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Abstract. We present a Lagrangian for the bilinear discrete KP (or Hirota-
Miwa) equation. Furthermore, we show that this Lagrangian can be extended to
a Lagrangian 3-form when embedded in a higher dimensional lattice, obeying a
closure relation. Thus we establish the multiform structure as proposed in [8] in
a higher dimensional case.

1. Introduction

In [8] the idea was put forward that lattice systems which are integrable in the sense
of multidimensional consistency [13, 3] should have a Lagrangian structure which
reflects this property. That is, rather than the Lagrangian being a scalar object (or
equivalently a volume form), it should be a discrete multiform from which, through
the Euler-Lagrange equations, copies of the relevant equation in all possible lattice
directions can be derived. These copies of the same equation, albeit with different
parameters associated with different lattice directions, coexist on an extended lattice in
view of the multidimensional consistency, and should consequently be viewed as parts
of one single “integrable” infinite-dimensional system. Examples from a particular
class of quadrilateral lattice systems in 1+1 dimensions (those classified in [1]) were
studied in [8], namely equations of the form

Q(u, ui, uj , uij ;αi, αj) = 0, (1.1)

where u = u(ni, nj) depends on two discrete variables ni, nj , shifts of u in the ni-
direction are denoted by ui (so that for example ui = u(ni + 1, nj)), and the αi
are lattice parameters associated with the ni-direction. Although actions for these
equations were given in [1], it was shown in [8] that all cases admit a special choice
of 3-point Lagrangians, which subsequently can be interpreted as Lagrangian 2-forms.
This was based on the surprising observation that such Lagrangians obey the following
closure relation

∆iLjk + ∆jLki + ∆kLij = 0, (1.2)

which implies they are closed 2-forms on a multidimensional lattice. Here the
difference operator ∆i acts on functions f of u = u(ni, nj , nk) by the formula
∆if(u) = f(ui) − f(u), and on a function g of u and its shifts by the formula
∆ig(u, uj , uk) = g(ui, uij , uik) − g(u, uj , uk). On the basis of the relation (1.2) a
new variational principle was proposed for integrable (in the sense of multidimensional
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consistency) lattice equations which involves the geometry of the space of independent
variables.

Whereas in the previous paper the focus was on integrable lattice equations in
1+1 dimensions, here we want to study the case of 3-dimensional integrable systems,
the prime example being the lattice Kadomtsev-Petviashvili (KP) system. Discrete
equations of KP type have been studied extensively since the early 1980s (cf for
example [4, 11]), following on from the famous “discrete analogue of a generalized
Toda equation” (DAGTE) introduced by Hirota in [6] which is a bilinear form for
the lattice KP equation‡. Other related KP-type lattice equations were introduced
in [11]. The equation we will refer to as the bilinear discrete KP equation, in order
to distinguish it from equations that actually lead to the original KP equation in a
continuum limit, is taken in the following form

Ajkτiτjk +Akiτjτki +Aijτkτij = 0. (1.4)

Here Aij = −Aji are constants, τ = τ(ni, nj , nk) is the dependent variable depending
on three discrete independent variables ni, nj , nk corresponding to lattice directions,
and subscripts of τ , e.g. as in τi, denote shifts in the ni-direction so that for example
τi = τ(ni + 1, nj , nk) and τ̄ = τ(ni, nj − 1, nk). The constants can be removed by a
gauge transformation, but we find it more instructive to retain them. Miwa gave the
connection between the KP hierarchy and Hirota’s difference equation in [10], showing
how solutions to the KP hierarchy can be transformed into solutions to (1.4), hence
it is often called the Hirota-Miwa equation.

The main results of this paper are twofold: first to give a Lagrangian for the
bilinear discrete KP system associated with (1.4) (in fact, whereas the continuous
KP equation admits an obvious Lagrangian structure, it has to our knowledge never
been established for any KP-type equation on the 3-dimensional lattice), second to
establish the Lagrangian multiform structure, in the sense of [8], based on a higher
dimensional analogue of (1.2), and show that the relevant Lagrangian obeys a 4-
dimensional closure relation.

