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1 Introduction

Paired comparison studies are utilized in various fields of study, including marketing, trans-
portation, environmental and health economics, psychology and sensometrics. This is be-
cause performing several pairwise comparisons of products or services may prove to be
a more realistic approach to constructing an overall ranking than ranking a large set of
alternatives directly (see, e.g., Agresti 2002). In paired comparison studies, sets of two
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alternatives are offered to respondents, who then have to indicate the alternative they like
most. In some paired comparison studies, the respondents are asked to state how strong
their preference is. The alternatives offered in each of the pairs may be real or hypothetical
products or services (in marketing experiments), travel modes (in transportation studies),
and health states (in health economics), but they can also be medical treatments (in the
context of pain measurement), verbal crime descriptions (in psychology and law) or cue
combinations (in psychophysics). In certain application areas, the alternatives are referred
to as profiles and they are described in terms of properties or attributes. The attributes
can be qualitative or quantitative. The purpose of the paired comparison experiment is to
assess the importance of each of the attributes to the respondents and to determine the
weights the respondents attach to the different levels of the attributes. In the marketing
literature, these weights are sometimes called part-worths. In psychophysics, paired com-
parison experiments are often named two-alternative forced-choice experiments, and the
alternatives are referred to as stimuli, which consist of one or more signals or cues. Un-
doubtedly, this terminology is new to readers who are not familiar with the most recently
published applications of paired comparison studies. As a matter of fact, paired comparison
studies have historically been used mainly to compare levels of a single qualitative attribute.

The design of paired comparison studies involving multiple attributes has received con-
siderable attention recently. The work published in this domain typically borrows ideas
from a research area called optimal design of experiments, which seeks experimental de-
signs that allow the most efficient estimation or prediction of some unknown quantities.
As one of the main goals of paired comparison studies is to determine the part-worths,
the optimal design approach is appropriate to design them. Applications of optimal design
to paired comparison experiments can be found in Offen and Littell (1987), van Berkum
(1987, 1989), El-Helbawy et al. (1994), Graßhoff et al. (2003, 2004), Sándor and Wedel
(2001), Kessels et al. (2006, 2009), Street and Burgess (2004, 2007), and Großmann et al.
(2009). It should be pointed out that some of the publications in this enumeration do not
restrict attention to paired comparison experiments only, but deal with choice experiments
in general (where respondents evaluate sets of two or more profiles).

Remarkably, none of the listed references takes into account the potential existence of
within-pair order effects, even though this topic has received a substantial amount of at-
tention in the literature. Early discussions and references on the importance of the order
in which to present pairs and the order in which to present alternatives within pairs in
the method of paired comparisons involving one qualitative attribute can be found in Ross
(1934, 1939) and Wherry (1938). The work by Ross is considered definitive by David
(1963). Some technical follow-up work on Ross’s designs can be found in Simmons and
Davis (1975) and Cloete et al. (1988). The designs proposed by Ross possess the following
properties: (i) an alternative is compared with every other alternative; (ii) the order of
the pairs is such that the time gap between two consecutive presentations of the same
alternative is maximal; and (iii) every alternative appears as often on the left as on the
right of a pair.
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The incorporation of within-pair order effects in the analysis of data from paired comparison
studies received explicit attention by Scheffé (1952), who suggested an analysis of variance
approach for preferences expressed on a 7- or 9-point scale and who found a highly signifi-
cant order effect in a taste experiment. Beaver and Gokhale (1975) point out that in paired
comparison studies involving psychophysical stimuli, the effect of the order of presentation
may be more important than the magnitudes of the stimuli themselves. Therefore, they
propose a modification to the Bradley-Terry model (Bradley & Terry 1952) involving one
additive order effect per ordered pair, and find evidence of the presence of such order ef-
fects in a weights-judging experiment (see also Beaver 1977). Davidson and Beaver (1977)
suggest another modification to the Bradley-Terry model to cope with within-pair order
effects. Rather than additive order effects, they suggest using multiplicative ones. They
argue that multiplicative order effects arise naturally from the setting of the linear model
and offer several technical advantages over the model with additive order effects. Augustin
(2004) provides further support for the superiority of the model involving multiplicative
order effects, and Fienberg (1979) re-examines the multiplicative order effects model from
a technical viewpoint. Harris (1957) presented a constant additive bias model, which is
similar to that of Davidson and Beaver (1977) except that it is based on the Thurstone
(1927) model (see, e.g., Critchlow and Fligner 1991). Davidson and Beaver (1977) find ev-
idence of order effects in the weights-judging experiment mentioned above, as well as in an
experiment involving different food mixes. Applications of the multiplicative order effects
model in wine tasting and psychophysics can be found in Lukas (1991) and Wickelmaier
and Choisel (2006), respectively. In each of these applications, evidence of order effects
was found. Such evidence was also found by van der Waerden et al. (2006) in choice exper-
iments with three alternatives per choice set for studying transport mode decisions, and by
Chrzan (1994) in choice experiments when investigating brand preferences in marketing.
Matthews and Morris (1995) took into account a potential order effect in a paired com-
parison experiment for the measurement of pain, but did not obtain convincing evidence
of its existence.

