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Abstract. It is shown that if n ∈ N, c ∈ Cn, and three distinct values of a
meromorphic function f : Cn → P1 of hyper-order ς(f) strictly less than 2/3
have forward invariant pre-images with respect to a translation τ : Cn → Cn,
τ(z) = z+c, then f is a periodic function with period c. This result can be seen
as a generalization of M. Green’s Picard-type theorem in the special case where
ς(f) < 2/3, since the empty pre-images of the usual Picard exceptional values
are by definition always forward invariant. In addition, difference analogues
of the lemma on the logarithmic derivative and of the second main theorem
of Nevanlinna theory for meromorphic functions Cn → P1 are given, and their
applications to partial difference equations are discussed.

1. Introduction

The purpose of this paper is to find difference analogues of the lemma on
the logarithmic derivative and of the second main theorem of Nevanlinna the-
ory for meromorphic functions, where the operation of partial differentiation in
the ramification term has been replaced by the genuine shift operator ∆cf :=
f(z1 + c1, . . . , zn + cn)− f(z1, . . . , zn), c = (c1, . . . , cn) ∈ Cn, operating on a mero-
morphic function f : Cn → P1 of hyper-order strictly less than 2/3. Hyper-order is
defined by

(1.1) ς(f) = lim sup
r→∞

log log T (r, f)
log r

,

where T (r, f) is the Nevanlinna characteristic function of f (see Section 3 below for
a short review of Nevanlinna theory of several variables). These results will have two
main applications. First, we will obtain a difference analogue of Picard’s theorem
in several variables, which says that if n ∈ N, c ∈ Cn, and three distinct values of
a meromorphic function f : Cn → P1 such that ς(f) < 2/3 have forward invariant
pre-images with respect to a translation τ : Cn → Cn, τ(z) = z + c, then f is a
periodic function with period c. In the special case of ς(f) < 2/3 this result can be
seen as a generalization of M. Green’s Picard-type theorem, since the (empty) pre-
images of the usual Picard exceptional values are special cases of forward invariant
pre-images. The second application can be described as a Malmquist type theorem
for partial difference equations. We will show that the existence of one meromorphic
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solution w : Cn → P1 such that ς(w) < 2/3 is enough to reduce a large class of
partial difference equations into a difference Riccati equation.

The remainder of the paper is organized as follows. The difference analogue of
Picard’s theorem (Theorem 2.1 below) is stated in Section 2. Section 3 contains
difference analogues of the lemma on the logarithmic derivative and of the second
main theorem (Theorems 3.1 and 3.3 below). Applications of these results to partial
difference equations are discussed in Section 4. The difference analogue of the
lemma on the logarithmic derivative in several variables is proved in Sections 5 and
6, while Section 7 contains the proof of the difference version of the second main
theorem. Finally, the difference analogue of Picard’s theorem in several variables
is proved in Section 8.

2. A difference analogue of Picard’s theorem

Picard’s theorem states that any non-constant entire function f(z) assumes all
values in the complex plane with at most one possible exception [25]. Fatou [9, 10]
has constructed an example of a biholomorphic mapping f : C2 → C2 such that
the set of Picard exceptional values C2 \ f(C2) contains a non-empty open set. At
first sight this example appears to imply severe difficulties in generalizing Picard’s
theorem to meromorphic functions of several variables. However, it turns out that
there is a natural generalization which can be found by rephrasing Picard’s theorem
in terms of projective spaces. Green [12] showed that any holomorphic mapping
from Cn into the projective space Pm that misses 2m + 1 hyperplanes in general
position is a constant, thus improving an earlier Picard-type theorem by Wu [32].
Moreover, extensions of Nevanlinna’s second main theorem to several variables
can be regarded as deep generalizations of Picard’s theorem, see, for instance,
[3, 13, 31, 33, 5].

We will show that forward invariance with respect to a translation of the pre-
image of a target value is, in the sense of Picard exceptionality, as restrictive for
non-periodic meromorphic functions Cn → P1 such that ς(f) < 2/3, as omitting
the target value completely. We say that the pre-image of a ∈ P1 is under f is for-
ward invariant with respect to the translation τ if τ(f−1({a})) ⊂ f−1({a}) where
τ(f−1({a})) and f−1({a}) are considered to be multisets in which each point is re-
peated according to its multiplicity. By this definition the (empty and thus forward
invariant) pre-images of the usual Picard exceptional values become special cases
of forward invariant pre-images. The following theorem is a difference analogue of
Picard’s theorem for meromorphic functions in several variables.

Theorem 2.1. Let f : Cn → P1 be a meromorphic function such that ς(f) < 2/3,
and let τ(z) = z + c, where τ : Cn → Cn and c ∈ Cn. If three distinct values of f
have forward invariant pre-images with respect to τ , then f is a periodic function
with period c.

