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Abstract

The lattice Boussinesq equation (BSQ) is a three-component difference-difference equa-
tion defined on an elementary square of the 2D lattice, having 3D consistency. We write the
equations in the Hirota bilinear form and construct their multisoliton solutions in terms of
Casoratians, following the methodology in our previous papers. In the construction it turns
out that instead of the usual discretization of the exponential as [(a+ k)/(a− k)]n we need
two different terms [(a− ωk)/(a− k)]n and [(a− ω2k)/(a− k)]n, where ω is a cubic root of
unity 6= 1.

1 Introduction

Among the integrable 2D difference equations one important class consists of those equations
that are defined on an elementary quadrilateral and are multidimensional consistent. Here
multidimensional consistency means that one can add a third dimension and extend the definition
in a natural way from a quadrilateral to a cube, and that on this cube the maps are consistent.

Most of the maps in this class are included in the ABS classification [1], (which is complete
within the assumptions of symmetry and the tetrahedron property). These lattice maps have one
component for each lattice site, but there are also 3D-consistent multicomponent maps related
to the Boussinesq (BSQ) equation [2, 3, 4, 5].

In this paper we will derive multisoliton solutions to the lattice BSQ equation defined on the
elementary square by the equations [5]

B1 ≡ w̃ − uũ+ v = 0, (1.1a)
B2 ≡ ŵ − uû+ v = 0, (1.1b)

B3 ≡ w − û̃u+ ̂̃v − p− q
û− ũ

= 0, (1.1c)

where we have used the standard shorthand notation, e.g., ũ = un+1,m, v̂ = vn,m+1, and where
p and q are parameters in the n and m directions, respectively. From equations (1.1a),(1.1b)
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one finds, after taking the hat and tilde shifts, respectively

̂̃u =
ṽ − v̂
ũ− û

, (1.2a)

̂̃w =
ũv̂ − ûṽ
ũ− û

. (1.2b)

Equations (1.1),(1.2) are consistent on the elementary square.
Three-dimensional consistency means that we can add a third direction, with parameter r.

The new equations will be

w − uu+ v =0, (1.3a)

w − uû+ v̂ − r − q
û− u

=0, (1.3b)

w − uũ+ ṽ − r − p
ũ− u

=0, (1.3c)

where we have denoted the shift in the third direction by a bar. To this we should add the
bar-tilde and bar-hat versions of (1.2), which can be derived from (1.3a).

Consider now the cube of Figure 1, where F stands for the three components (u, v, w). The
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Figure 1: The multi-dimensional consistency cube.

initial values are given at F, F̃ , F̂ , F , but due to the linear equations (1.1a),(1.1b),(1.3a) we only
need to give (u, v, w), (ũ, ṽ), (û, v̂), (u, v). Given these values we can compute (̂̃u, ̂̃v, ̂̃w), (û, v̂, ŵ)
(ũ, ṽ, w̃) using (1.2) and its tilde-bar and hat-bar versions, along with (1.1c),(1.3b),(1.3c). After

this there are three different ways to compute the remaining (̂̃u, ̂̃v, ̂̃w) but they all give the same
values and the system is therefore 3D-consistent.

In the following construction we make active use the 3D-view with different interpretations
for the bar shift. In Section 2 we construct first the background solution, then the one-soliton
solution, and then in Section 3 we derive the Hirota bilinear form and propose and prove the
formulae for N -soliton solutions. The procedure is in principle similar to the one used in [6, 7, 8],
but the multicomponent nature induces some new features.

2 The background and one-soliton solutions

The fixed-point idea proposed in [6] for the construction of the background solution (0SS) is
that the background or “seed” solution should be a fixed point with respect to a shift in the

2



third direction, i.e., u = u, v = v, w = w. The relevant equations (the equations on the sides of
the cube) are then obtained from (1.3) as

w = u2 − v,
w = uũ− ṽ + p−r

u−eu ,
w = uû− v̂ + r−qbu−u ,

(2.1)

where r is the parameter in the bar-direction and now plays the role of a parameter of the
background solution. The equations are easy to solve and we find the 0SS

u0 = an+ bm+ c1, (2.2a)

v0 = 1
2u

2
0 + 1

2(a2n+ b2m+ c2) + c3, (2.2b)

w0 = 1
2u

2
0 − 1

2(a2n+ b2m+ c2)− c3, (2.2c)

where a, b are related to p, q by

a3 = r − p, b3 = r − q, (2.3)

and c1, c2, c3 are arbitrary constants.
The one-soliton solution (1SS) is constructed with the same idea of using the 3D cube, but

now u, v, w correspond to the background solution and u, v, w to the 1SS. In more detail, we
have the side equations

w = uu− v, (2.4a)

together with {
ũ = ev−veu−u ,
ṽ = uũ− w + k3−a3

u−eu ,
{
û = v−bv

u−bu ,
v̂ = uû− w + b3−k3bu−u . (2.4b)

These act as a Bäcklund transformation (BT) with k as the BT parameter related to the bar
direction.

