
DESARGUES MAPS AND THE HIROTA–MIWA EQUATION

ADAM DOLIWA

Abstract. We study the Desargues maps φ : ZN
→ PM , which generate lattices whose points are

collinear with all their nearest (in positive directions) neighbours. The multidimensional consistency
of the map is equivalent to the Desargues theorem and its higher-dimensional generalizations. The
nonlinear counterpart of the map is the non-commutative (in general) Hirota–Miwa system. In the
commutative case of the complex field we apply the nonlocal ∂̄-dressing method to construct Desargues
maps and the corresponding solutions of the equation. In particular, we identify the Fredholm deter-
minant of the integral equation inverting the nonlocal ∂̄-dressing problem with the τ -function. Finally,
we establish equivalence between the Desargues maps and quadrilateral lattices provided we take into
consideration also their Laplace transforms.

1. Introduction

Perhaps the most widely studied integrable discrete system is the Hirota–Miwa equation

(1.1) τ(i)τ(jk) − τ(j)τ(ik) + τ(k)τ(ij) = 0, 1 ≤ i < j < k ≤ N,

which is the compatibility condition of the linear system (the adjoint of that introduced in [24])

(1.2) φ(i) − φ(j) =
ττ(ij)

τ(i)τ(j)
φ, 1 ≤ i < j ≤ N.

Here and in all the paper we use the convention that for any function f defined on multidimensional
integer lattice ZN by f(±i) we denote its shift in the i (positive or negative) direction of the lattice, i.e.,
f(±i)(n1, . . . , ni, . . . , nN ) = f(n1, . . . , ni ± 1, . . . , nN ). Whenever it does not lead to misunderstanding,

when speaking on the image f(n) of a point n ∈ ZN , we skip the argument.
Equation (1.1) was discovered, for N = 3, in equivalent form by Hirota [46], who called it the discrete

analogue of the two dimensional Toda lattice; see [84] for a review of various forms of the Hirota–Miwa
equation and of its reductions. It can be considered as a culmination of his studies on the bilinear form
of nonlinear integrable equations. General feature of Hirota’s equation was uncovered by Miwa [63] who
found a remarkable transformation which connects the equation to the Kadomtsev–Petviashvili (KP)
hierarchy [23]. The Hirota–Miwa equation, called also the discrete KP equation, can be encountered in
various branches of theoretical physics [73, 60] and mathematics [78, 59, 51]. In the literature there are
known also non-commutative versions [64, 66, 67] of the Hirota–Miwa equation.

During last years there was some activity in providing geometrical interpretation for integrable discrete
systems. The idea was to transfer to a discrete level the well known connection between geometry and
integrable differential equations, see classical monographs [22, 21, 6, 42, 82, 43] written in the pre-
solitonic period, and more recent works [81, 72, 45]. Almost after the first works in this direction,
which included the discrete pseudospherical surfaces [11], evolutions of discrete curves [33], and discrete
isothermic surfaces [12], in [25] there was given a geometric interpretation of the N = 3 dimensional
Hirota–Miwa equation in its two dimensional Toda lattice form. The basic geometric object in [25] was
the Laplace sequence of two dimensional lattices made of planar quadrilaterals; see also Section 5 for
more details. Such lattices were introduced much earlier [74, 75] as discrete analogs of conjugate nets
on a surface.

Soon after [25] the multidimensional lattices of planar quadrilaterals, called also quadrilateral lattices
for short, were considered in [34]. In particular, it was shown there that such lattices are described by
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Figure 1. The geometric integrability scheme

solutions of the discrete Darboux system [15]. The initial boundary value problem for multidimensional
quadrilateral lattice is based on the following simple geometric statement (see Figure 1).

Consider points x0, x1, x2 and x3 in general position in PM , M ≥ 3. On the plane 〈x0, xi, xj〉,
1 ≤ i < j ≤ 3 choose a point xij not on the lines 〈x0, xi〉, 〈x0, xj〉 and 〈xi, xj〉. Then there exists
the unique point x123 which belongs simultaneously to the three planes 〈x3, x13, x23〉, 〈x2, x12, x23〉 and
〈x1, x12, x13〉.

This construction scheme is multidimensionaly consistent [34] and allows to determine K dimensional
quadrilateral lattice once a system of K(K − 1)/2 quadrilateral surfaces intersecting along K initial dis-
crete curves is given. The above property of the multidimensional consistency has been considered then
as a definition of geometric integrability reflecting the fact that integrable partial differential equations
are members of hierarchies [23]. If a geometric constraint, imposed on the initial points, propagates
during the construction, the corresponding reduction of the discrete Darboux equations is called geo-
metrically integrable. This point of view was used in [18, 27, 35, 31, 32], see also recent reeve [36], to
select integrable reductions of the quadrilateral lattice and to find the corresponding reductions of the
discrete Darboux equations.

For example, the integrability of quadrilateral lattices with elementary quadrilaterals inscribed in
circles, introduced in [10] as discrete analog of orthogonal coordinate systems, was first proved in this
way in [18]. The integrability of the circular lattice was then confirmed by the nonlocal ∂̄-dressing
method [37], by construction of the corresponding Darboux-type transformation [54] which satisfies
[61, 27] the permutability property, by construction of such lattices using the Miwa transformation from
the multicomponent BKP hierarchy [38], and by application of the algebro-geometric techniques [3].
Remarkably, as described in [5], there exists a quantization procedure for circular lattices, which leads
to solutions of the tetrahedron equation (the three dimensional analog of the Yang–Baxter equation).

We remark that in papers [65, 2] the multidimensional consistency is understood in a different way,
as a tool to detect integrable equations within certain classes of two dimensional systems defined on
quad-graphs. In that approach an integrable equation can be embedded in a three dimensional lattice,
imposing the same form of the equation (with appropriate parameters) in all two dimensional sublattices.
Notice that two dimensional systems constructed as uniform reductions (in our consistency sense) of
mutidimensional quadrilateral lattice Darboux equations are automatically multidimensionaly consistent
in the sense of [65, 2].

