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Abstract. Integrable difference equations commonly have more low-order conservation laws than occur
for non-integrable difference equations of similar complexity. We use this empirical observation to sift

a large class of difference equations, in order to find candidates for integrability. It turns out that all

such candidates have an equivalent affine form. These are tested by calculating their algebraic entropy.
In this way, we have found several types of integrable equations, two of which seem to be new. One of

the new equations occurs as a singular limit of the lattice MKdV equation; the remaining one seems to
be isolated from all currently-known discrete integrable systems. We also list all single-tile conservation

laws for the integrable equations in the above class.

1. Introduction

A quad-graph equation is a scalar difference equation for u(k, l), where (k, l) ∈ Z2, which is of the form

F(k, l, u00, u10, u01, u11) = 0. (1)

Here uij denotes u(k + i, l + j) and we assume that F depends on all four of these values. Various
approaches have been used to discover quad-graph equations that are integrable. Having developed
the bilinear formalism for continuous integrable systems, Hirota discretized the bilinear operators for
several known integrable systems, obtaining difference equations that had soliton solutions built-in [1–3].
By contrast, Capel et al. focused on discretizations of plane wave factors for the singular integral
equations that are ubiquitous features of continuous integrable systems [4–6]. Whereas these approaches
used discretizations of problems that were known to be integrable, Adler, Bobenko and Suris (ABS)
dealt directly with quad-graph equations without reference to continuous systems. They obtained a
classification of all integrable quad-graph equations that are consistent on a cube (and thus admit a Lax
pair), subject to certain nondegeneracy conditions [7,8]. The idea that consistency on a cube is a sufficient
condition for integrability was proposed independently by Nijhoff [9] and Bobenko and Suris [10].

To make further progress, we adopt a different strategy. There is a systematic method for construct-
ing conservation laws of difference equations; this has been used to identify low-order conservation laws
of many integrable quad-graph equations [11, 12]. From this work, we observe that integrable differ-
ence equations tend to have more low-order conservation laws than non-integrable equations of similar
complexity. Although this observation is purely empirical, we use it to sift a large class of quad-graph
equations, in order to find equations that admit ‘extra’ conservation laws. (This approach is dual to
that of Levi and Yamilov, who recently obtained some necessary conditions for the existence of higher
symmetries – which again indicate integrability – for certain types of quad-graph equations [13]). Having
obtained a shortlist of possible candidates for integrability, we test their algebraic entropy.

Zero algebraic entropy is a signature of integrability [14–16]. This occurs for affine linear quad-graph
equations when an arbitrary set of initial conditions produces polynomial growth in degree as one moves
away from the initial points (see §3 for details). Linear growth in degree implies that the quad-graph
equation is linearizable; all known integrable quad-graph equations that are not linearizable exhibit
quadratic growth. The calculation of algebraic entropy is a diagnostic test, rather than a constructive
method. For instance, Hietarinta discovered a quad-graph equation that is consistent on a cube, but
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does not appear in the ABS list [17]. A calculation of algebraic entropy showed that growth in degree
for this quad-graph equation is linear; separately, Ramani et al. found a clever linearization [18].

In the next section, we determine conditions for the existence of extra conservation laws for a large
class of quad-graph equations. Algebraic entropy is calculated in §3, and we find that most of the sifted
quad-graph equations exhibit quadratic growth in degree. For completeness, we list the conservation
laws in §4, before discussing our results and their consequences in §5.

