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Abstract

Coisotropic deformations of algebraic varieties are defined as those for which an ideal of the de-
formed variety is a Poisson ideal. It is shown that coisotropic deformations of sets of intersection
points of plane quadrics, cubics and space algebraic curves are governed, in particular, by the dKP,
WDVV, dVN, d2DTL equations and other integrable hydrodynamical type systems. Particular at-
tention is paid to the study of two- and three-dimensional deformations of elliptic curves. Problem
of an appropriate choice of Poisson structure is discussed.

1 Introduction

Algebraic varieties (curves etc.) and their deformations are important ingredients in various branches of
mathematics and mathematical physics. Theory of integrable nonlinear differential equations was, prob-
ably, the most active area in recent years where these objects and their properties have been intensively
studied. Two best known examples of such study are given by the theory of the finite-gap solutions
and the theory of the Whitham equations [1]-[8]. The problem of characterization and classification
of integrable deformations of algebraic curves has attracted a particular interest. In the papers [7, 8]
Krichever formulated a general theory of hierarchies of integrable equations of hydrodynamical type on
a Riemann surfaces of arbitrary genus arising in the Whitham averaging method.

An alternative approach for determining and classifying the so-called quasiclassical deformations of
algebraic curves has been proposed in [9, 10, 11]. This approach revealed a deep connection between the
structure of possible deformations of algebraic curves and their basic algebraic properties like the Galois
group [10, 11]. Quite different method of study of the Whitham equations has been discussed recently by
Magri [13]. Deformations studied in the papers [9, 10, 11, 13] are all two-dimensional, i.e. parametrized
by two variables.

In the present paper we will introduce and study a novel class of deformations of algebraic curves,
surfaces and algebraic varieties, the class of coisotropic deformations. A concept of coisotropic deforma-
tions of associative algebras has been formulated recently in the papers [14, 15, 16]. Notions of coisotropic
submanifold and Poisson ideal are the basic one for this approach. Here we will show that essentially the
same idea provides us with a simple and transparent way to define and describe coisotropic deformations
of algebraic varieties in affine spaces. Namely, coisotropic deformations of algebraic variety are those for
which an ideal of deformed variety is a Poisson ideal, i.e. it is closed with respect to Poisson bracket.
We will consider simple examples of algebraic varieties such as sets of intersection points of algebraic
curves, algebraic curves and hypersurfaces. It is shown that the coisotropic deformations of these ob-
jects are governed by systems of differential equations of hydrodynamical type which in particular cases
coincide with well-known integrable systems like the dispersionless KP equation, WDVV equation and
dispersionless 2DTL equation.
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We will concentrate on the study of the coisotropic deformations on plane and three-dimensional
quadrics and cubics. Particular attention will be paid to the study of the three-dimensional coisotropic
deformations of elliptic curves. The problem of choice of the Poisson structure is discussed too. It is
shown that such a choice is crucial for construction of nontrivial coisotropic deformations.

The paper is organized as follows. General formulation of coisotropic deformations of algebraic va-
rieties is discussed in section 2. Coisotropic deformations of the sets of intersection points of algebraic
curves on the plane are considered in section 3. It is shown that two particular classes of deformations
are governed by the stationary dKP equation and WDVV equation. Section 4 is devoted to deforma-
tions of plane cubics. Deformations of the space curves are discussed in the next section 5. The dKP
equation and the dispersionless Veselov-Novikov equation govern coisotropic deformations of the special
space curves. Two-dimensional coisotropic deformations of the elliptic curve are studied in section 6.
The problem of choice of the Poisson structure is discussed here too. In section 7 we consider three-
dimensional deformations of elliptic curves. Deformations of curves and hyperplanes in R4 described by
the Boyer-Finley-d2DTL equation and heavenly equation are presented in section 8.

2 Coisotropic deformations of algebraic varieties

The notion of coisotropic submanifold is a basic ingredient in the formulation and description of coisotropic
deformations of associative algebras studied in [14, 15]. Coisotropic submanifold Γ is a submanifold
in R2n endowed with the Poisson bracket { , } such that Γᵀ ⊂ Γ where Γᵀ denotes a skew-orthogonal
complement of Γ in R2n (see e.g. [17, 18]). Coisotropic submanifold can be defined as the zero locus Γ
for the set of functions fj(y), i.e.

fj(y) = 0, j = 1, ...,m (1)

such that

{fj(y), fk(y)} |Γ = 0, j, k = 1, ...,m (2)

where y1, ..., yn are local coordinates in R2n. The definition (1), (2) is equivalent to the condition that
all the Hamiltonian fields generated by fj(y) ate tangent to Γ or to the condition that the ideal J = 〈fj〉
generated by the functions fj(y) is closed {J, J} ⊂ J , i.e. it is a Poisson ideal [17, 18]. For associative
algebras the functions (1) are of the form [14]

fjk = −pjpk +
n∑
l=1

Cljk(x)pl, j, k = 1, .., n (3)

where pj , xj(j = 1, .., n) are canonical Darboux coordinates in R2n. The conditions (2) define the
coisotropic deformations of the structure constants Cljk(x) of a associative algebra in a given basis.
It was shown in [15] that this approach is applicable to the other algebraic structures like the Jordan
triples. In geometrical terms equations (1), (3) with fixed x represent a set of special quadrics in Rn.

Here we will use the notions of Poisson ideal and coisotropic submanifold in a different setting. It
will serve us to define and describe a class of deformations of algebraic varieties. Thus, let us consider an
algebraic variety M in Rn defined by the equations

fj(p1, ..., pn) = 0, j = 1, ..,m (4)

where p1, ..., pn are local affine coordinates in Rn.
To define deformation of this variety
1) we assume that the coefficients of the polynomials fj(p1, ..., pn) depend on the deformation param-

eters x1, ..., xn,
2) we embed the variety M into the space R2n equipped with the Poisson bracket {, } and local

coordinates p1, ..., pn, x1, ..., xn,
3) then we consider an ideal J = 〈fj(p;x)〉 generated by the functions fj(p;x) and require that this

ideal is closed
{J, J} ⊂ J (5)
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or equivalently
{fj(p;x), fk(p;x)} |Γ= 0, j, k = 1, ..,m (6)

where Γ is the locus of common zeros for the functions fj(p, x), i.e.