It turns out that the geometric notion of integrability very often associates integrable reductions of the
quadrilateral lattice with classical theorems [20] of incidence geometry. For example, integrability of the
circular lattice is a consequence of the Miquel theorem [62]. This observation makes the relation between
integrability of the discrete systems and geometry even more profound then the corresponding relation
on the level of differential equations. Integrable reductions of the quadrilateral lattice come from two
sources. The first are inner (i.e. invariant with respect to the full group of projective transformations of
the ambient space) symmetries of the lattice. The second type of reductions arises from the postulated
existence of additional structures (e.g., distinguished quadrics, hyperplanes) in the ambient space and
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Figure 2. The geometric equivalence of the Laplace sequence of two dimensional
quadrilateral lattices ψℓ, the Menelaus lattice φ∗, and three dimensional Desargues
lattice φ.

mimics the Cayley–Klein approach to subgeometries of the projective geometry, which was the starting
point of the famous Erlangen program. Such approach to possible classification of integrable discrete
systems was formulated in [27, 28], see also [13, 14].

Apart from the geometric interpretation of the three dimensional Hirota–Miwa equation in its two
dimensional Toda lattice form, there is known in the literature [55] an interpretation of its Schwarzian
form, the so called Menelaus lattice. It is related to the adjoint linear problem of (1.2) for a map
φ

∗ : Z3 → RM in the affine gauge, and gives the so called discrete Schwarzian KP equation, which is
related to the Hirota–Miwa equation by a nonlocal transformation [55, 76, 50]; see also Section 3.

An important observation [9], which was one of motivations of the present research, associates the
four dimensional consistency of the discrete Schwarzian KP equation with the Desargues configuration,
see Section 2. Another fact, which was the starting point of the paper, is that there is no essential
difference between the space of the algebro-geometric solutions of the Hirota–Miwa equation [58, 59]
and the quadrilateral lattice Darboux equation [3], provided one takes their Laplace transforms [39] into
consideration [29].

In the paper we study the maps φ : ZN → PM defined by the most simple nontrivial linear condition
stating that for any pair of indices i 6= j the points φ, φ(i) and φ(j) are collinear. This is a natural
geometric counterpart of the linear problem (1.2). We show in a synthetic geometry way that the
multidimensional consistency of the map follows from the Desargues theorem and its higher-dimensional
analogs.

Then, in Section 3 we draw algebraic consequences of the geometric definition of the Desargues maps.
As the algebraic significance of the Desargues theorem suggest [8], we consider projective spaces over
division rings, which leads to the non-Abelian Hirota–Miwa equation [67]. We discuss also various
gauge-equivalent forms of the equation in a non-commutative setting. It can be seen both from simple
geometric and algebraic considerations that the Desargues maps can be called also multidimensional
adjoint Menelaus maps; see Figure 2. We prefer however to call it in a way which reflects the projective
geometric character of the lattice and captures simultaneously its integrability properties.

In Section 4 we apply the nonlocal ∂̄-dressing method [1, 85, 52] to find large classes of solutions
to the Hirota–Miwa equation over the field C of complex numbers. In particular we show, as one may
expect from works [68, 70, 77, 30], that the τ -function of the Hirota–Miwa equation can be identified
with the Fredholm determinant of the integral equation inverting the nonlocal ∂̄-dressing problem. We
find that also on the level of the nonlocal ∂̄-dressing method the solution space of the Hirota–Miwa
system is the same like in the case of quadrilateral lattice Darboux system [15] provided one takes [39]
also the Laplace transformations of the lattice into consideration.

The three point condition in definition of the Desargues map can be considered as a serious degener-
ation of the quadrilateral lattice map four point condition. Such approach was presented for the three
point linear problem of the Menelaus lattice for example in [55]. In Section 5 we show however that the
quadrilateral lattice theory and the Desargues lattice theory are equivalent.
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2. Geometry of the Desargues maps

In this Section we study in detail geometric properties of the Desargues maps. After collecting basic
facts on the Desargues configuration we state some genericity assumptions concerning the maps. Then
we study multidimensional consistency of the Desargues maps.

2.1. The Desargues configuration. Among all incidence theorems in projective geometry the De-
sargues theorem (see Figure 3) plays a very distinguished role [20, 8]. It holds in projective spaces of
dimension more then two, and is an important element in proving the possibility of introduction of
homogeneous coordinates taking values in a division ring; in order to introduce such coordinates on
projective planes one should add it as an axiom.

The ten lines involved and the ten points involved are so arranged that each of the ten lines passes
through three of the ten points, and each of the ten points lies on three of the ten lines. Under the
standard duality of plane projective geometry (where points correspond to lines and collinearity of
points corresponds to concurrency of lines), the Desargues configuration is self-dual: axial perspectivity
is translated into central perspectivity and vice versa.

At first sight it seems that the Desargues configuration has less symmetry than it really has. However,
any of the ten points may be chosen to be the center of perspectivity, and that choice determines
which six points will be vertices of triangles and which line will be the axis of perspectivity. The
Desargues configuration has symmetry group S5 of order 120. It can be constructed from a 5 point
set, preserving the action of the symmetric group, by letting the points and lines of the Desargues
configuration correspond to 2 and 3 element subsets of the 5 points, with incidence corresponding to
containment.

Remark. In the above interpretation of the symmetry group of the Desargues configuration, the 4 element
subsets give rise to 5 complete quadrilaterals described by the Menelaus theorem, as used in [9] in
connection with the four dimensional consistency of the discrete Schwarzian KP equation.

2.2. The Desargues maps. In the paper we study the following maps, the connection of which with
the Desargues theorem is essential in showing their multidimensional consistency.

Definition 2.1. By Desargues map we mean a map φ : ZN → PM of multidimensional integer lattice
in Desarguesian projective space of dimension M ≥ 2, such that for any pair of indices i 6= j the points
φ, φ(i) and φ(j) are collinear.
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Remark. The image of a Desargues map can be called a Desargues lattice. However we would like to
stress that we do not use this notion in the sense of the lattice theory as described in [7, 48].

Let us discuss various genericity assumptions of the map. Consider an N -dimensional, N > 0,
hypercube graph with a distinguished vertex labeled by ∅, its first order neighbours labeled by {i},
i = 1, . . . , N , and other vertices labeled as follows: the fourth vertex of a quadrilateral with three other
vertices I, I ∪ {i}, I ∪ {j}, i, j 6∈ I, i 6= j is I ∪ {i, j}.

Definition 2.2. A Desargues N -hypercube consists of labelled vertices φI of anN dimensional hypercube
in projective space PM , M ≥ 2, such that for arbitrary multiindex I  {1, 2, . . . , N} there exists a line LI

incident with φI and with all the points φI∪{i}, i /∈ I. A Desargues N -hypercube is called non-degenerate
if all its vertices are distinct. A non-degenerate Desargues N -hypercube is called weakly generic if all
the lines LI are distinct.

