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Abstract. Darboux transformations for (systems of) linear operators on regular two dimensional
lattices are reviewed.

1. Introduction

The Darboux transformation is a well known tool in the theory of integrable systems [70, 89, 46].
The classical Darboux transformation [15] deals with a Sturm–Liouville problem (the one dimensional
stationary Schrödinger equation) generating, at the same time, new potentials and new wave functions
from given ones thus providing solutions to the Korteweg–de Vries hierarchy of 1 + 1 dimensional in-
tegrable systems. However, as it is clearly stated in [15], it was an earlier work of Moutard [72] which
inspired Darboux. In that work one can find the proper transformation that applies to 2+1 dimensional
integrable systems. Note that the initial area of applications of the Darboux transformations, which
preceded the theory of integrable systems, was the theory of conjugate and asymptotic nets where the
large body of results on Darboux transformations was formulated [49, 15, 39, 101, 6, 61, 40].

Most of the techniques that allow us to find solutions of integrable non-linear differential equations
has been successfully applied to difference equations. These include mutually interrelated methods such
as bilinearization method [47] and the Sato approach [17, 19], direct linearization method [79, 78], inverse
scattering method [1], the nonlocal ∂̄ dressing method [10], the algebro-geometric techniques [57].

Also the method of the Darboux transformation has been successfully applied to the discrete integrable
systems. The present paper aims to review application of the Darboux transformation technique for the
equations that can be regarded as discretizations of second order linear differential equations in two
dimensions (2.1), their distinguished subclasses and systems of such equations.

While presenting the results we are trying to keep the relation with continuous case. However, we
are aware of weak points of this way of exposition. The theory of discrete integrable systems [100, 44]
is reacher but also, in a sense, simpler then the corresponding theory of integrable partial differential
equations. In the course of a limiting procedure, which gives differential systems from the discrete ones,
various symmetries and relations between different discrete systems are lost. The classical example is
provided (see, for example [11]) by the hierarchy of the Kadomsev–Petviashvilii (KP) equations, which
can be obtained from a single Hirota–Miwa equation — the opposite way, from differential to discrete,
involves all equations of the hierarchy [71].

The structure of the paper is as follows. In Section 2 we present the construction of the Darboux
transformation for the discrete second order linear problem — the 6-point scheme (2.2) — which can
be considered as a discretization of the general second order linear partial differential equation in two
variables (2.1). Then we discuss various specifications and reductions of the 6-point scheme. We sepa-
rately present in Section 2.4 the Darboux transformations for discrete self-adjoint two dimensional linear
systems on the square, triangular and the honeycomb lattices, and their relation to the discrete Moutard
transformation. Section 3 is devoted to detailed presentation of the Darboux transformations for sys-
tems of the 4-point linear problems, their various specifications and the corresponding permutability
theorems. Section 4 is devoted to reductions of the fundamental transformation compatible with addi-
tional restrictions on the form of the four point scheme. Finally, in Section 5 we review the Darboux
transformations for the 3-point linear problem, and the corresponding celebrated Hirota’s discrete KP
nonlinear system.
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2. Two dimensional systems

In this section we present discretizations of equation (2.1) and its subclasses covariant under Darboux
transformations.

2.1. General case. Out of the schemes that can serve as a discretization of the 2D equation

(2.1) aψ,xx +bψ,yy +2cψ,xy +gψ,x +hψ,y = fψ

the following 6-point scheme

(2.2) AΨ(11) +BΨ(22) + 2CΨ(12) +GΨ(1) +HΨ(2) = FΨ

deserve a special attention (coefficients A, B etc. and dependent variable Ψ are functions on Z
2, subscript

in brackets denote shift operators, f(m,n)(1) = f(m+1, n), f(m,n)(2) = f(m,n+1), f(m,n)(11) = f(m+
2, n), f(m,n)(22) = f(m,n+ 2) and f(m,n)(12) = f(m+ 1, n+ 1)). The scheme admits decomposition
[(α1T1 + α2T2 + α3)(β1T1 + β2T2 + β3) + γ]ψ = 0 (where T1 and T2 are forward shift operators in
first and second direction respectivelly) and therefore its Laplace transformations can be constructed
(see [62, 15, 102, 20, 86, 2, 73] and Section 3.2.3 for the notion of the Laplace transformations of two
dimensional linear operators). What more important from the point of view of this review the scheme
is covariant under a fundamental Darboux transformation [74] (the transformation is often refered to as
binary Darboux transfotrmation in soliton literature). Indeed,

Theorem 2.1. Given a non-vanishing solution Θ of (2.2)

(2.3) AΘ(11) +BΘ(22) + 2CΘ(12) +GΘ(1) +HΘ(2) = FΘ

and a non-vanishing solution Φ of the equation adjoint to equation (2.2)

(2.4) A(−1−1)Φ(−1−1) +B(−2−2)Φ(−2−2) + 2C(−1−2)Φ(−1−2) +G(−1)Φ(−1) +H(−2)Φ(−2) = FΦ

(negative integers in brackets in subscript denote backward shift e.g. f(m,n)(−1) = f(m+ 1, n) etc.) the
existence of auxiliary function P is guaranteed

(2.5)
∆−1(ΦΘ(12)P ) = B(−2)Φ(−2)Θ(2) +BΦΘ(22) + C(−1)Φ(−1)Θ(2) + CΦΘ(12) +HΦΘ(2)

∆−2(ΦΘ(12)P ) = −(A(−1)Φ(−1)Θ(1) +AΦΘ(11) + C(−2)Φ(−2)Θ(1) + CΦΘ(12) +GΦΘ(1))

where ∆−1, ∆−2 denote backward difference operators ∆−1f := f(−1) − f , ∆−2f := f(−2) − f (in what
follows we also use forward difference operators are ∆1f := f(1) − f , ∆2f := f(2) − f). Then equation
(2.2) can be rewritten as

(2.6)
∆2

[
(C(−2) + P(−2))Φ(−2)Θ(1)∆1

(
Ψ
Θ

)
+B(−2)Φ(−2)Θ(2)∆2

(
Ψ
Θ

)]
+

∆1

[
A(−1)Φ(−1)Θ(1)∆1

(
Ψ
Θ

)
− (P(−1) − C(−1))Φ(−1)Θ(2))∆2

(
Ψ
Θ

)]
= 0

which in turn guarantees the existence of functions Ψ′ such that

(2.7)

[
∆1(Ψ

′)
∆2(Ψ

′)

]
=

[
(C(−2) + P(−2))Φ(−2)Θ(1) B(−2)Φ(−2)Θ(2)

−A(−1)Φ(−1)Θ(1) (P(−1) − C(−1))Φ(−1)Θ(2)

] [
∆1

(
Ψ
Θ

)

