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Abstract

Several integrability tests for discrete equations will be reviewed. All tests
considered can be applied directly to a given discrete equation and do not rely
on the a priori knowledge of the existence of related structures such as Lax pairs.
Specifically, singularity confinement, algebraic entropy, Nevanlinna theory, Dio-
phantine integrability and discrete systems over finite fields will be described.

PACS numbers:
02.30.Ik (integrable systems) and 02.30.Ks (delay and functional equations).
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1 Introduction

We describe in this short review various “integrability detectors” for discrete
systems. Here discrete means discrete time: the evolution is governed by recur-
rence relations, or, by discretising space as well, partial difference equations.

The notion of integrability for continuous systems having a finite number of
degrees of freedom goes back to the XIXth century with J. Liouville, and the
existence of conserved quantities (in involution) is its basic feature, since it is
the ground for the existence of action-angle variables, and the full resolution of
the equations of motion.

Remarkably enough, the pioneering work of S. Kowalevskaya and its contin-
uation by P. Painlevé, by an analysis of structural properties, already provided
before the end of the XIXth century an integrability detector, that is to say a
mean to detect integrability, without having to produce an explicit solution.

Discrete counterparts of essentially all the known properties of continuous
integrable systems are now available, but the most recent results have also shown
that discrete systems are in a sense more fundamental than the continuous ones.
They have a richer structure, and they have become the center of a flourishing
activity.

We will present here a cluster of properties which signal the integrability
of discrete systems. They are interrelated, even if not equivalent, and they all
allow a direct study of the systems.

The review is divided in three parts, each having a different flavour, and
reflecting different points of view, but describing the features of what is -by a
common consensus- an integrable discrete system. The main concepts discussed
are singularity analysis (section 2), growth and complexity (section 3), and
analytic and arithmetic approaches (section 4).

2 Singularity confinement

Singularity confinement [1] was the name given to a property of discrete systems
integrable by spectral methods, namely that any spontaneously appearing sin-
gularity disappears after a few iteration steps. In what follows we shall present
the workings of singularity confinement as a discrete integrability detector, some
of its applications as well as the associated pitfalls.

2.1 The appearance of singularity confinement

The first occurence of confined singularities was not in studies of integrable
systems but rather in the domain of numerical analysis. Indeed, more than 50
years ago, Wynn [2] proposed what he called the ε-algorithm which was meant
as an accelerator of the convergence of series. It has the form

εk+1
n = εk−1

n+1 +
1

εkn+1 − εkn
(2.1)
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where ε−1
n = 0 and ε0n = Sn, i.e. the series the convergence of which must be

accelerated. The numbers εkn fill a two-dimensional array where the ε’s with an
odd upper index are auxiliary quantities. One can easily eliminate them leading
to Wynn’s cross rule:

1
εk+2
n − εkn

− 1
εkn − εk−2

n

− 1
εkn+2 − εkn

+
1

εkn − εkn−2

= 0 (2.2)

When implementing the convergence algorithm, in the form (2.1) or (2.2) a
division by zero may occur. However it turms out that one may jump over the
singularity by using what in numerical analysis are called singular rules and
continue the computation. Let us illustrate this by using the cross rule. Solving
for εk+2

n we find

εk+2
n = εkn −

(εkn − εk−2
n )(εkn+2 − εkn)(ε

k
n − εkn−2)

(εkn − εk−2
n )2 − (εk−2

n − εkn+2)(ε
k−2
n − εkn−2)

(2.3)

Clearly the vanishing of any of the denominators of the three last terms of (2.2)
leads simply to εk+2

n = εkn. Thus the singularity does not lead the algorithm to
a halt. (On the other hand, from a purely numerical point of view, a division by
a number close to zero makes the algorithm unstable due to cancellation errors
and particular rules must be introduced. Since this is beyond our scope we shall
refer the interested reader to the existing literature).