A point worth stressing is that, while all the models proposed for incorporating within-pair
order effects in the statistical analysis of paired comparison data allow for different order
effects for every pair of alternatives, the applications described in Davidson and Beaver
(1977), Matthews and Morris (1995) and Wickelmaier and Choisel (2006), use a single order
effect only. The authors report a satisfactory model fit, despite the model simplification.
Similarly, van der Waerden et al. (2006) use a model with order effects that are common
for every choice set. In this paper, we will therefore also focus on the situation where one
order effect is common to all the pairs presented in the paired comparison experiment.

Even though the literature on the design of paired comparison experiments involving mul-
tiple attributes has not paid any attention to within-pair order effects, the profiles within
pairs usually have to be ordered, either spatially or temporally. Obvious examples are
taste experiments, experiments in which respondents watch commercials and studies in
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which respondents try out the alternatives. Also, in experiments where profiles are de-
scribed verbally or displayed using pictures, there is always one alternative that has to
come first. It is therefore prudent to design experiments so that the experimental results
are not distorted by potential order effects. One approach often taken by researchers is to
randomize the order of the alternatives within each pair. An even better approach is to
design the paired comparison experiment so that the parameter estimates are estimated
independently from the order effect. Unlike the randomization-based one, this approach
uses a systematic ordering of the alternatives within every pair. Below are two simple
examples of experiments involving several attributes in which order effects are likely to be
present.

Example 1. A race bicycle constructor is interested in testing several new configura-
tions. Several test riders are available during the months of July and August for testing
the bicycles. Each rider tries two bicycles: one in July and one in August. The three
attributes under study are the type of frame (two levels: classic or sloping frame), the type
of wheels (three levels: Campagnolo Hyperon, Mavic Ksyrium SL, Shimano WH-7701) and
the groupset (two levels: Campagnolo Record, Shimano Dura-Ace).

Example 2. A global player on the beer market recently introduced 1.5 liter PET bottles
in Russia. The bottle, made of an improved polyethyleneteraphtalate (PET), guaranteed
a 90-day shelf life of the product. In order to find the best possible composition of the
bottle, several experiments were performed. In addition to experiments focusing on the
chemical and physical properties of the bottled beer (e.g. carbon dioxide, proportion of
sulphite, and turbity), taste experiments were performed. Among the factors investigated
in the experiments were the proportion of nylon (two levels: 2%, 4%), the amount of iron
(Fe) in the PET (1500 ppm, 2500 ppm), the type of cap (two levels) and, in some of the
tests, the time elapsed between the bottling and the consumption of the beer (two levels:
45 days, 90 days).