2. Lagrangian structure

2.1. Scalar Lagrangian

It is a common feature of Lagrangians for equations of Korteweg-de Vries (KdV)
and KP type (already in the continuous case) that those equations emerge as Euler-
Lagrange equations by varying the action with respect to a dependent variable which
obeys a potential (i.e. integrated) version of the equation. Hence, the variational
equation is typically a “derived form” of the equation obeyed by this canonical variable,
with respect to which the action is minimized. The same holds true in the case of a
Lagrangian structure for the lattice KP system, where we will use the τ -function as

‡ Hirota introduced his difference equation in a form equivalent to

ατiτı̄ + βτjτ̄ + γτkτk̄ = 0, (1.3)

where the notation is explained in the text, and where α, β, γ are constants satisfying α+ β + γ = 0.
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the canonical variable. Thus, fixing three directions i, j, k, we introduce the following
Lagrangian

L(τi, τj , τk, τij , τjk, τki;Aij , Ajk, Aki)

= ln
(
τkτij
τjτki

)
ln
(
−Akiτj
Ajkτi

)
− Li2

(
−Aijτkτij
Akiτjτki

)
=: Lijk, (2.5)

where Li2 denotes the dilogarithm function defined by

Li2(z) = −
∫ z

0

ln(1− z)
z

dz. (2.6)

The Lagrangian (2.5) produces the following discrete Euler-Lagrange equation

δL

δτ
=
{

ln
(
−
Akiτjk̄τi +Aijττijk̄

Ajkτik̄τj

)
+ ln

(
−Akiτ̄kτı̄ +Aijττı̄̄k

Ajkτı̄kτj

)
− ln

(
−Akiττi̄k +Aijτ̄kτi

Ajkτi̄τk

)
− ln

(
−
Akiττı̄jk̄ +Aijτjk̄τı̄

Ajkτı̄jτk̄

)}
1
τ

= 0 (2.7)

which is a consequence of (1.4) through the fact that it is a combination of 4 copies
of the equation shifted in appropriate lattice directions.

Consequently the following functional of the lattice fields τ(ni, nj , nk)

S[τ ] =
∑

ni,nj ,nk

L(τi, τj , τk, τij , τjk, τki;Aij , Ajk, Aki) (2.8)

with L given by (2.5) can be considered to constitute an action for the lattice equation
(2.7) as a derived equation of the bilinear discrete KP equation. However, we want
to go further and take into account that the bilinear KP equation is part of a
multidimensionally consistent system of equations, as has been recognized in recent
years, cf e.g. [16, 2, 14]. In order to incorporate this multidimensionally consistent
system of equations into a single Lagrangian framework we will now proceed to define
the Lagrangian multiform structure for the lattice KP system.

2.2. Lagrangian 3-form

The first step is to introduce a Lagrangian 3-form Lijk where i, j, k denote any three
distinct directions in a multidimensional lattice Λ, whose vertices are labelled by
integer vectors n = (ni)i∈I where I is an arbitrary set of labels, i, j, k taking values in
I. The lattice 3-form Lijk is based on the form of the Lagrangian (2.5), but we require
it to be skewsymmetric (i.e. antisymmetric with respect to the swapping of any two
indices) and we associate with it an elementary oriented cube σijk spanned by unit
vectors ei which are associated with the corresponding lattice direction labelled by i
in the multidimensional lattice Λ. This leads us to define the following Lagrangian
3-form

Lijk =
1
2
(
Lijk + Ljki + Lkij − Likj − Ljik − Lkji

)
which when written out explicitly and simplified is
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Lijk = ln
(
τkτij
τjτki