Given two multiindices I1, I2, with I1 ⊂ I2, the points φJ , I1 ⊂ J ⊂ I2, of a weakly generic Desargues
N -hypercube form weakly generic Desargues (|I2| − |I1|)-hypercube. The space πI1,I2 spanned by the
points φJ , I1 ⊂ J ⊂ I2, has dimension (|I2| − |I1|) at most. For example, LI = πI,I∪{i} for all i /∈ I. We
write also πI = π∅,I .

Definition 2.3. A Desargues N -hypercube is called generic if dimπI1,I2 = |I2| − |I1| for all I1 ⊂ I2.

Remark. Notice that suitable projections of a generic Desargues hypercubes can produce weakly generic
Desargues hypercubes.

Definition 2.4. A Desargues map φ : ZN → PM is called (weakly) generic if the corresponding Desar-
gues lattice consists of (weakly) generic Desargues N -hypercubes under identification φI with φ(I) for a
fixed point φ of the lattice.

Notice that any weakly generic Desargues map φ : ZN → PM induces a map L : ZN → GM
1 into the

Grassmann space of lines in PM , where L is the line coincident with the point φ and all the neighbouring
φ(i), i = 1, . . . , N . Such maps are characterized by the following two properties.
(i) Any two neighbouring lines L and L(i) intersect.
(ii) The intersection points L ∩ L(−i) coincide for all 1 ≤ i ≤ N .

The maps L : ZN → GM
1 satisfying the first condition only, play an important role in the theory of

Darboux transformations of the quadrilateral lattice [39] and are called line congruences. It is natural
to call the line congruences satisfying also the second condition the Desargues congruences. Then the
points of the Desargues lattice can be recovered by φ = L ∩ L(−i), i = 1, . . . , N .

2.3. Multidimensional consistency of Desargues maps. Let us consider Desargues maps from
the point of view of their N dimensional consistency. Given point φ and its two nearest (in positive
directions) neighbours φ(i) and φ(j). By definition there exists a line L incident with the three points.
Assuming the Desargues map is weakly generic, the point φ(ij) can be an arbitrary point not on the line
L. Such a choice determines the lines L(i) and L(j).

2.3.1. Three dimensional consistency and the Veblen–Young axiom. Consider a point φ(k) ∈ L, k 6= i, j.
On the line L(i) choose a point φ(ik) distinct from φ(i) and φ(ij), thus determining the line L(k). Then
three dimensional compatibility of the Desargues map, i.e. the existence of the intersection point φ(jk)

of lines L(j) and L(k), is equivalent to the Veblen-Young axiom of the synthetic projective geometry,
which in the current notation states (compare Figure 2).

Given four distinct points φ(j), φ(k), φ(ij), φ(ik); if the lines Lφ(j)φ(k)
= L and Lφ(ij)φ(ik)

= L(i)

intersect, then the lines Lφ(j)φ(ij)
= L(j) and Lφ(k)φ(ik)

= L(k) intersect as well.
There is no condition for the point φ(ijk) , apart from weak genericity assumption, which means that

it should not be placed on the lines L, L(i), L(j), L(k).

2.3.2. Four dimensional consistency and the Desargues theorem. Add the next point φ(ℓ) on the line L,
ℓ 6= i, j, k, and the point φ(iℓ) ∈ L(i). The corresponding line L(ℓ), incident with φ(ℓ) and φ(iℓ), intersects
(by Veblen–Young) the lines L(j), L(k) in the points φ(jℓ) and φ(kℓ), correspondingly. The problem is to
find the four points φ(ijk), φ(ijℓ), φ(ikℓ) and φ(jkℓ) which satisfy the Desargues map condition.
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Choose a point φ(ijℓ), not on the lines L, L(i), L(j), L(k), and define therefore the lines L(ij), L(iℓ)

and L(jℓ). On the line L(iℓ) mark a point φ(ikℓ), thus defining the lines L(ik) and L(kℓ). The lines
L(jℓ) and L(kℓ) intersect (by Veblen–Young) in the point φ(jkℓ), which gives the line L(jk). We have
constructed two triangles in perspective from the line L(ℓ): the first with vertices φ(ij), φ(ik), φ(jk), and
the second with vertices φ(ijℓ), φ(ikℓ), φ(jkℓ). By the Desargues theorem the three lines L(ij), L(ik) and
L(jk) intersect in one point, which is by construction φ(ijk).

Remark. Notice that in the generic case when the points φ, φ(i), φ(ij) and φ(ijk) generate the space π(ijk)

of dimension three, then all the points whose shifts contain the index ℓ are obtained as intersections
of the lines of the ”ijk configuration” with the plane generated by the points φ(ℓ), φ(iℓ) and φ(ijℓ).
Moreover, to keep the configuration generic we add the point φ(ijkℓ) (which is not specified by the
previous construction) outside the space π(ijk) thus generating the four dimensional space π(ijkℓ).

2.3.3. The multidimensional consistency for arbitrary N . The multidimensional consistency of the De-
sargues map is equivalent to existence of a Desargues N -hypercube for arbitrary N , provided appropri-
ate initial data have been prescribed. The following proposition allows to construct generic Desargues
(N + 1)-hypercubes from generic Desargues N -hypercubes in spaces of the dimension large enough. It is
an analogue of the well known, mentioned in the Remark above, three dimensional proof of the Desargues
theorem. By suitable projections one can produce therefore weakly generic Desargues hypercubes.

Proposition 2.1. Given generic Desargues N -hypercube in PM , where N < M . On the N lines L∅,
L{1}, L{1,2}, L{1,2,...,N−1}, chose N points φ{N+1}, φ{1,N+1}, φ{1,2,N+1}, . . .φ{1,2,...,N−1,N+1} in generic
position, correspondingly, in such a way that the N − 1 dimensional subspace U of π{1,2,...,N}

U = 〈φ{N+1}, φ{1,N+1}, φ{1,2,N+1}, . . . φ{1,2,...,N−1,N+1}〉

is not incident with any vertex of the hypercube. Then the unique intersection points φ{I,N+1} = U ∩LI

of the hyperplane with the lines of the N -hypercube, and the points of the initial hypercube supplemented
by a point φ{1,2,...,N,N+1} /∈ π{1,2,...,N} give a generic Desargues (N + 1)-hypercube.