The notion of confinement made its appearance, in relation with integrabil-
ity, in the work of Joshi. Indeed, in [3], Joshi observed that integrable systems
possess what she called orbits with pole-like behaviour. She started by study-
ing possible discretisations of the Riccati equation z′ = αz2 focusing on two
of them, the logistic mapping zn+1 = azn(1 − zn) and the homographic one
zn+1 = azn(1− zn+1). For the first mapping it is known that it exhibits chaotic
behaviour for a whole range of values of the parameter a. (This is true de-
spite the fact that for some special values of a one can find exact solutions of
the mapping. For instance, when a = 2 we have zn = 1

2

(
1 − (1 − 2z0)2

n)
.

However no contradiction exists. While the solution can be given explicitly in
terms of n and the initial point z0, an inversion of the formula of the solution
shows that the initial point z0 is a multivalued function of the iterates and thus
cannot play the role of a conserved quantity. A detailed discussion of solv-
ability and its relation to integrability detectors can be found in the work of
some of the present authors [4]). On the other hand the homographic mapping
is linearisable: putting zn = 1/ζn transforms it to a non-homogeneous linear
equation ζn+1 = 1 + ζn/a, an equation devoid of any chaotic behaviour. The
homographic mapping possesss a family of orbits which reach infinity in a finite
number m of steps starting from a finite z0. For instance when a = 1 it suffices
to take z0 = −1/m whereupon we find that zm diverges but zm+1 is finite (in
fact equal to 1). Joshi remarks that these orbits are the discrete analogues of
the solutions of the Riccati equation which possess movable poles.

The introduction of the notion of singularity confinement [1] and its definitive
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link with integrability came from the study of the KdV equation:

xi+1
j = xi−1

j+1 +
1
xij

− 1
xij+1

(2.4)

Given the form of (2.4) the question which arises naturally is “what if a singu-
larity appears spontaneously?” How does it evolve under the mapping (2.4)?
The result turned out to be the following: a vanishing x at (i, j) leads to diver-
gent x’s at both (i+ 1, j − 1) and (i+ 1, j) and a vanishing x at (i+ 2, j − 1).
Then at both sites (i + 3, j − 2) and (i + 3, j − 1) a fine cancellation occurs
and one obtains finite values: xi+3

j−1 = xi−1
j + 1/xij−1 − 1/xi+2

j and a similar one
for xi+3

j−2. Thus the singularity does not propagate beyond a few lattice points
and is confined to a small region. More complicated singularities may exist (x
vanishing on more than one point) but it can be shown that they, too, lead to
confined singularities.

Moreover the notion of singularity confinement is not limited to lattice sys-
tems but exists (and is easier to grasp) also for one- dimensional mappings. The
McMillan mapping :

xn+1 + xn−1 =
2µxn
1− x2

n

(2.5)

was the acid-test of the method. This mapping is well known for its integrability.
In fact, it can be completely integrated in terms of elliptic functions: x =
x0 cn(Ωn, κ), where κ = x0 dn(Ω)/sn(Ω) and Ω is related to µ through µ =
cn(Ω)/dn2(Ω). A singularity may appear in the recursion (2.5) whenever x
passes through the value 1. So let us assume that x0 is finite and that x1 = 1+ε.
(This can be obtained from a perfectly regular x−1). We find then the following
values: x2 = −µ/ε− (x0 +µ/2)+O(ε), x3 = −1+ ε+O(ε2) and x4 = x0 +O(ε).
Thus, not only the singularity is confined at this step but, also, the mapping
has recovered the memory of the initial conditions through x0.

Through a bold step, starting from the remark that for a host of systems,
integrable through spectral methods, the spontaneously appearing singularities
were confined, the singularity confinement property was elevated to the rank of
a discrete integrability criterion.

2.2 Applications of singularity confinement

The most fruitful application of singularity confinement and moreover one that,
as we see in what follows, avoids all pitfalls, is the deautonomisation of integrable
autonomous mappings. The interest of this approach is that it made possible
the derivation of the discrete analogues of Painlevé equations[5]. An illustration
is in order at this point.