)
ln
(
−Akiτj
Ajkτi

)
− Li2

(
−Aijτkτij
Akiτjτki

)
+ ln

(
τiτjk
τkτij

)
ln
(
−Aijτk
Akiτj

)
− Li2

(
−Ajkτiτjk
Aijτkτij

)
+ ln

(
τjτki
τiτjk

)
ln
(
−Ajkτi
Aijτk

)
− Li2

(
−Akiτjτki
Ajkτiτjk

)
− 1

2
((

ln
(
τij
))2 +

(
ln
(
τjk
))2 +

(
ln
(
τki
))2 − (ln(τi))2 − (ln(τj))2 − (ln(τk))2

− ln
(
τij
)

ln
(
τjk
)
− ln

(
τjk
)

ln
(
τki
)
− ln

(
τki
)

ln
(
τij
)

+ ln
(
τi
)

ln
(
τj
)

+ ln
(
τj
)

ln
(
τk
)

+ ln
(
τk
)

ln
(
τi
)

+ (ln(Aij))2 + (ln(Ajk))2 + (ln(Aki))2

− ln(Aij) ln(Ajk)− ln(Ajk) ln(Aki)− ln(Aki) ln(Aij) +
π2

2
)
, (2.9)

where the constant terms arise from dilogarithm identities which will be elucidated in
the proof below.

This Lagrangian is antisymmetric by construction. Considered as a usual scalar
Lagrangian defined in the 3-dimensional sublattice of the directions i, j, k the Euler-
Lagrange equations of the corresponding action would yield an equation combining 12
shifted copies of the original bilinear equation (1.4), namely

δLijk
δτ

=
{

ln
(
−
Akiτjk̄τi +Aijττijk̄

Ajkτik̄τj

)
+ ln

(
−Akiτ̄kτı̄ +Aijττı̄̄k

Ajkτı̄kτj

)
− ln

(
−Akiττi̄k +Aijτ̄kτi

Ajkτi̄τk

)
− ln

(
−
Akiττı̄jk̄ +Aijτjk̄τı̄

Ajkτı̄jτk̄

)
+ ln

(
−Aijτı̄kτj +Ajkττı̄jk

Akiτı̄jτk

)
+ ln

(
−
Aijτik̄τ̄ +Ajkττi̄k̄

Akiτi̄τk̄

)
− ln

(
−
Aijττijk̄ +Ajkτik̄τj

Akiτjk̄τi

)
− ln

(
−Aijττı̄̄k +Ajkτı̄kτ̄

Akiτ̄kτı̄

)
+ ln

(
−Ajkτi̄τk +Akiττi̄k

Aijτ̄kτi

)
+ ln

(
−
Ajkτı̄jτk̄ +Akiττı̄jk̄

Aijτjk̄τı̄

)
− ln

(
−Ajkττı̄jk +Akiτı̄jτk

Aijτı̄kτj

)
− ln

(
−
Ajkττi̄k̄ +Akiτi̄τk̄

Aijτik̄τ̄

)}
1
τ

= 0 (2.10)

Equation (2.10) is actually a 19-point equation existing on a cube as in Figure
1. It comprises the 12 shifted copies of (1.4) as illustrated in Figure 2, where to each
configuration of 6 points on an elementary cube correspond 2 copies of (1.4).

The main observation which allows the establishment of the multiform structure
is that the Lagrangian 3-form defined in (2.9) is a closed form on the solution space
of the original bilinear equation (1.4). In fact we have the following closure property

Proposition: The Lagrangian defined by (2.9) satisfies the following closure relation
on solutions to the equation (1.4) when embedded in a 4-dimensional lattice.

∆lLijk −∆iLjkl + ∆jLkli −∆kLlij = 0, (2.11)
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ni

nj

nk

Figure 1. The 19-point equation.