∆2

(
Ψ
Θ

)
]

Assuming that matrix in (2.7) is invertible on the whole lattice, i.e.
D := [(P(−1) − C(−1))(P(−2)+C(−2)) + A(−1)B(−2)]Θ(1)Θ(2)Φ(−1)Φ(−2) 6= 0 everywhere and finally on intro-

ducing Ψ̃ via

(2.8) Ψ̃ =
Ψ′

S
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and taking the opportunity of multiplying resulting equation by non-vanishing function R, we arrive at
the conclusion that the function Ψ̃ satisfies equation of the form (2.2) but with new coefficients

(2.9)

Ã =
RS(11)ΦΘ(11)

D(1)
A, B̃ =

RS(22)ΦΘ(22)

D(2)
B, F̃ = RSΦΘ

D
F,

C̃ =
RS(12)

2

(
Θ(11)Φ(1−2)(C+P )(1−2)

D(1)
+

Θ(22)Φ(−12)(C−P )(−12)

D(2)

)
,

G̃ = −RS(1)

(
Θ(11)Φ(1−2)(C+P )(1−2)+Θ(11)ΦA

D(1)
+

Θ(2)Φ(−1)(C−P )(−1)+Θ(1)Φ(−1)A(−1)

D

)
,

H̃ = −RS(2)

(
Θ(22)Φ(−12)(C−P )(−12)+Θ(22)ΦB

D(2)
+

Θ(1)Φ(−2)(C+P )(−2)+Θ(2)Φ(−2)B(−2)

D

)
,

The family of maps Ψ 7→ Ψ̃ given by (2.7)-(2.8) we refer to as Darboux transformations of equation
(2.2).

2.2. Gauge equivalence. We say that two linear operators L and L′ are gauge equivalent if one can
find functions say Φ and Θ such that L′ = Φ ◦L ◦Θ (where ◦ stands for composition of operators). The
idea to consider equivalence classes of linear operators (2.1) with respect to gauge rather than single
operator itself, goes to Laplace and Darboux papers [62, 15]. In the continuous case it reflects in the
fact that one can confine himself e.g. to equations (the so called affine gauge)

aψ,xx +bψ,yy +ψ,xy +gψ,x +hψ,y = 0

or to (in this case we would like to introduce the name basic gauge)

aψ,xx +bψ,yy +2cψ,xy +k,y ψ,x −k,x ψ,y = 0

without loss of generality.
The Darboux transformation can be viewed as transformation acting on equivalence classes (with

respect to gauge) of equation (2.2) (compare [74]). Therefore one can confine himself to particular
elements of equivalence class. Commonly used choice is to confine oneself to the affine gauge i.e. to
equations (2.2) that obeys

A+B + 2C +G+H − F = 0.

If one puts S = const in (2.8) (this condition is not necessary) then the above constraint is preserved
under the Darboux transformation. One can consider further specification of the gauge

A+B + 2C +G+H − F = 0, A(−12) +B(1−2) + 2C +G(2) +H(1) − F(12) = 0

This choice of gauge we would like to refer as to basic gauge of equation (2.2). Note that if the equation
(2.2) is in a basic gauge its formal adjoint is in a basic gauge too.

2.3. Specification to 4-point scheme and its reductions. In the continuous case due to possibility
of changing independent variables one can reduce, provided equation (2.1) is hyperbolic, to cannonical
form

ψ,xy +gψ,x +hψ,y = fψ.

In the discrete case similar result can be obtained in a different way. Taking a glance at (2.9) we can
notice that coefficients A, B and F transform in a very simple manner. In particular, if any of these
coefficients equals zero then its transform equals zero too. Let us stress that in this case if we do so,
we do not impose any constraints on transformation data, transformations remains essentially the same.
First we shall concentrate on the case when two out of three mentioned functions vanish.

If we put

(2.10) A = 0, B = 0, C =
1

2

then from equation (2.9)

Ã = 0, B̃ = 0

and one can adjust the function R so that

C̃ =
1

2
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so we arrive at the 4-point scheme

(2.11) Ψ(12) = αΨ(1) + βΨ(2) + γΨ.

and its fundamental transformation cf. [10, 30, 69, 34].
We observe that the form of equation (2.11) is covariant under the gauge L 7→ 1

g(12)
Lg and to identify

whether two equations are equivalent or not we use the invariants of the gauge

(2.12) κ =
α(2)β

γ(2)
, n =

αβ(1)

γ(1)

Two equations are equivalent if their corresponding invariants κ and n are equal [73].

2.3.1. Goursat equation. In this subsection we discuss the discretization of class of equations

ψ,xy =
p,x

p
ψ,y +p2ψ

which is refered to as Goursat equation. The discrete counterpart of Goursat equation arose from the
surveys on Egorov lattices [96] and symmetric lattices [31] and can be writen in the form [73]

(2.13) Ψ(12) =
q(2)

q
Ψ(1) + Ψ(2) −

τ(12)τ

τ(1)τ(2)

q(2)

q
Ψ

where functions q and τ are related via

(2.14) q2 =
τ(1)τ(2) − τ(12)τ

τ2
(1)

.

The gauge invariant characterization of the discrete Goursat equation is either

n2
(2) = κκ(12)

(1 + κ(1))(1 + κ(2))

(1 + κ)(1 + κ(12))

or

κ2
(1) = nn(12)

(1 + n(1))(1 + n(2))

(1 + n)(1 + n(12))

The Goursart equation can be isolated from the others 4-point schemes in the similar way that Goursat
did it over hundred years ago [43, 73] i.e. as the equation such that one of its Laplace transformations
is equation adjoint to the equation. Therefore in this case if Θ obeys (2.13)

(2.15) Θ(12) =
q(2)

q
Θ(1) + Θ(2) −

τ(12)τ

τ(1)τ(2)

q(2)

q
Θ

then its Laplace transformation

(2.16) Φ =
1

q2(2)

τ(2)

τ(12)
∆1Θ(2)

is a solution of equation adjoint to equation (2.13) [73]. Equation (2.16) is the constraint we impose on
transformation data (i.e. functions Θ and Φ) in the fundamental transformation (2.7), (2.9) (we reacall
we have already put A and B equal to zero). In addition if Θ obeys (2.15) then

(2.17) ∆1

(
τ

τ(2)
Θ2

)
= ∆2

[
1

q2
τ

τ(1)
(∆1Θ)2

]

and as a result there exists function ϑ such that

(2.18) ∆1ϑ =
1

q2
τ

τ(1)
(∆1Θ)2, ∆2ϑ =

τ

τ(2)
Θ2

Now it can be shown that one can put

(2.19) ΦΘ(12)(P − 1

2
) = −ϑ(12), ΦΘ(12)(P +

1

2
) =

[√
τ(2)

τ(1)

√
∆1ϑ∆2ϑ

P

]

(2)

− ϑ(2)
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and the transformation (2.7) takes form

(2.20)


∆1(

√
τ(2)

τ

ϑ(2)√
∆2ϑ

Ψ̃)

∆2(
√

τ(2)

τ

ϑ(2)√
∆2ϑ

Ψ̃)


 =

[√
τ(2)

τ(1)

√
∆1ϑ∆2ϑ

P
− ϑ 0

0 −ϑ(2)

]
∆1

(√
τ(2)

τ
Ψ√
∆2ϑ

)

∆2

(√
τ(2)

τ
Ψ√
∆2ϑ

)




which is the discrete version of Goursat transformation [43]. The transformation rule for the field τ is

τ̃ = τϑ.