Theorem 2.1 is proved in Section 8 below. A simple example from [19] shows
that the condition on growth of f cannot be removed, at least not completely.
By taking g(z) = exp(exp(z)), the pre-image of each of the mth roots of unity is
forward invariant with respect to the translation τ(z) = z + log(m + 1). Since
clearly g(z) 6≡ g(z + log(m + 1)), it follows that a slightly weaker growth condition
in Theorem 2.1 would allow a non-periodic meromorphic function with arbitrarily
many values having forward invariant pre-images.
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3. Second main theorem

One of the key components in Nevanlinna’s original proof of the second main
theorem is a technical result referred to as the lemma on the logarithmic deriva-
tive. This lemma has also been used as an important tool in the study of value
distribution of meromorphic solutions of differential equations in the complex plane
[20, 23, 14]. The original proof of the second main theorem in several variables was
based on a differential geometric method due to Ahlfors and F. Nevanlinna, see,
e.g., [31], instead of Nevanlinna’s method based on the lemma on the logarithmic
derivative. The first generalization of the lemma on the logarithmic derivative to
several complex variables was given by Vitter [30], who used the method of non-
negative curvature developed by Carlson, Cowen, Griffiths and King [3, 13, 8].
Biancofiore and Stoll used an alternative method based on a technique they call
“fiber integration” to prove their version of the lemma on the logarithmic derivative
in several complex variables [2]. Further improvements and generalizations of the
lemma on the logarithmic derivative has been given, for instance, by Cherry [4] and
Ye [33, 34].

The purpose of this section is to present difference analogues of the lemma on the
logarithmic derivative and of the second main theorem in several complex variables.
Before stating these two key results of this paper, we will briefly recall some of the
standard notation of Nevanlinna theory in Cn [27, 22, 28] (see also, for instance,
[30, 2, 34]).

Let z = (z1, . . . , zn) ∈ Cn, and let r > 0. Introducing the differential operators
d := ∂ + ∂ and dc := (∂ − ∂)/4πi, we define ωn(z) := ddc log |z|2 and σn(z) :=
dc log |z|2 ∧ ωn−1

n (z) where z ∈ Cn \ {0} and |z|2 := |z1|2 + · · ·+ |zn|2. Then σn(z)
defines a positive measure with total measure one on the boundary ∂Bn(r) := {z ∈
Cn : |z| = r} of the ball Bn(r) := {z ∈ Cn : |z| < r}. In addition, by defining
υn(z) := ddc|z|2 and ρn(z) := υn

n(z) for all z ∈ Cn, it follows that ρn(z) is the
Lebesgue measure on Cn normalized such that the ball Bn(r) has measure r2n.

Let f be a meromorphic function in Cn in the sense that f can be written as a
quotient of two relatively prime holomorphic functions. We will write f = (f0, f1)
where f0 6≡ 0, and regard f as a meromorphic map f : Cn → P1 such that f−1(∞) 6=
Cn. The standard definition of Nevanlinna characteristic function of f is given by

Tf (r, s) :=
∫ r

s

Af (t)
t

dt

where 0 < s < r and

Af (t) =
1

t2n−2

∫

Bn(t)

f∗ω ∧ υn−1
n =

∫

Bn(t)

f∗ω ∧ ωn−1
n + Af (0)

is a measure of the spherical area covered by the image of Bn(t) under f . Here the
pullback f∗ω satisfies

f∗ω = ddc log(|f0|2 + |f1|2)
for all z outside of the set of indeterminacy If := {z ∈ Cn : f0(z) = f1(z) = 0} of
f .

A divisor on Cn is an integer valued function which is locally the difference
between the zero-multiplicity functions of two holomorphic functions, in our case
f0 and f1. Let a ∈ P1 such that f−1(a) 6= Cn. Then the a-divisor νa

f of f = (f0, f1)
is the divisor associated to the holomorphic functions f1−af0 and f0. By denoting
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S(r) := Bn(r) ∩ supp νa
f , where Bn(r) = {z ∈ Cn : |z| ≤ r} and supp νa

f denotes
the closure of the set {z ∈ Cn : νa

f (z) 6= 0}, we may define the counting function of
νa

f as

nf (r, a) := r2−2n

∫

S(r)

νa
f υn−1

n

for all n ≥ 1 and for all r > 0.
There are slightly different ways to continue the formulation of Nevanlinna theory

from here. Stoll [28] defines the (integrated) counting function of νa
f as

Nf (r, s, a) :=
∫ r

s

nf (t, a)
t

dt

for all 0 < s < r, and the compensation function as

mf (r, a) :=
∫

∂Bn(r)

log
1

‖f, a‖ σn(z),

where ||f, a|| denotes the chordal distance from f to a ∈ P1. Then the first main
theorem of Nevanlinna theory becomes

Tf (r, s) = Nf (r, s, a) + mf (r, a)−mf (s, a)

where 0 < s < r.
We choose a slightly different approach (see e.g. [34]) by denoting N(r, f) :=

Nf (r, 0,∞) and N(r, 1/(f − a)) := Nf (r, 0, a), where a 6= ∞ and we have assumed
that f(0) 6= a,∞. Then by the Jensen formula,