We start by generalising the McMillan mapping (2.5) to the non- autonomous
case

xn+1 + xn−1 =
a+ bxn
1− x2

n

(2.6)
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where a and b are now functions of the independent variable n. The integrable
non-autonomous form of (2.6) will be derived using the singularity confinement
property. We assume that for some n we have a regular xn and xn+1 = σ + ε
where σ = ±1. (In this way we cover the two possibilities of x going through a
root of the denominator of the r.h.s.). Iterating further we find:

xn+2 = −bn+1 + σan+1

2ε
+
an+1 − σbn+1

4
− xn +O(ε) (2.7)

xn+3 = −σ +
2bn+2 − bn+1 − σan+1

bn+1 + σan+1
ε+O(ε2) (2.8)

The condition for xn+4 to be finite reads:

bn+1 − 2bn+2 + bn+3 + σ(an+1 − an+3) = 0 (2.9)

which leads to an+1 = an+3 and bn+1 − 2bn+2 + bn+3 = 0. Thus we have
bn(≡ zn) = αn+β and an = δ+ γ(−1)n. Ignoring the even-odd dependence we
take a as a strict constant. We obtain finally:

xn+1 + xn−1 =
a+ znxn
1− x2

n

(2.10)

This is a form of discrete Painlevé II in agreement with previous results derived
through different approaches. (When the even-odd dependence is not neglected,
(2.10) is a discrete analogue of Painlevé III, as shown in [6]).

Another interesting example may be presented at this point. We start from
the integrable mapping

xn+1xn−1 =
a

xn
+

1
x2
n

(2.11)

and deautonomise it by assuming that a is a function of n. We assume that
for some n, xn is regular and xn+1 = −1/a(n) + ε. Iterating and taking ε → 0
we find for xn+2, xn+3, xn+4 respectively the values 0, ∞ and 0. This is the
singularity pattern of this mapping (which, by the way, is exactly the same in the
autonomous case). Computing xn+5 when ε is taken to 0, we find a finite value,
−a(n + 1)/a(n + 3)2. However xn+6 is not finite at this limit and unless some
constraint is set on a the singularity propagates indefinitely. On the other hand
if we take a such that a(n+ 2)a(n− 2) = a(n)2 then xn+6 and the subsequent
x’s are finite. The integration of the constraint on a leads to an = ae,oλ

n, where
ae,o indicates an even-odd dependence. However and contrary to the discrete
Painlevé II case this dependence is spurious since it can be eliminated through
a rescaling of the dependent variable. Thus we have simply an = a0λ

n. This
result is particularly interesting since it leads to a discrete Painlevé of q type.

Singularity confinement’s usefulness was not limited to the derivation of
discrete Painlevé equations. Many other systems can be treated sucessfully
within this approach. Consider for example the system

xn+1 = xn + a+
b

xn
+

c

xn−1
(2.12)
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where a, b and c are functions of n. The singularity analysis of this system
is straightforward. A singularity may appear whenever x goes through zero.
Thus starting from a finite xn−1 we take xn = ε and iterate further. We find
that all subsequent x’s diverge when ε→ 0. However it at the level of xn+2 we
choose c(n + 1) = −b(n) then xn+2 and all the subsequent x’s are finite when
ε→ 0. Thus we expect the mapping to be integrable, and indeed it is. Putting
a(n) = d(n) − d(n − 1) we can write (2.12) as an exact difference. Absorbing
the integration constant into d we have

xn+1 = d+
b

xn
(2.13)

Thus (2.12) is the discrete derivative of the homographic mapping. We remark
that in this case the singularity analysis does not define completely the functions
appearing in (2.12) which remain free up to one constraint between b and c. This
existence of free functions is characteristic of mapping the integration of which
is obtained through linearisation [7].