Figure 2. Copies of the 6-point equation.

where the difference operator ∆i acts on functions f of τ = τ(ni, nj , nk, nl) by the
formula ∆if(τ) = f(τi)− f(τ), and on a function g of τ and its shifts by the formula
∆ig(τ, τj , τk, τl) = g(τi, τij , τik, τil)− g(τ, τj , τk, τl).

Proof: By explicit computation. The closure relation (2.11) holds on solutions of the
original equation, so we need to make use of (1.4) and its shifted versions. If we add
in a fourth lattice direction, we get the equations

Ajkτiτjk +Akiτjτki +Aijτkτij = 0, (2.12a)
Aklτjτkl −Ajlτkτjl +Ajkτlτjk = 0 , (2.12b)



Lagrangian multiform structure for the lattice KP system 6

Aliτkτli −Akiτlτki +Aklτiτkl = 0, (2.12c)
Aijτlτij +Ajlτiτjl +Aliτjτli = 0 . (2.12d)

When shifted, equations (2.12a) through (2.12d) become

Ajkτliτjkl +Akiτjlτkli +Aijτklτlij = 0 , (2.12e)
Aklτijτkli −Ajlτkiτlij +Ajkτliτijk = 0 , (2.12f)
Aliτjkτlij −Akiτjlτijk +Aklτijτjkl = 0, (2.12g)
Aijτklτijk +Ajlτkiτjkl +Aliτjkτkli = 0. (2.12h)

We also need the following two key identities for the dilogarithm function

Li2(x) + Li2(y) = Li2(xy)− Li2

(
x− xy
x− 1

)
− Li2

(
y − xy
y − 1

)
− 1

2

(
ln
(
x− 1
y − 1

))2

, (2.13a)

Li2(x) + Li2

(
1
x

)
= − 1

2
(
ln(−x)

)2 − π2

6
, (2.13b)

The latter equation holds for all x, a proof of which can be found in [7], where many
dilogarithm identities are collected. Equation (2.13a) is a combination of other such
identities from [7], and it can be proved by simple differentiation. It is valid up
to imaginary terms which can be chosen to cancel out in the course of the closure
relation computation. We will split the computation into two parts, considering the
dilogarithm terms separately. Let

Γ = ∆lLijk −∆iLjkl + ∆jLkli −∆kLlij (2.14)

with Lijk given by (2.9) and let Γ = Γ1 + Γ2, where Γ1 is the part of Γ omitting
dilogarithm terms from the Lagrangian, and Γ2 consists of only the dilogarithm terms.
We have

Γ1 =
1
2
(
(ln(τijk)2 − (ln(τjkl))2 + (ln(τkli))2 − (ln(τlij))2

+ (ln(τi))2 − (ln(τj))2 + (ln(τk))2 − (ln(τl))2
)

− ln(τijk) ln(τkli) + ln(τjkl) ln(τlij)− ln(τi) ln(τk) + ln(τj) ln(τl)

+ ln(τijk) ln
(
−AijAjkτklτli
AjlAkiτjlτki

)
+ ln(τjkl) ln

(
AjlAkiτjlτki
AjkAklτijτli

)
+ ln(τkli) ln

(
−AklAliτijτjk
AjlAkiτjlτki

)
+ ln(τlij) ln

(
AjlAkiτjlτki
AijAliτjkτkl

)
+ ln(τi) ln

(
AjkAklτjkτkl
AjlAkiτjlτki

)
+ ln(τj) ln

(
−AjlAkiτjlτki
AklAliτklτli

)
+ ln(τk) ln

(
AijAliτijτli
AjlAkiτjlτki

)
+ ln(τl) ln

(
− AjlAkiτjlτki
AijAjkτijτjk

)
+ ln(τij) ln

(
− Ali
Ajk

)
+ ln(τjk) ln

(
−Akl
Aij

)
+ ln(τkl) ln

(
−Ajk
Ali

)
+ ln(τli) ln

(
−Aij
Akl

)
+ ln

(
τjl
τki

)
ln
(
AijAjkAklAliτijτjkτklτli

A2
jlA

2
kiτ

2
jlτ

2
ki

)
. (2.15)
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Now we consider the dilogarithm terms. The dilogarithm terms from Γ are