2.3.2. Moutard equation. In this subsection we discuss discretization Moutard equation and its (Moutard)
transformation [72]

ψ,xy = fψ.

Moutard equation is selfadjoint equation (which allowed us to impose reduction Φ = Θ in the continuous
analogue of transformation (2.7) c.f. [74]). The point is that opposite to the continuous case there is no
appropriate self-adjoint 4-point scheme

We do have the reduction of fundamental transformation that can be regarded as discrete counterpart
of Moutard transformation. Namely, class of equations that can be written in the form

(2.21) Ψ(12) + Ψ = M(Ψ(1) + Ψ(2))

we refer nowadays to as discrete Moutard equation. It appeared in the context of integrable systems
in [19] and then its Moutard transformations have been studied in detail in [83]. Gauge invariant
characterization of the class of discrete Moutard equations is [73]

n(2)n = κ(1)κ

Let us trace this reduction on the level of fundamental transformation. Putting 2C = −F and G =
H =: MF the equations (2.2), (2.3) and (2.4) take respectively form

(2.22) F (Ψ(12) + Ψ) = G(Ψ(1) + Ψ(2))

(2.23) F (Θ(12) + Θ) = G(Θ(1) + Θ(2))

(2.24) F(−1−2)Φ(−1−2) + FΦ = G(−1)Φ(−1) +G(−2)Φ(−2)

The crucial observation is: if the function Θ satisfies equation (2.23) then the function Φ given by

(2.25) Φ = 1
F

(Θ(1) + Θ(2))

satisfies equation (2.24) [73]. If we put

2P =
Θ(1) − Θ(2)

Φ

then equations (2.5) will be automatically satisfied. If in addition we put in (2.8) S = Θ then Darboux
transformation (2.7) takes form (cf. [83])

(2.26)

[
∆1(ΘΨ̃)

∆2(ΘΨ̃)

]
=

[
ΘΘ(1) 0

0 −ΘΘ(2)

] [
∆1

Ψ
Θ

∆2
Ψ
Θ

]

and it serves as transformation Ψ 7→ Ψ̃ that maps solutions of equation (2.21) into solutions of another
discrete Moutard equation

(2.27) Ψ̃(12) + Ψ̃ = F̃ (Ψ̃(1) + Ψ̃(2)), M̃ =
Θ(1)Θ(2)

Θ(12)Θ
M

We recall that Θ an arbitrary nonvanishing fixed solution of the equation (2.21)

(2.28) Θ(12) + Θ = M(Θ(1) + Θ(2))

Every equation that is gauge equivalent to (2.24) we refer to as an adjoint discrete equation Moutard
equation, its gauge invariant characterization is [73]

κ(12)κ(1) = n(12)n(2).
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Figure 1. The bipartite quasiregular rhombic tiling and the triangular and honeycomb lattices

Equation (2.23) can be regarded as potential version of equation (2.24)

2.4. Self-adjoint case. In the continuous case there is direct reduction of the fundamental transforma-
tion for equation (2.1) to the Moutard type transformation for self-adjoint equation [74]

(2.29) (aψ,x +cψ,y ),x +(bψ,y +cψ,x ),y = fψ.

In this Section we present difference analogues of equation (2.29) which allow for the Darboux transforma-
tion.Opposite to the continuous case the transformation will not be direct reduction of the fundamental
transformation for the 6-point scheme (2.2). The self-adjoint discrete operators studied below are how-
ever intimately related to discrete Moutard equation which provides the link between their Darboux
transformations and the fundamental transformation for equation (2.1).

2.4.1. 7-point self-adjoint scheme. The following 7-point linear system

(2.30) A(1)Ψ(1) + AΨ(−1) + B(2)Ψ(2) + BΨ(−2) + C(1)Ψ(1−2) + C(2)Ψ(−12) = FΨ,

allows for the Darboux transformation [76].

Theorem 2.2. Given scalar solution Θ of the linear equation (2.30), then Ψ̃ given as solution of the
following system

(2.31)

(
∆1(Ψ̃Θ)

∆2(Ψ̃Θ)

)
=

(
CΘ(−1)Θ(−2) −Θ(−2)(BΘ + CΘ(−1))

Θ(−1)

(
AΘ+CΘ(−2)

)
−CΘ(−1)Θ(−2)

)(
∆−1

Ψ
Θ

∆−2
Ψ
Θ

)

satisfies the 7-point scheme (2.30) with the new fields given by

(2.32) Ã(1) =
ΘΘ(1)A
Θ(−2)P

, B̃(2) =
ΘΘ(2)B
Θ(−1)P

, , C̃ =
C(−1−2)Θ(−1)Θ(−2)

Θ(−1−2)P(−1−2)
,

(2.33) F̃ = Θ

(
Ã(1)

Θ(1)
+

Ã
Θ(−1)

+
B̃(2)

Θ(2)
+

B̃
Θ(−2)

+
C̃(1)

Θ(1−2)
+

C̃(2)

Θ(−12)

)

where

(2.34) P = ΘAB +Θ(−1)CA +Θ(−2)CB.

As it was shown in [37] the self-adjoint 7-point scheme (2.30) can be obtained from the system of
Moutard equations imposed consistently on quadrilaterals of the bipartite quasiregular rhombic tiling (see
Fig. 1), which is a particular case of the approach considered in [9]. Then the Moutard transformations
can be also restricted to the triangular sublattice leading to Theorem 2.2.
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2.4.2. Specification to 5-point scheme. The 7-point scheme admits specification C = 0 (alternatively one
can put A = 0 or B = 0) and as result we obtain specification to 5-point self-adjoint scheme [76].

(2.35) A(1)Ψ(1) + AΨ(−1) + B(2)Ψ(2) + BΨ(−2) = FΨ.

The self-adjoint 5-point scheme and its Darboux transformation can be also obtained form the Moutard
equation on the (bipartite) square lattice [38].