2.3 Refining the notion of singularity

The continuous Painlevé transcendents can be viewed as deautonomisations
of the elliptic functions. By analogy a systematic derivation of the discrete
Painlevé equations may proceed through the deautonomisation of the QRT [8]
mapping. The latter is an integrable family of mappings, the solution of which
is expressed in terms of elliptic functions. The “symmetric” form of the QRT
mapping is the following

xn+1 =
f1(xn)− xn−1f2(xn)
f2(xn)− xn−1f3(xn)

(2.14)

where fi are specific quartic polynomial, involving in all 5 free parameters.
The derivation of the discrete Painlevé equations proceeds through the deau-
tonomisation of these parameters. However the application of the singularity
confinement approach in this case necessitates a more precise definition of what
we mean by “singularity”. Clearly an infinite value for xi, i = n, n ± 1, does
not play any particular role. In fact, relation (2.14) is ‘bi-homographic’ and
thus infinity can be taken to any finite value by a simple homographic transfor-
mation of variables. However (2.14) may pose a subtler problem. It may turn
out that for a certain n the mapping (apparently) loses one degree of freedom.
This occurs when xn+1 is defined independenly of xn−1 and this happens when-
ever: f1(xn)f3(xn)− f2(xn)2 = 0. Thus we consider that a singularity appears
whenever xn+1 is independent of xn−1 the singularity being associated to the
loss of a degree of freedom. It is then natural to ask how this singularity can
be confined, i.e. how the mapping can recover the lost degree of freedom. For
rational mappings of the kind we are considering, this can be realized if some
of the mapping’s variables assume an indeterminate form, for instance 0/0. In
that case new free parameters can be introduced and the mapping recovers its
full dimensionality.
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The situation we just described is perhaps better illustrated in the case of
linearisable mappings of the form

xn+1 =
f1(xn)− xn−1f2(xn)
f4(xn)− xn−1f3(xn)

(2.15)

where fi are linear in xn: fi = aixn + bi. Here the mapping loses one degree of
freedom whenever:

f1(xn)f3(xn)− f2(xn)f4(xn) = 0 (2.16)

Once xn is obtained from (2.16) one can compute xn+1 simply as xn+1 =
f1(xn)/f4(xn) = f2(xn)/f3(xn), unless xn−1 was such that both the numer-
ator and the denominator of the fraction defining xn+1 vanished, that is

xn−1 = f1(xn)/f2(xn) = f4(xn)/f3(xn) (2.17)

Thus one sees two ways in which the singularity confinement can be preserved:
either relation (2.17) is satisfied or it is not, in which case xn+1 is determined
and is independent of xn−1. In the latter case one degree of freedom will be
definitely lost, as xn+2 will be determined in terms of xn only, unless both
the numerator and the denominator of the fraction that define it vanish, that
is xn = f1(xn+1)/f2(xn+1) = f4(xn+1)/f3(xn+1). In the case where (2.15) is
satisfied, on the other hand, it would appear that a degree of freedom suddenly
appears at step n+ 1. The only way out is to demand that xn was determined
by xn−1 only, independent of xn−2, which means that one already had at the
previous step: xn = f1(xn−1)/f4(xn−1) = f2(xn−1)/f3(xn−1).

The ideas presented above can be easily generalized to an N -component
rational mapping:

x′i = fi(x1, x2, . . . , xN ) i = 1, 2, . . . , N (2.18)

Normally for such an N -component mapping, N free parameters, introduced by
the initial conditions, must be present at every step. Now, it may happen that at
some iteration one (or more) degress of freedom are lost. The condition for this
to occur is that the Jacobian of (x′1, x

′
2, . . . , x

′
N ) with respect to (x1, x2, . . . , xN )

vanishes. This signals the appearance of a singularity which can only be confined
if at some subsequent step an indeterminate form appears allowing the lost
parameter to be re-introduced.

Some remarks are in order before concluding this section. The whole idea
of confinement is that a singularity appearing spontaneously (due to the choice
of initial conditions) must disappear after a few iteration steps. A non-confined
singularity is one which appears at some iteration and does not disappear for
all subsequent ones. However there may exist situations where a singularity
exists for all iterations. We consider that such a singularity is the analogue of
what we call a fixed singularity in the continuous case. The existence of singu-
larities of this type are not a counterindication for integrability. The situation
may become even more complicated if at some iteration, in the middle of such
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a “fixed” singularity, the singularity disappears only to reappear after a few
iteration steps. We call this situation anti-confinement and we consider that
again it should not hinder integrability. Thus an unconfined singularity is one
extending only either to plus or to minus infinity in the iteration index. All
other situations are considered as situations of confinement (including the case
of anticonfinement and that of a fixed singularity).