Proof. By the assumption of the Proposition the lines LI , I  {1, 2, . . . , N}, are not contained in the
hyperplane U , thus all the points φI∪{N+1} are well defined. Having then all the vertices of the (N + 1)-
hypercube we will check that it satisfies the desired properties.

Given multiindex I  {1, 2, . . . , N,N + 1} there are two possibilities.
(i) N + 1 /∈ I. When |I| = N then I = {1, 2, . . . , N} and define LI as the unique line incident with
φ{1,2,...,N} and φ{1,2,...,N,N+1}. If |I| < N then take as the line LI the line of the N -hypercube, and
φI∪{N+1} ∈ LI by construction.
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(ii) N+1 ∈ I. There exists i ∈ {1, 2, . . . , N}, i /∈ I. Set LI as the unique line incident with φI and φI∪{i}.
To conclude the proof of the Desargues property we will show that LI is independent of a particular
choice of such an index i. When |I| = N then there is nothing to prove because there is only one index
i /∈ I. If 1 ≤ |I| < N set J = I \ {N + 1}, there exists j ∈ {1, 2, . . . , N}, i 6= j, and j /∈ J . Consider the
plane πJ,J∪{i,j} which contains the three lines LJ , LJ∪{i} and LJ∪{j}, and is not contained in U . Then
LI = πJ,J∪{i,j} ∩ U which shows that also φJ∪{j,N+1} = φI∪{j} ∈ LI , thus also the index j can be used
to define LI .

Finally, to prove genericity of the Desargues (N + 1)-hypercube notice that for all I1 ⊂ I2 ⊂
{1, 2, . . . , N} the intersection πI1,I2∩LI2 is the point φI2 only. This implies that dimπI1∪{N+1},I2∪{N+1} =
|I2| − |I1|, and dim πI1,I2∪{N+1} = |I2| − |I1| + 1. �

2.4. The adjoint Desargues maps. To obtain the analogous geometric meaning of the adjoint of
the linear problem of the Hirota–Miwa system, define the adjoint Desargues maps (or multidimensional
Menelaus maps, if one restricts to affine part of PM ) as maps φ∗ : ZN → PM such that for any pair
of indices i 6= j the points φ∗(i), φ

∗
(j) and φ∗(ij) are collinear. This leads to the following definition of an

adjoint Desargues N -hypercube.

Definition 2.5. An adjoint Desargues N -hypercube consists of labelled vertices of an N dimensional
hypercube in projective space PM , M ≥ 2, such that for arbitrary multiindex I ⊂ {1, 2, . . . , N}, |I| > 1,
and for any pair of distinct indices i, j ∈ I the vertex φ∗I is incident with a line passing through φ∗I\{i}

and φ∗I\{j}.

One can notice that given Desargues map φ : ZN → PM , its superposition φ ◦ ı with the arrows
inversion map ı : ZN → ZN , ı(n) = −n, is an adjoint Desargues map (and vice versa). Similarly,
any Desargues N -hypercube gives rise to the adjoint Desargues N -hypercube under identification φ∗I =
φ{1,2,...,N}\I . The geometric theory of the adjoint Desargues map follows from that identification.

3. Desargues maps and the non-commutative discrete KP equation

In this Section we study algebraic consequences of the geometric definition of the Desargues map
φ : ZN → PM . Because to prove its multidimensional compatibility we use only the Desargues theorem
then the natural coordinates of the projective space are elements of a division ring D. This leads to
the corresponding non-commutative nonlinear equations which we formulate first in arbitrary gauge,
i.e., keeping the freedom in rescaling the homogeneous coordinates by a nonzero factor. Two basic
specifications of the gauge are discussed in the second part of this Section.

3.1. The linear problem for the Darboux maps and its compatibility conditions. In the
homogeneous coordinates φ : ZN → DM+1

∗ (we consider right vector spaces) the map can be described
in terms of the linear system

(3.1) φ+ φ(i)Aij + φ(j)Aji = 0, i 6= j,

where Aij : ZN → D∗ are certain non-vanishing functions.

Proposition 3.1. The compatibility of the linear system (3.1) is equivalent to equations

A−1
ij Aik +A−1

kj Aki = 1,(3.2)

Aik(j)Ajk = Ajk(i)Aik,(3.3)

where the indices i, j, k are distinct.

Proof. From the linear problem (3.1) for the pair (i, k) find φ(k) in terms of φ and φ(i). Similarly, find

φ(k) from the equation for the pair (j, k). Comparing the resulting relation between φ and φ(i) and φ(j)

with the linear problem (3.1) for the pair (i, j) gives, after some elementary algebra, the first equation.
The compatibility of the linear problem (3.1) shifted in k direction with two other similar equations

involving three distinct indices i, j, k gives rise to a linear relation between φ, φ(k) and φ(ij). Their
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linear independence implies the vanishing of the corresponding coefficients

A−1
ik A

−1
kj(i)Aij(k) +A−1

jk A
−1
ki(j)Aji(k) = 0,(3.4)

1 +AkiA
−1
ik A

−1
kj(i)Aij(k) +AkjA

−1
jk A

−1
ki(j)Aji(k) = 0,(3.5)

Ajk(i)A
−1
kj(i)Aij(k) +Aik(j)A

−1
ki(j)Aji(k) = 0.(3.6)

Equations (3.4) and (3.6) directly lead (3.3).
Using (3.3) we can replace equations (3.4) and (3.5) by

A−1
ik AijA

−1
kj +A−1

jk AjiA
−1
ki = 0,(3.7)

1 + (Aki −Akj)A−1
ik AijA

−1
kj = 0.(3.8)

We will show that equation (3.7) follows from the condition (3.2). Indeed, starting from the identity

Akj(1 −A−1
kj Aki) +Aki(1 −A−1

ki Akj) = 0,

and using (3.2) we get

AkjA
−1
ij Aik +AkiA

−1
ji Ajk = 0,

equivalent to (3.7). Also equation (3.8) is a direct consequence of the condition (3.2). �

Corollary 3.2. For any three distinct indices i, j, k we can write down three distinct equations of the
form (3.2). However, it can be shown that any two of them imply the third one.

Corollary 3.3. Equations (3.3) imply existence of the potentials ρi : ZN → D∗, unique up to functions
of single variables ni, such that

(3.9) ρi(j) = Ajiρi, i 6= j.