Γ = {(p, x) | fj(p;x) = 0, j = 1, ..,m} . (7)

In other words we require that the ideal J of the deformed variety M is a Poisson ideal.

Definition 1 Deformations of the algebraic variety M defined by equations (4) are called coisotropic if
the ideal J = 〈fj(p;x)〉 of the deformed varieties is a Poisson ideal.

So, coisotropic deformations of an algebraic variety are those for which coefficients of the functions
fj(p, x) are such that the conditions (6) are satisfied, i.e. the submanifold Γ defined by (7) is a coisotropic
submanifold.

The coisotropy conditions (6) impose constraints on the coefficients of the polynomials fj(p;x). We
will refer to the corresponding system of equations for these coefficients as the central system (CS). The
concrete form of CS depends on the choice of fj(p;x) as well as the form of the Poisson bracket {, }. The
choice of the Poisson bracket is a crucial one. For inadequate choice of {, } one may have no nontrivial
deformation. The consistency of the Poisson structure {, } with the polynomials fj(p;x) is an important
point of the approach under consideration.

At m = n the variety M is a set of intersection points of n algebraic curves fj(p) = 0 in Rn and
coisotropic deformations of each of these points span Lagrangian submanifolds in R2n. At m = n − 1
the variety M is a curve in Rn and the conditions (6) define coisotropic deformations of this curve and
so on. Clearly, the codimension of the algebraic variety should be greater or equal to two, i.e. m ≥ 2 in
order to be able to define its coisotropic deformation.

3 Coisotropic deformations on the plane. Deformations of the
sets of intersection points and curves

On the plane the variety M is defined by two equations

f1(p, q) = 0 (8)

and

f2(p, q) = 0 (9)

where the affine coordinates on the plane are denoted by p and q. The coisotropic deformations of the
variety M, i.e. the set of intersection points of the curves (8) and (9) is defined by the condition

{f1(p, q;x, y), f2(p, q;x, y)} |Γ= 0 (10)

where x and y stand for the deformation parameters. The coisotropic submanifold Γ is this case a
two-dimensional Lagrangian submanifold.

This construction admits an alternative interpretation. Indeed, let we have the algebraic curve given
by equation (8). One can define deformation of this curve in the following way. First, we assume that
the coefficients of the polynomial f1(p, q) depend on deformation parameters x and y. Then we take a
function f2(p, q;x, y) which is polynomial in p and q. Finally, we require that the functions f1and f2

obey the coisotropy condition (10).

Definition 2 If the coefficients of the polynomial f1(p, q) are such that the condition (10) is satisfied
then it is said that they define the coisotropic deformation of the curve (8) generated by the function
f2(p, q;x, y).

Clearly, this definition is a reciprocal one: if the polynomial f2 generates coisotropic deformation of the
curve (8), then at the same time the polynomial f1 generates coisotropic deformation of the curve (9).

Let us begin with the simplest case of the second order curves (8) and (9). As it is well known any
nondegenerate quadric is equivalent to
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1. parabola
q + p2 + ap+ b = 0 (11)

2. or to ellipse
ap2 + bq2 + cp+ dq + f = 0 (12)

3. or to hyperbola
pq + ap+ bq + c = 0. (13)

To construct coisotropic deformation we choose the canonical Poisson bracket in R4, i.e. {F,G} =
∂F
∂p

∂G
∂x + ∂F

∂q
∂G
∂y −

∂F
∂x

∂G
∂p −

∂F
∂y

∂G
∂q .

We consider first a parabola and choose f2 as an arbitrary polynomial f2(p, q;x, y). The submanifold

f1 = q + p2 + a(x, y)p+ b(x, y) = 0, (14)
f2(p, q;x, y) = 0 (15)

can be equivalently represented as the zero locus of the functions

f1 = q + p2 + a(x, y)p+ b(x, y) = 0,

f̃2 =
N∑
k=0

αk(x, y)pk = 0
(16)

with certain N and αk(x, y). In the simplest case N=1, a=0 and α1 = 1 the coisotropy condition (10)
gives α0x = 0, by = α0y, i.e. the deformation is the trivial shift of the parabola: b = β0(x) + β1(y) where
β0(x) and β1(y) are arbitrary functions.

In the case N=2 one has α2 = 1 and the CS takes the form

α1y − 2α1α1x + (aα1)x + 2(α0 − b)x = 0,
α0y + aα0x − α1bx + 2α0(a− α1)x = 0.

(17)

At α0 = a = b = 0 it is the Burgers-Hopf equation α1y − 2α1α1x = 0. Equations (17) describe the
coisotropic deformations of the two points of intersection (p+, q+), (p−, q−) (assuming α2

1 ≥ 4α0)

p± = −α1(x, y)
2

±
√

1
4
α2

1(x, y)− α0(x, y),

q± = (α1 − a)p± + α0 − b (18)

of the curves (16) or equivalently of the parabola

q + p2 + ap+ b = 0 (19)

and a straight line

q + (a− α1)p+ b− α0 = 0. (20)

Now let us consider the cubic polynomial f2, i.e. a set of intersection points for the curves

q + p2 + ap+ b = 0 (21)

and

p3 + α2p
2 + α1p+ α0 = 0. (22)

The CS in this case is of the form
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α2y + 2α1x − 3bx + (aα2)x − (α2
2)x = 0,

α1y + 2α0x + aα1x + 2α1ax − 2α1α2x − 2α2bx = 0,
α0y + aα0x − α1bx + α0(3a− 2α2)x = 0.