Γ2 = − Li2

(
−Aijτklτlij
Akiτjlτkli

)
+ Li2

(
−Aijτkτij
Akiτjτki

)
− Li2

(
Aklτijτjkl
Akiτjlτijk

)

+ Li2

(
Ajkτliτijk
Ajlτkiτlij

)
− Li2

(
Ajkτlτjk
Ajlτkτjl

)
+ Li2

(
Aklτiτkl
Akiτlτki

)

+ Li2

(
−Aliτjkτkli
Ajlτkiτjkl

)
− Li2

(
−Aliτjτli
Ajlτiτjl

)
+ Li2

(
−Aklτijτkli
Ajkτliτijk

)

− Li2

(
−Ajkτliτjkl
Aijτklτlij

)
+ Li2

(
−Ajkτiτjk
Aijτkτij

)
− Li2

(
−Aklτjτkl
Ajkτlτjk

)

− Li2

(
−Aliτjkτlij
Aklτijτjkl

)
+ Li2

(
−Aliτkτli
Aklτiτkl

)
− Li2

(
−Akiτjlτkli
Ajkτliτjkl

)

+ Li2

(
−Aijτklτijk
Aliτjkτkli

)
− Li2

(
−Aijτlτij
Aliτjτli

)
+ Li2

(
−Akiτjτki
Ajkτiτjk

)

+ Li2

(
Ajlτkiτlij
Aklτijτkli

)
− Li2

(
Ajlτkτjl
Aklτjτkl

)
+ Li2

(
−Ajlτkiτjkl
Aijτklτijk

)

− Li2

(
Akiτjlτijk
Aliτjkτlij

)
+ Li2

(
Akiτlτki
Aliτkτli

)
− Li2

(
−Ajlτiτjl
Aijτlτij

)
(2.16)

Using (2.13b) on the terms in the dotted boxes, followed by (2.13a) on the terms
in the solid boxes gives a large expression which we reproduce in the Appendix and
show to be equal to −Γ1, verifying the closure relation. �

The establishment of the closure property enables us to propose a novel variational
principle for the multidimensionally consistent system of bilinear KP equations,
along the same line as in [8]. Choosing a 3-dimensional hypersurface σ within
a multidimensional lattice of dimension higher than 3, consisting of a connected
configuration of elementary cubes σijk, we can define an action S on this hypersurface
by summing the contributions Lijk from each of the cubes as follows

S[τ ;σ] =
∑

σijk∈σ
Lijk, (2.17)

taking into consideration the orientation of each elementary cube contributing to the
surface. The antisymmetry of Lijk guarantees that there is no ambiguity in how
each discrete Lagrangian 3-form will contribute to the action §. Furthermore, the
closure relation (2.11) allows us to impose the independence of the action on local
variations of the surface away from any boundary that the surface σ may possess.
Thus, whilst keeping the boundary fixed we may locally deform σ in any way we
choose, allowing us in particular to render it locally flat away from the boundary, such

§ Note that we do not use the abstract notation of difference forms as proposed in [9], as we prefer
to work with the explicit expressions for the integrated forms as described here, which allows for a
direct verification of the main result.
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that we can specify a 3-dimensional hypersurface described in terms of three local
coordinates ni, nj , nk. There we can then apply the usual variational principle, taking
the variational derivative with respect to τ , leading to the Euler-Lagrange equations
(2.10). These equations of the motion are a consequence of the Hirota-Miwa equation
(1.4), as are the closure relations that guarantee the surface independence of the action
under local deformations. This interlinked scheme of variations with respect to the
dependent variables as well as to the geometry of the independent variables is what
constitutes the Lagrangian multiform structure of the lattice KP system.

