to infinity outside of a set of finite logarithmic measure.

Proof. Let δ̃ ∈ (δ, 1− ς), η ∈ R+ and assume that the set Fη ⊂ [1,∞) defined by

(8.18) Fη =
{

r ∈ R+ :
T (r + s)− T (r)

T (r)
· rδ̃ ≥ η

}

is of infinite logarithmic measure. Note that Fη is a closed set and therefore it has
a smallest element, say r0. Set rn = min{Fη ∩ [rn−1 + s,∞)} for all n ∈ N. Then
the sequence {rn}n∈Z+ satisfies rn+1− rn ≥ s for all n ∈ Z+, Fη ⊂

⋃∞
n=0[rn, rn + s]

and

(8.19)
(

1 +
η

rn
δ̃

)
T (rn) ≤ T (rn+1)

for all n ∈ Z+.
Let ε > 0, and suppose that there exists an m ∈ Z+ such that rn ≥ n1+ε for all

rn ≥ m. But then,
∫

Fη∩[1,∞)

dt

t
≤

∞∑
n=0

∫ rn+s

rn

dt

t
≤

∫ m

1

dt

t
+

∞∑
n=1

log
(

1 +
s

rn

)

≤
∞∑

n=1

log
(
1 + sn−(1+ε)

)
+ O(1) < ∞

which contradicts the assumption
∫

Fη∩[1,∞)
dt
t = ∞. Therefore the sequence {rn}n∈Z+

has a subsequence {rnj}j∈Z+ such that rnj ≤ n1+ε
j for all j ∈ Z+. By iterat-

ing (8.19) along the sequence {rnj}j∈Z+ , we have

T (rnj ) ≥
nj−1∏
ν=0

(
1 +

η

rν
δ̃

)
T (r0)
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for all j ∈ Z+, and so

lim sup
r→∞

log log T (r)
log r

≥ lim sup
j→∞

log
(
log T (r0) +

∑nj−1
ν=0 log(1 + η/rν

δ̃)
)

log rnj

≥ lim sup
j→∞

log
(
log T (r0) + nj log(1 + η/rnj

δ̃)
)

(1 + ε) log nj

≥ lim sup
j→∞

log
(

log T (r0) + nj
η

nj
(1+ε)δ̃

log(1 + η/nj
(1+ε)δ̃

)nj
(1+ε)δ̃/η

)

(1 + ε) log nj

≥ lim sup
j→∞

[1− (1 + ε)δ̃] log nj

(1 + ε) log nj

≥ 1
1 + ε

− δ̃.

By letting ε → 0, we obtain

lim sup
r→∞

log log T (r)
log r

≥ 1− δ̃

which contradicts (8.16) since 1 − δ̃ > ς. Hence the logarithmic measure of Fη

defined by (8.18) must be finite, and so

T (r + s) = T (r) + O

(
T (r)
rδ̃

)

for all r outside of a set of finite logarithmic measure. Therefore the assertion (8.17)
follows. ¤

9. The proof of Theorem 2.1

The following lemma is due to Cartan [7] (see also [23]).

Lemma 9.1 ([7]). Let n ≥ 1, let z ∈ C and let g0, . . . , gn be linearly independent
entire functions such that max{|g0(z)|, . . . , |gn(z)|} > 0 for each z ∈ C. If f0, . . . , fq

are q + 1 linear combinations of the n + 1 functions g0, . . . , gn, where q > n, such
that any n + 1 of the q + 1 functions f0, . . . , fq are linearly independent, then there
exists a positive constant A that does not depend on z, such that

|gj(z)| ≤ A|fmν (z)|,
where 0 ≤ j ≤ n, 0 ≤ ν ≤ q − n and the integers m0, . . . , mq are chosen so that

|fm0(z)| ≥ |fm2(z)| ≥ · · · ≥ |fmq (z)|.
In particular, there exist at least q − n + 1 functions fj that do not vanish at z.