(3.1) N

(
r,

1
f

)
−N(r, f) =

∫

∂Bn(r)

log |f(z)|σn(z)− log |f(0)|

for all r > 0, provided that f(0) 6= 0,∞. By defining the proximity function of f
as

m(r, f) :=
∫

∂Bn(r)

log+ |f(z)|σn(z),

and if a 6= ∞,

m

(
r,

1
f − a

)
:=

∫

∂Bn(r)

log+ 1
|f(z)− a|σn(z),

the Jensen formula (3.1) becomes

(3.2) T (r, f) = m

(
r,

1
f − a

)
+ N

(
r,

1
f − a

)
− log

1
|f(0)− a|

where T (r, f) = m(r, f)+N(r, f) and f is a meromorphic function on Cn satisfying
f(0) 6= a,∞. The order of growth of f is defined by

ρ(f) := lim sup
r→∞

log T (r, f)
log r

.

The following theorem is a difference analogue of the lemma on the logarithmic
derivative in several complex variables. It generalizes the one dimensional result
[16, Theorem 2.1] by Halburd and the author. Recall the definition of hyper-order
from (1.1).
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Theorem 3.1. Let f be a non-constant meromorphic function in Cn such that
f(0) 6= 0,∞, let c ∈ Cn, and let ε > 0. If ς(f) = ς < 2/3, then

(3.3)
∫

∂Bn(r)

log+

∣∣∣∣
f(z + c)

f(z)

∣∣∣∣ σn(z) = o

(
T (r, f)
r1− 3

2 ς−ε

)

for all r > 0 outside of a possible exceptional set E ⊂ [1,∞) of finite logarithmic
measure

∫
E

1/dt < ∞.

The proof of Theorem 3.1 can be found in Sections 5 and 6 below. Recall that
we have adopted the notation ∆cf := f(z + c)− f(z) for c ∈ Cn and f : Cn → P1.
The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2. Let a and c be constants in Cn, let f be a non-constant meromor-
phic function in Cn such that f(0) 6= a,∞, and let ε > 0. If ς(f) = ς < 2/3,
then

m

(
r,

∆cf

f − a

)
= o

(
T (r, f)
r1− 3

2 ς−ε

)

for all r > 0 outside of a possible exceptional set E ⊂ [1,∞) of finite logarithmic
measure.

Corollary 3.2 can be applied to prove a difference analogue of the second main
theorem of Nevanlinna theory for meromorphic functions f : Cn → P1, which
extends [16, Theorem 2.4] to meromorphic functions of several variables.

Theorem 3.3. Let c ∈ Cn, let ε > 0, and let f be a meromorphic function in Cn

such that ∆cf 6≡ 0. Let q ≥ 2, and let a1, . . . , aq ∈ P1 be distinct finite constants
such that f(0) 6= aj ,∞ for all j = 1, . . . , q. If ς(f) = ς < 2/3, then

m(r, f) +
q∑

j=1

m

(
r,

1
f − aj

)
≤ 2T (r, f)−N∆(r, f) + o

(
T (r, f)
r1− 3

2 ς−ε

)
,

where

N∆(r, f) = 2N(r, f)−N(r,∆cf) + N

(
r,

1
∆cf

)
,

and r lies outside of a possible exceptional set E ⊂ [1,∞) of finite logarithmic
measure.

The proof of Theorem 3.3 can be found from Section 7.

4. Applications to partial difference equations

Ablowitz, Halburd and Herbst [1] have suggested that the existence of sufficiently
many finite-order meromorphic solutions could be used as a detector of Painlevé
type difference equations. Halburd and the author used one-dimensional difference
analogues [15, 16] of some of the main results of Nevanlinna theory to prove that
the existence of at least one finite-order meromorphic solution, which is not simul-
taneously a solution of a first-order difference Riccati equation, is enough reduce
a large class of difference equations into a list of equations consisting exactly of
known discrete equations of Painlevé type [17, 18].

The purpose of this section is to extend some of the methods used in [1] to partial
differences, and apply these generalized results to single out the difference Riccati
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equation out of a large class of first-order partial difference equations. We start by
stating the main result of this section.

Let S(f) = {g : Cn → P1 meromorphic : T (r, g) = o(T (r, f))} where r → ∞
outside of a possible exceptional set of finite logarithmic measure. A meromorphic
solution w : Cn → P1 of a difference equation is called admissible if all coefficients
of the equation are in S(f) (see [23, p. 192]).

Theorem 4.1. Let c ∈ Cn. If the difference equation

(4.1) w(z + c) = R(z, w(z)),

where R(z, u) is rational in u having meromorphic coefficients in Cn, has an admis-
sible meromorphic solution w : Cn → P1 such that ς(w) < 2/3, then degw(R) = 1.

The first result needed in the proof of Theorem 4.1 is due to Valiron [29] and
Mohon’ko [24].

Theorem 4.2 ([24, 29]). Let R(z, u) be a rational function of u whose coefficients
are meromorphic functions h(z) in Cn satisfying T (r, h) = O(φ(r)), where φ is a
fixed positive increasing function on [0,∞). Then for every meromorphic function
f : Cn → P1 we have

T (r,R(z, f(z))) = degf T (r, f) + O(φ(r)).

