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Abstract. The Borel lemma says that any positive non-decreasing continu-
ous function T satisfies T (r+1/T (r)) ≤ 2T (r) outside of a possible exceptional
set of finite linear measure. This lemma plays an important role in the theory
of entire and meromorphic functions, where the increasing function T is either
the logarithm of the maximum modulus function, or the Nevanlinna charac-
teristic. As a result, exceptional sets appear throughout Nevanlinna theory,
in particular in Nevanlinna’s second main theorem. They appear also when
using the existence of sufficiently many finite-order meromorphic functions as
a criterion to detect difference equations of Painlevé type.

In this paper, we consider generalisations of Borel’s lemma. Conversely, we
consider ways in which certain inequalities can be modified so as to remove
exceptional sets. All results discussed are presented from the point of view of
real analysis.

1. Introduction

Non-decreasing functions appear in many contexts in analysis, in particular they
appear naturally in the theory of entire and meromorphic functions. Much in-
formation about the value distribution of an entire function f is encoded in the
asymptotic behaviour of the real-valued non-decreasing maximum modulus func-
tion Mf (r) := max|z|=r |f(z)| as r →∞. In the case of a meromorphic function, the
role of logMf (r) is played by the Nevanlinna characteristic Tf (r), which contains
information about the distribution of poles of f in |z| ≤ r, as well as information
about how large |f | is on the circle |z| = r. The asymptotic behaviour of the non-
decreasing function Tf (r) contains information regarding the number of asymptotic
directions of f as well as the form of certain types of product representations (the
Weierstrass and Hadamard factorizations.)

Recall that for any non-rational meromorphic function f , Picard’s Great Theo-
rem says that f takes every value in C ∪ {∞} infinitely many times, with at most
two exceptions. The centrepiece of Nevanlinna theory is Nevanlinna’s second main
theorem [7], which is a vast generalization and quantification of Picard’s theorem for
meromorphic functions. In 1943, Hermann Weyl referred to the appearance of [7]
as “. . . one of the few great mathematical events in our century” [9]. Nevanlinna’s
second main theorem provides a useful bound on Tf (r) in terms of quantities that
are readily interpreted. However, this bound only holds for r outside of some pos-
sible exceptional set E of finite linear measure (i.e.,

∫
E

dr <∞.) The origin of this
exceptional set is in an estimate of the logarithmic derivative f ′/f , which in turn
uses the following lemma due to Borel [1] (see also Hayman [4].) Exceptional sets
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appear also when using Nevanlinna theory to detect difference equations of Painlevé
type [3]. Borel’s lemma has been generalised by Nevanlinna [8] and Hinkkanen [6]
(see also [2, Lemma 3.3.1].)

Lemma 1.1. (Classical Borel Lemma) Let T be a continuous non-decreasing func-
tion on [r0,∞) for some r0 such that T (r0) ≥ 1. Then

T

(
r +

1
T (r)

)
≤ 2T (r)

for all r outside of a possible exceptional set E of (linear) measure at most 2 (i.e.,∫
E

dr ≤ 2.)

Exceptional sets appear throughout Nevanlinna theory. The purpose of the
present paper is to explore generalized Borel lemmas and their associated excep-
tional sets in a purely real setting, independent of (but largely motivated by) Nevan-
linna theory. We do so for two reasons. The first is to try to develop a unified
approach to many of the results concerning exceptional sets in Nevanlinna theory.
To this end we wish to emphasise the common elements of these results, which lie
in real rather than complex analysis. The second reason is the authors’ belief that
these results, which are so important in Nevanlinna theory, should also be of value
in other areas of mathematics in which non-decreasing functions naturally arise.

In section 2 we discuss a generalisation of lemma 1.1 and we show that the
estimate for the size of the exceptional set (in terms of an arbitrary measure) is the
best possible. We then consider a number of applications. In section 3 we consider
non-decreasing functions f and g that satisfy inequalities of the form f(r) ≤ g(r)
outside of some exceptional set E. We show how sufficiently small exceptional sets
can be removed by modifying the argument of g so that it is larger than r. As
applications we consider functions of finite order and functions of finite type. The
order of a positive function T is defined to be

ρ(T ) := lim sup
r→∞

log T (r)
log r

.