3.2. Gauges. We are still left with the possibility to apply the gauge transformation

(3.10) φ = φ̃G,

where G : ZN → D∗ is an arbitrary non-vanishing function. Then φ̃ satisfies the linear problem (3.1)
with the coefficients

(3.11) Ãij = G(i)AijG
−1.

By fixing properties of G one can arrive to relation between the coefficients of the linear problem. We
will discuss two gauges. First gauge, which because of the geometric interpretation can be called the
affine gauge, gives in the commutative case the discrete modified KP equation. The second gauge in the
commutative case is the linear problem for the Hirota–Miwa equation.

3.2.1. The modified discrete KP gauge.

Proposition 3.4. When the gauge function is a non-vanishing solution of the linear problem (3.1) then

the coefficients Ãij are constrained by the relation

(3.12) Ãij + Ãji = −1, i 6= j.

Remark. When as the solution of the linear problem is taken the last coordinate φM=1 of the homo-
geneous representation of the map then we obtain the standard transition to the non-homogeneous
coordinates.

Remark. In the affine gauge the algebraic compatibility system (3.2) consists, for any triple of distinct
indices i, j, k, of one independent equation.

It is convenient (we follow the reasoning presented in [76] in the commutative case) to rewrite the
linear problem (3.1) subject to condition (3.12) as

(3.13) (φ(j) − φ) = (φ(i) − φ)Bij ,

where

(3.14) Bij = B−1
ji = Aij(1 +Aij)−1.
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Then the algebraic compatibility takes the form

(3.15) BijBjk = Bij ,

which allows for introduction of a potential σ : ZN → D∗ such that

(3.16) Bij = σ(i)σ
−1
(j) .

The second part of the compatibility condition takes then the form of the non-commutative discrete
mKP equation [66]

(3.17) (σ−1
(i) − σ−1

(j) )σ(ij) + (σ−1
(j) − σ−1

(k))σ(jk) + (σ−1
(k) − σ−1

(i) )σ(ki) = 0.

Finally, notice that due to the compatibility of the system

(3.18) (φ(j) − φ)σ(j) = (φ(i) − φ)σ(i),

each coordinate φk : ZN → D of φ satisfies the generalized lattice spin equation [66]

(3.19) (φ(jk) − φ(k))(φ(jk) − φ(j))
−1(φ(ij) − φ(j))(φ(ij) − φ(i))

−1(φ(ik) − φ(i))(φ(ik) − φ(k))
−1 = 1,

called also the non-commutative Schwarzian discrete KP equation [16, 56].

3.2.2. The discrete KP gauge. In order to introduce the second gauge we need the following result.

Lemma 3.5. There exists non-vanishing function G defined as a solution of the system

(3.20) G(i)Aij = −G(j)Aji, i 6= j.

Proof. The algebraic compatibility of equations (3.20) for three pairs of indices i, j, k, has the form

(3.21) A−1
jk AjiA

−1
ij +A−1

kj AkiA
−1
ik = 0, i, j, k distinct.

It can be proved by application of the algebraic compatibility condition (3.2) starting from the identity

(1 −A−1
ik Aij)A−1

ij + (1 −A−1
ij Aik)A−1

ik = 0.

�

Proposition 3.6. The linear system (3.1) is gauge equivalent to the discrete linear problem of the
non-Abelian Hirota–Miwa equation [24, 67]

(3.22) φ(i) − φ(j) = φUij , i 6= j ≤ N.

Proof. Take the gauge function G as in Lemma above, which gives (we skip tildas)

(3.23) Aij = −Aji,

and set Uij = A−1
ji . �

In this gauge the compatibility conditions (3.2)-(3.3) reduce to the following systems for distinct
triples i, j, k

Uij + Ujk + Uki = 0,(3.24)

UkjUki(j) = UkiUkj(i).(3.25)

This allows to introduce potentials ri : ZN → D∗ such that

(3.26) ri(j) = riUij , i 6= j;

see [67] for further properties of the system.

Remark. In the commutative case the functions ri can be parametrized in terms of a single potential τ

(3.27) ri = (−1)
P

k<i
nk
τ(i)

τ
,

which leads to the linear problem (1.2), while and the algebraic compatibility (3.24) gives the Hirota–
Miwa equation (1.1).
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4. Application of the nonlocal ∂̄-dressing method

In this Section the division ring D is replaced by the field C of complex numbers. By application of
the nonlocal ∂̄-dressing method [1, 85, 52] we construct solutions of the Hirota–Miwa equation and the
corresponding solutions of the linear problem.

Consider the following integro-differential equation in the complex plane C

(4.1) ∂̄χ(λ) = ∂̄η(λ) +

∫

C

R(λ, λ′)χ(λ′) dλ′ ∧ dλ̄′,

where R(λ, λ′) is a given ∂̄ datum, which decreases quickly enough at ∞ in λ and λ′, and the function
η(λ), the normalization of the unknown χ(λ), is a given rational function, which describes the polar
behavior of χ(λ) in C and its behavior at ∞:

χ(λ) − η(λ) → 0, for |λ| → ∞.

We remark that the dependence of χ(λ) and R(λ, λ′) on λ̄ and λ̄′ will be systematically omitted, for
notational convenience.

Due to the generalized Cauchy formula the nonlocal ∂̄ problem (4.1) is equivalent to the following
Fredholm integral equation of the second kind

(4.2) χ(λ) = η(λ) −

∫

C

K(λ, λ′)χ(λ′)dλ′ ∧ dλ̄′,

with the kernel

(4.3) K(λ, λ′) =
1

2πi

∫

C

R(λ′′, λ′)

λ′′ − λ
dλ′′ ∧ dλ̄′′.

Recall (see, for example [79]) that the Fredholm determinant D is defined by the series

(4.4) D = 1 +

∞
∑

m=1

1

m!

∫

Cm

K

(

ζ1 ζ2 . . . ζm
ζ1 ζ2 . . . ζm

)

dζ1 ∧ dζ̄1 . . . dζm ∧ dζ̄m ,

where

K

(

ζ1 ζ2 . . . ζm
µ1 µ2 . . . µm

)

= det
(

K(ζi, µj)
)

1≤i,j≤m
.

For a non-vanishing Fredholm determinant the solution of (4.2) can be written in the form

(4.5) χ(λ) = η(λ) −

∫

C

D(λ, λ′)

D
η(λ′)dλ′ ∧ dλ̄′,

where the Fredholm minor is defined by the series

(4.6) D(λ, λ′) =

∞
∑

m=0

1

m!