2. Classification of integrable cases via conservation laws

In this section, we examine the conservation laws of equations of the form

u11 = ε1u00 +A(u10)− ε2A(u01). (2)

Here each εi is either 1 or −1, and A is a nonlinear complex-valued function that is assumed to be ‘dif-
ferentiable enough’ (so that as many derivatives as needed are well-defined, at least locally). Henceforth,
we use Aij to denote A(uij). Conservation laws on a single tile satisfy the determining equation

F
(
k + 1, l, u10, ω

)
− F

(
k, l, u00, u01

)
+G

(
k, l + 1, u01, ω

)
−G

(
k, l, u00, u10

)
= 0, (3)

where ω denotes the right-hand side of (2). We solve (3) by deriving a sequence of its differential
consequences, each of which eliminates at least one unknown function from the previous equation in
the sequence (see [11] for a fuller explanation). This leads to an overdetermined system of functional–
differential equations that can be solved completely. Specifically, we apply the commuting differential
operators

L1 = ∂10 − ε1A′10∂00, L2 = ∂01 + ε1ε2A
′
01∂00,

(where ∂ij denotes ∂/∂uij) to obtain(
ε2A

′
10A

′
01∂00 +ε1A′10∂01

)
∂00F

(
k, l u00, u01

)
+
(
ε2A

′
10A

′
01∂00−ε1ε2A′01∂10

)
∂00G

(
k, l, u00, u10

)
= 0. (4)

Dividing by ε2A′10A
′
01, then differentiating with respect to u01 yields the partial differential equation

∂01

(
∂00 +

ε1ε2
A′01

∂01

)
∂00F

(
k, l, u00, u01

)
= 0, (5)

whose general solution is

F
(
k, l, u00, u01

)
= f1

(
k, l, ε1u00 − ε2A01

)
+ f2

(
k, l, u00

)
+ f3

(
k, l, u01

)
. (6)

Without loss of generality, set f3 = 0 (absorbing the resulting trivial conservation law into f2 and G).
Then (4) amounts to (

∂00 −
ε1
A′10

∂10

)
∂00G

(
k, l, u00, u10

)
= −∂2

00f2
(
k, l, u00

)
,

whose general solution is

G
(
k, l, u00, u10

)
= g1

(
k, l, ε1u00 +A10

)
+ g2

(
k, l, u10

)
− f2

(
k, l, u00

)
. (7)

At this stage, it is convenient to substitute (6) and (7) into the determining equation (3), using the
difference equation (2) to eliminate u00. This puts the determining equation in the form

f1

(
k + 1, l, ε1u10 − ε2A11

)
− f1

(
k, l, u11 −A10

)
+ f2

(
k + 1, l, u10

)
− f2

(
k, l + 1, u01

)
+ g1

(
k, l + 1, ε1u01 +A11

)
− g1

(
k, l, u11 + ε2A01

)
+ g2

(
k, l + 1, u11

)
− g2

(
k, l, u10

)
= 0. (8)

Applying ∂01∂11 to (8), we obtain

ε1A
′
11g
′′
1

(
k, l + 1, ε1u01 +A11

)
= ε2A

′
01g
′′
1

(
k, l, u11 + ε2A01

)
, (9)
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where g′′1 is the second derivative of g with respect to its third argument. This condition holds trivially
if g1 is linear in the third argument, which leads to two ‘universal’ conservation laws for which F and G
are each linear in Aij . These are

F1

(
k, l, u00, u01

)
=
(√
ε1ε2

)k+l−1
εl2
(
ε2u00 −

√
ε1ε2A01

)
,

G1

(
k, l, u00, u10

)
=
(√
ε1ε2

)k+l
εl2
(
ε2u10 +A00

)
, (10)

and

F2

(
k, l, u00, u01

)
=
(
−
√
ε1ε2

)k+l−1
εl2
(
ε2u00 +

√
ε1ε2A01

)
,

G2

(
k, l, u00, u10

)
=
(
−
√
ε1ε2

)k+l
εl2
(
ε2u10 +A00

)
, (11)