According to an identity due to Valiron [29] and Mohon’ko [24] (see also, e.g.,
[11, p. 31] and [23, p. 29])

(4.2) degf (R)T (r, f) = T (r,R(z, f(z))) + O(φ(r)),

whenever f is a non-constant meromorphic function in the complex plane. As
was observed in [11, Appendix B., p. 453], by following the proof of (4.2) in [24]
(see also [23]) it can be seen that the identity (4.2) holds for any non-decreasing
characteristic function T (r, f) which satisfies the basic Nevanlinna inequalities, the
first main theorem, and the property T (r, f2) = 2T (r, f). Therefore, in particular,
the assertion of Theorem 4.2 follows.

Chiang and Feng [7] have shown that if f is a finite-order meromorphic function
in the complex plane and η ∈ C, then

(4.3) T (r, f(z + η)) = T (r, f) + O(rρ−1+ε), r →∞,

where ρ = ρ(f) is the order of f and ε > 0. A similar estimate

(4.4) T (r, f(z + η)) = T (r, f) + o(T (r, f)),

where r → ∞ outside of an exceptional set of finite logarithmic measure, follows
by combining [16, Theorem 2.1] with [17, Lemma 2.1]. The following theorem is a
generalization of the asymptotic relations (4.3) and (4.4) to several variables.

Theorem 4.3. Let f : Cn → P1 be a meromorphic function, let c ∈ Cn and let
ε > 0. If ς(f) = ς < 2/3, then

(4.5) T (r, f(z + c)) = T (r, f) + o

(
T (r, f)
r1− 3

2 ς−ε

)

where r →∞ outside of an exceptional set of finite logarithmic measure.
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Proof. First we observe that N(r, f(z + c)) ≤ N(r + |c|, f) by the definition of the
counting function. Therefore, by defining

λ2 := lim sup
r→∞

log log N(r, f)
log r

and applying [19, Lemma 8.3], it follows that

(4.6) N(r, f(z + c)) ≤ N(r + |c|, f) = N(r, f) + o

(
N(r, f)
r1−λ2−ε

)
,

where r tends to infinity outside of an exceptional set of finite logarithmic measure.
Second, by Theorem 3.1 we have

(4.7) m

(
r,

f(z + c)
f(z)

)
= o

(
T (r, f)
r1− 3

2 ς−ε

)

where r lies again outside of an exceptional set of finite logarithmic measure. The
upper bound in the asymptotic relation (4.5) follows by combining (4.6) and (4.7)
with the inequality

T (r, f(z + c)) ≤ N(r + |c|, f) + m(r, f) + m

(
r,

f(z + c)
f(z)

)
,

and using the facts λ2 ≤ ς and N(r, f) ≤ T (r, f). The lower bound follows similarly
by combining

T (r, f(z)) ≤ N(r + |c|, f(z + c)) + m(r, f(z + c)) + m

(
r,

f(z)
f(z + c)

)
,

with (4.6) and (4.7), applied with the function f(z + c) and the shift −c. ¤

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Suppose that (4.1) has a meromorphic solution w :
Cn → P1 such that ς(w) < 2/3. By applying Theorems 4.2 and 4.3 respectively to
the right and left sides of (4.1), it follows that

T (r, w) = degw(R)T (r, w) + o(T (r, w))

as r → ∞ outside of an exceptional set of finite logarithmic measure. Therefore,
degw(R) = 1. 2

5. Estimates on integrated difference quotients in C and Cn

In this section we lay the foundations for the proof of Theorem 3.1 by obtaining
growth estimates for integrated difference quotients of a meromorphic function f
in C and in Cn. We start with the one-dimensional case.

Lemma 5.1. Let f(z) be a meromorphic function in C such that f(0) 6= 0,∞, and
let c ∈ C and δ ∈ (0, 1). Then for all r > 0 and s > r + |c|,

∫

∂B1(r)

log+

∣∣∣∣
f(z + c)

f(z)

∣∣∣∣ σ1(z) ≤ 8π|c|δ
δ(1− δ)rδ

(
n(s, f) + n

(
s,

1
f

))

+
4π|c|

(1− δ)(s− r − |c|) ·
(

s

s− r

)1−δ (
m(s, f) + m

(
s,

1
f

))
.
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Similar estimates to Lemma 5.1 have been obtained before in [15, Lemma 2.3], [7,
Theorem 2.4] and [19, Lemma 8.2] by using similar methods to here. The improved
factor in front of the function m(s, f) + m(s, 1/f) in Lemma 5.1 enables us to
get the inequality (5.10) below in the proof of Theorem 3.1, instead of a weaker
estimate which would follow by using, for instance, [19, Lemma 8.2]. The reason
why this is important is the fact that the estimate (5.10) is ultimately the cause
for the slightly unsatisfactory growth condition ς(f) < 2/3 in Theorem 3.1. By
applying [19, Lemma 8.2] instead of Lemma 5.1 we would be lead to the condition
ς(f) < 2/5. This also means that if one is interested in extending Theorem 3.1 to
meromorpfic functions of hyper-order less than one, say, then inequality (5.10) is a
good place to start looking for potential improvements.