3. Discussion

We have shown that the ideas of [8] for 2-dimensional integrable (in the sense of
multidimensional consistency) equations are also applicable to the 3-dimensional
example of the bilinear discrete KP equation. There are several remarks we would like
to make at this point.

First, one has to qualify what it means for a Lagrangian to be associated with a
given equation, since as we have noted earlier the Euler-Lagrange equations rather than
yielding the original bilinear KP equation only yield a derived equation comprising
a combination of various copies of the original equation. Nevertheless we have taken
the point of view that since the canonical variable is the τ -function we consider this
Lagrangian structure to be associated with the bilinear KP equation.

Second, the closure relation which is central to the Lagrangian multiform structure
relies on the bilinear KP equation rather than on the Euler-Lagrange equations. It is
not clear at this stage to what extent the closure property remains to be verified on
all solutions of the Euler-Lagrange equations or only on a subvariety of solutions that
obey the multidimensional systems of bilinear equations.

Third, we consider the Lagrangian multiform structure as a hallmark of
multidimensional consistency on the level of the variational principle. As such, it is as
much a principle that selects “admissable Lagrangians” as well as field configurations
obeying the variational equations. It would be a challenge to see whether this principle
can be used as a criterion to classify the admissable Lagrangians to which it can be
applied, which then necessarily would coincide with the integrable cases.

As far as KP-type systems are concerned, in some recent works in combinatorics 3-
dimensional 6-point recurrence schemes have been studied from the point of view of the
geometry of the octahedral lattice, cf e.g.[15, 5]. A classification of multidimensionally
consistent 6-point equations has recently been done in [2], but this does not seem to
yield any novel lattice equations (e.g. in comparison with the list in [12]). It would
be of interest to see whether Lagrangian multiform structures can be established for
all those equations, and whether these structures can be adapted to the octahedral
lattice picture. Alternatively one can consider 3-dimensional lattice equations of BKP
type, i.e. equations of the form

Q(τ, τi, τj , τk, τij , τjk, τki, τijk) = 0 (3.18)

but so far Lagrangian structures for such equations remain to be established.

Appendix A. Closure relation computation

After using the dilogarithm identities on the boxed terms of equation (2.16) as
described above, we obtain the following expression. Here we have also made use
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of the equations (2.12a) through (2.12h).

Γ2 = + Li2

(
τkτijτjlτkli
τjτklτkiτlij

)
− Li2

(
τiτjkτjlτkli
τjτliτkiτjkl

)
− Li2

(
τkτijτliτjkl
τiτjkτklτlij

)
+ Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)
− Li2

(
τjτklτliτijk
τlτijτjkτkli

)
− Li2

(
τkτijτjlτkli
τjτklτkiτlij

)
+ Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)
− Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)
− Li2

(
τiτjkτklτlij
τkτijτliτjkl

)
+ Li2

(
τiτjkτjlτkli
τjτliτkiτjkl

)
− Li2

(
τlτijτjkτkli
τjτklτliτijk

)
− Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)
+ Li2

(
τiτjkτklτlij
τkτijτliτjkl

)
− Li2

(
τjτklτkiτlij
τkτijτjlτkli

)
− Li2

(
τiτjkτjlτkli
τjτliτkiτjkl

)
+ Li2

(
τlτijτjkτkli
τjτklτliτijk

)
− Li2

(
τkτijτjlτkli
τjτklτkiτlij

)
− Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)
+ Li2

(
τkτijτliτjkl
τiτjkτklτlij

)
− Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)
− Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)
+ Li2

(
τjτklτliτijk
τlτijτjkτkli

)
− Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)
− Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)
+ Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)
− Li2

(
τkτijτliτjkl
τiτjkτklτlij

)
− Li2

(
τjτklτkiτlij
τkτijτjlτkli

)
+ Li2

(
τjτklτkiτlij
τkτijτjlτkli

)
− Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)
− Li2

(
τjτklτliτijk
τlτijτjkτkli

)
+ Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)
− Li2

(
τiτjkτklτlij
τkτijτliτjkl

)
− Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)
+ Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)
− Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)
− Li2