In order to find all functions A for which there are additional conservation laws on a tile, we now
restrict attention to the case g′′1 6= 0.1 Dividing (9) by A′01, then applying the operator ∂01 − ε2A′01∂11

and rearranging the result, we obtain

g′′′1
(
k, l + 1, ε1u01 +A11

)
g′′1
(
k, l + 1, ε1u01 +A11

) =
A′11A

′′
01 + ε2

(
A′01

)2
A′′11

A′01A
′
11

(
ε1 − ε2A′01A′11

) .
It is convenient to write A′ij = B

(
Aij
)
≡ Bij , so that A′′ij = BijB

′
ij (which is nonzero, as Aij is a

nonlinear function of uij) and A′′′ij =
(
Bij
)2
B′′ij +Bij

(
B′ij
)2. Then

g′′′1
(
k, l + 1, ε1u01 +A11

)
g′′1
(
k, l + 1, ε1u01 +A11

) =
B′01 + ε2B01B

′
11

ε1 − ε2B01B11
. (12)

Applying the operator

∂01 −
ε1
A′11

∂11 = B01
∂

∂A01
− ε1

∂

∂A11

to (12) gives (after simplification)(
1− ε1ε2B01B11

)(
B′′01 − ε1ε2B′′11

)
−B01

(
B′11

)2 + ε1ε2B11

(
B′01

)2 = 0. (13)

This is the classifying equation that yields all functions A for which there exist conservation laws other
than (10) and (11). As (13) stands, the functions B01 and B11 are thoroughly entwined, but this can be
resolved by one further differentiation, which yields the necessary condition(

B′′′ij /B
′
ij

)′ = 0.

A simple calculation shows that
(
B′ij
)2 is a nonzero quadratic function of Bij ; substituting this into (13)

and solving the resulting conditions gives(
B′ij
)2 = c21

(
B2
ij + 1

)
+ (1 + ε1ε2)c2Bij , c1, c2 ∈ C. (14)

This splits into four cases, as follows.

Case I: c1 = 0.

In this case, we require ε2 = ε1 and c2 6= 0, in order that B′ij is nonzero. Then

A′ij = Bij =
c2
2
(
Aij + c3

)2
,

so
Aij =

c

(c4 − uij)
− c3, where c = 2/c2 6= 0. (15)

1If g′′
1 = 0 but f ′′

1 6= 0, similar calculations lead to precisely the same classifying equation (14), so nothing is lost by

this assumption.
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Then the solution of (12), after absorbing the linear terms into f2 and g2, is

g1
(
k, l + 1, ε1u01 +A11

)
= c5 ln

(
ε1c4 − c3 − (ε1u01 +A11)

)
, c5 6= 0. (16)

This satisfies (9) if ε1 = ε2 = 1, but if ε1 = ε2 = −1 then (9) gives the further constraint c3 = c4. So this
case leads to two possible equations, namely

u11 = u00 − c
( 1
u10
− 1
u01

)
, (17)

and

u11 = −u00 − c
( 1
u10

+
1
u01

)
, (18)

where the constant c4 has been absorbed into uij . The transformation u00 7→ (−1)ku00 maps (18) into
(17), which is the lattice KdV equation (simplified slightly from the form stated in [19]). By solving
(8) for the remaining unknown functions, we obtain five conservation laws for (17), which are listed
later (after all integrable quad-graph equations of the form (2) have been identified). The corresponding
conservation laws for (18) follow from the above transformation.

Case II: c1 6= 0, ε2 = ε1, c
2
2 = c41.

In this case set c2 = ε3c
2
1, where ε3 = ±1. Then the general solution of (14) leads to the result

ec1Aij+c3 =
ε3

1− zε3ij
, (19)

where the notation zij = ec1uij+c4 is used henceforth. Then (12) amounts to

g′′′1
(
k, l + 1, ε1u01 +A11

)
g′′1
(
k, l + 1, ε1u01 +A11

) =
c1
[
ε1 + zε301e

c1A11+c3
]

ε3 − zε301ec1A11+c3
. (20)