∫

Cm

K

(

λ ζ1 . . . ζm
λ′ ζ1 . . . ζm

)

dζ1 ∧ dζ̄1 . . . dζm ∧ dζ̄m .

Let λi ∈ C, i = 1, . . . , N be distinct points of the complex plane. Consider the following dependence
of the kernel R on the variables n = (n1, . . . , nN) ∈ ZN

(4.7) R(i)(λ, λ
′;n) = (λ− λi)

−1R(λ, λ′)(λ′ − λi),

or equivalently

(4.8) R(λ, λ′;n) = E(λ;n)−1R0(λ, λ′)E(λ′;n), E(λ;n) =

N
∏

i=1

(λ− λi)
ni ,

where R0(λ, λ′) is independent of n. We assume that R0 decreases at λi and in poles of the normalization
function η fast enough such that χ− η is regular in these points [17, 15].

Remark. In the paper we always assume that the kernel R in the nonlocal ∂̄ problem is such that the
Fredholm equation (4.2) is uniquely solvable. Then, by the Fredholm alternative, the homogeneous
equation with η = 0 has only the trivial solution.

Remark. The structure of the function E(λ;n) mimics the analytic structure of the Baker–Akhezer wave
function used in [59] to solve the discrete KP equation by the algebro-geometric techniques, where the
role of the Fredholm altrnative fulfills the Riemann–Roch theorem.
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Lemma 4.1. The evolution (4.9) of the kernel of the Fredholm equation implies the following evolution
of the determinants in the series defining the Fredholm determinant D

K(i)

(

ζ1 . . . ζm
ζ1 . . . ζm

∣

∣

∣

∣

n

)

= K

(

ζ1 . . . ζm
ζ1 . . . ζm

∣

∣

∣

∣

n

)

−
m

∑

j=1

K

(

ζ1 . . . λi . . . ζm
ζ1 . . . ζj . . . ζm

∣

∣

∣

∣

n

)

.

Proof. The evolution (4.7) of the kernel R implies that the kernel K of the integral equation (4.2) is
subject to the equation

(4.9) K(i)(λ, λ
′;n) = (λ− λi)

−1 [K(λ, λ′;n) −K(λi, λ
′;n)] (λ′ − λi),

the conclusion is reached by basic linear algebra. �

Proposition 4.2. Let χ(λ;n) be a solution of the ∂̄ problem (4.1) with the canonical normalization
η = 1 then the function ψ(λ;n) = χ(λ;n)E(λ;n) satisfies the linear system (3.22) with the potentials

(4.10) Uij(n) = (λj − λi)
χ(j)(λi;n)

χ(λi;n)
.

Proof. The combination (λ − λi)χ(i)(λ;n) − (λ − λj)χ(j)(λ;n) satisfies the Fredholm equation with
constant (in λ) normalization thus must be proportional to χ(λ;n). By evaluating of both sides in λi we
find the coefficient of proportionality. Multiplication of both sides by E(λ;n) gives the statement. �

Corollary 4.3. The form of Uij given above implies that the potentials ri, defined by equation (3.26),
read

(4.11) ri(n) =
∏

k 6=i

(λk − λi)
nkχ(λi;n).

Theorem 4.4. Within the considered class of solutions of the discrete KP equation the τ-function is
given by

(4.12) τ(n) = (−1)
P

i<j ninj/2
∏

i6=j

(λi − λj)ninj/2D(n).

Proof. Evaluation of equation (4.5) at λi for χ(λ;n) like in Proposition 4.2 gives

(4.13) χ(λi;n) = 1 −

∫

C

D(λi, λ
′;n)

D(n)
dλ′ ∧ dλ̄′.

From Lemma 4.1 we obtain that

(4.14) D(i)(n) = D(n) −

∫

C

D(λi, λ
′;n)dλ′ ∧ dλ̄′.

Comparison of both equations shows that

(4.15) D(i)(n) = χ(λi;n)D(n),

which due to equations (3.27) and (4.11) gives the statement. �

The above result, provides the ”determinant interpretation” of the τ -function within the class of
solutions which can be obtained by application of the nonlocal ∂̄-dressing method.

Recently, within the same approach the τ -function of the quadrilateral lattices has been studied [30].
As it can be deduced from [15, 39], the structure of the ∂̄ datum in the nonlocal ∂̄-dressing method which
leads to the quadrilateral lattices and all the lattices generated by their Laplace transforms is as follows.
Let λ±i ∈ C, i = 1, . . . ,K be pairs of distinct points of the complex plane, let m = (m1, . . . ,mK) ∈ ZK

be points of the ZK integer lattice and let ℓ = (ℓ1, . . . , ℓK) ∈ AK−1, ℓ1 + ℓ2 + · · ·+ ℓK = 0, be a point of
the AK−1 root lattice. The function E(λ; (m, ℓ)) which should replace the function E(λ;n) in equation
(4.8) reads

(4.16) E(λ; (m, ℓ)) =

K
∏

i=1

(λ− λ−i )mi

(λ− λ+
i )mi+ℓi

.

The variable m is the quadrilateral lattice discrete parameter, while the Laplace transformation Lij is
given by ℓi 7→ ℓi + 1, ℓj 7→ ℓj − 1. After the proper identification of 2K points λ±i , i = 1, . . . ,K, with
the points λ1, . . . , λ2K−1, λ2K = ∞, we obtain the change of variables discussed in Section 5.
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ψ

ψ
(ij)

ψ
(−j)

L
ij
(ψ)

(i−j)
ψ

(i)ψ

ψ
(j)

Figure 5. The Laplace transform of the quadrilateral lattice

5. Desargues maps and quadrilateral lattices

This Section is devoted to the study of the relation between Desargues maps and quadrilateral lattices.
We will show that the theory of quadrilateral lattices can be embedded in the theory the Desargues maps,
and for odd N = 2K − 1 this embedding is one-to-one (the case of even N = 2K can be treated as
dimensional reduction of 2K + 1). The relation described below generalizes the relation, known on the
τ -function level, between the Hirota equation written as the discrete KP equation and its version in the
discrete two dimensional Toda lattice form [84]. The relation between discrete two dimensional Toda
lattice and two dimensional quadrilateral lattice was the subject of [25, 26].