2.4.3. The honeycomb lattice. It is well known that the triangular and honeycomb grids are dual to each
other (see Fig. 1). Restriction of the system of the Moutard equations on the rhombic tiling to the
honeycomb sublattice gives [37] the following linear system

1

A (Ψ+ − Ψ−) +
1

B (Ψ+
(−12) − Ψ−) +

1

C(12)
(Ψ+

(2) − Ψ−) = 0,(2.36)

1

A (Ψ− − Ψ+) +
1

B(1−2)
(Ψ−

(1−2) − Ψ+) +
1

C(1)
(Ψ−

(−2) − Ψ+) = 0.(2.37)

Remark. Because Ψ− and Ψ+ satisfy separately the self-adjoint 7-point schemes (2.30), but with different
coefficients, then the linear problem (2.36)-(2.37) can be considered as a relation between two equations
(2.30). This is the Laplace transformation between self-adjoint 7-point schemes studied in [86, 85].

The corresponding restriction of the Moutard transformation gives the Darboux transformation for
the honeycomb linear problem.

Theorem 2.3. Given scalar solution (Θ+, Θ−) of the honeycomb linear system (2.36)-(2.37) then the

solution (Ψ̃+, Ψ̃−) of the system

Ψ̃+
(2) − Ψ̃− =

C
R
(
Θ−

(−2)Ψ
−
(−1) − θ−(−1)Ψ

−
(−2)

)
,(2.38)

Ψ̃+ − Ψ̃− =
A(−1)

R
(
Θ−

(−1−2)Ψ
−
(−2) −Θ−

(−2)Ψ
−
(−1−2)

)
,(2.39)

Ψ̃− − Ψ̃+
(−12) =

B(−2)

R
(
Θ−

(−1−2)Ψ
−
(−1) −Θ−

(−1)Ψ
−
(−1−2)

)
,(2.40)

with R given by

(2.41) R = A(−1)B(−2) + CA(−1) + CB(−2),

satisfies a new honeycomb linear system with the coefficients

(2.42) Ã =
A(−1)

R Θ−
(−2)Θ

−
(−1−2), B̃ =

B(−2)

R Θ−
(−1)Θ

−
(−1−2), C̃(12) =

C
RΘ−

(−1)Θ
−
(−2).

2.5. Specification to 3-point scheme. We end the review of two-dimensional case with specification
to the 3-point scheme i.e. to a discretization of first order differential equation

gψ,x +hψ,y = fψ.

If we put

A = 0, B = 0, F = 0

then according to (2.9)

Ã = 0, B̃ = 0, F̃ = 0

It means that the fundamental transformation (2.7) is also the Darboux transformation for the 3-point
scheme [18, 80]

2CΨ(12) +GΨ(1) +HΨ(2) = 0.

This elementary scheme is the simplest one from the class considered here, but it deserves a special
attention, because it leads to one of the most studied integrable discrete equation [47]. We confine
ourselves to recalling briefly in Section 5 main results in this field.

To the end let us rewrite the 3-point scheme in the basic gauge

(2.43) (u(2) − u(1))Ψ(12) + (u(1) − u)Ψ(1) − (u(2) − u)Ψ(2) = 0



8 ADAM DOLIWA AND MACIEJ NIESZPORSKI

3. The four point systems

In this Section we present the Darboux transformations for the four point scheme (the discrete Laplace
equation) from the point of view of systems of such equations, and the corresponding permutability
theorems. To keep the paper of reasonable size and in order to present the results from a simple
algebraic perspective we do not discuss important relations of the subject to incidence and difference
geometry [20, 30, 7, 13, 21, 25, 26, 27, 34, 31, 52, 53, 55, 56, 97, 98, 38, 37] (see also [32, 8] and
earlier works [94, 95]), application of analytic [10, 33, 34, 36, 104, 103, 105, 35, 31, 68, 29] and algebro-
geometric [57, 58, 4, 22, 23, 5, 38, 26, 45, 27] techniques of the integrable systems theory to construct
large classes of solutions of the linear systems in question and solutions of the corresponding nonlinear
discrete equations.

In order to simplify discussion of the Darboux transformations for systems of the 4-point schemes we
fix (without loss of generality [30]) the gauge to the affine one

(3.1) Ψ(ij) − Ψ = Aij(i)(Ψ(i) − Ψ) +Aji(j)(Ψ(j) − Ψ), i 6= j,

where Aij : Z
N → R are some functions constrained by the compatibility of the system (3.1). It is also

convenient [10] to replace the second order linear system (3.1) by a first order system as follows. The
compatibility of (3.1) allows for definition of the potentials (the Lamé coefficients) Hi : Z

N → R such
that

(3.2) Aij =
Hi(j)

Hi

, i 6= j .

The new wave functions ψi given by the decomposition

(3.3) ∆iΨ = Hi(i)ψi ,

satisfy the first order linear system

(3.4) ∆jψi = Qij(j)ψj , i 6= j ,

where the functions Qij , called the rotation coefficients, are calculated from the equation

(3.5) ∆iHj = QijHi(i), i 6= j ,

which is called adjoint to (3.4). Both the equations (3.5) and (3.4) are compatible provided the fields
Qij satisfy the discrete Darboux equations [10]

(3.6) ∆kQij = Qik(k)Qkj , i 6= j 6= k 6= i.

The discrete Darboux equations imply existence of the potentials ρi given as solutions of the compat-
ible system

(3.7)
ρi(j)

ρi

= 1 −Qji(i)Qij(j), i 6= j ,

and yet another potential τ such that

(3.8) ρi =
τ(i)

τ
.

In terms of the τ -function and the functions

(3.9) τij = τQij ,

the meaning of which will be given in section 3.2.3, equations (3.7) and (3.6) can be rewritten [36, 31]
in the bilinear form

τ(ij)τ = τ(i)τ(j) − τji(i)τij(j) , i 6= j(3.10)

τij(k)τ = τ(k)τij + τik(k)τkj , i 6= j 6= k 6= i.(3.11)
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3.1. The vectorial fundamental (bilinear Darboux) transformation. We start with a simple
algebraic fact, whose consequences will be discussed throughout the remaining part of this Section.

Theorem 3.1 ([69]). Given the solution φi : Z
N → U, of the linear system (3.4), and given the solution

φ∗
i : Z

N → W
∗, of the adjoint linear system (3.5). These allow to construct the linear operator valued

potential Ω[φ,φ∗] : Z
N → L(W,U), defined by

(3.12) ∆iΩ[φ,φ∗] = φi ⊗ φ∗
i(i), i = 1, . . . , N.

If W = U and the potential Ω is invertible, Ω[φ,φ∗] ∈ GL(W), then

φ̃i = Ω[φ,φ∗]−1φi, i = 1, ..., N,(3.13)

φ̃
∗
i = φ∗

i Ω[φ,φ∗]−1, i = 1, ..., N,(3.14)

satisfy the linear systems (3.4)-(3.5) correspondingly, with the fields

(3.15) Q̃ij = Qij − 〈φ∗
j |Ω[φ,φ∗]−1|φi〉, i, j = 1, . . . , N, i 6= j, .