In order to solve equations (2.4) we take (u, v, w) = (u0, v0, w0) where the background
solution is defined in (2.2). The 1SS is written in the form

(u, v, w) = (u0 + x, v0 + y, w0 + z), (2.5)

where (u0, v0, w0) is the bar-shifted (u0, v0, w0), i.e.,

u0 = an+ bm+ k + c1, (2.6a)

v0 = 1
2u

2
0 + 1

2(a2n+ b2m+ k2 + c2) + c3, (2.6b)

w0 = 1
2u

2
0 − 1

2(a2n+ b2m+ k2 + c2)− c3. (2.6c)

With these definitions we find from (2.4a) that z = u0x. Thus we only need to solve for x, y,
for which we have from (2.4b){

x̃ = −eu0 x+y
x−a+k ,

x̂ = −bu0 x+y
x−b+k ,

{
ỹ = −(ev0+w0)x+u0 y

x−a+k ,

ŷ = −(bv0+w0)x+u0 y
x−b+k ,

(2.7)
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This system can be linearized by taking (x, y) = (GF ,
H
F ), the result is

Ψ̃ = NΨ, Ψ̂ = MΨ, (2.8a)

where

Ψ =

GH
F

 , N =

 ũ0 −1 0
ṽ0 + w0 −u0 0
−1 0 a− k

 , M =

 û0 −1 0
v̂0 + w0 −u0 0
−1 0 b− k

 . (2.8b)

The matrices N,M satisfy the integrability condition N̂M = M̃N .
In order to construct the solutions it is useful to note that if we define

Q(n,m) =

 u0(n,m)− ωk −1 0
u0(n,m)− ω2k −1 0

(−u0(n,m) + k)/(3k2) 1/(3k2) 1

 , (2.9)

then

N = Q(n+ 1,m)−1D(a)Q(n,m), where D(a) =

a− ωk 0 0
0 a− ω2k 0
0 0 a− k

 , (2.10)

and similarly M = Q(n,m + 1)−1D(b)Q(n,m). Here ω is a cubic root of unity, ω 6= 1, i.e,
ω2 + ω + 1 = 0. Using these we can straightforwardly construct the solution as

Ψ(n,m) = Q(n,m)−1D(a)nD(b)mQ(0, 0)Ψ(0, 0), (2.11)

from which we find

G = k(ω − 1)
[
ρ0
1(a− ωk)n(b− ωk)m − ω2ρ0

2(a− ω2k)n(b− ω2k)m
]
, (2.12a)

H = u0 g + k2(ω − 1)
[
−ω2ρ0

1(a− ωk)n(b− ωk)m + ρ0
2(a− ω2k)n(b− ω2k)m

]
, (2.12b)

F = ρ0
0(a− k)n(b− k)m + ρ0

1(a− ωk)n(b− ωk)m + ρ0
2(a− ω2k)n(b− ω2k)m, (2.12c)

where we have introduced new constants ρ0
ν in place of G00, H00, F00. Using (2.5),(2.6) we can

recover the 1SS as

u1SS = u0 + k
1 + ωρ1 + ω2ρ2

1 + ρ1 + ρ2
, (2.13a)

v1SS = v0 + u0 k
1 + ωρ1 + ω2ρ2

1 + ρ1 + ρ2
+ k2 1 + ω2ρ1 + ωρ2

1 + ρ1 + ρ2
, (2.13b)

w1SS = w0 + u0 k
1 + ωρ1 + ω2ρ2

1 + ρ1 + ρ2
. (2.13c)

Here u0, v0, w0 were defined in (2.2) and

ρν(n,m; k) =
(a− ωνk)n

(a− k)n
(b− ωνk)m

(b− k)m
ρ0
ν

ρ0
0

, ν = 1, 2, (2.14)

where k is the soliton parameter.
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3 Bilinearization, Casoratians and N-soliton solutions