If ε3 = ε1, the general solution of (20) is

g′′1
(
k, l + 1, ε1u01 +A11

)
=
a(k, l + 1) exp

{
c1(ε1u01 +A11) + c3 + ε1c4}[

1− ε1 exp
{
c1(ε1u01 +A11) + c3 + ε1c4}

]2 ,

where a(k, l) is an arbitrary nonzero function. So when ε3 = ε1 = 1, the condition (9) gives only
a(k, l) = α(k), whereas when ε3 = ε1 = −1 it also gives the constraint e2(c3−c4) = 1. Writing (2) in terms
of zij , we obtain

z11
z00

=
z01 − 1
z10 − 1

, (when ε3 = ε1 = 1), (21)

and
z00z11 =

z10z01
(z10 − 1)(z01 − 1)

, (when ε3 = ε1 = −1). (22)

Equation (21) is equivalent under a point transformation to an equation that was recently discovered
by Levi and Yamilov (see (26) and (31) in [13]); they found higher symmetries, a Lax pair and two
conservation laws. When ε3 = −ε1, equation (20) yields

g′′1 (k, l + 1, ε1u01 +A11) = a(k, l + 1) exp
{
− c1(ε1u01 +A11)− c3 − ε1c4

}
Equation (9) produces the constraint a(k, l) = α(k) when ε3 = −ε1 = −1, but when ε3 = −ε1 = 1 it
gives a(k, l) = 0. So we obtain only one further equation, namely

z11
z00

=
z10(z01 − 1)
z01(z10 − 1)

, (when ε3 = −ε1 = −1). (23)
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Note that (21), (22) and (23) are affine linear in each zij .

Case III: c1 6= 0, ε2 = ε1, c
2
2 6= c41.

In this case
Bij = c̄2 sinh

(
c1Aij + c3

)
− c̃2

where c̃2 = c2/c
2
1 and c̄22 = 1− c̃22 6= 0. Then the general solution of A′ij = Bij is

ec1Aij+c3 =
1 + c̃2 + (1− c̃2)zij

c̄2(1− zij)
,

and therefore (12) amounts to

g′′′1
(
k, l + 1, ε1u01 +A11

)
g′′1
(
k, l + 1, ε1u01 +A11

) =
c1

[
1 + ε1c̃2 + ε1c̄2 exp

{
c1(ε1u01 +A11) + c3 + ε1c4

}][
1 + ε1c̃2 − ε1c̄2 exp

{
c1(ε1u01 +A11) + c3 + ε1c4

}] .

Hence

g′′1 (k, l + 1, ε1u01 +A11) =
a(k, l + 1) exp

{
c1(ε1u01 +A11) + c3 + ε1c4

}[
1 + ε1c̃2 − ε1c̄2 exp

{
c1(ε1u01 +A11) + c3 + ε1c4

}]2 ,
and so (9) produces the constraint a(k, l) = α(k) when ε1 = 1. The resulting difference equation is

z11
z00

=
(z10 + c)(z01 − 1)
(z01 + c)(z10 − 1)

, c /∈ {−1, 0}, (24)

where c = (1 + c̃2)/(1 − c̃2). This is equivalent under a point transformation to the lattice MKdV
equation2 (see [20–22]); in particular, a Lax pair for this equation is given in [22].

When ε1 = −1, the condition (9) yields a(k, l) = α(k)cl, together with e2(c3−c4) = 1. This leads to
the difference equation

z00z11 =
(z10 + c)(z01 + c)
c(z10 − 1)(z01 − 1)

, c /∈ {−1, 0}. (25)

Again, we have found equations that are affine linear in zij by seeking all functions A that satisfy
(9) with nonlinear g1. However, the remaining determining equation (8) provides an extra constraint on
(25), namely that c = 1. (This is the only instance where (9) is insufficient to determine the equations
that admit more than two conservation laws on a tile.) The point transformation

zij 7→ (−1)k+iz(−1)k+i

ij (26)

maps (25) with c = 1 to (24), also with c = 1. Note that when c = 0, (24) reduces to (23). Furthermore,
(21) is the limit of (24) as c→∞ with zij fixed. So (21) and (23) are each singular limits of the lattice
MKdV equation.