In addition,

(3.16) Ω[φ̃, φ̃
∗
] = C − Ω[φ,φ∗]−1,

where C is a constant operator.

Remark. Notice that because of (3.3) we have Ψ = Ω[ψ, H ].

Corollary 3.2 ([67]). The potentials ρi and the τ-function transform according to

ρ̃i = ρi(1 + φ∗
i(i)Ω[φ,φ∗]−1φi),(3.17)

τ̃ = τ detΩ[φ,φ∗].(3.18)

Applying the above transformation one can produce new compatible (affine) four point linear problems
from the old ones.

To obtain conventional transformation formulas consider [34] the following splitting of the vector
space W of Theorem 3.1:

(3.19) W = E ⊕ V ⊕ F , W
∗ = E

∗ ⊕ V
∗ ⊕ F

∗ ,

if

(3.20) φi =



ψi

θi

0


 , φ∗

i = (0,θ∗i ,ψ
∗
i ) ,

then, the corresponding potential matrix is of the form

(3.21) Ω[φ,φ∗] =




IE Ω[ψ,θ∗] Ω[ψ,ψ∗]
0 Ω[θ,θ∗] Ω[θ,ψ∗]
0 0 IF




and its inverse is

(3.22) Ω[φ,φ∗]−1 =




IE −Ω[ψ,θ∗]Ω[θ,θ∗]−1 −Ω[ψ,ψ∗] + Ω[ψ,θ∗]Ω[θ,θ∗]−1Ω[θ,ψ∗]
0 Ω[θ,θ∗]−1 −Ω[θ,θ∗]−1Ω[θ,ψ∗]
0 0 IF


 .

Let us consider the case of K-dimensional transformation data space, V = R
K , and F = R, E = R

M ,
then the transformed solution Ψ̃ = Ω[ψ̃, H̃ ] of the four point scheme (recall that Ψ = Ω[ψ, H ]) up to a
constant vector reads

(3.23) Ψ̃ = Ψ − Ω[ψ,θ∗]Ω[θ,θ∗]−1Ω[θ, H ],

where the corresponding transformed solutions ψ̃i of the linear problem (3.4) and H̃i of the adjoint
linear problem (3.5) are given by equations

ψ̃i = ψi − Ω[ψ,θ∗]Ω[θ,θ∗]−1θi,(3.24)

H̃i = Hi − θ∗i Ω[θ,θ∗]−1Ω[θ, H ],(3.25)
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and

(3.26) Q̃ij = Qij − θ∗jΩ[θ,θ∗]−1θi.

The scalar (K = 1) fundamental transformation in the above form was given in [55].
It is important to notice that the vectorial fundamental transformation can be obtained as a super-

position of K scalar transformations, which follows from the following observation.

Proposition 3.3 ([34]). Assume the following splitting of the data of the vectorial fundamental trans-
formation

(3.27) θi =

(
θa

i

θb
i

)
, θ∗i =

(
θ∗ai θ∗bi

)
,

associated with the partition R
K = R

Ka ⊕ R
Kb , which implies the following splitting of the potentials

(3.28) Ω[θ, H ] =

(
Ω[θa, H ]

Ω[θb, H ]

)
, Ω[θ,θ∗] =

(
Ω[θa,θ∗a] Ω[θa,θ∗b ]
Ω[θb,θ∗a] Ω[θb,θ∗b ]

)
,

(3.29) Ω[ψ,θ∗] =
(

Ω[ψ,θ∗a] Ω[ψ,θ∗b ]
)
.

Then the vectorial fundamental transformation is equivalent to the following superposition of vectorial
fundamental transformations:

1] Transformation Ψ → Ψ{a} with the data θa
i , θ

∗
ai and the corresponding potentials Ω[θa, H ], Ω[θa,θ∗a],

Ω[ψ,θ∗a]

Ψ{a} = Ψ− Ω[ψ,θ∗a]Ω[θa,θ∗a]−1Ω[θa, H ],(3.30)

ψ
{a}
i = ψi − Ω[ψ,θ∗a]Ω[θa,θ∗a]−1θa

i ,(3.31)

H
{a}
i = Hi − θ∗iaΩ[θa,θ∗a]−1Ω[θa, H ].(3.32)

2] Application on the result the vectorial fundamental transformation with the transformed data

θ
b{a}
i = θb

i − Ω[θb,θ∗a]Ω[θa,θ∗a]−1θa
i ,(3.33)

θ
∗{a}
ib = θ∗ib − θ∗iaΩ[θa,θ∗a]−1Ω[θa,θ∗b ],(3.34)

and potentials

Ω[θb, H ]{a} = Ω[θb, H ] − Ω[θb,θ∗a]Ω[θa,θ∗a]−1Ω[θa, H ] = Ω[θb{a}, H{a}],(3.35)

Ω[θb,θ∗b ]
{a} = Ω[θb,θ∗b ] − Ω[θb,θ∗a]Ω[θa,θ∗a]−1Ω[θa,θ∗b ] = Ω[θb{a},θ∗{a}

b ],(3.36)

Ω[ψ,θ∗b ]
{a} = Ω[ψ,θ∗b ] − Ω[ψ,θ∗a]Ω[θa,θ∗a]−1Ω[θa,θ∗b ] = Ω[ψ{a},θ∗{a}

b ],(3.37)

i.e.,

(3.38) Ψ̃ = Ψ{a,b} = Ψ{a} − Ω[ψ,θ∗b ]
{a}[Ω[θb,θ∗b ]

{a}]−1Ω[θb, H ]{a}.

Remark. The above formulas, apart from existence of the τ -function, remain valid (eventually one needs
the proper ordering of some factors) if, instead of the real field R, we consider [28] arbitrary division ring.
Notice, that because the structure of the transformation formulas (3.23) is a consequence of equation
(3.16) then the formulas may be expressed in terms of quasideterminants [41] (recall, that roughly
speaking, a quasideterminant is the inverse of an element of the inverse of a matrix with entries in a
division ring).

3.2. Reductions of the fundamental transformation. Let us list basic reductions of the (scalar)
fundamental transformation. We follow the nomenclature of [34] which has origins in geometric termi-
nology of transformations of conjugate nets [49, 15, 39, 101, 6, 61, 40]. We provide also the terminology
of modern theory of integrable systems [70, 87], where the fundamental transformation is called the
binary Darboux transformation. All the transformations presented in this section can be derived [34]
from the fundamental transformation through limiting procedures.
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3.2.1. The Lévy (elementary Darboux) transformation. Given a scalar solution θi of the linear problem
(3.4) the Lévy transform of Ψ = Ω[ψ, H ] is then given by

(3.39) Li(Ψ) = Ψ− Ω[θ,H ]

θi

ψi.