3.1 The main result

The 1SS (2.13) is not quite sufficient for guessing the general structure for NSS, but after
considering also 2SS (in the case ρ0

2 = 0) we arrived to a solution in terms of Casoratians,
constructed as follows: Given the multi-indexed function

ψj(n,m, l) =
3∑
s=1

%
(0)
j,s (δ − ωskj)l(a− ωskj)n(b− ωskj)m, (3.1)

we define the column vector

ψ(n,m, l) = (ψ1(n,m, l), ψ2(n,m, l), · · · , ψN (n,m, l))T , (3.2)

and then the generic N ×N Casorati matrix by combining columns with different shifts li. The
generic Casoratian is then the determinant

Cn,m(ψ; {li}) = |ψ(n,m, l1), ψ(n,m, l2), · · · , ψ(n,m, lN )|. (3.3)

To describe such Casoratians we use the shorthand notation [9] in which only the shifts are
given. Furthermore for consecutive sequences we use M̂ ≡ 0, 1, . . . ,M (this cannot be confused
with the use of hat for shifts).

Proposition 1. Multisoliton solutions to (1.1) are given by

u = u0 −
g

f
, v = v0 − u0

g

f
+
h

f
, w = w0 − u0

g

f
+
s

f
, (3.4)

where u0, v0, w0 are given in (2.2) and the functions f, g, h, s are given in terms of Casoratians∗

f = |N̂ − 1|, g = |N̂ − 2, N |, h = |N̂ − 2, N + 1|, s = |N̂ − 3, N − 1, N |, (3.5)

composed of ψ given in (3.1) with δ = 0.

Here the size on the matrix N indicates the number of solitons and the set {ki}Ni=1 provides
the “velocity” parameters of the solitons, while the parameters %(0)

j,s are related to the locations
of the solitons (by gauge invariance only their ratio is significant).

In order to prove the above Proposition, we note that using (3.4) as a dependent variable
transformation we can bilinearize (1.1) as

B1 = f̃(h+ ag)− g̃(g + af) + fs̃ = 0, (3.6a)

B2 = f̂(h+ bg)− ĝ(g + bf) + fŝ = 0, (3.6b)

B3 = f̃ ĝ − f̂ g̃ − (a− b)(f̃ f̂ − f ̂̃f) = 0, (3.6c)

B4 = (a2 + ab+ b2)(f ̂̃f − f̃ f̂) + (a+ b)(f ̂̃g − ̂̃fg) + ̂̃fs+ f
̂̃
h− ĝ̃g = 0. (3.6d)

∗If N = 1 then f = |0|, g = |1|, h = |2|, s = 0; and if N = 2 then f = |0, 1|, g = |0, 2|, h = |0, 3|, s = |1, 2|.
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In fact, the lattice BSQ equation (1.1) can be written as

B1 =
B1

ff̃
B2 =

B2

ff̂
(û− ũ)B3 =

B3B4 − (a− b)f ̂̃fB4 + (a2 + ab+ b2)f̃ f̂B3

ff̃ f̂
̂̃
f

. (3.7)

Thus we need to prove that the Casoratians (3.5) solve the bilinear equations (3.6). This is given
in Appendix A for the generic values of δ, although only δ = 0 is used for the lattice BSQ. The
Casoratian proof suggested the δ 6= 0 generalization along with some others, they are discussed
next.

3.2 The role of δ

The solution to the lattice BSQ are obtained with δ = 0 in the matrix entry (3.1) but the
generalization δ 6= 0 is natural and we may ask about its meaning. It is important to note that
the proof given in the Appendix can be carried out using only the following assumptions on the
column vectors

(a− δ)
˜
ψ = ψ −

˜
ψ, (3.8a)

(b− δ)
ˆ
ψ = ψ −

ˆ
ψ, (3.8b)

γψ = ψ − 3δψ + 3δ2ψ, (3.8c)

where γ is a diagonal matrix and the bar-shift of ψ is defined by ψ(n,m, l) = ψ(n,m, l + 1).
From these assumptions one can derive the bilinear equations

Bδ1 = f̃ [h+ (a− δ)g]− g̃[g + (a− δ)f ] + fs̃ = 0, (3.9a)