The situation where the alternatives are obtained by combining levels of different attributes,
or factors, is referred to as a factorial treatment structure or a situation with structured
treatments in the experimental design literature. When the alternatives are just levels of
a single qualitative variable, as in most of the literature on within-pair order effects, the
literature on experimental design uses the term unstructured treatments. In this paper,
the focus is on factorial treatment structures. This complicates the problem of designing
paired comparison experiments. This is due to the fact that the experimenter has to decide
which combinations of attribute levels to use in the experiment out of many possible ones,
on top of determining which pairs to use and in which order to present the alternatives
within each pair. Note that the order of the pairs themselves (which was considered by
Ross (1934)) is much less important under factorial treatment structures than in the case
of unstructured treatments because of the large number of different alternatives which arise
from combining levels of several attributes.
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2 Models for paired comparison studies

In the recent literature on paired comparison experiments, two different models can be
found for the data analysis. The first model is the conditional logit model or the Bradley-
Terry model, which is used when the respondents are asked to choose between the two
alternatives in every pair. The pairs are then called choice sets. The second model is a
linear model, which is used whenever the respondents have to indicate their preference for
one of the two alternatives in a pair on a continuous scale.

2.1 Pairwise choice experiments

A popular statistical model used for analyzing data from paired comparison experiments is
the logit model for paired evaluations proposed originally by Zermelo (1929) as an analyt-
ically convenient alternative to the probit model originally proposed by Thurstone (1927).
The logit model was popularised by Bradley and Terry (1952) and embedded in a regres-
sion framework by McFadden (1974). A review of the early literature on the background
concerning the approach, its use, applications and extensions can be found in Bradley
(1976).

The Bradley-Terry model supposes that the probability π12i of preferring alternative 1 over
alternative 2 in the ith paired comparison can be expressed as

π12i =
exp(u1i)

exp(u1i) + exp(u2i)

where u1i and u2i represent the utilities attached to the two alternatives in paired compar-
ison i. Hence the probability π21i = 1− π12i that alternative 2 is preferred over alternative
1 can be written as π21i = exp(u2i)/(exp(u1i)+exp(u2i)). If follows that for each pair i the
choice probabilities as well as their ratio depend only on the utility difference u1i − u2i. In
situations where the alternatives are described by means of several attributes, the utilities
are modelled using the linear predictor

uji = x′

jiβ, j = 1, 2,

where xji is the vector containing the coded levels of the attributes of the jth alternative
in the ith paired comparison. The utility difference u1i−u2i = (x1i−x2i)

′β is then a linear
function of the unknown parameter vector β. A maximum likelihood estimate of β can
be obtained, for example, by means of any software routine for simple logistic regression
using the components of the vectors (x1i − x2i)

′ as the predictors for the ith pair.

2.2 Linear paired comparison studies

Another type of paired comparison study, which in particular covers the model of Scheffé
(1952), are linear paired comparison experiments. In this type of study, rather than just

5



choosing the alternative they prefer the respondents have to indicate on a scale how strong
their preference is. One quantitative response is then observed per paired comparison
which again depends on the difference vector (x1i − x2i)

′. More precisely, the response is
described by the linear model

Yi = u1i − u2i + εi = (x1i − x2i)
′β + εi,

where the εi for different pairs i are typically assumed to be independent with zero mean
and variance σ2.

2.3 Order effects

In situations where the alternatives to be compared cannot be presented simultaneously,
order effects might influence the outcome of the comparison. Also, even when the two
alternatives are simultaneously presented on a screen, an order effect might be present as
one of the alternatives would typically be read or looked at first.

The simplest way to model the presence of an order effect is to assume it is additive and
modify, say, the expression u1i = x′

1iβ for the utility of the first alternative in each pair by
adding a parameter δ. The relevant utility differences in both the Bradley-Terry and the
linear paired comparison model then become

δ + (x1i − x2i)
′β,

where δ represents the order effect which here is assumed to be the same for all pairs.

3 Information matrix and design optimality criteria

A precise estimation of the two models outlined above requires carefully designed paired
comparisons. The quality of a design for paired comparison experiments is expressed using
the Fisher information matrix on the unknown model parameters in the model. The crite-
rion most often used for selecting designs for paired comparison studies is the D-optimality
criterion, which seeks designs that maximize the determinant of the Fisher information ma-
trix.