Case IV: c1 6= 0, ε2 = −ε1.

This is similar to Case III; the solution of (14) is

Bij = sinh (c1Aij + c3).

Therefore
ec1Aij+c3 =

1 + zij
1− zij

, (27)

2We thank Frank Nijhoff and Kenichi Maruno for alerting us to this.
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and so
g′′′1
(
k, l + 1, ε1u01 +A11

)
g′′1
(
k, l + 1, ε1u01 +A11

) =
c1
[
1− ε1 exp

{
c1(ε1u01 +A11) + c3 + ε1c4

}][
1 + ε1 exp

{
c1(ε1u01 +A11) + c3 + ε1c4

}] .

Hence

g′′1
(
k, l + 1, ε1u01 +A11

)
=
a(k, l + 1) exp

{
c1(ε1u01 +A11) + c3 + ε1c4

}[
1 + ε1 exp

{
c1(ε1u01 +A11) + c3 + ε1c4

}]2 .

When ε1 = 1, (9) gives the constraints a(k, l) = α(k) and e2c3 = −1, and the resulting difference equation
is

z11
z00

= − (z10 + 1)(z01 + 1)
(z10 − 1)(z01 − 1)

. (28)

When ε1 = −1, we obtain similarly a(k, l) = α(k), e2c4 = −1, which leads to

z00z11 = − (z10 + 1)(z01 − 1)
(z10 − 1)(z01 + 1)

. (29)

Once again, the process has produced affine linear equations. It turns out that (28) can be mapped
to (29) by the point transformation (26).

3. Algebraic entropy

To test the integrability of the previous lattice maps, we evaluate their algebraic entropy [23–25]. The
system has an infinite dimensional space of initial conditions. We choose initial conditions on a diagonal
regular staircase, which is shown in Figure 1.

∆ =
{
unm : n+m ∈ {0, 1}

}
. (30)

This defines a forward evolution towards the upper right corner of the lattice, and a backward evolution
towards the lower left corner.

������������������������

������������������������

������������������������

������������������������

������������������������

������������������������

1

1

1

1

1

1

1

1

1

1

1

d1

d1

d1

d1

d1

d2

d2

d2

d2 d3

d3

d3

d4

d4

d5

∆

∆

Figure 1: The distribution of degrees over the lattice.
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The method is to let the system evolve, calculating unm away from the diagonal by using (recursively)
the defining relation on an elementary tile of the lattice. Each unm is a rational polynomial in terms
of the initial conditions; the degree of the denominator is evaluated. The space of initial conditions is
infinite dimensional but, for any quad-graph equation, we need to specify only 2k + 1 initial conditions
to evaluate k iterates. This gives a sequence of degrees {dn}, as shown in Figure 1. The growth of that
sequence gives the entropy

ε = lim
n→∞

1
n

ln(dn). (31)

Vanishing of the entropy is the hallmark of integrability [14–16].
Although we are able to calculate only a limited number of terms of the sequence, it is possible to infer

the exact value of the entropy. The reason is the existence of a finite recurrence with integer coefficients
that is satisfied by the sequence of degrees. The most efficient way to find this recurrence is to fit the
sequence with a Padé approximant. The existence of the recurrence on the degrees ensures that the
generating function for the sequence of degrees is a rational fraction.