Bδ2 = f̂ [h+ (b− δ)g]− ĝ[g + (b− δ)f ] + fŝ = 0, (3.9b)

Bδ3 = f̃ ĝ − f̂ g̃ + (a− b)(f̃ f̂ − f ̂̃f) = 0, (3.9c)

Bδ4 = (a2 + ab+ b2)(f ̂̃f − f̃ f̂) + (a+ b+ δ)(̂̃fg − f ̂̃g) + ̂̃fs+ f
̂̃
h− ĝ̃g = 0. (3.9d)

We can now reverse the dependent variable transformation (3.4) and construct from (3.9) a
generalized lattice BSQ equation

w̃ = uũ− v + δ(ũ− u− a), (3.10a)
ŵ = uû− v + δ(û− u− b), (3.10b)

w = û̃u− ̂̃v +
−a3 + b3

û− ũ
− δ(̂̃u− u− a− b). (3.10c)

Obviously, if we take δ = 0, the above equations reduce to those of lattice BSQ.
Now considering the Casoratian forms of f, g, h, s one can easily show that

f(δ) = f(0),
g(δ) = g(0) +N δ f(0),
h(δ) = h(0) + (N + 1) δ g(0) +N(N + 1)/2 δ2 f(0),
s(δ) = s(0) + (N − 1) δ g(0) +N(N − 1)/2 δ2 f(0),
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where N is the dimension of the matrix. From this result, which was derived from a particular
form of the solution, we are led to the following: If we denote the δ-dependent functions in (3.10)
by u′, v′, w′ then the transformation

u′ = u, v′ = v − δ (u− u0), w′ = w + δ (u− u0), (3.11)

converts (3.10) into (1.1). Thus the effect of introducing δ in (3.1) can be undone by the “gauge”
transformation (3.11).

3.3 Toeplitz generalization

Another generalization in the construction of the solution is obtained if we replace (3.8c) with

Γψ = ψ − 3δψ + 3δ2ψ, (3.12)

where Γ is some N ×N matrix. Under this generalization proof of the bilinear equations (3.9)
proceeds as before, except for some details described in Appendix A.3.

First note that since the solutions are given in terms of determinants any matrix similar to
Γ yields same solution as Γ. Thus it is sufficient to consider only different canonical forms of Γ.

If Γ is a diagonal matrix
Γ = Diag(γ1, γ2, · · · , γN ) (3.13a)

where
γj = δ3 − k3

j , (3.13b)

with distinct {kj}, then the entries in the Casoratian can be as in (3.1). Since ω2 = ω∗ (where
∗ stands for complex conjugate), the condition for a real solution (coming from real ψj) is

%
(0)
j,2 = %

(0)∗
j,1 , with kj , %

(0)
j,3 ∈ R. (3.14)

Next suppose that Γ is a lower triangular matrix defined as

Γ = ΓN (k1) = (γs,l(k1))N×N , γs,l(k1) =

{
1

(s−l)!∂
s−l
k1

γ1, s ≥ l,
0, s < l,

(3.15)

where γ1 is defined by (3.13b). In this case, the generic entry vector ψ can be taken as

ψ =
3∑
s=1

AsQs(k1), (3.16a)

where
Qs(k1) = (Qs,0(k1), Qs,1(k1), · · · , Qs,N−1(k1))T ,
Qs,j(k1) = 1

j!∂
j
k1

[
%
(0)
1,s(δ − ωsk1)l(a− ωsk1)n(b− ωsk1)m

]
,

(3.16b)

and {As} are arbitrary Nth-order lower triangular Toeplitz matrices defined by

As =


as,0 0 0 · · · 0 0
as,1 as,0 0 · · · 0 0
as,2 as,1 as,0 · · · 0 0
· · · · · · · · · · · · · · · · · ·

as,N−1 as,N−2 as,N−3 · · · as,1 as,0


N×N

, as,j ∈ C.
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To get a real solution, in addition to the condition (3.14) we also need A2 = A∗1 and A3 being
real. Reduction to the solution of the lattice BSQ (1.1) are obtained by taking δ = 0 in (3.16b).