The transformed Lamé coefficients and new wave functions are of the form

Li(Hi) =
1

θi

Ω[θ,H ] ,(3.40)

Li(Hj) = Hj −
Qij

θi

Ω[θ,H ] ,(3.41)

Li(ψi) = −ψi(i) +
θi(i)

θi

ψi ,(3.42)

Li(ψj) = ψj −
θj

θi

ψi .(3.43)

Within the nonlocal ∂̄-dressing method the elementary Darboux transformation was introduced in [10].

3.2.2. The adjoint Lévy (adjoint elementary Darboux) transformation. Given a scalar solution θ∗i of the
adjoint linear problem (3.5) the adjoint Lévy transform L∗

i (Ψ) of Ψ is given by

(3.44) L∗
i (Ψ) = Ψ − Hi

θ∗i
Ω[ψ, θ∗].

The new Lamé coefficients and the wave functions are of the form

L∗
i (Hi) = Hi(−i) −

θ∗i(−i)

θ∗i
Hi ,(3.45)

L∗
i (Hj) = Hj −

θ∗j
θ∗i
Hi ,(3.46)

L∗
i (ψi) =

1

θ∗i
Ω[ψ, θ∗] ,(3.47)

L∗
i (ψj) = ψj −

Qji

θ∗i
Ω[ψ, θ∗] .(3.48)

As it was shown in [34], the scalar fundamental transformation can be obtained as superposition of
the Lévy transformation and its adjoint. The closed formulae for iterations of the Lévy transformations
in terms of Casorati determinants, and analogous result for the adjoint Lévy transformation, was given
in [65].

Remark. ¿From analytic [10] and geometric [34] point of view a one can distinguish also the co called
Combescure transformation, whose algebraic description is however very simple (the wave functions ψi

are invariant). The Combescure transformation supplemented by the projective (or radial transforma-
tion, whose algebraic description is also trivial [34]), generate the fundamental transformation.

3.2.3. The Laplace (Schlesinger) transformation. The following transformations does not involve any
functional parameters, and can be considered as further degeneration of the Lévy (or its adjoint) reduc-
tion. The Laplace transformation of Ψ is given by

(3.49) Lij(Ψ) = Ψ − Hj

Qij

ψi, i 6= j.

The Lamé coefficients of the transformed linear problems read

Lij(Hi) =
Hj

Qij

,(3.50)

Lij(Hj) =

(
Qij∆j

(
Hj

Qij

))

(−j)

,(3.51)

Lij(Hk) = Hk − Qik

Qij

Hj , k 6= i, j,(3.52)
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and the new wave functions read

Lij(ψi) = −∆iψi +
∆iQij

Qij

ψi ,(3.53)

Lij(ψj) = − 1

Qij

ψi ,(3.54)

Lij(ψk) = ψk − Qkj

Qij

ψi , k 6= i, j .(3.55)

The Laplace transformations satisfy generically the following identities

Lij ◦ Lji = id ,(3.56)

Ljk ◦ Lij = Lik,(3.57)

Lki ◦ Lij = Lkj .(3.58)

The Laplace transformation for the four point affine scheme was introduced in [20] following the geometric
ideas of [95] and independently in [86] using the factorization approach. The generalization for systems
of four point schemes (quadrilateral lattices) was given in [34].

Remark. As it was shown in [24] the functions τij defined by equation (3.9) are τ -functions of the
transformed four point schemes Lij(Ψ)

(3.59) τij = Lij(τ),

which, due to (3.56), leads [20] to the discrete Toda system [47].

4. Distinguished reductions of the four point scheme

In this section we study (systems of) four point linear equations subject to additional constraints,
and we provide corresponding reductions of the fundamental transformation. The basic algebraic idea
behind such reduced transformations lies in a relationships between solutions of the linear problem and
its adjoint, which should be preserved by the fundamental transformation (see, for example, application
of this technique in [84] to reductions of the binary Darboux transformation for the Toda system). Some
results presented here have been partially covered in Section 2.3 but in a different setting.

4.1. The Moutard (discrete BKP) reduction. Consider the system of discrete Moutard equations
(the discrete BKP linear problem [19, 83])

(4.1) Ψ(ij) − Ψ = Fij(Ψ(i) − Ψ(j)), 1 ≤ i < j ≤ N,

for suitable functions Fij : Z
N → R. Compatibility of the system implies existence of the potential

τB : Z
N → R, in terms of which the functions Fij can be written as

(4.2) Fij =
τB
(i)τ

B
(j)

τB τB
(ij)

, i 6= j,

which satisfies system of Miwa’s discrete BKP equations [71]

(4.3) τBτB
(ijk) = τB

(ij)τ
B
(k) − τB

(ik)τ
B
(j) + τB

(jk)τ
B
(i), 1 ≤ i < j < k ≤ N.

The discrete Moutard system can be given [26] the first order formulation (3.4)-(3.5) upon introducing
the Lamé coefficients

(4.4) Hi = (−1)
P

k<i
mk

τB
(−i)

τB
,

and the rotation coefficients (below we assume i < j)

Qij = −(−1)
P

i≤k<j mk

(
τB
(i−j)

τB
(−j)

+
τB
(i)

τB

)
τB
(−j)

τB
,(4.5)

Qji = −(−1)
P

i≤k<j mk

(
τB
(−ij)

τB
(−i)

−
τB
(j)

τB

)
τB
(−i)

τB
,(4.6)
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which in view of (3.7), gives the familiar relation between the τ -functions of the KP and BKP hierarchies

(4.7) τ =
(
τB
)2
.

The corresponding reduction of the fundamental transformation was given in [26], where also a link with
earlier work [83] on the discrete Moutard transformation has been established.

Proposition 4.1 ([26]). Given solution θi : Z
N → R

K of the linear problem (3.4) corresponding
to the Moutard linear system (4.1) and its first order form (4.4)-(4.6). Denote by Θ = Ω[θ, H ] the
corresponding potential, which is also new vectorial solution of the linear problem (4.1).
1) Then

(4.8) θ∗i = (−1)
P

k<i
mk

τB
(−i)

τB
(ΘT

(−i) + ΘT )

provides a vectorial solution of the adjoint linear problem, and the corresponding potential Ω[θ,θ∗] allows
for the following constraint

(4.9) Ω[θ,θ∗] + Ω[θ,θ∗]T = 2Θ⊗ ΘT .

2) The fundamental vectorial transform Ψ̃ of Ψ, given by (3.23) with the potentials Ω restricted as above
satisfies Moutard linear system (4.1) and can be considered as the superposition of K scalar reduced
fundamental transforms.