(23)

This system contains several reductions of interest. There are two distinguished between them. The
first is given by a = α2 = 0. The first equation (23) then implies that 2α1 = 3b and the rest two equations
take the form

3by + 4α0x = 0,

4α0y − 3(b2)x = 0.
(24)

It is the well-known stationary dispersionless Kadomtsev-Petviashvili (KP) or Khokhlov-Zabolotskaya
equation (see e.g. [14, 15]). Equations (24) imply the existence of the function F such that b =
2Fxx, α0 = − 3

2Fxy and the system (24) becomes

Fyy + 2(Fxx)2 = 0. (25)

It is the Hirota equation for the stationary dKP equation.
The second reduction is given by the constraints α1 = 2b, α2 = a. The CS (23) then is converted to

ay + bx = 0,
by + α0x = 0,

α0y + (aα0 − b2)x = 0.

(26)

This system of conservation laws implies the existence of the function F such that

a = Fxxx, b = −Fxxy, α0 = Fxyy (27)

in terms of which it is reduced to the single equation

Fyyy + FxxxFxyy − (Fxxy)2 = β(y) (28)

where β(y) is an arbitrary function. At β = 0 it is the celebrated WDVV equation [19, 20, 21]. Note
that the system (26) has appeared for the first time in the paper [22].

Thus, the stationary dKP equation and WDVV equation describe coisotropic deformations of the
set of intersection points of the curves (21) and (22). The locus of common zeros for the polynomials
(21),(22) coincides with zero locus of the parabola

q + p2 + ap+ b = 0 (29)

and the hyperbola

f̃2 = pq + (α2 − a)q + (b− α1 + a(α2 − a))p+ b(α2 − a)− α0 = 0. (30)

For the stationary dKP case the equation of hyperbola takes the form

pq − 1
2
bp− α0 = 0 (31)

while at the WDVV case one has

pq − bp− α0 = 0. (32)

It would be of interest to clarify the geometrical difference between the dKP and WDVV cases.
The above construction shows also that the stationary dKP and WDVV equations describe at the

same time special classes of coisotropic deformations for the hyperbola (13) generated by parabola (21).
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As the last illustrative example in this section we consider coisotropic deformations of a circle

f1 = p2 + q2 + u = 0. (33)

With the choice

f2 = p3 − 3pq2 + ap+ bq = 0 (34)

the CS takes the form

(ua)x + (ub)y = 0,
3ux − ax + by = 0,
3uy + ay + bx = 0.

It is the stationary dispersionless Veselov-Novikov (dVN) equation (see [14]). It describes also the
coisotropic deformations of the set of intersection points of the circle (33) and the cubic (34).

Considering higher order polynomials f2, one gets coisotropic deformations described by the station-
ary higher dKP and dVN equations.

4 Deformations of plane cubics

General form of the plane cubic is (f1
.= ζ)

ζ = p2 − q3 − u4pq − u3q
2 − u2p− u1q − u0 = 0. (35)

Choosing the linear second equation, i.e. the straight line

f2 = αp+ βq + γ = 0 (36)

and canonical Poisson bracket, one gets the following CS (α = 1)

β2u4x − βu4y − 2ββy + 3β2βx + 3γx − u4βy + u3βx + βu3x − u3y + 2βu4βx = 0,
βγu4x − βu4γx + 3βu2βx − u1y + 2γu4βx − u4γy − u2βy − γu4y − 2u3γx − βu4y + 2u1βx+

+ βu1x + 6βγβx − 2γβy + β2u2x − 2βγy = 0,

βu0x − u1γx − u2γy − u0y + 3u0βx − γu2y − 2γγy + 3γ2γy + βγu2x − γu4γx + 3γu2βx = 0.

(37)

The variety M for the choice (36) consists of at most three points of intersection of the cubic (35)
with the straight line (36). Coisotropic deformations of these three points are described by the CS (37)
and generate three surfaces in R4.

In the particular case u4 = u3 = u2 = 0, α = 1, γ = 0 the CS system takes the form

βy −
3
2
ββx = 0, (38)

u1y − βu1x − 2u1βx = 0, (39)
u0y − βu0x − 3u0βx = 0. (40)

These equations describe deformations of the moduli u1and u0 of the elliptic curve. The behavior of
the moduli is defined completely by the solution of the Burgers-Hopf equation for β. For the discriminant
∆ = 16(4u3

1 + 27u2
0) of the elliptic curve (see e.g. [23, 24]) one has the equation

∆y − β∆x − 6βx∆ = 0. (41)

while deformation of the invariant j = 123 4u3
1

4u3
1+27u2

0
= 3346 u

3
1

∆ is defined by the equation
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jy − βjx = 0.

We see that at the points of the gradient catastrophe for Burgers-Hopf equation where βx, βy → ∞
the moduli u1, u0 and the discriminant ∆ exhibit gradient catastrophe behavior too.

Stationary solutions of the CS (37) with constant u4, u3, u2, u1, u0 are of interest too. It would
correspond to Abel’s approach to the law of addition on the cubic (see e.g. [24], section 2.14). In the
case u4 = u3 = u2 = 0 the CS (37) is reduced to the system

2ββy + 3β2βx + 3γx = 0,
2u1βx + 6γββx + 2(γβ)y = 0,

−u1γx + 3u0βx + γγy + 3γ2βx = 0. (42)

This overdetermined system, obviously, may have nontrivial solutions only for very special β, γ and
constant u0, u1.

For general polynomial f2 the variety M has also the basis

ζ = 0,
f̃2 = α(q) + β(q)p (43)

where α(q) and β(q) are arbitrary polynomials in q.

5 Deformations of space curves

In three and more dimensional spaces a zoology of algebraic varieties is richer and correspondingly their
deformations form a much larger collection of different cases.