Note that in this case there is only one k1, so solutions corresponding to such a ΓN (k1) are
kind of limit solutions. In fact, let us start from the Casoratians with ψj defined in (3.1) and set
%
(0)
j,s = %

(0)
1,s for j = 2, 3, · · · , N . First we replace the Casoratians f, g, h, s in the bilinear equations

(3.9) by f/K, g/K, h/K, s/K with K =
∏N
j=2

(kj−k1)j−1

(j−1)! . Then, using L’Hospital rule we can
take the limits kj → k1 from j = 2 to j = N step by step, and finally reach the bilinear equations
(3.9) solved by Casoratians f, g, h, s with entry vector ψ =

∑3
s=1Qs(k1) where Qs(k1) is defined

as (3.16b). The Toeplitz matrix As in (3.16a) can be obtained by a suitable redefinition of %(0)
1,s

as a function sufficiently differentiable w.r.t k1 and %
(0)
j,s = %

(0)
1,s(kj) for j = 2, 3, · · · , N .

From the above solution we can also derive rational solutions, by taking a particular choice
of parameters in the limit k1 → 0.

4 Conclusions

In this paper we have bilinearized the lattice Boussinesq equation (1.1) and constructed its multi-
soliton solutions in terms of Casoratians. The method, which relies heavily on 3D-consistency,
is similar to the one used in [7, 8], with the main difference that the analogue of the exponential
factor now contains cubic roots of unity, see (2.14), allowing two different ρ-terms in the bilinear
construction. Cubic roots of unity also enter in the continuum case, because the continuum
Boussinesq equation is obtained as a three-reduction from the KP equation.

After this work was completed we were informed about reference [12] where the authors
bilinearized the lattice BSQ in its 9-point 1-component form using singularity confinement and
then constructed its solutions in Casoratian form. Their final result is similar to the present
except that it only contained two terms in the Casoratian entries (cf. (3.1)).
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A Proof of Casoratian solutions

Usually in Casoratian proof the bilinear equation is reduced to a Laplace expansion of a 2N×2N
determinant that can be seen to be identically zero. The expansion is described as:

Lemma 1. [9] Suppose that B is an N × (N −2) matrix and a, b, c, d are N ’th-order column
vectors, then

|B,a,b||B, c,d| − |B,a, c||B,b,d|+ |B,a,d||B,b, c| = 0. (A.1)

This Lemma is also used to generate Casoratian equalities by means of which one can simplify
Casoratian proofs.

A.1 Formulae for Casoratians

In order to use the above Lemma we need various formulae for the shifts of the Casoratians
f, g, h, s of (3.5) with entries (3.1), as given below. These formulae can be derived using
(3.8a),(3.8b) in the same way as in [8]. For convenience we introduce an up-shift operator
Eν by

E1ψ ≡ ψ̃, E2ψ ≡ ψ̂, E3ψ ≡ ψ.
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Down shifts are denoted by Eν , ν = 1, 2, 3, respectively.
The basic shift formulae are

−(αµ − δ)N−2Eµf = |N̂ − 2, Eµψ(N − 2)|, (A.2a)

−(αµ − δ)N−2Eµ[g + (αµ− δ)f ] = |N̂ − 3, N − 1, Eµψ(N − 2)|, (A.2b)

−(αµ − δ)N−2Eµ[h+ (αµ − δ)g] = |N̂ − 3, N,Eµψ(N − 2)|, (A.2c)

(a− b)(a− δ)N−2(b− δ)N−2

˜̂
f = |N̂ − 3,

ˆ
ψ(N − 2),

˜
ψ(N − 2)|, (A.2d)

(a− b)(a− δ)N−2(b− δ)N−2
[

˜̂
g + (a+ b− 2δ)

˜̂
f
]

=− (a− δ)N−2

˜
f + (b− δ)N−2

ˆ
f + |N̂ − 4, N − 2,

ˆ
ψ(N − 2),

˜
ψ(N − 2)|, (A.2e)

(a− b)(a− δ)N−2(b− δ)N−2
[
˜̂
s+ (a+ b− 2δ)

˜̂
g + [(a− δ)2 + (a− δ)(b− δ) + (b− δ)2]

˜̂
f
]

=− (b− δ)(a− δ)N−2

˜
f + (a− δ)(b− δ)N−2

ˆ
f + |N̂ − 5, N − 3, N − 2,

ˆ
ψ(N − 2),

˜
ψ(N − 2)|.