Notice that given Θ then, because of the constraint (4.9), to construct Ω(θ,θ∗) we need only its
antisymmetric part S(Θ|Θ), which satisfies the system

(4.10) ∆iS(Θ|Θ) = Θ(i) ⊗ Θt − Θ ⊗ Θt
(i).

This observation is the key element of the connection of the above reduction of the fundamental trans-
formation with earlier results [83] on the vectorial Moutard transformation for the system (4.1), where
the formulas using Pfaffians were obtained (recall that determinant of a skew-symmetric matrix is a
square of Pfaffian). In particular, the transformation rule for the τB-function can be recovered

(4.11) τ̃B =





τB Pf S(Θ|Θ), K even

τB Pf

(
0 −ΘT ,

Θ S(Θ|Θ)

)
, K odd.

4.2. The symmetric (discrete CKP) reduction. Consider the linear problem subject to the con-
straint [31] which arose from studies on the Egorov lattices [96]

(4.12) ρiQji(i) = ρjQij(j) , i 6= j .

Then the discrete Darboux equations (3.6) can be rewritten [97] in the following quartic form
(
ττ(ijk) − τ(i)τ(jk) − τ(j)τ(ik) − τ(k)τ(ij)

)2
+ 4(τ(i)τ(j)τ(k)τ(ijk)+ττ(ij)τ(jk)τ(ik)) =

4(τ(i)τ(jk)τ(j)τ(ik) + τ(i)τ(jk)τ(k)τ(ij) + τ(j)τ(ik)τ(k)τ(ij)),
(4.13)

which can be identified with equation derived in [51] in connection with the star-triangle relation in
the Ising model. According to [97], the above equation can be obtained from the CKP hierarchy via
successive application of the corresponding reduction of the binary Darboux transformations.

Construction [67] of the reduction of the fundamental transformations which preserves the constraint
(4.12) makes use the following observation.

Lemma 4.2 ([31]). The following conditions are equivalent:
1) The functions Qij , ρi satisfy constraint (4.12);
2) Given a nontrivial solution φ∗

i of the adjoint linear problem (3.5) then

(4.14) φi = ρi(φ
∗
i(i))

T

provides a solution of the linear problem (3.4);
3) The corresponding potential Ω[φ,φ∗] allows for the constraint

(4.15) Ω[φ,φ∗]T = Ω[φ,φ∗].
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Theorem 4.3 ([67]). When the data θi, θ
∗
i , Ω[θ,θ∗] of the fundamental transformation satisfy condi-

tions (4.14)-(4.15) then the new functions Q̃ij, ρ̃i found by equations (3.26), (3.17) are constrained by
(4.12), i.e.

ρ̃iQ̃ji(i) = ρ̃jQ̃ij(j) , i 6= j .

The corresponding permutability principle has been proved in [27].

4.3. Quadratic reduction. Consider the system of four point equations (3.1) which solution Ψ is
subject to the following quadratic constraint

(4.16) ΨTQΨ + aTΨ + c = 0 ;

here Q is a non-degenerate symmetric matrix, a is a constant vector, c is a scalar.

Remark. Notice that unlike in two previous reductions we fix (by giving the quadratic equation) the
dimension of Ψ.

Double discrete differentiation of equation (4.16) in i 6= j directions gives, after some algebra, the
condition

(4.17) ψT
i(j)Qψj +ψT

j(i)Qψi = 0,

analogous to that obtained in [33] in order to characterize circular lattices [7, 13]. It implies [31], in

particular, that ψT
i Qψi satisfy the same equation (3.7) as the potentials ρi.

As in two above reductions, the quadratic condition allows for a relation between solutions of the
linear system (3.4) and its adjoint (3.5). The following proposition can be easily derived from analogous
results of [21], where as the basic ingredient of the transformation was used the potential Ω[ψ,θ∗], but
we present here its direct proof in the spirit of corresponding results found for the circular lattice [55, 66].

Proposition 4.4. Given a nontrivial solution θ∗i of the adjoint linear problem (3.5) corresponding to
the system of four point equations (3.1) which solution Ψ is subject to the constraint (4.16) then

(4.18) θi = (Ω[ψ,θ∗](i) + Ω[ψ,θ∗])TQψi

provides a solution of the corresponding linear problem (3.4).

Proof. After some algebra using the equations satisfied by Y ∗
i and ψi one gets

(4.19) ∆jθi −Qij(j)θj = θ∗T
j(ij)

(
ψT

i(j)Qψj +ψT
j(i)Qψi

)
,

which vanishes due to (4.17). �

The following result gives the discrete Ribaucour reduction of the fundamental transformation.

Proposition 4.5 ([21]). Given solution θ∗i : Z
N → R

K of the adjoint linear problem (3.5) corresponding
to the quadratic constraint (4.16).
1) Then the potentials Ω[ψ,θ∗], Ω[θ, H ] and Ω[θ,θ∗], where θi is the solution of the linear problem
(3.4) constructed from θ∗i by means of formula (4.18), allow for the constraints

Ω[θ, H ]T = 2ψTQΩ[ψ,θ∗] + aTΩ[ψ,θ∗] ,(4.20)

Ω[θ,θ∗] + Ω[θ,θ∗]T = 2Ω[ψ,θ∗]TQΩ[ψ,θ∗] .(4.21)

2) The Ribaucour reduction of the fundamental vectorial transform Ψ̃ of Ψ, given by (3.23) with the
potentials Ω restricted as above satisfies the quadratic constraint (4.16) and can be considered as the
superposition of K scalar Ribaucour transformations.

As it was explained in [21], the Ribaucour transformations [55] of the circular lattice [7, 13] can
be derived from the above approach after the stereographic projection from the Möbius sphere. The
superposition principle for the Ribaucour transformation of circular lattices was derived also in [66].
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5. The three point scheme

In this final Section we present the vectorial Darboux transformations for the three point scheme (5.1).
The corresponding nonlinear difference system (5.4), known as the Hirota–Miwa equation, is perhaps
the most important and widely studied integrable discrete system. It was discovered by Hirota [47], who
called it the discrete analogue of the two dimensional Toda lattice (see also [64]), as a culmination of his
studies on the bilinear form of nonlinear integrable equations. General feature of Hirota’s equation was
uncovered by Miwa [71] who found a remarkable transformation which connects the equation to the KP
hierarchy [16]. The Hirota-Miwa equation, called also the discrete KP equation, can be encountered in
various branches of theoretical physics [90, 59, 106] and mathematics [99, 58, 54].