The following table gives the sequences of degrees and the corresponding entropy for the various
quad-graph equations in §2.

eq.# Sequence {dn} ε

(17) 1, 3, 7, 13, 21, 31, 43, 57, . . . 1 + n+ n2 0

(21) 1, 2, 4, 7, 11, 16, 22, 29, . . . 1 + (n2 + n)/2 0

(22) 1, 3, 6, 10, 14, 18, 22, 26, . . . 4n− 2, (n ≥ 2) 0

(23) 1, 3, 6, 11, 18, 27, 38, 51, . . . n2 + 2, (n ≥ 1) 0

(24) 1, 3, 7, 13, 21, 31, 43, 57, . . . 1 + n+ n2 0

(25) c 6= 1 1, 3, 7, 17, 41, 99, 239, 577, . . . ((1 +
√

2)n+1 + (1−
√

2)n+1)/2 ln(1 +
√

2)
(25) c = 1 1, 3, 7, 13, 21, 31, 43, 57, . . . 1 + n+ n2 0

(29) 1, 3, 7, 13, 21, 31, 43, 57, . . . 1 + n+ n2 0

Equation (22) gives linear growth of the degree, which indicates that this equation is linearizable.
This result is confirmed by the existence of an infinite family of conservation laws on a single tile (see
§4). For generic values of the parameter c, equation (25) is not integrable; neither does it have more
than two conservation laws on the tile.

All other cases exhibit quadratic growth of the degree, and therefore are claimed to be integrable, but
not linearizable. This raises the question of whether any of the new integrable quad-graph equations can
be mapped to any known equation. This will be discussed in §5.

4. The conservation laws

Although the lattice KdV equation (17) and the lattice MKdV equation (24) are not new, their con-
servation laws (on a single tile) have not previously been listed. Throughout this section, the universal
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conservation laws (10) and (11) span the first two conservation laws in each list (up to the addition of
trivial conservation laws). So the ‘extra’ conservation laws are (Fi, Gi), where i ≥ 3; here Fi denotes
Fi(k, l, z00, z01) and Gi denotes Gi(k, l, z00, z10). Lattice KdV has the following conservation laws.

F1 = u00 + c/u01, G1 = u10 − c/u10;

F2 = (−1)k+l
(
u00 + c/u01

)
, G2 = (−1)k+l+1

(
u10 + c/u10

)
;

F3 = ln
(
u00 + c/u01

)
, G3 = ln(u10);

F4 = ln(u00), G4 = ln
(
u10 − c/u00

)
;

F5 = −k ln(u00) + l ln
(
u00 + c/u01

)
, G5 = −k ln

(
u10 − c/u00

)
+ (l − 1) ln(u10).

For lattice MKdV, the single-tile conservation laws are:

F1 = ln
(
z00(z01 − 1)
z01 + c

)
, G1 = ln

(
z10(z10 + c)
z10 − 1

)
;

F2 = (−1)k+l ln
(

z01 + c

z00(z01 − 1)

)
, G2 =(−1)k+l ln

(
z10(z10 − 1)
z10 + c

)
;

F3 = ln
(
z00z01 − z00 − z01 − c

z01 + c

)
, G3 = ln(z10 + c);

F4 = ln
(
z00 + c

z00

)
, G4 = ln

(
z00z10 + cz00 + cz10 − c

z10(z00 + c)

)
;

F5 = k ln
(

z00(z01 + c)
(z01 − 1)(z00 + c)2

)
+ l ln

(
(z00z01 − z00 − z01 − c)2

z00(z01 + c)(z01 − 1)

)
,

G5 = k ln
(

z10(z10 − 1)(z00 + c)2

(z10 + c)(z00z10 + cz00 + cz10 − c)2

)
+ l ln

(
(z10 + c)(z10 − 1)

z10

)
+ ln

(
z10

(z10 + c)2

)
.

We now list the conservation laws corresponding to the affine linear quad-graph equations that were
derived in Cases II and IV. For brevity, we restrict attention to equations (21), (22), (23) and (29); all
of our other new equations are related to one of these by the point transformation (26).