The Fisher information matrix on the parameter vector β in the conditional logit model
in Section 2.1 is equal to

I(β) =
N

∑

i=1

{π12ix1ix
′

1i + π21ix2ix
′

2i − (π12ix1i + π21ix2i)(π12ix1i + π21ix2i)
′}, (1)

where N represents the total number of paired comparisons in the experiment. In order
to compare designs with possibly different numbers of pairs N , the normalized Fisher
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information matrix M(β) = N−1I(β), which summarizes the information per pair, is
usually used.
Both I(β) and M(β) depend on the unknown parameter vector β through the probabilities
π12i and π21i. This is inconvenient because it implies that the D-optimal paired comparison
design depends on the unknown model parameters. One way to deal with this is to adopt a
Bayesian approach which takes into account any available prior information. However if, as
in the works of Street et al. (2001) and Street and Burgess (2004, 2007), it is assumed that
the probabilities for the two alternatives in each choice set are equal to 1/2 or equivalently
that β = 0, then the normalized Fisher information matrix can be written as

M(β) =
1

4N

N
∑

i=1

(x1i − x2i)(x1i − x2i)
′. (2)

Note that the right-hand side of this equation does not depend on β. The assumption
of equal probabilities is sometimes realistic because it reflects the fact that the researcher
is ignorant concerning the part-worths of the attributes under investigation. In matrix
notation, the right-hand side of (2) can be re-written as

1

4N
X′X, (3)

where for each paired comparison i the matrix X contains a row given by the difference
vector (x1i−x2i)

′. The matrix M = N−1X′X can be recognized as the normalized informa-
tion matrix in the linear paired comparison model in Section 2.2 (Graßhoff et al. (2004)).
Since that matrix is proportional to the matrix in (3) it follows that if β is assumed to be
a zero vector, then the same designs are D-optimal for the conditional logit and the linear
paired comparison model.

In either model, including an order effect δ can be regarded as adding a two-level factor
to the set of predictor variables or attributes. The corresponding difference vector for pair
i then has an additional component and can be written as (c,x1i − x2i)

′, where c is a
constant that depends on the coding but which is the same for all pairs. Gathering the
row vectors for all pairs into a single matrix we obtain the matrix (c1N ,X) where 1N is a
column vector of length N with all elements equal to 1 and X is defined as before.

Denoting the normalized Fisher information matrix in the conditional logit model including
an order effect by M(δ,β), it follows that, for δ = 0 and β = 0,

M(δ,β) =
1

4N
(c1N ,X)′(c1N ,X) =

1

4

(

c2 c
N
1′

NX
c
N
X′1N M

)

, (4)

where M is defined as before. Moreover, up to a constant factor the matrix on the right-
hand side of (4) coincides with the information matrix in the extended linear paired com-
parison model including the order effect.
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4 Optimal designs

If each column of the matrix X sums to zero it follows that 1′

NX is a row vector of zeros.
Hence in this case, it follows from (4) that the effects of interest can be estimated inde-
pendently of the order effect. The design should therefore be orthogonally blocked with
respect to the two levels of the factor corresponding to the order effect.

Example 3. To illustrate how orthogonality of the order effect and the attributes can be
achieved consider the design in Table 1 for a main-effects model, where the first attribute
has two and the second attribute has three levels. For each attribute each level appears the
same number of times in Alternative 1 and Alternative 2. Converting the attribute levels
of Alternative 1 in each pair using effects-type coding results in a matrix X1 whose rows
are the vectors previously denoted as x1i, i = 1, . . . , N . Similarly, applying the coding to
Alternative 2 in each of the pairs gives rise to a matrix X2 whose ith row is the vector x2i.
It is then not difficult to verify that each column of X = X1 − X2 sums to zero. Other
common types of coding yield the same result.

Table 1: Paired comparison design with treatment effects orthogonal to order effect

Pairs X1 X2 X = X1 − X2

Alternative 1 Alternative 2 Alternative 1 Alternative 2 Difference
1 1 2 2 1 1 0 −1 0 1 2 1 −1
1 2 2 3 1 0 1 −1 −1 −1 2 1 2
1 3 2 1 1 −1 −1 −1 1 0 2 −2 −1
2 1 1 2 −1 1 0 1 0 1 −2 1 −1
2 2 1 3 −1 0 1 1 −1 −1 −2 1 2
2 3 1 1 −1 −1 −1 1 1 0 −2 −2 −1

In addition to having orthogonality between the attributes and the order effects it is im-
portant that the paired comparison study provides maximum information. Most criteria
for measuring the information content of a design are based on the normalized information
matrix. The most commonly used of these is the D-criterion which aims to maximize the
determinant of M(δ,β).