Proof of Lemma 5.1. The Poisson-Jensen formula [20, Theorem 1.1] implies

log
∣∣∣∣
f(z + c)

f(z)

∣∣∣∣ =
∫ 2π

0

log |f(seiθ)|Re
(

seiθ + z + c

seiθ − z − c
− seiθ + z

seiθ − z

)
dθ

2π

+
∑

|an|<s

log
∣∣∣∣

s(z + c− an)
s2 − ān(z + c)

· s2 − ānz

s(z − an)

∣∣∣∣

−
∑

|bm|<s

log
∣∣∣∣

s(z + c− bm)
s2 − b̄m(z + c)

· s2 − b̄mz

s(z − bm)

∣∣∣∣ ,

(5.1)

where |z| = r, s > r + |c|, and {aj} and {bm} are the sequences of zeros and poles
of f , respectively. By denoting {qk} := {aj} ∪ {bm} and integrating (5.1) over the

set {ξ ∈ [0, 2π) :
∣∣∣ f(reiξ+c)

f(reiξ)

∣∣∣ ≥ 1}, it follows that

(5.2) m

(
r,

f(z + c)
f(z)

)
≤ S1(r) + S2(r),

where

S1(r) =
∫ 2π

0

∫ 2π

0

∣∣∣∣log |f(seiθ)|Re
(

2cseiθ

(seiθ − reiϕ − c)(seiθ − reiϕ)

)∣∣∣∣
dθ

2π

dϕ

2π
(5.3)

and

S2(r) =
∑

|qk|<s

∫ 2π

0

log+

∣∣∣∣1 +
c

reiϕ − qk

∣∣∣∣
dϕ

2π
+

∑

|qk|<s

∫ 2π

0

log+

∣∣∣∣1−
c

reiϕ + c− qk

∣∣∣∣
dϕ

2π

+
∑

|qk|<s

∫ 2π

0

log+

∣∣∣∣∣1 +
c

reiϕ − s2

q̄k

∣∣∣∣∣
dϕ

2π
+

∑

|qk|<s

∫ 2π

0

log+

∣∣∣∣∣1−
c

reiϕ + c− s2

q̄k

∣∣∣∣∣
dϕ

2π
.

By Fubini’s theorem the order of integration in (5.3) may be changed, which results
in

S1(r) =
∫ 2π

0

∣∣log |f(seiθ)|∣∣
∫ 2π

0

∣∣∣∣Re
(

2cseiθ

(seiθ − reiϕ − c)(seiθ − reiϕ)

)∣∣∣∣
dϕ

2π

dθ

2π

≤ 2|c|s
(s− r − |c|)(s− r)1−δ

∫ 2π

0

∣∣log |f(seiθ)|
∣∣
∫ 2π

0

1
|seiθ − reiϕ|δ

dϕ

2π

dθ

2π
.

(5.4)
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By the change of variables ϕ′ = θ − ϕ, we have
∫ 2π

0

1
|seiθ − reiϕ|δ

dϕ

2π
=

∫ 2π

0

1
|sei(θ−ϕ) − r|δ

dϕ

2π
= −

∫ θ−2π

θ

1
|seiϕ′ − r|δ

dϕ′

2π

=
∫ 2π

0

1
|seiϕ′ − r|δ

dϕ′

2π
≤ 2π

sδ(1− δ)

(see, e.g., [11, p. 89] for the last inequality). Hence (5.4) becomes

S1(r) ≤ 4π|c|
(1− δ)(s− r − |c|) ·

(
s

s− r

)1−δ (
m(s, f) + m

(
s,

1
f

))
.(5.5)

Moreover, since
∫ 2π

0

log+

∣∣∣∣1 +
c

reiϕ − d

∣∣∣∣
ϕ

2π
≤ 1

δ

∫ 2π

0

log+

∣∣∣∣1 +
c

reiϕ − d

∣∣∣∣
δ

ϕ

2π

≤ 1
δ

∫ 2π

0

∣∣∣∣
c

reiϕ − d

∣∣∣∣
δ

ϕ

2π
≤ 2π|c|δ

δ(1− δ)rδ

for any d ∈ C, it follows that

S2(r) ≤ 8π|c|δ
δ(1− δ)rδ

(
n(s, f) + n

(
s,

1
f

))
.(5.6)

The assertion follows by combining the inequalities (5.2), (5.5) and (5.6). 2

We will now extend Lemma 5.1 to several complex variables. The basic idea is
to combine a method, which Biancofiore and Stoll refer to as “fiber integration” [2]
(see also [34]) with Lemma 5.1. For the sake of brevity we adopt the notation

mf (r,∞, 0) := m(r, f) + m

(
r,

1
f

)
,

nf (r,∞, 0) := nf (r,∞) + nf (r, 0).