Proof of Theorem 2.1: The proof follows the original proof of Cartan’s second
main theorem, see, e.g., [7, 29, 23], taking into account the special properties of the
Casorati determinant. Since the functions gj , where j = 0, . . . , n, are linearly inde-
pendent over P1

c , it follows by Lemma 3.2 that C(g0, . . . , gn) 6≡ 0 and so the function
L is well defined. The functions gj , j = 0, . . . , n, are also linearly independent over
C (since C ⊂ P1

c ), and so by Lemma 9.1 the auxiliary function

(9.1) v(z) = max
{kj}q−n−1

j=0 ⊂{0,...,q}
log |fk0(z) · · · fkq−n−1(z)|
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gives a finite real number for all z ∈ C. Let {a0, . . . , aq−n−1} ⊂ {0, . . . , q}, and
{b0, . . . , bn} = {0, . . . , q}\{a0, . . . , aq−n−1}. Since fb0 , . . . , fbn

are linearly indepen-
dent linear combinations of g0, . . . , gn, it follows that C(fb0 , . . . , fbn

) 6≡ 0, and



fb0 · · · fbn

f b0 · · · f bn

...
. . .

...

f
[n]

b0 · · · f
[n]

bn


 =




g0 · · · gn

g0 · · · gn
...

. . .
...

g
[n]
0 · · · g

[n]
n







π00 · · · π0n

π10 · · · π1n

...
. . .

...
πn0 · · · πnn




where πjm ∈ C for all j = 0, . . . , n and m = 0, . . . , n. Therefore,

(9.2) C(g0, . . . , gn) = A(b0, . . . , bn)C(fb0 , . . . , fbn)

where A(b0, . . . , bn) =: Ab ∈ C \ {0}. By substituting (9.2) into (2.3), we have

L =
f0f1 · · · f

[n]

n fn+1 · · · fq

AbC(fb0 , fb1 , . . . , fbn
)

=
f0 · · · fq · (f1/f1) · · · (f [n]

n /fn)
AbC(fb0 , fb1 , . . . , fbn)

=
fb0f b1 · · · f

[n]

bn
· fa0 · · · faq−n−1(f1/f1) · · · (f [n]

n /fn) · (fb1/f b1) · · · (fbn/f
[n]

bn
)

AbC(fb0 , fb1 , . . . , fbn)

=
fa0 · · · faq−n−1(f1/f1) · (fb1/f b1) · · · (f

[n]

n /fn) · (fbn/f
[n]

bn
)(

Abf0f0 · · · f
[n]

0 C(fb0/f0, fb1/f0, . . . , fbn/f0)

fb0f b1 · · · f
[n]

bn

)

=
fa0 · · · faq−n−1(f1/f b1)/(f1/fb1) · · · (f

[n]

n /f
[n]

bn
)/(fn/fbn)(

Abf0f0 · · · f
[n]

0 C(fb0/f0, fb1/f0, . . . , fbn/f0)

fb0f b1 · · · f
[n]

bn

)

=
fa0 · · · faq−n−1(f1/f b1)/(f1/fb1) · · · (f

[n]

n /f
[n]

bn
)/(fn/fbn)(

AbC(fb0/f0, fb1/f0, . . . , fbn/f0)

(fb0/f0) · (f b1/f0) · · · (f
[n]

bn
/f

[n]

0 )

) .

Therefore,

L =
fa0 · · · faq−n−1

AbG

where

(9.3) G =

(
C(fb0/f0, fb1/f0, . . . , fbn/f0)

(fb0/f0) · (f b1/f0) · · · (f
[n]

bn
/f

[n]

0 )

)

(f1/f b1)/(f1/fb1) · · · (f
[n]

n /f
[n]

bn
)/(fn/fbn)

.

By defining

w(z) = max
{bj}n

j=0⊂{0,...,q}
log |AbG(z)|
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it follows that v(z) = log |L(z)|+ w(z) whenever L(z) non-zero and finite, and so

(9.4)
∫ 2π

0

v(reiθ)dθ =
∫ 2π

0

log |L(reiθ)|dθ +
∫ 2π

0

w(reiθ)dθ.

(If L has zeros or poles on the circle {z : |z| = r}, then the path of integration may
be slightly amended in (9.4) so that any poles or zeros of L are avoided by the new
path. The validity of (9.4) then follows by a limiting argument where the modified
path is allowed to approach the circle {z : |z| = r}. See, e.g., [23] for more details.)