Consider the linear system [18]

(5.1) Ψ(i) − Ψ(j) = UijΨ, i 6= j ≤ N,

whose compatibility leads to the following parametrization of the field Uij in terms of the potentials ri

(5.2) ri(j) = riUij ,

and then to existence of the τ function

(5.3) ri = (−1)
P

k<i mk

τH
(i)

τH

and, finally to the the discrete KP system [47, 71]

(5.4) τH
(i)τ

H
(jk) − τH

(j)τ
H
(ik) + τH

(k)τ
H
(ij), i < j < k.

The same nonlinear systems arises from compatibility of

(5.5) Ψ∗
(j) − Ψ∗

(i) = UijΨ
∗
(ij), i 6= j,

called the adjoint of (5.1).
We present the Darboux transformation for the three point scheme in the way similar to that of

Section 3.1 following the approach of [80], see however early works on the subject [91, 92].

Theorem 5.1. Given the solution Φ : Z
N → U, of the linear system (5.1), and given the solution

Φ∗ : Z
N → W

∗, of the adjoint linear system (5.5). These allow to construct the linear operator valued
potential Ω[Φ,Φ∗] : Z

N → L(W,U), defined by

(5.6) ∆iΩ[Φ,Φ∗] = Φ ⊗ Φ∗
(i), i = 1, . . . , N.

If W = U and the potential Ω is invertible, Ω[Φ,Φ∗] ∈ GL(W), then

Φ̃ = Ω[Φ,Φ∗]−1Φ,(5.7)

Φ̃
∗

= Φ∗Ω[Φ,Φ∗]−1,(5.8)

satisfy the linear systems (5.1) and (5.5), correspondingly, with the fields

(5.9) Ũij = Uij − (Φ∗Ω[Φ,Φ∗]−1Φ)(i) + (Φ∗Ω[Φ,Φ∗]−1Φ)(j).

In addition,

(5.10) Ω[Φ̃, Φ̃
∗
] = C − Ω[Φ,Φ∗]−1,

where C is a constant operator.

The transformation rule for the potentials ri reads

(5.11) r̃i = ri(1 − Φ∗
(i)Ω[Φ,Φ∗]−1Φ),

while using the technique of the bordered determinants [48] one can show that [80]

(5.12) τ̃H = τH detΩ[Φ,Φ∗].

More standard transformation formulas arise, when one splits, like in Section 3.1, the vector space W

of Theorem 5.1 as follows

(5.13) W = E ⊕ V ⊕ F , W
∗ = E

∗ ⊕ V
∗ ⊕ F

∗ ;
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if

(5.14) Φ =




Ψ
Θ
0


 , Φ∗ = (0,Θ∗,Ψ∗) .

Then the corresponding potential matrix and its inverse have the structure like those in Section 3.1,
which gives [80]

Ψ̃ = Ψ − Ω[Ψ,Θ∗]ω[Θ,Θ∗]−1Θ,(5.15)

Ψ̃
∗

= Ψ∗ − Θ∗Ω[Θ,Θ∗]−1Ω[Θ,Ψ∗],(5.16)

Ũij = Uij − (Θ∗Ω[Θ,Θ∗]−1Θ)(i) + (Θ∗Ω[Θ,Θ∗]−1Θ)(j).(5.17)

Notice that one can consider [77, 78, 82] the three point linear problem in associative algebras. Then
the structure of the transformation formulas (5.10) implies the quasideterminant interpretation [42] of
the above equations.

Remark. The permutability property for the Darboux transformations of the three point scheme [82]
can be formulated exactly (cancel subscripts i) like Theorem 3.3.

Finally we remark that the binary Darboux transformation for the three point linear problem can
be decomposed [80] into superposition of the elementary Darboux transformation and its adjoint, which
can be described as follows. Given a scalar solution Θ of the linear problem (5.1) then the elementary
Darboux transformation

D(Ψ) = Ψ(i) −
Θ(i)

Θ
Ψ,(5.18)

D(Ψ∗) =
1

Θ
Ω[Θ,Ψ∗] ,(5.19)

D(τ) = Θτ(5.20)

leaves equations (5.1) and (5.5) invariant.
Analogously, given a scalar solution Θ∗ of the linear problem (5.5) then the adjoint elementary

Darboux

D∗(Ψ) =
1

Θ∗Ω[Θ∗,Ψ],(5.21)

D∗(Ψ∗) = −Ψ∗
(−i) +

Θ∗
(−i)

Θ∗ Ψ∗,(5.22)

D∗(τ) = Θ∗τ(5.23)

leaves equations (5.1) and (5.5) invariant.
The above transformations allow for vectorial forms, which can be conveniently written [80, 88] in

terms of Casorati determinants.
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14. G. Darboux, Leçons sur les systémes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910.
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36. A. Doliwa, M. Mañas, L. Mart́ınez Alonso, E. Medina and P. M. Santini, Charged free fermions, vertex operators and

transformation theory of conjugate nets, J. Phys. A 32 (1999) 1197–1216.
37. A. Doliwa, M. Nieszporski and P. M. Santini, Integrable lattices and their sub-lattices II. From the B-quadrilateral

lattice to the self-adjoint schemes the triangular and the honeycomb lattices, J. Math. Phys. 48 (2007) art. no. 113056.
38. A. Doliwa, P. Grinevich, M. Nieszporski & P. M. Santini, Integrable lattices and their sub-lattices: from the discrete

Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme, J. Math. Phys. 48 (2007)

art. no. 013513.
39. L. P. Eisenhart, Transformations of surfaces, Princeton University Press, Princeton, 1923.
40. S. P. Finikov, Theorie der Kongruenzen, Akademie-Verlag, Berlin, 1959.
41. I. Gelfand, S. Gelfand, V. Retakh and R. L. Wilson, Quasideterminants, Adv. Math. 193 (2005), 56–141.
42. C. R. Gilson, J. J. C. Nimmo, Y. Ohta, Quasideterminant solutions of a non-Abelian Hirota–Miwa equation, J. Phys.

A: Math. Theor. 40 (2007) 12607-12617.
43. E. Goursat, Sur une transformation de l’équation s2 = 4λ(x, y)pq, Bulletin de la S.M.F. 28 (1900) 1-6.
44. B. Grammaticos, Y. Kosmann-Schwarzbach, T. Tamizhmani (Eds.), Discrete integrable systems, Lect. Notes Phys.

644, Springer, Berlin, 2004.
45. S. Grushevsky, I. Krichever, Integrable discrete Schrödinger equations and characterization of Prym varieties by a

pair of quadrisecants, arXiv:math.AG/0705.2829.



18 ADAM DOLIWA AND MACIEJ NIESZPORSKI

46. C. H. Gu, H. S. Hu and Z. X. Zhou, Darboux transformations in integrable systems. Theory and their applications
to geometry, Springer, Dordrecht, 2005

47. R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Jpn. 50 (1981) 3785-3791.
48. R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004.
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