The order is always well-defined but it may be infinite. If 0 < ρ(T ) <∞, then the
type of T is defined to be

τ(T ) := lim sup
r→∞

T (r)
rρ

,

which again may be infinite. We show that if T is a positive continuous non-
decreasing function of finite order ρ and type τ , where 0 < ρ <∞ and 0 < τ <∞,
then for any ε > 0,

(τ − ε)rρ ≤ T (r) ≤ (τ + ε)rρ

on a set of infinite linear measure.
We also consider other measures of growth and other ways of describing the size

of exceptional sets. Let log◦1 x := log x and for n ≥ 2 define the iterated logarithm
by log◦n x := log◦(n−1) x. For n ≥ 1, the n-order of a (sufficiently large) function
T is defined to be

ρn(T ) := lim sup
r→∞

log◦n T (r)
log r

.

The case n = 1 gives the usual order ρ1 = ρ. The case n = 2 is usually referred to
as the hyperorder of T .
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2. A generalised Borel lemma

We begin by presenting a generalisation of lemma 1.1 (and of [2, Lemma 3.3.1]).
In the following, F ◦k means F composed with itself k times.

Lemma 2.1. (The generalised Borel lemma) Let T and µ be positive continuous
functions of r for r ∈ [r0,∞) for some r0. Suppose further that T is non-decreasing
and that µ is differentiable and increasing. Let ψ and F be positive and continuous
on [T (r0),∞). Suppose that on [T (r0),∞), ψ is non-increasing, F is non-decreasing
and limk→∞ F ◦k(T (r0)) = ∞. Let s(r) = µ−1(µ(r) + ψ(T (r))) and define

(1) E := {r ≥ r0 : T (s(r)) ≥ F (T (r))}.
Then

(2)
∫

r∈E∩[r0,r)

dµ(r) ≤
νr∑

n=1

ψ
(
F ◦{n−1} (T (r0))

)
,

where νr is the largest integer such that

(3) F ◦{νr−1}(T (r0)) ≤ T (r).

This lemma is presented in a very general form but we will soon specialise to some
important cases. The classical Borel lemma corresponds to the case F (x) = 2x,
µ(r) = r and ψ(x) = 1/x. The set E in lemma 2.1 corresponds to the exceptional
set in lemma 1.1. Other choices of ψ that give stronger estimates with a larger
exceptional set include ψ(x) = 1/xε and

ψ(x) = 1/((log x)(log log x)(log log log x) · · · (log◦{n−1} x)(log◦n x)1+ε),

where ε > 0.

Proof:
If E is empty there is nothing to prove, so we suppose that E is non-empty. We
define two (possibly finite) sequences (rn) and (sn) by induction. Let r1 = min(E∩
[r0,∞)). Assuming that we have defined rn for some integer n, we define sn = s(rn).
If E ∩ [sn,∞) 6= ∅, then we let rn+1 = min(E ∩ [sn,∞)).

Next we show that if the sequence (rn) has infinitely many terms, then limn→∞ rn =
∞. Suppose that this is not the case. Then since rn+1 ≥ sn ≥ rn, it follows that
(rn) has a finite limit r∞ <∞. Then for all n,

µ(rn+1)− µ(rn) ≥ µ(sn)− µ(rn) ≥ ψ(T (rn)) ≥ ψ(T (r∞)).

Since ψ(T (r∞)) > 0 and independent of n, it follows that limn→∞ µ(rn) = ∞. But
the continuity of µ implies that limn→∞ µ(rn) = µ(r∞) < ∞. So we have shown
that either rn is defined for only finitely many n or limn→∞ rn = ∞. It follows that

E ∩ [r0, r) ⊆
N⋃

n=1

[rn, sn],

where N is the largest integer such that rN ≤ r. Therefore

(4)
∫

r∈E∩[r0,r)

dµ(r) ≤
N∑

n=1

∫ sn

rn

µ′(r) dr ≤
N∑

n=1

ψ(T (rn)).

Now
T (rn) ≥ T (sn−1) ≥ F (T (rn−1)) ≥ F ◦ F (T (rn−2))
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(5) ≥ · · · ≥ F ◦{n−1}(T (r1)) ≥ F ◦{n−1}(T (r0)).

In particular,
T (r) ≥ T (rN ) ≥ F ◦{N−1}(T (r0)).

Hence N ≤ νr. The proposition is proved on substituting the inequality (5) into
(4). ¤

Lemma 2.1 shows that if

(6)
∞∑

n=1

ψ
(
F ◦{n−1} (T (r0))

)
= L <∞,

then T (s(r)) < F (T (r)) for all r outside a possible exceptional set E of µ-measure
no greater than L. The following example shows that this is optimal.