Equation (21)

F1 = ln
(
z00(z01 − 1)

)
, G1 = ln

(
z10

z10 − 1

)
;

F2 = (−1)k+l ln
(
z00(z01 − 1)

)
, G2 =(−1)k+l+1 ln

(
z10(z10 − 1)

)
;

F3 = z00(1− z01), G3 =z10;

F4 = ln(z00), G4 = ln
(

z10
z00 + z10 − 1

)
;

F5 = k ln
(

z00
z01 − 1

)
+ l ln

(
z00(z01 − 1)

)
, G5 =k ln

(
z10(z10 − 1)

(z00 + z10 − 1)2

)
+ l ln

(
z10 − 1
z10

)
+ ln(z10).

Levi and Yamilov [13] recently derived an alternative form of (21) and listed two of its conservation laws,
which are equivalent to (F1, G1) and (F4, G4).
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Equation (22)

This equation has an infinite set of conservation laws, which depend upon two arbitrary functions α, β:

Fα = α(l + 1) ln
(
z00z01 − z00 − z01
z00(z01 − 1)

)
+ α(l) ln

(
z00z01 − z00 − z01

z01

)
, Gα = α(l) ln(1− z10);

Fβ = β(k) ln(1− z01), Gβ = β(k + 1) ln
(
z00z10 − z00 − z10
z00(z10 − 1)

)
+ β(k) ln

(
z00z10 − z00 − z10

z10

)
.

This is an indicator that, unlike the other new quad-graph equations, (22) is linearizable.

Equation (23)

F1 = ln
(
z00(z01 − 1)

z01

)
, G1 = ln

(
z2
10

z10 − 1

)
;

F2 = (−1)k+l ln
(

z01
z00(z01 − 1)

)
, G2 =(−1)k+l ln(z10 − 1);

F3 = ln
(
z00z01 − z00 − z01

z01

)
, G3 = ln(z10);

F4 =
1
z00

, G4 =
z00 − 1
z00z10

;

F5 = k ln
(

z01
z00(z01 − 1)

)
+ l ln

(
(z00z01 − z00 − z01)2

z00z01(z01 − 1)

)
, G5 =k ln

(
z10 − 1
z2
10

)
+ l ln(z10 − 1)− ln(z10).

Note: Most of these conservation laws can be obtained by substituting c = 0 into the conservation
laws for the lattice MKdV equation. However, this does not apply to (F4, G4); one must first divide the
corresponding MKdV conservation law by c before taking the limit as c → 0. More generally, at any
singular limit of a class of difference equations, some conservation laws may become trivial. Furthermore,
the limiting equation may have additional conservation laws. Thus it is safest to calculate all conservation
laws of the limiting equation from scratch.

Equation (29)

F1 = cos
( (k+l)π

2

)
ln
(
iz00(z01 + 1)
z01 − 1

)
, G1 = cos

( (k+l)π
2

)
ln
(
z10 − 1
z10 + 1

)
− sin

( (k+l)π
2

)
ln(iz10);

F2 = sin
( (k+l)π

2

)
ln
(
iz00(z01 + 1)
z01 − 1

)
, G2 = sin

( (k+l)π
2

)
ln
(
z10 − 1
z10 + 1

)
+ cos

( (k+l)π
2

)
ln(iz10);

F3 = ln
(

(z00 + 1)2(z01 − 1)
z00(z01 + 1)

)
, G3 = ln

(
(z00z10 − z00 + z10 + 1)2(z10 + 1)

z10(z00 + 1)2(z10 − 1)

)
+ iπl/2;

F4 = ln
(

(z00z01 + z00 − z01 + 1)2

z00(z01 + 1)(z01 − 1)

)
, G4 = ln

(
(z10 + 1)(z10 − 1)

z10

)
+ iπl/2;

F5 = k ln
(

z00(z01 + 1)
(z00 + 1)2(z01 − 1)

)
+ l ln

(
(z00z01 + z00 − z01 + 1)2

z00(z01 + 1)(z01 − 1)

)
+ iπk(k − 1)/4 + iπkl/2,

G5 = k ln
(

z10(z00 + 1)2(z10 − 1)
(z10 + 1)(z00z10 − z00 + z10 + 1)2

)
+ l ln

(
(z10 + 1)(z10 − 1)

z10

)
+ ln

(
z10

(z10 + 1)2

)
.
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5. Comments

It is remarkable that, although the original Ansatz (2) contained an arbitrary function A, each of
the equations that we have found by sifting can be written in an affine form, after a simple change of
variable. This has actually made the entropy calculation possible, because it gives rational evolution.