Lemma 5.2. Let f be a non-constant meromorphic function in Cn such that f(0) 6=
0,∞, let c = (c1, . . . , cn) ∈ Cn, let 0 < δ < 1, and denote c̃j := (0, . . . , 0, cj , 0, . . . , 0).
Then

∫

∂Bn(r)

log+

∣∣∣∣
f(z + c̃j)

f(z)

∣∣∣∣ σn(z) ≤ 8π|cj |δC
δ(1− δ)

(
R

r

)2n−2
nf (R,∞, 0)

rδ

+
4π|cj |
1− δ

(
R

r

)2n−2 (
R

R− (r + |cj |)
)(

R

R− r

)1−δ
mf (R,∞, 0)√

R2 − r2

for all R > r + |cj | > |cj |.
Proof. Let r > 0, and let h be a function on ∂Bn(r) such that hσn is integrable
over ∂Bn(r). Then, according to [2, Lemma 3.1],

(5.7)
∫

∂Bn(r)

h(z)σn(z) =
1

r2n−2

∫

Bn−1(r)

∫

∂B1(pr(w))

h(w, ζ)σ1(ζ)ρn−1(w),
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where pr(w) =
√

r2 − |w|2. Write f[w](z) = f(w, z) for w ∈ Cn−1. By applying
(5.7) with h(z) = log+ |f(z + c̃j)/f(z)|, we obtain
(5.8)∫

∂Bn(r)

log+

∣∣∣∣
f(z + c̃j)

f(z)

∣∣∣∣ σn(z) =
1

r2n−2

∫

Bn−1(r)

∫

∂B1(pr(w))

log+

∣∣∣∣
f[w](ζ + cj)

f[w](ζ)

∣∣∣∣ σ1(ζ)ρn−1(w).

Since pR(w) > pr(w) + |cj | whenever R > r + |cj |, Lemma 5.1, applied with (5.8),
implies that

∫

∂Bn(r)

log+

∣∣∣∣
f(z + c̃j)

f(z)

∣∣∣∣ σn(z)

≤ 1
r2n−2

∫

Bn−1(r)

(
4π|cj |

(1− δ)(pR(w)− pr(w)− |c|) ·
(

pR(w)
pR(w)− pr(w)

)1−δ

×mf[w](pR(w),∞, 0)

)
ρn−1(w)

+
1

r2n−2

∫

Bn−1(r)

8π|cj |δ
δ(1− δ)pr(w)δ

nf[w](pR(w),∞, 0)ρn−1(w)

=: Im + In

(5.9)

for all R > r + |cj |.
We will now proceed to estimate terms Im and In separately, starting with Im.

Since pr(w) + |cj | ≤ pr+|cj |(w) for all r > 0, and since pR(w) ≥ √
R2 − r2 and

pr(w) ≤ r · pR(w)/R for all w ∈ Bn−1(r), it follows that

1
pR(w)− pr(w)− |cj | ≤

1

pR(w)
(

1− pr+|cj |(w)
pR(w)

) ≤ R

(R− (r + |cj |))
√

R2 − r2

and (
pR(w)

pR(w)− pr(w)

)1−δ

≤
(

R

R− r

)1−δ

.

Therefore

Im ≤
(

R

R− (r + |cj |)
)

4π|cj |r2−2n

(1− δ)
√

R2 − r2

(
R

R− r

)1−δ ∫

Bn−1(R)

mf[w](pR(w),∞, 0)ρn−1(w).

Since
1

R2n−2

∫

Bn−1(R)

mf[w](pR(w),∞, 0)ρn−1(w) = mf (R,∞, 0)

by equation (5.7), we finally have

(5.10) Im ≤ 4π|cj |
1− δ

(
R

r

)2n−2 (
R

R− (r + |cj |)
)(

R

R− r

)1−δ
mf (R,∞, 0)√

R2 − r2

for all R > r + |cj |.
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Consider now the term In. We may assume, without loss of generality, that
δ > 1/4. Then, denoting the integer part of a real number x by [x], it follows that
q(δ) := [1/(1−

√
δ)] ≥ 2, and so Hölder’s inequality yields

∫

Bn−1(r)

nf[w](pR(w),∞, 0)
pr(w)δ

ρn−1(w) ≤




∫

Bn−1(r)

n
q(δ)
f[w]

(pR(w),∞, 0)ρn−1(w)




1
q(δ)

×




∫

Bn−1(r)

pr(w)−
δq(δ)

q(δ)−1 ρn−1(w)




q(δ)−1
q(δ)

.

(5.11)

Since 0 < δq(δ)
q(δ)−1 < 1, it follows that

(5.12)
∫

Bn−1(r)

pr(w)−
δq(δ)

q(δ)−1 ρn−1(w) ≤ Cr2n−2− δq(δ)
q(δ)−1

where
C =

∫

Bn−1(1)

1

(1− ξ2)
δq(δ)

2(q(δ)−1)

ρn−1(ξ).