In the three-dimensional affine space an algebraic curve is defined by two polynomial equations

f1(p1, p2, p3) = 0, f2(p1, p2, p3) = 0. (44)

Coisotropic deformations of this curve are defined by the condition

{f1(p;x), f2(p;x)} |Γ= 0. (45)

A coisotropic submanifold Γ typically is the four-dimensional submanifold in R6.
A simple example is provided by the twisted cubic defined by the equations

f1 = p2 + p2
1 + u = 0 (46)

and
f2 = p3 + p3

1 + vp1 + w = 0 (47)

which is one of the first standard examples in all textbooks on algebraic geometry. The CS with the
choice of canonical Poisson bracket in R6 in this case is given by the equations

ux3 + vux1u− wx2 = 0,
vx2 + 2wx1 = 0,

3ux2 − 2vx1 = 0.
(48)

So, v = 3
2u and one has the system

ux3 +
3
2
ux1u− vx2 = 0,

3ux2 + 4vx1 = 0
(49)
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which is the dKP equation. Thus, the three-dimensional coisotropic deformations of the twisted cubic in
R3 are doverned by the dKP equation. For polynomial solutions of the dKP equation the family of the
deformed varieties in R6 defined by the equations

f1 = p2 + p2
1 + u(x1, x2, x3) = 0, (50)

f2 = p3 + p3
1 +

3
2
u(x1, x2, x3)p1 + w(x1, x2, x3) = 0 (51)

(i.e. the submanifold Γ) is the algebraic variety too.
We note that on the plane p2, p3 the twisted cubic (46),(47) is the cubic curve given by the equation

p3
2 + p2

3 + (3u− 2 v) p2
2 + 2wp3 +

(
v2 + 3u2 − 4 vu

)
p2 + (u3 + w2 − 2 vu2 + v2) = 0.

It is obvious, however, that this cubic curve is degenerate for all the values of u and v since it has
polynomial parametrization given by (46), (47). Deformations of nondegenerate elliptic curves will be
studied in next section.

Choosing

f2 = pn + pn1 +
n−2∑
k=0

vkp
k
1 , (52)

one constructs the coisotropic deformations of the n-th order curve in R3. These deformations are
described by the higher dKP equations.

Another simple example corresponds to

f1 = p2
1 + p2

2 + u = 0, (53)
f2 = p3 + p3

1 − 3p1p
2
2 + ap1 + bp2 = 0. (54)

This curve M is the intersection of the cylinder defined by the first equation and cubic surface given by
the second equation.

The coisotropy condition gives rise to the following CS

ux3 + (ua)xx + (ub)x2 = 0,
3ux1 − ax1 + bx2 = 0,
3ux2 + ax2 + bx1 = 0.

It is the dVN equation (see e.g. [15]). For higher order f2 coisotropic deformations are described by the
higher dVN equations.

Finally, let us consider the case

f1 = p1p2 + up1 + v = 0,
f2 = p3 + αp2

1 + βp2
2 + ap1 + b = 0.

This curve is the intersection of cylindric hyperbola and paraboloid. Its coisotropic deformations is
described by the following CS

ux3 + aux1 − β(u2)x2 + 2αvx1 − bx2 = 0,
vx3 + (av)x1 − 2β(uv)x2 = 0,

ax2 − 2αux1 = 0, bx1 − 2βvx2 = 0.

This hydrodynamical system has distinguished reductions. At a = 0, α = 0, β = 1
2 it is the 2+1-

dimensional generalization of the one-layer Benney system proposed in [8, 26]. At β = −α = 1
2 it is the

dispersionless Davey-Stewartson system considered in [27].
We note that deformations considered in this section can be treated also as coisotropic deformations of

a surface given by equation f1(p1, p2, p3) = 0 generated by a surface defined by equation f2(p1, p2, p3) = 0
(or vice versa).
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6 Coisotropic deformations of elliptic curve. Two-dimensional
case

Now we will consider coisotropic deformations of nondegenerate cubics. This case is of importance since
it provides us with the example of deformations for algebraic curve of nonzero genus.

General cubic is given by equation (35), i.e.

E = p3
2 − p2

3 − u4p2p3 − u3p2
2 − u2p3 − u1p2 − u0. (55)

where for further convenience we have changed the notation (p = p3, q = p2). To construct coisotropic
deformations of the cubic (55) we choose the canonical Poisson structure in R6 and functions

fn = pn − αn(p2)− βn(p2)p3 = 0 (56)

where α and β are polynomials in p2 with coefficients depending on the deformation variables x2, x3, xn.
It is quite instructive to consider first the particular deformations which correspond to a cyclic variable

x2, i.e. when ui = ui(x3, xn). In this case p2 appears in (55), (56) as a parameter λ = p2 and the
corresponding deformations of the cubic (55) are two-dimensional.

So we consider the cubic

E = p2
3 − λ3 − u4λp3 − u3λ

2 − u2p3 − u1λ− u0 = 0. (57)

We choose the generating function (56) as

f5 = p5 − v3λ
2 − v1λ− v0 − (v2 + λ)p3 (58)

in order to get a CS allowing deformations for all coefficients ui of the cubic. The coisotropy condition

{f5, E}|Γ = 0

gives the system

∂u4

∂x3
+ 2

∂v3

∂x3
= 0

∂u3

∂x3
+ 2

∂v2

∂x3
− u4

∂v3

∂x3
= 0

u4
∂v2

∂x3
− ∂u4

∂x5
+
∂u4

∂x3
v2 +

∂u2

∂x3
+ 2

∂v1

∂x3
= 0

− ∂u3

∂x5
+
∂u1

∂x3
− u2

∂v3

∂x3
+
∂u3

∂x3
v2 − u4

∂v1

∂x3
+ 2

∂v2

∂x3
u3 = 0

− ∂u2

∂x5
+ 2

∂v0

∂x3
+
∂u2

∂x3
v2 + u2

∂v2

∂x3
= 0

− ∂u1

∂x5
+
∂u0

∂x3
+
∂u1

∂x3
v2 − u4

∂v0

∂x3
− u2

∂v1

∂x3
+ 2

∂v2

∂x3
u1 = 0

− ∂u0

∂x5
+
∂u0

∂x3
v2 − u2

∂v0

∂x3
+ 2

∂v2

∂x3
u0 = 0.