(A.2f)

where µ = 1, 2, and α1 = a, α2 = b.
In order to apply Lemma 1 in the proof of the main result we need some further equalities

(also derived using Lemma 1):

f |N̂ − 5, N − 3,N − 2,
ˆ
ψ(N − 2),

˜
ψ(N − 2)|

=− (b− δ)N−2

ˆ
f |N̂ − 5, N − 3, N − 2, N − 1,

˜
ψ(N − 2)|

+ (a− δ)N−2

˜
f |N̂ − 5, N − 3, N − 2, N − 1,

ˆ
ψ(N − 2)|, (A.3a)

f |N̂ − 4, N − 2,
ˆ
ψ(N − 2),

˜
ψ(N − 2)|

=− (b− δ)N−2

ˆ
f |N̂ − 4, N − 2, N − 1,

˜
ψ(N − 2)|

+ (a− δ)N−2

˜
f |N̂ − 4, N − 2, N − 1,

ˆ
ψ(N − 2)|

=(b− δ)N−2

ˆ
f
[
(a− δ)N−2

˜
s+ (a− δ)N−1

˜
g + (a− δ)N

˜
f − f

]
− (a− δ)N−2

˜
f
[
(b− δ)N−2

ˆ
s+ (b− δ)N−1

ˆ
g + (b− δ)N

˜
f − f

]
, (A.3b)

g|N̂ − 4, N − 2,
ˆ
ψ(N − 2),

˜
ψ(N − 2)|

=− (b− δ)N−2

ˆ
f |N̂ − 4, N − 2, N,

˜
ψ(N − 2)|

+ (a− δ)N−2

˜
f |N̂ − 4, N − 2, N,

ˆ
ψ(N − 2)|, (A.3c)

(a− b)
˜̂
fg =

ˆ
f [

˜
h+ (a− δ)

˜
g]−

˜
f [

ˆ
h+ (b− δ)

ˆ
g], (A.3d)

(a− b)(a− δ)N−2(b− δ)N−2

˜̂
fh = (a− δ)N−2

˜
f |N̂ − 3, N + 1,

ˆ
ψ(N − 2)|

− (b− δ)N−2

ˆ
f |N̂ − 3, N + 1,

˜
ψ(N − 2)|. (A.3e)

For the next identity we also need the following Lemma:

Lemma 2. [9]
N∑
j=1

|a1, · · · ,aj−1, baj , aj+1, · · · ,aN | =
( N∑
j=1

bj

)
|a1, · · · ,aN |, (A.4)
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where aj = (a1j , · · · , aNj)T and b = (b1, · · · , bN )T are N ’th-order column vectors, and baj
stands for (b1a1j , · · · , bNaNj)T .

Then, noting that

(δ − ωkj)3 − 3δ(δ − ωkj)2 + 3δ2(δ − ωkj) ≡ (δ − kj)3 − 3δ(δ − kj)2 + 3δ2(δ − kj) = γj ,

we get, using Lemma 2 and the following identity

[( N∑
j=1

γj

)
˜
f
]
ˆ
f =

[( N∑
j=1

γj

)
ˆ
f
]
˜
f, (A.5)

the explicit result

(a− δ)N−2

˜
f
[
|N̂ − 5, N − 3, N − 2, N − 1,

ˆ
ψ(N − 2)|

− |N̂ − 4, N − 2, N,
ˆ
ψ(N − 2)|+ |N̂ − 3, N + 1,

ˆ
ψ(N − 2)|

+ (b− δ)N+1

ˆ
f + g − (b− δ)f

− 3δ(b− δ)N−2(
ˆ
s−

ˆ
h)− 3δ2(b− δ)N−2

ˆ
g
]

− (b− δ)N−2

ˆ
f
[
|N̂ − 5, N − 3, N − 2, N − 1,

˜
ψ(N − 2)|

− |N̂ − 4, N − 2, N,
˜
ψ(N − 2)|+ |N̂ − 3, N + 1,

˜
ψ(N − 2)|

+ (a− δ)N+1

˜
f + g − (a− δ)f

− 3δ(a− δ)N−2(
˜
s−

˜
h)− 3δ2(a− δ)N−2

˜
g
]

= 0. (A.6)

A.2 Proof for bilinear equations (3.9)

With these Casoratian formulae derived in Appendix A.1, we can prove bilinear equations (3.9).