Recall that the condition of planarity of elementary quadrilaterals of ψ : ZK → PM written in the
non-homogeneous coordinates ψ : ZK → DM gives the following linear problem

(5.1) ψ(ij) −ψ = (ψ(i) −ψ)aij + (ψ(j) −ψ)aji, i 6= j,

where aij : ZK → D are certain functions which should satisfy the corresponding compatibility condition.
The Laplace transformation Lij of ψ is constructed [25, 39] via intersection of the tangent lines

〈ψ, ψ(i)〉 with their j-th negative neighbours 〈ψ(−j), ψ(i,−j)〉, see Figure 5. In the non-homogeneous
coordinates we have

(5.2) Lij(ψ) = ψ + (ψ(i) −ψ)(1 − aji(−j))
−1.

The Laplace transforms of quadrilateral lattices are quadrilateral lattices again, and the following rela-
tions are hold [39]

Lij ◦ Lji = id , Ljk ◦ Lij = Lik, Lki ◦ Lij = Lkj .

They allow to parametrize the quadrilateral lattices generated from one quadrilateral lattice via the
Laplace transformations by points of the root lattice of the type AK−1 (see also discussion in [40]).
This suggests to consider the Laplace transformation directions as new variables. In order to place all
variables on equal footing we change the variables as suggested in Section 4.

Consider, as the following change of variables between n ∈ Z2K−1 integer lattice and (m, ℓ) ∈ ZK ×
Q(AK−1), where Q(AK−1) = {ℓ ∈ ZK | ℓ1 + ℓ2 + · · · + ℓK = 0} is the AK−1 root lattice

n2i−1 = mi, n2i = −mi − ℓi, i = 1, . . . ,K,

here, for convenience, we have defined also n2K = −n1 − n2 − · · · − n2K−1.
For fixed ℓ ∈ Q(AK−1) define the map ψℓ : ZK → PM given by ψℓ(m) = φ(n), where the relation

between n and m and ℓ is given above. Then we have

(5.3) φ(±(2K−1)) = ψℓ
(±K),

and for i 6= K

(5.4) φ(±(2i−1)) = ψℓ∓ei±eK

(±i) , φ(±2i) = ψℓ∓ei±eK ,

where ei is the element of the canonical basis of RK having 1 as i-th component and 0’s elsewhere.

Proposition 5.1. The maps ψℓ : ZK → PM are quadrilateral lattice maps. Moreover ψℓ+ei−ej is the
Laplace transform Lij(ψℓ) of ψℓ.
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Proof. Assume that i < j < K. The point φ(−2i,2j−1) = ψ
ℓ+ei−ej

(j) and the points φ = ψℓ, φ(2i−1,−2i) =

ψℓ
(i) belong to the line containing (positive) neighbours of φ(−2i). Similarly, the same point φ(−2i,2j−1) =

ψ
ℓ+ei−ej

(j) and the points φ(2j−1,−2j) = ψℓ
(j), φ(2i−1,−2i,2j−1,−2j) = ψℓ

(ij) belong to the line containing

(positive) neighbours of φ(−2i,2j−1,−2j). This shows that the lines 〈ψℓ, ψℓ
(i)〉 and 〈ψℓ

(j), ψ
ℓ
(ij)〉 intersect in

ψ
ℓ+ei−ej

(j) . Therefore the four points ψℓ, ψℓ
(i), ψ

ℓ
(j) and ψℓ

(ij) are coplanar, and ψℓ+ei−ej = Lij(ψℓ).

For j < i < K the reasoning is similar. The details of the case when one of the indices i or j are
equal to K is left for the reader. �

Let us illustrate the above reasoning (still i < j < K) in making simple calculation in the affine gauge

(3.12). Collinearity of ψℓ, ψℓ
(i) and ψ

ℓ+ei−ej

(j) gives

(5.5) (ψℓ
(i) −ψ

ℓ)A2i−1,2i(−2i) = (ψ
ℓ+ei−ej

(j) −ψℓ)A2j−1,2i(−2i) .

Similarly, collinearity of ψℓ
(j), ψ

ℓ
(ij) and ψ

ℓ+ei−ej

(j) gives in the affine gauge

(5.6) (ψℓ
(ij) −ψ

ℓ
(j))A2i−1,2i(−2i,2j−1,−2j) = (ψ

ℓ+ei−ej

(j) −ψℓ
(j))A2j−1,2i(−2i,2j−1,−2j) .

Elimination of ψ
ℓ+ei−ej

(j) from the above equations implies that ψℓ satisfies equation (5.1) with the

coefficients

aℓ
ij = A2i−1,2i(−2i)A

−1
2j−1,2i(−2i)A2j−1,2i(−2i,2j−1,−2j)A

−1
2i−1,2i(−2i,2j−1,−2j) ,(5.7)

aℓ
ji = 1 −A2j−1,2i(−2i,2j−1,−2j)A

−1
2i−1,2i(−2i,2j−1,−2j) .(5.8)

Equation (5.5) gives

(5.9) ψ
ℓ+ei−ej

(j) = ψℓ + (ψℓ
(i) −ψ

ℓ)A2i−1,2i(−2i)A
−1
2j−1,2i(−2i),

which because of the identification (5.8) agrees with equation (5.2).

Remark. The reverse identification from K dimensional quadrilateral lattice ψ and all quadrilateral
lattices generated via the Laplace transformations to the corresponding 2K − 1 Desargues lattice is
based on the observation [39], that for the fixed direction i of the quadrilateral lattice the 2K points ψℓ,
ψℓ

(i), Lij(ψ)ℓ, Lij(ψℓ
(j)) are collinear. The corresponding lines (in the present notation they are denoted

L(−2i)) form i-th tangent congruence of the lattice ψℓ.

Remark. It is known [34] that K dimensional quadrilateral lattice is uniquely determined from a system
of K(K−1)/2 quadrilateral surfaces intersecting along K initial discrete curves which have one point in
common. The successive application of the Laplace transformations generates then 2K − 1 dimensional
Desargues lattice. Because a quadrilateral surface is uniquely determined from two initial curves by two
functions of two discrete variables, therefore a solution of 2K − 1 dimensional Hirota–Miwa equation is
determined given K(K − 1) functions of two (appropriate) variables.

Remark. The Desargues lattices of even N = 2K dimension can be obtained as dimensional reduction of
2K + 1 Desargues lattices (set n2K+1 = 0). Equivalently, it is generated by the Laplace transformations
from a K dimensional quadrilateral lattice and focal lattices of a congruence conjugate to the lattice
(see [39] for explanation of the terms used).