Let {c0, . . . , cq−n−1} be the set of indexes for which the maximum in (9.1) is
attained for a particular choice of z ∈ C. Then by Lemma 9.1 it follows that
log |gj(z)| ≤ log |fcν

(z)|+ log A for all 0 ≤ j ≤ n and 0 ≤ ν ≤ q − n− 1, and so

(9.5) (q − n)Tg(r) ≤ 1
2π

∫ 2π

0

v(reiθ)dθ + O(1)

as r →∞.
Since the function G in (9.3) consists purely of sums, products and quotients of

fractions of the form (f
[l]

j /f
[l]

k )/(fj/fk) where l ∈ {1, . . . , n} and j, k ∈ {0, . . . , q},
it follows by Theorem 5.1 that

(9.6)
∫ 2π

0

w(reiθ) ≤
q∑

j=0

q∑

k=0

o

(
T (r, fj/fk)

r1−ς−ε

)
+ O(1)

as r approaches infinity outside of an exceptional set of finite logarithmic measure.
By combining (9.6) and (2.1) it follows that

(9.7)
∫ 2π

0

w(reiθ) = o

(
Tg(r)
r1−ς−ε

)
+ O(1)

where r tends to infinity outside of an exceptional set of finite logarithmic measure.
Finally, by Jensen’s formula,

(9.8)
1
2π

∫ 2π

0

log |L(reiθ)|dθ = N

(
r,

1
L

)
−N(r, L) + O(1)

as r → ∞, and therefore the assertion follows by combining (9.4), (9.5), (9.7) and
(9.8). 2

10. The proof of Theorem 1.1

Let x = [x0 : · · · : xn], and let Hj(x) be the linear form defining the hyperplane
Hj(x) = 0 for all j = 1, . . . , n+p. Since by assumption any n+1 of the hyperplanes
Hk, k = 1, . . . , n + p, are linearly independent, it follows that any n + 2 of the
forms Hj(x) satisfy a linear relation with non-zero coefficients in C. By writing
τ(z) = z + c and f = [f0 : . . . : fn], where fj ’s are entire functions without common
zeros, it follows by assumption that the functions hk = Hk(f) satisfy

(10.1)
{
τ(h−1

k ({0}))} ⊂ {
h−1

k ({0})}

for all k = 1, . . . , n + p, where {·} denotes a multiset which takes into account the
multiplicities of its elements. The set of indexes {1, . . . , n + p} may be split into
disjoint equivalence classes Sk by saying that i ∼ j if hi = αhj for some α ∈ P1

c \{0}.
Therefore

{1, . . . , n + p} =
N⋃

j=1

Sj
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for some N ∈ {1, . . . , n + p}.
Suppose that the complement of Sk has at least n + 1 elements for some k ∈

{1, . . . , N}. Choose an element s0 ∈ Sk, and denote U = {1, . . . , n + p} \Sk ∪{s0}.
Since the set U contains at least n + 2 elements, there exists a subset U0 ⊂ U such
that U0 ∩ Sk = {s0} and card(U0) = n + 2. Therefore, there exists αj ∈ C \ {0}
such that ∑

j∈U0

αjHj = 0,

and so ∑

j∈U0

αjhj = 0.

This contradicts Theorem 3.1, and so the set {1, . . . , n + p} \ Sk has at most n
elements. Hence Sk has at least p elements for all k = 1, . . . , N , and it follows that
N ≤ (n + p)/p.

Let V be any subset of {1, . . . , n + p} with exactly n + 1 elements. Then the
forms Hj , j ∈ V , are linearly independent. By denoting Vk = V ∩Sk it follows that

V =
N⋃

k=1

Vk.

Since each set Vk gives raise to card(Vk)− 1 equations over the field P1
c , it follows

that we have at least
N∑

j=1

card(Vk)− 1 = n + 1−N ≥ n + 1− n + p

p
= n− n

p

linearly independent relations over the field P1
c . Therefore the image of f is con-

tained in a linear subspace over P1
c of dimension ≤ [n/p], as desired. 2

References

[1] M. J. Ablowitz, R. G. Halburd, and B. Herbst, On the extension of the Painlevé property to
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