(59)

In this and next sections in order to avoid triple indices we write the derivatives in the explicit way. The
first two equations imply that

v3 = −1
2
u4 v2 = −1

2
u3 +

1
4
u4

2.

and the system (59) becomes the system of five equations for u0, u1, u2, u3, u4. The fields v1 and v0 can
be considered as a couple of gauge fields.

This system admits several reductions. The most interesting one corresponds to the constraint u4 =
0, u2 = 0. In this case v3 = 0, 2v2 = −u3, 2v1 = −u2, v0 = 0 and the above system is converted into
the following
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∂u3

∂x5
= −3

2
∂u3

∂x3
u3 +

∂u1

∂x3
,

∂u1

∂x5
= −1

2
∂u1

∂x3
u3 −

∂u3

∂x3
u1 +

∂u0

∂x3
,

∂u0

∂x5
= −∂u3

∂x3
u0 −

1
2
∂u0

∂x3
u3

(60)

which is the well known 3 component dispersionless KdV equation (see e.g.([25]). Solutions of this system
describe 1+1 dimensional coisotropic deformations of the elliptic curve Er = p3

2 − λ3 − u3λ
2 − u1λ− u0.

generated by the standard symplectic form and the polynomial f5r = p5 − λp3 + u3
2 p3.

This evolution coincides with that obtained earlier in a totally different manner in [9]. In order to complete
the comparison with the results presented in the paper [9] we will show how coisotropic deformations
give rise to corresponding system in terms of Riemann invariants. First we present the elliptic curve in
the form Ee = p3

2 − (λ− e1)(λ− e2)(λ− e3). Then it is a simple check that the coisotropy condition

{Ee, f5}|Γ = 0 (61)

is equivalent to the 3 component dKP system in terms of Riemann invariants, i.e

∂e1

∂x5
=
(

3
2
e1 +

1
2
e2 +

1
2
e3

)
∂e1

∂x3
,

∂e2

∂x5
=
(

1
2
e1 +

3
2
e2 +

1
2
e3

)
∂e2

∂x3
,

∂e3

∂x5
=
(

1
2
e1 +

1
2
e2 +

3
2
e3

)
∂e3

∂x3
.

(62)

From the algebro-geometrical characterization viewpoint three of five parameters ui, i = 0, 1, 2, 3, 4
for an elliptic curve are redundant (see e.g.[23]). Only two special combinations of ui (moduli g2 and g3)
are essential and the canonical form of elliptic curve is

Ec = π3
2 − (π2

3 + g2π2 + g3) = 0. (63)

Moduli g2 and g3 are given by the formulae [23]

g2 = u1 −
1
3
u3

2 g3 = u0 +
2
27
u3

3 − 1
3
u1u3. (64)

where for sake of simplicity we choose u4 = u2 = 0. General cubic (55) is converted into the canonical
form by admissible transformation (u4 = u2 = 0) [23]

p2 = π2 −
1
3
u3 p3 = π3. (65)

Direct calculation gives the following equations for moduli

∂g2

∂x5
=
∂g3

∂x3
− 5

6
∂g2

∂x3
u3 −

2
3
∂u3

∂x3
g2,

∂g3

∂x5
= −5

6
∂g3

∂x3
u3 −

1
3
∂g2

∂x3
g2 −

∂g3

∂x3
u3,

∂u3

∂x5
=
∂g2

∂x3
− 5

6
∂u3

∂x3
u3.

(66)

This system contains not only moduli but also the function u3. One can, in principal, express u3 in terms
of g2 and g3 solving the third of above equations (Burgers-Hopf equation with the source) or equivalently
solving the Hamilton-Jacobi equation

φx5 +
5
12

(φx3)2 − g2 = 0 (67)

10



where φx3 = u3.
Thus, the system (66) governs the coisotropic deformations of moduli of elliptic curve parametrized

by two variables x3 and x5. Equations (66) allows us also to find deformations of the discriminant δ and
invariant J of elliptic curve. The corresponding equations are rather complicated and we do not present
them here. For illustration we consider the following simple solution of the system (66) (C is an arbitrary
constant)

u3 = C,

u1 = x5 −
C2

4
,

u0 = x3 −
C

2
x5 +

C3

6

(68)

which provides us with simple, linear deformation of the elliptic curve. For this solution the discriminant
is equal to

∆(x3, x5) = 16(4x5
3 +

47
4
x5

2C2 − 21
2
x5C

4 +
49
24
C6 + 27x3

2 − 45x3x5C +
35
2
x3C

3). (69)

In the particular case C = 0 we have ∆(0, 0) = 0 and so at x3 = x5 = 0 the curve is singular. Deformation
(variation of x3 and x5) however generically desingularize it. Conversely, if C 6= 0 then ∆(0, 0) 6= 0, but
the deformation produces ∆ which may be different from zero not everywhere. This deformation changes
J and, therefore, changes the elliptic curve. We note also that for this solution the family of deformed
cubics is the algebraic variety too.

Thus, it is very natural to look for coisotropic deformations of moduli starting directly from the canon-
ical form (63) of elliptic curve. One immediately finds that the canonical Poisson structure considered
before is not appropriate in this case since the coisotropy condition with such a Poisson bracket gives rise
to only trivial deformations. Thus, one should search for an adequate Poisson structure.

One way to find it is to study transformation of the canonical Poisson structure under the transfor-
mations of Darboux coordinates pi, xi to new coordinates πi, τi given by the formula (65) and by π5 = p5,
τi = xi, i = 2, 3, 5. Direct calculation gives the following transformed Poisson structure

{τi, τj}τπ = 0, i, j = 2, 3, 5
{τi, πj}τπ = δij , i, j = 2, 3, 5

{πi, πj}τπ =
1
3
∂u3

∂x3
δi3δj2 +

1
3
∂u3

∂x5
δi5δj2, i, j = 2, 3, 5.

(70)

It is not difficult to check that the coisotropy condition

{Ec, J (5)}τπ|Γ = 0 (71)

with the Poisson bracket (70) and J (5)|p2=π2− 1
3u3

= π5 − π2π3 + u3
6 π3 gives the system (66).