(
τlτijτjkτkli
τjτklτliτijk

)
+

1
2

(
ln
(
Akiτjlτkli
Aijτklτlij

))2

+
1
2

(
ln
(
−Ajlτkτjl
Ajkτlτjk

))2

+
1
2

(
ln
(
−Akiτjlτijk
Aklτijτjkl

))2

+
1
2

(
ln
(
Ajlτiτjl
Aliτjτli

))2

+
1
2

(
ln
(
Aijτklτlij
Ajkτliτjkl

))2

+
1
2

(
ln
(
Ajkτlτjk
Aklτjτkl

))2

+
1
2

(
ln
(
Aklτijτjkl
Aliτjkτlij

))2

+
1
2

(
ln
(
Aliτjτli
Aijτlτij

))2

+
1
2

(
ln
(
Ajkτliτjkl
Akiτjlτkli

))2

+
1
2

(
ln
(
−Aklτjτkl
Ajlτkτjl

))2

+
1
2

(
ln
(
−Aliτjkτlij
Akiτjlτijk

))2

+
1
2

(
ln
(
Aijτlτij
Ajlτiτjl

))2

− 1
2

(
ln
(
Akiτjτliτkiτjkl
Aijτiτjkτklτlij

))2

− 1
2

(
ln
(
−Ajkτlτijτjkτkli
Ajlτjτklτkiτlij

))2

− 1
2

(
ln
(
−Akiτlτjkτkiτlij
Aklτkτijτliτjkl

))2

− 1
2

(
ln
(
Aliτjτklτliτijk
Ajlτlτijτkiτjkl

))2

− 1
2

(
ln
(
Aijτkτijτjlτkli
Ajkτjτliτkiτjkl

))2

− 1
2

(
ln
(
Aklτjτklτkiτlij
Ajkτkτliτjlτijk

))2

(A.1)
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− 1
2

(
ln
(
Aklτiτklτjlτijk
Aliτlτjkτkiτlij

))2

− 1
2

(
ln
(
Aijτlτijτkiτjkl
Aliτiτjkτjlτkli

))2

− 1
2

(
ln
(
Ajkτiτjkτklτlij
Akiτkτijτjlτkli

))2

− 1
2

(
ln
(
−Ajlτkτliτjlτijk
Aklτlτijτjkτkli

))2

− 1
2

(
ln
(
−Aliτkτijτliτjkl
Akiτiτklτjlτijk

))2

− 1
2

(
ln
(
Ajlτiτjkτjlτkli
Aijτjτklτliτijk

))2

+ 2π2 (A.2)

Using (2.13b) on all the terms in the dotted boxes, all the dilogarithm terms
cancel out leaving only these logarithm terms