It is natural to ask at this point how the equations we get compare to the known affine linear quad-
graph equations. We have already seen several cases where an equation that we have derived turns
out to be equivalent under a point transformation to a known equation. Therefore it is important to
characterize this equivalence, which can be done using the appoach introduced in [8] Any affine linear
quad-graph equation can be written in polynomial form:

Q(v1, v2, v3, v4) = 0,

where vi, i = 1 . . . 4, are the values (of uij or zij as appropriate) at the four corners. For any choice of a
pair of indices 1 ≤ i < j ≤ 4, define hij by

Q(v1, v2, v3, v4) −→ hij(vk, vl) = ∂vi
Q · ∂vj

Q−Q · ∂vi
∂vj

Q, i 6= j 6= k 6= l (32)

It is then possible to associate to each of the four corners a polynomial

rk(vk) = (∂vl
hij)2 − 2 hij (∂2

vl
hij). (33)

These polynomials play a central role in the classification of [8], because (after a Möbius tranformation,
if necessary), they can take one of six canonical forms, according to their root distribution.

For example, the lattice MKdV equation (24) yields

hz00z01 = (1 + c) (z10 − 1) (z10 + c) z11;
hz00z10 = −(1 + c) (z01 − 1) (z01 + c) z11;
hz00z11 = −(z01 − 1) (z01 + c) (z10 − 1) (z10 + c);
hz01z10 = −(1 + c)2 z00 z11;
hz01z11 = −(1 + c) (z10 − 1) (z10 + c) z00;
hz10z11 = (1 + c) (z01 − 1) (z01 + c) z00.

All of the functions hij are products of linear factors; this is the case for every equation in our classifi-
cation. In other words, all of these equations are ‘degenerate’ in the sense used in [8]. Moreover

r00 = (1 + c)4 z2
00; (34)

r11 = (1 + c)4 z2
11; (35)

r10 = (1 + c)2 (1− z10)2 (z10 + c)2; (36)
r01 = (1 + c)2 (1− z01)2 (z01 + c)2. (37)

These are in the canonical forms, but are not in any of the cases that were classified in Theorem 2
of [8]. Hence none of the equations that we have studied are equivalent to any equation in the ABS
classification.

In summary, it is feasible to look for new integrable difference equations by searching for equations
that admit ‘extra’ conservation laws. The class that we have studied has been particularly fruitful,
although only two of the equations (up to equivalence) seem to be unknown. A useful by-product is
that one obtains a list of conservation laws, most of which are new (even for the known equations). The
calculation of algebraic entropy is a clear indicator of integrability or linearizability.

One of the new equations is a singular limit of the lattice MKdV equation. In fact, each of the limits
c = 0 and c→∞ in (24) trivialise this equation in the form (2.49) of [22] (where they amount to taking
p = 0 and q = 0 respectively). This may explain why they were not discovered sooner. Our other new
equation (29) has maximal asymmetry within the form of Ansatz (2), because ε1 = −ε2. Although the
affine form of the equation has real coefficients, its conservation laws are complex.
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Two particularly important questions remain: do the new equations have a Lax pair description, and
are they 3D-consistent? If we wanted to check directly the consistency around the cube, we should first
choose an Ansatz for the form of the relations we want to use on the six faces of a cube. This leads
to ask what are the possible deformations of our models. These could be Möbius transformations or
deformations that do not lie within the assumed Ansatz (2). The analysis of the singularity pattern
might be a way to tackle this problem. However, one should be prepared to accept deformed equations
that are not affine; this is beyond the scope of the current paper.
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