One can perform similar transformations in other cases. The problem of consistency of an algebraic
curve and corresponding Poisson structure which allow to construct nontrivial coisotropic deformations
will be discussed elsewhere.

Finally, we note that the results of this section can be extended to hyperelliptic curves. Indeed, of
one takes a hyperelliptic curve

p2n+1
2 = p2

2n+1 +
2n∑
i=0

vi(x2n+1, x2n+3)p2
i, (72)

choose the polynomial functions of the form fm = p2n+3 − (
∑m
i=0 ui(x2n+1, x2n+3)p2

i)p2n+1 then the
coisotropy condition with the canonical Poisson bracket reproduces hydrodynamical type systems derived
by a different method in the paper [9].
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7 Three-dimensional deformations of elliptic curves and Poisson
structures

We will consider now fully three-dimensional deformations of the general cubic (55). We take the canonical
Poisson bracket in R6, choose the generating function as f4 = p4 − p2

2 − u2p3 − u1p2 − u0 and denote
deformation variables by x2, x3, x4. The coisotropy condition takes the form

{p4 − P4(p2, p3), E}|Γ = c7 p2
2p3 + c6 p2

3 + c5 p2p3 + c4 p2
2 + c3 p3 + c2 p2 + c0 = 0 (73)

where

c7 =2
∂u4

∂x2
− 3

∂v2

∂x2

c6 =2
∂u3

∂x2
− 3

∂v1

∂x2
− u4

∂v2

∂x2
+ 2

∂v2

∂x3

c5 =v1
∂u4

∂x2
− u4

∂v1

∂x2
− 2u3

∂v2

∂x2
+ v2

∂u4

∂x3
+ u4

∂v2

∂x3
− u4

2 ∂v2

∂x2
− ∂u4

∂x4
+ 2

∂u2

∂x2
+ 2

∂v1

∂x3

c4 =− u4u3
∂v2

∂x2
+ v1

∂u3

∂x2
− ∂u3

∂x4
+ 2

∂u1

∂x2
− 3

∂v0

∂x2
− 2u3

∂v1

∂x2
+ v2

∂u3

∂x3
− u4

∂v1

∂x3
+ 2u3

∂v2

∂x3

c3 =− u4u2
∂v2

∂x2
− ∂u2

∂x4
+ 2

∂v0

∂x3
+ v1

∂u2

∂x2
− u4

∂v0

∂x2
− u1

∂v2

∂x2
+ v2

∂u2

∂x3
+ u2

∂v2

∂x3

c2 =− u4u1
∂v2

∂x2
− ∂u1

∂x4
+ 2

∂u0

∂x2
+ v1

∂u1

∂x2
− 2u3

∂v0

∂x2
− u1

∂v1

∂x2
+ v2

∂u1

∂x3
− u4

∂v0

∂x3
− u2

∂v1

∂x3
+ 2u1

∂v2

∂x3

c0 =v1
∂u0

∂x2
− u1

∂v0

∂x2
+ v2

∂u0

∂x3
− u2

∂v0

∂x3
− ∂u0

∂x4
− u4u0

∂v2

∂x2
+ 2u0

∂v2

∂x3
.

(74)

Thus, the coisotropy condition (73) is equivalent to the equations ci = 0. The conditions c7 = 0 and
c6 = 0 imply that

v2 =
2
3
u4 , v1 =

2
3
u3 −

2
9
u4

2 +
4
3
∂

∂x2

−1 ∂u4

∂x3
. (75)

The rest of these conditions give rise to the system

∂u4

∂x4
=− 2

3
∂

∂x2
(u2u3)− 5

9
u4

2 ∂u4

∂x2
+

4
9
u4
∂u4

∂x3
+ 2

∂u2

∂x2
+

4
3
∂u3

∂x3
+

4
9
∂u4

∂x2

∂

∂x2

−1 ∂u4

∂x3
+

8
9
∂

∂x2

−1 ∂2u4

∂x3
2

∂u3

∂x4
=− 2

3
u4u3

∂u4

∂x2
+ v1

∂u3

∂x2
+ 2

∂u1

∂x2
− 3

∂v0

∂x2
− 2u3

∂v1

∂x2
+

2
3
u4
∂u3

∂x3
− u4

∂v1

∂x3
+

4
3
u3
∂u4

∂x3

∂u2

∂x4
=− 2

3
u4u2

∂u4

∂x2
+ 2

∂v0

∂x3
+ v1

∂u2

∂x2
− u4

∂v0

∂x2
− 2

3
u1
∂u4

∂x2
+

2
3
u4
∂u2

∂x3
+

2
3
u2
∂u4

∂x3

∂u1

∂x4
=− 2

3
u4u1

∂u4

∂x2
+ 2

∂u0

∂x2
+ v1

∂u1

∂x2
− 2u3

∂v0

∂x2
− u1

∂v1

∂x2
+

2
3
u4
∂u1

∂x3
− u4

∂v0

∂x3
− u2

∂v1

∂x3
+

4
3
u1
∂u4

∂x3

∂u0

∂x4
=v1

∂u0

∂x2
− u1

∂v0

∂x2
+

2
3
u4
∂u0

∂x3
− u2

∂v0

∂x3
− 2

3
u4u0

∂u4

∂x2
+

4
3
u0
∂u4

∂x3

(76)

where again v1 = 2
3u3 − 2

9u4
2 + 4

3
∂
∂x2

−1 ∂u4
∂x3

.
This system governs three-dimensional coisotropic deformations of the elliptic curve (55). From the
viewpoint of deformations of space curves it describes deformations of a space curve which is the inter-
section of a cylindrical surface generated by the cubic (55) and a space quadric defined by the equation
f4 = p4 − p2

2 − u2p3 − u1p2 − u0 = 0.
We note that this system contains an arbitrary field v0 . It is associated with the gauge freedom for

the system. In the gauge

v0 =
1
27
u2

4u3 −
1
6
u2

3 −
2
3
u1 −

4
9
∂

∂x2

−1 ∂

∂x3

(
u2 −

1
27
u3

4 +
1
6
u3u4

)
(77)
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this system coincides with the dispersionless limit of the first hidden KP system considered in [12]. So,
it is natural to refer to the system (76) as the genus 1 KP system.