Proof for (3.9a): We consider the down-tilde-shifted Bδ1, i.e.,

f [
˜
h+ (a− δ)

˜
g]− g[

˜
g + (a− δ)

˜
f ] +

˜
fs = 0. (A.7)

Using (A.2c), (A.2b) and (A.2a) we have

−(a− δ)N−2[f [
˜
h+ (a− δ)

˜
g]− g[

˜
g + (a− δ)

˜
f ] +

˜
fs]

= |N̂ − 1||N̂ − 3, N,
˜
ψ(N − 2)| − |N̂ − 2, N ||N̂ − 3, N − 1,

˜
ψ(N − 2)|

+|N̂ − 2,
˜
ψ(N − 2)||N̂ − 3, N − 1, N |,

which is zero in the light of Lemma 1 by taking

B = (N̂ − 3), a = ψ(N − 2), b = ψ(N − 1), c = ψ(N), d =
˜
ψ(N − 2).

(3.9b) can be proved similarly.

11



Proof for (3.9c): We prove it in its down-tilde-hat-shifted version:

ˆ
f [

˜
g + (a− δ)

˜
f ]−

˜
f [

ˆ
g + (b− δ)

ˆ
f ]− (a− b)f

˜̂
f = 0. (A.8)

This can be verified by using first (A.2a), (A.2b), (A.2d) and then Lemma 1 with B = (N̂ − 3),
a = ψ(N − 2), b = ψ(N − 1), c =

ˆ
ψ(N − 2) and d =

˜
ψ(N − 2).

Proof for (3.9d): We first rewrite (3.9d) in the following form

f
[
˜̂
s+ (a+ b+ δ)

˜̂
g+ (a2 + ab+ b2)

˜̂
f
]
− g
[

˜̂
g+ (a+ b+ δ)

˜̂
f
]
− (a2 + ab+ b2)

˜
f
ˆ
f +

˜̂
fh = 0. (A.9)

Then using (A.2e) and (A.2f) we have

(a− b)(a− δ)N−2(b− δ)N−2 × l.h.s.(A.9)

= f |N̂ − 5, N − 3, N − 2,
ˆ
ψ(N − 2),

˜
ψ(N − 2)|

+(3δf − g)|N̂ − 4, N − 2,
ˆ
ψ(N − 2),

˜
ψ(N − 2)|

+(a− b)(a− δ)N−2(b− δ)N−2

˜̂
f(3δ2f − 3δg + h)

+(a− δ)N−2

˜
f [−(b+ 2δ)f + g + b3(b− δ)N−2

ˆ
f ]

−(b− δ)N−2

ˆ
f [−(a+ 2δ)f + g + a3(a− δ)N−2

˜
f ].

Next, we replace f |N̂ − 5, N − 3, N − 2,
ˆ
ψ(N − 2),

˜
ψ(N − 2)| by (A.3a), f |N̂ − 4, N − 2,

ˆ
ψ(N −

2),
˜
ψ(N − 2)| by (A.3b), g|N̂ − 4, N − 2,

ˆ
ψ(N − 2),

˜
ψ(N − 2)| by (A.3c),

˜̂
ff by (A.8),

˜̂
fg by

(A.3d) and
˜̂
fh by (A.3e). Then we find the remaining is nothing but the l.h.s.of (A.6), which is

zero.

A.3 Proof in the case of a generic Γ matrix

In fact, if ψ satisfies (3.8a) and (3.8b), then we can get formulae (A.2) and we only need a
modification for the proof of the identity (A.6). In the proof we need the following

Lemma 3. [10] (see also [11]) Suppose that Ξ is an N × N matrix with column vector set
{Ξj}; Ω is an N ×N operator matrix with column vector set {Ωj} and each entry Ωj,s being an
operator. Then we have

N∑
j=1

|Ωj ∗ Ξ| =
N∑
j=1

|(ΩT )j ∗ ΞT |, (A.10)

where for any N ’th-order column vectors Aj and Bj we define

Aj ◦Bj = (A1,jB1,j , A2,jB2,j , · · · , AN,jBN,j)T

and
|Aj ∗ Ξ| = |Ξ1, · · · ,Ξj−1, Aj ◦ Ξj , Ξj+1, · · · ,ΞN |

In the light of the above Lemma taking Ωj,s ≡ (E3)3 − 3δ(E3)2 + 3δ2E3 and Ξ =
˜
f or

ˆ
f we

have
(Tr(Γ)

˜
f)

ˆ
f = (Tr(Γ)

ˆ
f)

˜
f (A.11)

instead of (A.5). This equality together with formulae (A.2) allows us to get the identity
(A.6).
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