On the other hand, by [26, Hilfssatz 7] applied with a weighted counting function
ñ such that ñ(r) = n

q(δ)
f (R,∞, 0), it follows that

n
q(δ)
f (R,∞, 0) = ñ(R)

≥ 1
R2n−2

∫

Bn−1(R)

ñf[w](pR(w))ρn−1(w)

≥ 1
R2n−2

∫

Bn−1(r)

n
q(δ)
f[w]

(pR(w),∞, 0)ρn−1(w).

(5.13)

Finally, by (5.11), (5.12) and (5.13), we have

(5.14) In ≤ 8π|cj |δC
δ(1− δ)

(
R

r

)2n−2
nf (R,∞, 0)

rδ
.

The assertion of the lemma follows by combining the estimates (5.9), (5.10) and
(5.14). ¤

6. Proof of Theorem 3.1

Since

nf (r,∞, 0) ≤ R

R− r

(
N(R, f) + N

(
R,

1
f

))

for all R > r, it follows by the first main theorem (3.2) and Lemma 5.2 that there
exists a positive constant K1, depending only on cj and δ, such that

∫

∂Bn(r)

log+

∣∣∣∣
f(z + c̃j)

f(z)

∣∣∣∣ σn(z) ≤ K1K2(r,R)
(

T (R, f) + log
1

|f(0)|
)

(6.1)
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for all R > r + |cj | > |cj |, where

(6.2) K2(r,R) =
(

R

r

)2n−2 (
R

R− (r + |cj |)
) (

1√
R2 − r2

(
R

R− r

)1−δ

+
1
rδ

)
.

Let ξ(x) and φ(r) be positive, nondecreasing, continuous functions defined for e ≤
x < ∞ and r0 ≤ r < ∞, respectively, where r0 is such that T (r + |c|, f) ≥ e for all
r ≥ r0. Then by Hinkkanen’s Borel type growth lemma [21, Lemma 3] (see also [6,
Lemma 3.3.1])

T

(
r + |c|+ φ(r + |c|)

ξ(T (r + |c|, f))
, f

)
≤ 2T (r + |c|, f)

for all r outside of a set E satisfying

∫

E∩[r0,s]

dr

φ(r)
≤ 1

ξ(e)
+

1
log 2

∫ T (s+|c|,f)

e

dx

xξ(x)

where s < ∞. Therefore, by choosing φ(r) = r and ξ(x) = (log x)1+ε̃ with ε̃ > 0,
and defining

(6.3) R = r + |cj |+ r + |cj |
(log T (r + |cj |, f))1+ε̃

,

we have

(6.4) T (R, f) = T

(
r + |cj |+ φ(r + |cj |)

ξ(T (r + |cj |, f))
, f

)
≤ 2T (r + |cj |, f)

for all r outside of a set E of finite logarithmic measure. By substituting (6.3) and
(6.4) into (6.1), we obtain
(6.5)∫

∂Bn(r)

log+

∣∣∣∣
f(z + c̃j)

f(z)

∣∣∣∣ σn(z) = o

(
T (r + |cj |, f)(log T (r + |cj |, f))(1+ε̃)( 5

2−δ)

rδ

)

where r runs to infinity outside of an exceptional set of finite logarithmic measure.
(From now on E ⊂ [1, +∞) denotes a set, which is not necessarily the same at each
occurrence, but which always has finite logarithmic measure.)

Since the hyper-order of f is ς(f) = ς, we have log T (r + |cj |, f) ≤ rς+ε̃ for all r
sufficiently large. On the other hand, by [17, Lemma 2.1] (see also [19, Lemma 8.3]),
we have T (r + |cj |, f) = T (r, f) + o(T (r, f)) for all r outside of an exceptional set
E of finite logarithmic measure. Therefore, (6.5) yields

(6.6)
∫

∂Bn(r)

log+

∣∣∣∣
f(z + c̃j)

f(z)

∣∣∣∣σn(z) = o

(
T (r, f)

rδ(1+ς)− 5+ε
2 ς

)
,

where ε > 0 is arbitrary small (and depends only on ε̃), and r 6∈ E.
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In the general case any c ∈ Cn can be written as c =
∑n

j=0 c̃j where c̃0 := 0.
Therefore, by (6.6), we have

∫

∂Bn(r)

log+

∣∣∣∣
f(z + c)

f(z)

∣∣∣∣ σn(z) =
∫

∂Bn(r)

log+
n∏

k=1

∣∣∣∣∣
f(z +

∑k
j=0 c̃j)

f(z +
∑k−1

j=0 c̃j)

∣∣∣∣∣ σn(z)

≤
n∑

k=1

∫

∂Bn(r)

log+

∣∣∣∣∣
f(z +

∑k
j=0 c̃j)

f(z +
∑k−1

j=0 c̃j)

∣∣∣∣∣ σn(z)

=
n∑

k=1

o

(
T (r, f(z +

∑k−1
j=0 c̃j))

rδ(1+ς)− 5+ε
2 ς

)