Now we will extend the observation on the transformation of the Poisson structure done in the previ-
ous section to the three-dimensional case and will analyze relation between different Poisson structures
which produce the same integrable systems. We consider the general cubic (55). As before admis-
sible transformations are those which do not change the genus. Let us denote new coordinates by
ξ2,3,4, π2,3,4. The only admissible transformations are the graded transformations π2 = p2 + α(x2, x3, x4)
and π3 = p3 + β1(x2, x3, x4)p2 + β0(x2, x3, x4). In order to preserve the gradation we perform similar
change of the coordinate π4 = p4 + γ3(x2, x3, x4)p2

2 + γ2(x2, x3, x4)p3 + γ1(x2, x3, x4)p2 + γ0(x2, x3, x4).
Finally, the polynomiality in the πis variables of the family of Poisson tensors is preserved only if an
adequate change of variables ξi = ξi(x2, x3, x4) for i = 2, 3, 4 is performed.
The inverse to such transformation is of the form

xi = xi(ξ2, ξ3, ξ4) i = 2, 3, 4
p2 = π2 − α
p3 = π3 − β1π2 + (αβ1 − β0)

p4 = π4 − γ3π2
2 − γ2π3 + (2αγ3 + γ2β1 − γ1)π2 +

(
−α2γ3 − αβ1γ2 + β0γ2 + αγ1 − γ0

) (78)

where α = α(x = x(ξ)) and analogously for the other coefficients. Under this transformation the elliptic
curve is converted to

Eg =π3
2 − π2

3 − (u4 + 2β1)π2π3 − (−u4β1 − β1
2 − 3α+ u3)π2

2 − (−u4α+ u2 − 2β1α+ 2β0)π3

− (−2β1β0 − u4β0 + 2u4β1α+ 2β1
2α+ 3α2 + u1 − 2u3α− u2β1)π2

− (u2β1α+ u0 + 2β1αβ0 − β1
2α2 − β0

2 + u3α
2 − u2β0 − α3 − u4β1α

2 + u4αβ0 − u1α)

(79)

and the deformation function becomes

J (4)
g =π4 − (γ3 + 1)π2

2 − (γ2 + v2)π3 − (−2 γ3α+ γ1 − γ2β1 − 2α− v2β1 + v1)π2

− (γ3α
2 + γ2β1α− γ2β0 − γ1α+ γ0 + α2 + v2β1α− v2β0 − v1α+ v0).
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Then the canonical Poisson structure is transformed into the following

{ξi, ξj} =0 i, j = 2, 3, 4

{ξi, π2} =
∂ξi
∂x2

˛̨̨̨
˛
x=x(ξ)

i = 2, 3, 4

{ξi, π3} =
∂ξi
∂x3

˛̨̨̨
˛
x=x(ξ)

+ β1
∂ξi
∂x2

˛̨̨̨
˛
x=x(ξ)

i = 2, 3, 4

{ξi, π4} =2γ3
∂ξi
∂x2

˛̨̨̨
˛
x=x(ξ)

π2 +
∂ξi
∂x4

˛̨̨̨
˛
x=x(ξ)

+ γ2
∂ξi
∂x3

˛̨̨̨
˛
x=x(ξ)

+ (γ1 − 2γ3α)
∂ξi
∂x2

˛̨̨̨
˛
x=x(ξ)

i = 2, 3, 4

{π2, π3} =− ∂β1

∂x2

˛̨̨̨
˛
x=x(ξ)

π2 +

„
∂α

∂x3
+

∂

∂x2
(αβ1 − β0)

« ˛̨̨̨
˛
x=x(ξ)

{π2, π4} =
∂γ3

∂x2

˛̨̨̨
˛
x=x(ξ)

π2
2 − ∂γ2

∂x2

˛̨̨̨
˛
x=x(ξ)

π3 +

„
∂

∂x2
(2αγ3 − γ1) + β1

∂γ2

∂x2

« ˛̨̨̨
˛
x=x(ξ)

π2

+

„
∂

∂x2
(αγ1 − γ0 − α2γ3) + (αβ1 − β0)

∂γ2

∂x2
+ γ2

∂α

∂x3
+

∂α

∂x4

« ˛̨̨̨
˛
x=x(ξ)

{π3, π4} =

„
2γ3

∂β1

∂x2
− β1

∂γ3

∂x2
− ∂γ3

∂x3

« ˛̨̨̨
˛
x=x(ξ)

π2
2 +

„
−∂γ2

∂x3
− β1

∂γ2

∂x2

« ˛̨̨̨
˛
x=x(ξ)

π3

+

„
2α
∂γ3

∂x3
+ 2αβ1

∂γ3

∂x2
− 4αγ3

∂β1

∂x2
+ β1

∂γ2

∂x3
+ β1

2 ∂γ2

∂x2
+ 2γ3

∂β0

∂x2
− ∂γ1

∂x3

−β1
∂γ1

∂x2
+
∂β1

∂x4
+ γ2

∂β1

∂x3
+ γ1

∂β1

∂x2

« ˛̨̨̨
˛
x=x(ξ)

π2 +

„
−α2 ∂γ3

∂x3
− α2β1

∂γ3

∂x2

+2α2γ3
∂β1

∂x2
− αβ1

∂γ2

∂x3
+ β0

∂γ2

∂x3
− αβ1

2 ∂γ2

∂x2
+ β0β1

∂γ2

∂x2
− 2αγ3

∂β0

∂x2
+ α

∂γ1

∂x3

+αβ1
∂γ1

∂x2
− α∂β1

∂x4
− αγ2

∂β1

∂x3
− αγ1

∂β1

∂x2
− ∂γ0

∂x3
+
∂β0

∂x4
+ γ2

∂β0

∂x3
+ γ1

∂β0

∂x2
− β1

∂γ0

∂x2

« ˛̨̨̨
˛
x=x(ξ)

.