Under the hypothesis of equal choice probabilities or equivalently β = 0, and assuming
a main-effects model with K factors at lk levels, k = 1, . . . , K, which are coded as in
Table 1, it follows from the results of Graßhoff et al. (2004) that a design with normalized
information matrix equal to

M(β) =
1

4







M1 0
. . .

0 MK






(5)
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is D-optimal for the model without an order effect, where for every k

Mk =
2

lk − 1











2 1 . . . 1

1 2
. . .

...
...

. . . . . . 1
1 . . . 1 2











.

Note that Mk has lk − 1 rows and columns. Moreover, if for such a design 1′

NX is a zero
row vector, then the design is also D-optimal in the model containing the order effect.
More precisely, under the hypothesis of equal choice probabilities the design is D-optimal
for estimating both δ and β and D-optimal for the subset of parameters contained in β.
In that case M(δ,β) = diag[1,M(β)].

Example 3 continued. Assuming that the choice probabilities in the model including
the order effect are equal, the normalized information matrix of the design in Table 1 can
be seen to be equal to

M(δ,β) =









1 0 0 0
0 1 0 0
0 0 1/2 1/4

0 0 1/4 1/2









,

which implies that the design is D-optimal.

In general, under the hypothesis of equal choice probabilities, a D-optimal design for
estimating the main effects of K attributes with lk levels, k = 1, . . . , K, in the model
including the order effect can be constructed by adapting the methods described in Graßhoff
et al. (2004). Below such a generalization is described for a technique based on orthogonal
arrays (see, e.g., Hedayat et al. (1999)) which is particularly useful when the attributes
have only two or three levels.

1. For each attribute k with an even number of levels lk form all sk = lk(lk − 1) ordered
pairs of levels.

2. Similarly, for each attribute k for which lk is odd form all sk = lk(lk − 1)/2 pairs of
levels and arrange them such that each level appears in the first position as often as
in the second position.

3. Find the smallest orthogonal array OA(N ; s1, . . . , sK ; 2) of strength 2 with N rows
and K columns.

4. Using the pairs from Steps 1 and 2 each row of the orthogonal array can be expanded
into a pair of alternatives. This is done by replacing the sk different symbols in the
kth column of the orthogonal array as follows:
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a) If attribute k has an even number of levels lk, then replace all instances of a
given symbol in column k of the orthogonal array with one of the sk ordered
pairs from Step 1. This is done in such a way that each of the sk symbols is
replaced by a different pair.

b) If attribute k has an odd number of levels lk, then similarly replace every instance
of a given symbol in the kth column with one of the sk ordered pairs from Step 2.

5. The output of Step 4 is an N ×K array of pairs of attribute levels which is then split
into two N × K arrays L and R. Array L is formed using the left element in each
pair. Array R is formed using the right element in each pair.

6. The ith pair in the final design is then obtained by using the ith row of L to specify
the first and the ith row of R to specify the second alternative.

Example 4. Table 2 illustrates the construction of a D-optimal design with 18 paired
comparisons for a model with a single two-level and seven three-level attributes. For the
two-level attribute there are s1 = 2 ordered pairs (1, 2) and (2, 1) which are used to replace
the symbols in the first column of the orthogonal array on the left of the table. For each of
the remaining attributes we have sk = 3, k = 2, . . . , 8, and the symbols in the kth column
of the orthogonal array are replaced by the pairs (1, 2), (2, 3) and (3, 1) . The central
portion of the table shows the resulting array which is then further decomposed into the
N = 18 pairs of the optimal design.

5 Algorithmic approach

The combinatorial approach outlined above relies on the existence of an orthogonal array
of the type OA(N ; s1, . . . , sK ; 2). If all sk values required in the design construction are
equal to two or three, then many orthogonal arrays with small numbers of rows N exist. As
sk is two or three only for two- and three-level attributes, this implies that optimal paired
comparison designs with a reasonable number of paired comparisons can be constructed
for attributes with two or three levels. However, for four- and five-level attributes, the
required values for sk equal lk(lk − 1) = 4(4 − 1) = 12 and lk(lk − 1)/2 = 5(5 − 1)/2 = 10.
If several sk values with these magnitudes are required, then it is impossible to find or-
thogonal arrays with a manageable size N .