Γ2 = +
1
2

(
ln
(
Akiτjlτkli
Aijτklτlij

))2

+
1
2

(
ln
(
−Ajlτkτjl
Ajkτlτjk

))2

+
1
2

(
ln
(
−Akiτjlτijk
Aklτijτjkl

))2

+
1
2

(
ln
(
Ajlτiτjl
Aliτjτli

))2

+
1
2

(
ln
(
Aijτklτlij
Ajkτliτjkl

))2

+
1
2

(
ln
(
Ajkτlτjk
Aklτjτkl

))2

+
1
2

(
ln
(
Aklτijτjkl
Aliτjkτlij

))2

+
1
2

(
ln
(
Aliτjτli
Aijτlτij

))2

+
1
2

(
ln
(
Ajkτliτjkl
Akiτjlτkli

))2

+
1
2

(
ln
(
−Aklτjτkl
Ajlτkτjl

))2

+
1
2

(
ln
(
−Aliτjkτlij
Akiτjlτijk

))2

+
1
2

(
ln
(
Aijτlτij
Ajlτiτjl

))2

− 1
2

(
ln
(
Akiτjτliτkiτjkl
Aijτiτjkτklτlij

))2

− 1
2

(
ln
(
−Ajkτlτijτjkτkli
Ajlτjτklτkiτlij

))2

− 1
2

(
ln
(
−Akiτlτjkτkiτlij
Aklτkτijτliτjkl

))2

− 1
2

(
ln
(
Aliτjτklτliτijk
Ajlτlτijτkiτjkl

))2

− 1
2

(
ln
(
Aijτkτijτjlτkli
Ajkτjτliτkiτjkl

))2

− 1
2

(
ln
(
Aklτjτklτkiτlij
Ajkτkτliτjlτijk

))2

− 1
2

(
ln
(
Aklτiτklτjlτijk
Aliτlτjkτkiτlij

))2

− 1
2

(
ln
(
Aijτlτijτkiτjkl
Aliτiτjkτjlτkli

))2

− 1
2

(
ln
(
Ajkτiτjkτklτlij
Akiτkτijτjlτkli

))2

− 1
2

(
ln
(
−Ajlτkτliτjlτijk
Aklτlτijτjkτkli

))2

− 1
2

(
ln
(
−Aliτkτijτliτjkl
Akiτiτklτjlτijk

))2

− 1
2

(
ln
(
Ajlτiτjkτjlτkli
Aijτjτklτliτijk

))2

+
1
2

(
ln
(
−τkτijτliτjkl
τiτjkτklτlij

))2

+
1
2

(
ln
(
−τjτklτliτijk
τlτijτjkτkli

))2

+
1
2

(
ln
(
−τjτklτkiτlij
τkτijτjlτkli

))2

+
1
2

(
ln
(
−τlτjkτkiτlij
τkτliτjlτijk

))2

+
1
2

(
ln
(
−τlτijτkiτjkl
τiτklτjlτijk

))2

+
1
2

(
ln
(
−τiτjkτjlτkli
τjτliτkiτjkl

))2

+ 3π2 (A.3)
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This simplifies to

Γ2 =
1
2
(
−(ln(τijk))2 + (ln(τjkl))2 − (ln(τkli))2 + (ln(τlij))2

− (ln(τi))2 + (ln(τj))2 − (ln(τk))2 + (ln(τl))2
)

+ ln(τijk) ln(τkli)− ln(τjkl) ln(τlij) + ln(τi) ln(τk)− ln(τj) ln(τl)

+ ln(τijk) ln
(
−AjlAkiτjlτki
AijAjkτklτli

)
+ ln(τjkl) ln

(
AjkAklτijτli
AjlAkiτjlτki

)
+ ln(τkli) ln

(
−AjlAkiτjlτki
AklAliτijτjk

)
+ ln(τlij) ln

(
AijAliτjkτkl
AjlAkiτjlτki

)
+ ln(τi) ln

(
AjlAkiτjlτki
AjkAklτjkτkl

)
+ ln(τj) ln

(
− AklAliτklτli
AjlAkiτjlτki

)
+ ln(τk) ln

(
AjlAkiτjlτki
AijAliτijτli

)
+ ln(τl) ln

(
−AijAjkτijτjk
AjlAkiτjlτki

)
+ ln(τij) ln

(
−Ajk
Ali

)
+ ln(τjk) ln

(
−Aij
Akl

)
+ ln(τkl) ln

(
− Ali
Ajk

)
+ ln(τli) ln

(
−Akl
Aij

)
+ ln

(
τki
τjl

)
ln
(
AijAjkAklAliτijτjkτklτli

A2
jlA

2
kiτ

2
jlτ

2
ki

)
. (A.4)

The reader can easily check that adding (A.4) to Γ1 from (2.15) gives zero, verifying
the closure relation.
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