(80)

With the choice α = 1
3u3 + 1

12 (u4)2, β0 = − 1
2u2, β1 = − 1

2u4 equation (79) takes the canonical form and
the Poisson structure (80) becomes an appropriate one for constructing three-dimensional deformations of
moduli g2 and g3 of the elliptic curves. The corresponding equations are too complicated to be presented
here.

The observations made in this and previous section naturally lead to introduction of a notion of
equivalent Poisson structures in the framework of the theory of coisotropic deformations. This remark is
due to Jean-Claude Thomas and Volodya Rubtsov.

8 Coisotropic deformations of curves and surfaces in R4

Deformations of curves in R4 defined by three equations can be studied analogously to the three-
dimensional case. For the curves given by equations

f1 = p1p2 + ap1 + bp2 + c = 0, (81)

f2 = p3 +
n∑
k=1

αkp
k
1 = 0, f3 = p4 +

m∑
k=1

βkp
k
2 = 0 (82)

with arbitrary n and m the coisotropic deformations are governed by the CSs which coincide with equa-
tions of the universal Whitham hierarchy on Riemann sphere with two punctures (see [14]).

An interesting particular case corresponds to
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f1 = p1p2 − 1 = 0, (83)
f2 = p3 + ap1 − a = 0, f3 = p4 + bp2 − b = 0 (84)

for which the curve is the intersection of the cylindrical hyperbola and two hyperplanes. In order to get
nontrivial coisotropic deformations in this case one has to choose the Poisson bracket in the form (see
[15])

{f, g} =
4∑
k=1

γk

(
∂f

∂pk

∂g

∂xk
− ∂f

∂xk

∂g

∂pk

)
(85)

where γ1 = p1, γ2 = −p2, γ3 = γ4 = 1. Then the coisotropy conditions

{fj , fk} |Γ= 0, j, k = 1, 2, 3 (86)

gives rise to the following CS

ax1 + ax2 = 0, bx1 + bx2 = 0, (87)
ax4 + abx1 = 0, bx3 − bax2 = 0. (88)

This system implies that the variable Θ = log(ab) obeys the equation

Θx3x4 + (exp Θ)x1x1 = 0 (89)

which is well-known Boyer-Finley or dispersionless two-dimensional Toda lattice (2DTL) equation. Choos-
ing f2 and f3 as polynomials of any order in p1 and p2, respectively, one gets coisotropic deformations of
curves in R4 described by higher d2DTL equations.

Coisotropic deformations can be constructed also for algebraic varieties of other types in R4. For
instance, let us consider a pencil of hyperplanes in R4 defined by the equations

f1 = p3 + (a− λ)p1 + bp2 = 0, (90)
f2 = p4 + cp1 + (d− λ)p2 = 0 (91)

where λ is a parameter. The coisotropy condition {f1, f2} |Γ= 0 for all values of λ with the canonical
Poisson bracket in R8 gives rise to

a = Φx1 , b = Φ̃x1 , c = Φx2 , d = Φ̃x2 (92)

and the equations

Φx1x4 − Φx2x3 + Φx2Φx1x1 − Φx1Φx1x2 + Φ̃x2Φx1x2 − Φ̃x1Φx2x2 = 0,

Φ̃x1x4 − Φ̃x2x3 + Φ̃x2Φ̃x1x2 − Φ̃x1Φ̃x2x2 + Φx2Φ̃x1x1 − Φx1Φ̃x1x2 = 0. (93)

This CS describes the coisotropic deformations of the pencil of the hyperplanes. The system (93) admits
the constraint Φ = Θx2 , Φ̃ = −Θx1 under which it is reduced to the single equation

Θx1x4 −Θx2x3 + Θx1x1Θx2x2 − (Θx1x2)2 = α(x1, x3, x4) (94)

where α(x1, x3, x4) is an arbitrary function. At α = 0 it is the celebrated heavenly equation [28].
This last example has a natural extension to the spaces of any dimension. Indeed, let us consider a

rational pencil of hyperplanes in Rn defined by the equations

f1 =
n∑
k=1

ak(λ)pk = 0, f2 =
n∑
k=1

bk(λ)pk = 0 (95)
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where ak(λ) and bk(λ) are certain rational functions of the parameter λ. The coisotropy condition
{f1, f2} |Γ= 0 with the canonical Poisson bracket in R2n for all values of λ is equivalent to the system
of differential equations for the coefficients of the rational functions ak(λ), bk(λ). This system coincides
with that considered in [29] in connection with the commutativity condition of multidimensional vector
fields. This coincidence is not accidental. It is a well-known fact that the expression for the commutator
of vector fields is in one-to one correspondence with the expression of the Poisson bracket of functions
linear in momenta pj (pj ←→ ∂

∂xj
).

9 Conclusion

Coisotropic deformations studied in this paper form a special class of deformations of algebraic varieties.
CSs describing such deformations represent themselves the differential constraints on coefficients of the
functions fj , i.e. on the coordinates of parameter space for algebraic variety (for this notion see e.g.
[30]). Solutions of CSs generate particular subvarieties of dimension n (surfaces, hypersurfaces etc) in
the parameter space. Examples of CSs considered in the paper are the integrable hydrodynamical type
systems. They have number of remarkable properties (infinite sets of integrals, symmetries etc). These
properties are inherited by the deformed algebraic varieties and they could be of algebro-geometrical
relevance.

For general solutions of CSs each member (for fixed xi, i = 1, ..., n) of the family of deformed varieties
is an algebraic variety in Rn, but the totality of them (i.e. submanifold Γ) is not. Polynomial solutions
of CSs are then of particular interest. For them the whole family of deformed algebraic varieties is
an algebraic variety too (in R2n). Thus, for such solutions of CSs families of coisotropically deformed
algebraic varieties belong to the class of families of algebraic varieties which “vary algebraically with
parameters”. This class is “one that is fundamental in much of algebraic geometry” [30] (p.41).
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