In such cases, a computerized-search algorithm can be utilized to seek an optimal paired
comparison design of pre-specified size N . Computerized-search algorithms have the ad-
vantage that they can be used for any value of N , unlike the combinatorial approach based
on orthogonal arrays. However, they suffer from two drawbacks. First, a computerized-
search algorithm cannot guarantee that an optimal design will be found, nor that each of
the model parameters can be estimated independently from the order effect. Second, the
application of computerized-search algorithms may become problematic if the number of
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Table 2: Construction of a D-optimal design with 18 paired comparisons for a model with one attribute at two and seven attributes
at three levels

Optimal design
Orthogonal array Array after replacing symbols L R

0 0 0 0 0 0 0 0 (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 0 1 2 2 0 1 1 (1,2) (1,2) (2,3) (3,1) (3,1) (1,2) (2,3) (2,3) 1 1 2 3 3 1 2 2 2 2 3 1 1 2 3 3
0 0 2 1 2 1 0 2 (1,2) (1,2) (3,1) (2,3) (3,1) (2,3) (1,2) (3,1) 1 1 3 2 3 2 1 3 2 2 1 3 1 3 2 1
1 0 1 1 0 2 2 0 (2,1) (1,2) (2,3) (2,3) (1,2) (3,1) (3,1) (1,2) 2 1 2 2 1 3 3 1 1 2 3 3 2 1 1 2
1 0 2 0 1 2 1 1 (2,1) (1,2) (3,1) (1,2) (2,3) (3,1) (2,3) (2,3) 2 1 3 1 2 3 2 2 1 2 1 2 3 1 3 3
1 0 0 2 1 1 2 2 (2,1) (1,2) (1,2) (3,1) (2,3) (2,3) (3,1) (3,1) 2 1 1 3 2 2 3 3 1 2 2 1 3 3 1 1
0 1 1 1 1 1 1 0 (1,2) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (1,2) 1 2 2 2 2 2 2 1 2 3 3 3 3 3 3 2
0 1 2 0 0 1 2 1 (1,2) (2,3) (3,1) (1,2) (1,2) (2,3) (3,1) (2,3) 1 2 3 1 1 2 3 2 2 3 1 2 2 3 1 3
0 1 0 2 0 2 1 2 (1,2) (2,3) (1,2) (3,1) (1,2) (3,1) (2,3) (3,1) 1 2 1 3 1 3 2 3 2 3 2 1 2 1 3 1
1 1 2 2 1 0 0 0 (2,1) (2,3) (3,1) (3,1) (2,3) (1,2) (1,2) (1,2) 2 2 3 3 2 1 1 1 1 3 1 1 3 2 2 2
1 1 0 1 2 0 2 1 (2,1) (2,3) (1,2) (2,3) (3,1) (1,2) (3,1) (2,3) 2 2 1 2 3 1 3 2 1 3 2 3 1 2 1 3
1 1 1 0 2 2 0 2 (2,1) (2,3) (2,3) (1,2) (3,1) (3,1) (1,2) (3,1) 2 2 2 1 3 3 1 3 1 3 3 2 1 1 2 1
0 2 2 2 2 2 2 0 (1,2) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (1,2) 1 3 3 3 3 3 3 1 2 1 1 1 1 1 1 2
0 2 0 1 1 2 0 1 (1,2) (3,1) (1,2) (2,3) (2,3) (3,1) (1,2) (2,3) 1 3 1 2 2 3 1 2 2 1 2 3 3 1 2 3
0 2 1 0 1 0 2 2 (1,2) (3,1) (2,3) (1,2) (2,3) (1,2) (3,1) (3,1) 1 3 2 1 2 1 3 3 2 1 3 2 3 2 1 1
1 2 0 0 2 1 1 0 (2,1) (3,1) (1,2) (1,2) (3,1) (2,3) (2,3) (1,2) 2 3 1 1 3 2 2 1 1 1 2 2 1 3 3 2
1 2 1 2 0 1 0 1 (2,1) (3,1) (2,3) (3,1) (1,2) (2,3) (1,2) (2,3) 2 3 2 3 1 2 1 2 1 1 3 1 2 3 2 3
1 2 2 1 0 0 1 2 (2,1) (3,1) (3,1) (2,3) (1,2) (1,2) (2,3) (3,1) 2 3 3 2 1 1 2 3 1 1 1 3 2 2 3 1
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attributes is large and/or the number of levels of several attributes is large.