6. Conclusion and final remarks

In the paper we studied an elementary geometric meaning of the celebrated Hirota–Miwa system. The
multidimensional consistency of the corresponding map relies on the Desargues theorem and its higher-
dimensional generalizations. Since the Desargues theorem is valid in projective spaces over division
rings, we are automatically led to the non-commutative Hirota-Miwa system of equations. Notice, that
the division ring context of the Hirota–Miwa equation shouldn’t be considered just as a curiosity. It is
known [19, 69, 49] that the standard quantum algebras [47, 41, 83, 71] admit division rings of quotients.
In view of recent developments on quantization of the discrete Darboux equations [4, 5] this aspect of
integrable discrete geometry deserves deeper studies.
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Although the linear problem for the Desargues maps seems to be strong degeneration of the linear
problem for the quadrilateral lattice map, surprisingly both theories are equivalent, as suggested by
their equivalence on the level of the algebro-geometric solutions, and those obtained by the non-local
∂̄-dressing method. We found also the meaning of the τ -function of the Hirota–Miwa equation for that
class of solution as a Fredholm determinant.

We would like to stress that the above-mentioned equivalence becomes elementary and visible on the
level of discrete systems. On the level of differential equations the situation is much more subtle. It is
however known [53] that one component KP hierarchy can been reformulated, after the transition to the
so called Miwa coordinates, as a system of infinite number of (partial differential) Darboux equations.

The theory of discrete integrable systems is richer (see for example [80, 44]) but also, in a sense, simpler
then the corresponding theory of integrable partial differential equations. In the course of a limiting
procedure, which gives differential systems from the discrete ones, various symmetries and relations
between different discrete systems are lost or hidden. The present paper gives new example supporting
this claim, and shows once again the superior role of the (non-Abelian) Hirota–Miwa equation in the
integrable systems theory.
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Desargues configuration in foundations of geometry, and an important warning by Mark Pankov on
a terminological confusion with the lattice theory. The author thanks the Isaac Newton Institute for
Mathematical Sciences for hospitality during the programme Discrete Integrable Systems.

References

1. M. J. Ablowitz, D. Bar Yaacov, and A. S. and Fokas, On the inverse scattering problem for the Kadomtsev–Petviashvili
equation, Stud. Appl. Math. 69 (1983), 135–143.

2. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, Classification of integrable equations on quadgraphs. The consistency
approach, comm. Math. Phys. 233 (2003) 513–543.

3. A. A. Akhmetshin, I. M. Krichever, and Y. S. Volvovski, Discrete analogues of the Darboux–Egoroff metrics, Proc.
Steklov Inst. Math. 225 (1999) 16–39.

4. V. V. Bazhanov, and S. M. Sergeev, Zamolodchikov’s tetrahedron equation and hidden structure of quantum groups,
J. Phys. A: Math. Gen. 39 (2006) 3295–3310.

5. V. V. Bazhanov, V. V. Mangazeev, and S. M. Sergeev, Quantum geometry of three-dimensional lattices, J. Stat. Mech.:
Th. Exp. (2008) P07004.

6. L. Bianchi, Lezioni di geometria differenziale, Zanichelli, Bologna, 1924.
7. G. Birkhoff, Lattice theory, Revised edition, AMS, New York, 1948.
8. F. Beukenhout, and P. Cameron, Projective and affine geometry over division rings, [in:] Handbook of incidence

geometry, F. Beukenhout (ed.), pp. 27–62, Elsevier, Amsterdam, 1995.
9. A. I. Bobenko, From discrete differential geometry to classification of discrete integrable systems, talk given at the

Workshop Quantum Integrable Discrete Systems, 23–27 March 2009, Issak Newton Institute for Mathematical Sciences,
Cambridge UK, http://www.newton.ac.uk/programmes/DIS/seminars/032610006.html.

10. A. Bobenko, Discrete conformal maps and surfaces, [in:] Symmetries and Integrability of Difference Equations
(P. Clarkson and F. Nijhoff, eds.), Cambridge University Press, 1999, pp. 97–108.

11. A. Bobenko, and U. Pinkall, Discrete surfaces with constant negative Gaussian curvature and the Hirota equation, J.
Diff. Geom. 43 (1996), 527–611.

12. A. I. Bobenko, and U. Pinkall, Discrete isothermic surfaces, J. Reine Angew. Math. 475 (1996) 187–208.
13. A. I. Bobenko, and Yu. B. Suris, Isothermic surfaces in sphere geometries as Moutard nets, Proc. R. Soc. A 463

(2007) 3171–3193.

14. A. I. Bobenko, and Yu. B. Suris, Discrete differential geometry: integrable structure, AMS, Providence, 2009.
15. L. V. Bogdanov, and B. G. Konopelchenko, Lattice and q-difference Darboux–Zakharov–Manakov systems via ∂̄ method,

J. Phys. A: Math. Gen. 28 L173–L178.
16. L. V. Bogdanov, and B. G. Konopelchenko, Analytic-bilinear approach to integrable hiererchies II. Multicomponent

KP and 2D Toda hiererchies, J. Math. Phys. 39 (1998) 4701–4728.
17. L. V. Bogdanov, and S. V. Manakov, The nonlocal ∂̄-problem and (2+1)-dimensional soliton equations, J. Phys. A:

Math. Gen. 21 (1988) L537–L544.
18. J. Cieśliński, A. Doliwa, and P. M. Santini, The integrable discrete analogues of orthogonal coordinate systems are

multidimensional circular lattices, Phys. Lett. A 235 (1997) 480–488.
19. G. Cliff, The division ring of quotients of the coordinate ring of the quantum general linear group, J. London Math.

Soc. 51 (1995) 503–513.
20. H. S. M. Coxeter, Introduction to geometry, Wiley and Sons, New York, 1961.
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83. S. L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613–665.
84. A. Zabrodin, A survey of Hirota’s difference equations, Theor. Math. Phys. 113 (1997) 1347–1392.
85. V. E. Zakharov, and S. V. Manakov, Construction of multidimensional nonlinear integrable systems and their solutions,

Funct. Anal. Appl. 19 (1985) 89–101.

Faculty of Mathematics and Computer Science, University of Warmia and Mazury, ul. Żo lnierska 14, 10-561
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