Example 1. Let µ and ψ be positive continuous functions of r for r ∈ [r0,∞)
for some r0 ≤ 1, and let F be non-decreasing and continuous on [1,∞) such that
F (1) ≥ 1. Moreover, let ε > 0 and let (rn)∞n=1 be a sequence of points such that
µ(rj) − µ(rj−1) ≥ ψ(F ◦{j−1}(1)) + ε/2j for all j ∈ N, and rj → ∞ as j → ∞.
Define T as follows:

T (x) =
{
F ◦{j−1}(1), x ∈ [rj−1, µ

−1
(
µ(rj)− ε

2j

)
]

2j

ε (F ◦j(1)− F ◦{j−1}(1))(x− rj) + F ◦j(1), x ∈ [µ−1
(
µ(rj)− ε

2j

)
, rj ],

where j ∈ N. If s(r) = µ−1(µ(r) + ψ(T (r))) for r ∈ [r0,∞), then it follows by the
definition of T that the set E of points r such that

T (s(r)) ≥ F (T (r))

contains all r ∈ [µ−1(µ(rj)−ψ(F ◦{j−1}(1))), µ−1(µ(rj)−ε/2j)], where j ∈ N. Since
T (r0) = 1, we have that the µ-measure of E is at least

∫

r∈E∩[r0,∞)

dµ(r) ≥
∞∑

j=1

µ (rj)− ε

2j
−

(
µ(rj)− ψ(F ◦{j−1}(1))

)

=
∞∑

j=1

ψ
(
F ◦{j−1} (T (r0))

)
− ε.

Therefore the constant L in (6) cannot be replaced by L− ε for any ε > 0.

The most common applications of lemma 2.1 involve the choice F (x) = Cx for
some constant C > 1. In this case equation (3) gives

νr = 1 +
[
logC

T (r)
T (r0)

]
,

where [λ] denotes the largest integer not exceeding λ. The inequality (2) then
becomes

∫

r∈E∩[r0,r)

dµ(r) ≤
νr∑

n=1

ψ
(
Cn−1T (r0)

) ≤ ψ(T (r0)) +
∫ νr−1

0

ψ(CxT (r0))dx

(7) ≤ T (r0) +
1

logC

∫ T (r)

T (r0)

ψ(u)
du
u
.

The next theorem follows immediately.
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Theorem 2.2. Let T and µ be positive continuous functions of r for r ∈ [r0,∞)
for some r0. Suppose further that T is non-decreasing and that µ is differentiable
and increasing. Let ψ be a positive, continuous and nonincreasing function on
[T (r0),∞). Let s(r) = µ−1(µ(r) + ψ(T (r))) and let C > 1. If

∫ ∞

k

ψ(u)
du
u
<∞

for some k then
T (s(r)) ≤ CT (r)

outside of a possible exceptional set of finite µ-measure.

The upper and lower logarithmic densities of a subset E ⊂ R are given by

lim sup
r→∞

1
log r

∫

E∩[r0,r)

dr
r

and lim inf
r→∞

1
log r

∫

E∩[r0,r)

dr
r

respectively.

Corollary 2.3. Let T be a positive continuous nondecreasing function on [r0,∞)
for some r0 such that T (r0) ≥ exp◦{n−1}(0). Let A > 0 and C > 1 be constants
and let n be a positive integer. Define

σ(u) := exp
(
Au

d
du

log◦n u
)

=





exp(A), n = 1;

exp
(
A

(
(log u)(log log u) · · · (log◦{n−1} u)

)−1
)
, n ≥ 2.

Let

(8) E := {r ≥ r0 : T (r σ (T (r))) ≥ CT (r)} .
Then

(1) If T has finite n-order

lim sup
r→∞

log◦n T (r)
log r

= ρ,

then the upper logarithmic density of E is at most
Aρ

logC
.

(2) If T has finite lower n-order

lim inf
r→∞

log◦n T (r)
log r

= λ,

then the lower logarithmic density of E is at most
Aλ

logC
.

The n = 1 case of corollary 2.3 is essentially the same as lemma 4 in Hayman [5].
Hayman’s result is expressed in terms of the derivative of a meromorphic function
but his proof shows that the result is real analytic in nature.

Proof: Apply equation (7) with µ(r) = log r and ψ(u) = Au d
du log◦n u. ¤
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Corollary 2.4. Let T be a non-decreasing function and let α > 0 and C > 1 be
constants. If

T (r + α) ≥ CT (r),

on a set of infinite logarithmic measure, then the hyperorder of T is at least one,
i.e.

lim sup
r→∞

log log T (r)
log r

≥ 1.

Proof:
Suppose to the contrary that the hyperorder of T is less than one. Then for suffi-
ciently small ε > 0 and sufficiently large r,

(log T (r))1+ε ≤ r.