These drawbacks can best be illustrated by considering an example. Suppose that a re-
searcher wishes to construct a paired comparison design with N = 36 paired comparisons
for studying eleven two-level attributes and twelve three-level attributes. An optimal design
for this problem can be constructed combinatorially by means of the method in Section 4
using an orthogonal array for which N = 36, s1 = · · · = s11 = 2 and s12 = · · · = s23 = 3. A
design constructed in this way guarantees that all the model parameters can be estimated
independently from the order effects. Also note that the design is saturated, that is the
number of estimated parameters including the order effect is equal to the number of pairs.

An alternative approach would be to construct a design using a computerized-search al-
gorithm for constructing optimal designs in blocks. This is because every pair in a paired
comparison design can be viewed as a block of size two. The best known algorithms in the
literature on the D-optimal design of blocked experiments for factorial treatment structures
are those of Atkinson and Donev (1989), Cook and Nachtsheim (1989), Goos and Vande-
broek (2001), and Goos and Donev (2006). A similar algorithm has been implemented in
various software packages, for example in the SAS procedure OPTEX. However, because
these algorithms require the construction of a candidate set with all possible alternatives,
they cannot be used for the problem involving eleven two-level attributes, twelve three-
level attributes and an order effect. The reason for this is that it is impossible to list the
set of 211312 alternatives. The only algorithm that is capable of handling that complex
a problem is the coordinate-exchange algorithm of Meyer and Nachtsheim (1995), which
does not require the list of all possible alternatives as an input and which has been imple-
mented in JMP. One thousand runs of the coordinate-exchange algorithm in JMP required
about 2 minutes and 40 seconds and produced a design which was clearly not optimal.
Its performance in terms of the D-optimality criterion relative to the combinatorially con-
structed optimal design amounts to 95.21%. With 10,000 tries of the coordinate-exchange
algorithm, the efficiency of the computer-generated design relative to the combinatorially
constructed one is 95.34%. Most, but not all, of the model parameters can be estimated
independently from the order effects. Excel files containing the designs discussed in this
section are available for download at the authors’ web pages.

From this example, it is clear that the computerized-search algorithm is able to produce
a reasonably good solution for a challenging paired comparison design problem, but not
the optimal design. The less challenging the nature of the design problem, the more likely
a computerized-search algorithm will find the optimal design rather than just a nearly
optimal design. For smaller design problems, the point-exchange algorithms can be used
as alternatives to the coordinate-exchange algorithm.
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6 Conclusion

The early literature on paired comparisons paid much attention to the problem of within-
pair order effects, but the more recent work on the design of paired comparison studies
and choice experiments completely ignores this potential cause of bias. We provide a
detailed literature study and revise how within-pair order effects can be modelled and taken
into account when constructing paired comparisons designs. We also describe a simple
combinatorial construction method that guarantees optimal designs in many situations and
that outperforms computerized-search algorithms for problems involving large numbers of
attributes. Because of the use of paired comparisons in disciplines as diverse as marketing,
transportation, environmental and health economics, psychology and sensometrics, the
combinatorial construction method will be useful for a broad range of applications. For
example, the optimal design with 36 paired comparisons for 11 two-level attributes and
12 three-level attributes discussed in Section 5 can be easily modified for situations with
smaller numbers of two- and three-level attributes. More specifically, if there are a two-
level attributes and b three-level attributes, this can be done by simply selecting any a
two-level columns and any b three-level columns. Because of the similarity between paired
comparison and two-color micro-array studies, the construction method can also be applied
to such micro-array studies if a difference in fluorescence intensity is expected between the
red and the green color.
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