(6.7)

for all r 6∈ E. On the other hand, by [17, Lemma 2.1] (see also [19, Lemma 8.3])
it follows that for any s > 0 which does not depend on r we have N(r + s, f) =
N(r, f) + o(N(r, f)), where r 6∈ E. Hence, by (6.6), we have

T (r, f(z + c̃j)) = m(r, f(z + c̃j)) + N(r, f(z + c̃j))

≤ m

(
r,

f(z + c̃j)
f(z)

)
+ m(r, f) + N(r + |cj |, f)

= T (r, f) + o(T (r, f))

(6.8)

for all r 6∈ E. Since c =
∑n

j=0 c̃j , it follows by repeated application of (6.8) that

(6.9) T (r, f(z + c)) = T (r, f) + o(T (r, f))

where r 6∈ E. Relation (3.3) follows by combining (6.7) and (6.9), and by substi-
tuting δ = 1− ε/(2 + 2ς). 2

7. Proof of Theorem 3.3

The first main theorem yields
p∑

k=1

m

(
r,

1
f − ak

)
=

p∑

k=1

T

(
r,

1
f − ak

)
−

p∑

k=1

N

(
r,

1
f − ak

)

= pT (r, f)−N

(
r,

1
P (f)

)
+ O(1),

(7.1)

where

P (f) =
p∏

k=1

(f − ak).

By partial fraction decomposition there exist constants αk ∈ C such that

1
P (f)

=
p∑

k=1

αk

f − ak
,

and so, since we have assumed that f is finite at the origin and f(0) 6= aj for
j = 1, . . . , q, Corollary 3.2 yields

m

(
r,

∆cf

P (f)

)
≤

p∑

k=1

m

(
r,

∆cf

f − ak

)
+ O(1) = o

(
T (r, f)

rδ

)
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for all r outside of an exceptional set of finite logarithmic measure. Therefore,

(7.2) m

(
r,

1
P (f)

)
= m

(
r,

∆cf

P (f)
1

∆cf

)
≤ m

(
r,

1
∆cf

)
+ o

(
T (r, f)

rδ

)

outside of an exceptional set. By applying Theorem 4.2, it follows that pT (r, f) =
T (r, P (f)) + O(1), and so by using the first main theorem and (7.2), Eq. (7.1)
becomes

p∑

k=1

m

(
r,

1
f − ak

)
= m

(
r,

1
P (f)

)
+ o

(
T (r, f)

rδ

)

≤ m

(
r,

1
∆cf

)
+ o

(
T (r, f)

rδ

)

= T (r,∆cf)−N

(
r,

1
∆cf

)
+ o

(
T (r, f)

rδ

)
,

where r runs to infinity outside of an exceptional set of finite logarithmic measure.
Therefore,

m(r, f) +
p∑

k=1

m

(
r,

1
f − ak

)
≤ T (r, f) + N(r,∆cf) + m(r,∆cf)

−N

(
r,

1
∆cf

)
−N(r, f) + o

(
T (r, f)

rδ

)

outside the exceptional set. Since

m(r,∆cf) = m

(
r, f

∆cf

f

)
≤ m(r, f) + m

(
r,

∆cf

f

)
= m(r, f) + o

(
T (r, f)

rδ

)

by Corollary 3.2, it follows that

m(r, f) +
p∑

k=1

m

(
r,

1
f − ak

)
≤ 2T (r, f) + N(r,∆cf)−N

(
r,

1
∆cf

)

−2N(r, f) + o

(
T (r, f)

rδ

)

for all r outside of an exceptional set of finite logarithmic measure. 2

8. Proof of Theorem 2.1

By composing f with an appropriate Möbius transformation, if necessary, it may
be assumed that aj ∈ C and f(0) 6= aj for j = 1, 2, 3. Consider the composition of
f with the function τ(z) = z + c. Since, by Theorem 3.1,

m(r, f ◦ τ) = m(r, f) + o(T (r, f)),

and by Theorem 4.3,

T (r, f ◦ τ) = T (r, f) + o(T (r, f))
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for all r outside of an exceptional set of finite logarithmic measure, it follows that

N(r,∆cf) ≤ N(r, f ◦ τ) + N(r, f)

= T (r, f ◦ τ) + T (r, f)−m(r, f ◦ τ)−m(r, f)

= 2T (r, f)− 2m(r, f) + o(T (r, f))

= 2N(r, f) + o(T (r, f))

outside of an exceptional set. Therefore, by Theorem 3.3 it follows that either

(8.1) T (r, f) ≤
3∑

k=1

N

(
r,

1
f − ak

)
−N

(
r,

1
f ◦ τ − f

)
+ o(T (r, f))

for all r outside of a small exceptional set, or f ◦ τ ≡ f . Since by the assumption
τ(f−1({aj})) ⊂ f−1({aj}) for j = 1, 2, 3, it follows that

3∑

k=1

N

(
r,

1
f − ak

)
≤ N

(
r,

1
f ◦ τ − f

)

and thus (8.1) leads to a contradiction. Therefore f ≡ f ◦ τ . 2
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