Let

E := {r : T (r + α) ≥ CT (r)}.
Then

E ⊆ Ẽ := {r : T
(
r

[
1 +

α

(log T (r))1+ε

])
≥ CT (r)}.

So, by applying theorem 2.2 with µ(r) = log r and

ψ(u) = log
(

1 +
α

(log u)1+ε

)
,

it follows that ∫

E∩[1,∞)

dr
r
≤

∫
eE∩[1,∞)

dr
r
<∞,

which is a contradiction. ¤

Another interesting choice for F in lemma 2.1 is F (x) = xC , for some constant
C > 1. In this case, if T (r0) > e,

νr = 1 +
[
log log T (r)− log log T (r0)

logC

]
.

In this case
∫

E∩[r0,r)

µ′(r) dr ≤ ψ(T (r0)) +
1

logC

∫ T (r)

T (r0)

ψ(u)
du

u log u
.

So, for example, we get the following analogue of Hayman’s result. If T has hyper-
order ρ then

T (αr) ≤ T (r)C ,

outside a set of logarithmic density at most ρ logα/ logC. Similarly, the results
that we have described in this paper for F (x) = Cx are easily extended to the
obvious analogues for F (x) = xC .
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3. Removing exceptional sets

Lemma 3.1. Let µ be a positive increasing differentiable function of r for all r
greater than some r0 and let f and g be non-decreasing functions for all r > r0.
Furthermore, suppose that f(r) ≤ g(r) for all r ∈ (r0,∞)\E, where the exceptional
set E ⊂ (r0,∞) satisfies

(9)
∫

r∈E

dµ =
∫

E

µ′(r) dr <∞.

Then given ε > 0, there is an r̂ ≥ r0 such that for all r > r̂, f(r) ≤ g(s(r)), where
s(r) = µ−1(µ(r) + ε).

Proof:
Suppose that there is an infinite sequence (rn)∞n=1 ⊂ (r0,∞) such that rn+1 ≥ sn :=
s(rn) and (rn, sn) ⊂ E, for all n ∈ N. Then

∫

E

µ′(r) dr ≥
∞∑

m=1

∫ sn

rn

µ′(r) dr =
∞∑

n=1

ε = ∞,

which contradicts the finite measure condition (9). Therefore, there must be a
number r̂ ≥ r0 such that for any r > r̂, there exists t ∈ (r, s(r)) \E. Since f and g
are non-decreasing, it follows that

f(r) ≤ f(t) ≤ g(t) ≤ g(s(r)). ¤

Theorem 3.2. Let f and g be positive non-decreasing functions of r for all r greater
than some r0. Let µ be a positive differentiable increasing function, fix ε > 0 and
set s(r) = µ−1(µ(r) + ε) for all r > r0. Suppose that

lim sup
r→∞

g(s(r))
g(r)

= 1

and that

lim sup
r→∞

f(r)
g(r)

= λ,

for some nonzero finite λ. Then for any δ > 0,
∣∣∣∣
f(r)
g(r)

− λ

∣∣∣∣ < δ

on a set F of infinite µ-measure (i.e., such that
∫

r∈F
dµ(r) = ∞).

Proof:
It follows from the definition of lim sup that there is an r1 ≥ r0 such that f(r) ≤
(λ + δ)g(r) for all r > r1. Now suppose that f(r) ≤ (λ − δ)g(r) outside of a set
of finite µ-measure. From lemma 3.1 with f̃ = f and g̃ = (λ − δ)g, we see that
f(r) ≤ (λ− δ)g(s(r)) for all sufficiently large r. Hence

lim sup
r→∞

f(r)
g(r)

≤ (λ− δ) lim sup
r→∞

g(s(r))
g(r)

= λ− δ < λ,

which contradicts the definition of λ. So f(r) ≤ (λ − δ)g(r) outside of a set of
infinite µ-measure. ¤
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Corollary 3.3. Let T be a positive non-decreasing function of order ρ, where 0 <
ρ <∞. Then for any ε > 0,

rρ−ε ≤ T (r) ≤ rρ+ε

on a set of infinite logarithmic measure.

Proof:
Apply theorem 3.2 using f(r) = log T (r), g(r) = log r, µ(r) = log r, δ = ε and
λ = ρ. ¤
Corollary 3.4. Let T be a positive non-decreasing function of finite order ρ and
type τ , where 0 < ρ <∞ and 0 < τ <∞. Then for any ε > 0,

(τ − ε)rρ ≤ T (r) ≤ (τ + ε)rρ

on a set of infinite linear measure.

Proof:
Apply theorem 3.2 using f(r) = T (r), g(r) = rρ, µ(r) = r, δ = ε and λ = τ . ¤
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