2.4 Singularity confinement as the discrete Painlevé prop-
erty

If one wonders what the discrete analogue of the Painlevé property is, singu-
larity confinement appears to be an excellent candidate. Both are based on
the local study of singularities: the special structure these singularities possess
when the system is integrable. In the continuous case the Painlevé property
is based on the requirement that the solutions of a given equation be devoid
of multivaluedness- inducing singularities (and thus one can, in the sense of
Poincaré, integrate the equation). In the discrete case the singularity confine-
ment property is based on the requirement that the singularities not lead to
intederminate points, i.e. points where the iterates of the mapping is not well
defined. Thus, in Kruskal’s sense, the mapping has a meaning as a dynam-
ical system. Obviously an integrability detector is related to a specific type
of integrability, of which there exist several kinds, the term integrability being
conveniently rather vague. The Painlevé property is characteristic of systems
the integration of which proceeds through spectral methods. The same holds
true for singularity confinement in the discrete setting. Thus on the basis of
these analogies it is quite reasonable to posit that singularity confinement is the
discrete analogue of the Painlevé property. (We should make clear here that this
is not a rigorous statement and, in the light of what follows, one that should be
assorted to a caveat).

While for continuous systems the Painlevé property is almost tautologically
identified to integrability, the situation is not as favourable for singularity con-
finement. Already in her work on orbits with pole-like behaviour [3] Joshi re-
marked that there existed systems which, while apparently nonintegrable do pos-
sess such orbits. The example she presented is the mapping zn+1 = z2

n/(z
2
n−a2)

with a 6= 1, which possesses orbits with pole-like behaviour, namely those in-
cluding the sequence: ±a,∞, 1, . . . . This particular example may be dismissed
on the basis of the observation that the mapping is not well defined in both evo-
lution directions. If one tries to evolve towards diminishing n’s the preimages
of the initial point proliferate, i.e. their number grows exponentially. As was
commented in [9], (and in a more general setting, related to correspondences,
in [10]) this is a feature deemed incompatible with integrability. Still the prob-
lem persists. There exist well-defined mappings which do possess the singularity
confinement property but are not integrable. We shall illustrate this point with
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the mapping studied in [11]:

xn+1

xn−1
= xn −

1
xn

(2.19)

Its singularity structure can be easily obtained. We find two singularity patterns
{±1, 0,∞,∓1} and the singularity is confined. The nonintegrable character of
this mapping was studied in [11] where it was shown that there exists a deep
link between its dynamics and that of the Fibonacci recurrence. This is not
the only example of nonintegrable confining mapping. Whole families of such
mappings do exist. Thus it appears that the analogy of singularity confinement
with the Painlevé property breaks down at this point. Singularity confinement
is not sufficient for integrability. We shall not go into detailed explanations
here. It suffices to say that for discrete systems to be integrable, a proper local
singularity structure is not enough. The growth properties of the solutions at
infinity enter into play. The best way to qualify this, as shall be explained later
in this review, is through the Nevanlinna approach [12]. To put it in a nutshell,
for a discrete system to be integrable the requirement is that the Nevanlinna
order of the solution be finite (which guarantees not too fast a growth) and
moreover that its singularities be confined. A practical way to study the growth
properties of the solution of a given mapping is through the algebraic entropy
method [13, 14], as shall be explained later in this article.

The parallel between singularity confinement and the Painlevé property is
deeper than what hinted at till now: both turn out not to be necessary for a
specific kind of integrability, namely linearisability. Indeed, there exist equations
which are integrable through linearisation and which do not possess the Painlevé
property [15]. This is true both in the continuous and the discrete case. We
shall illustrate this through two examples. We start from the linear equation

tx′′ + (at− 1/2)x′ + btx

x′′ + ax′ + bx
= K (2.20)

and take its derivative so as to eliminate K, obtaining a third order equation.
Next we show that the same third order equation can be obtained if we start
from the nonlinear equation

x′′x′ + 2ax′2 + 3bx′x+ (2ab− b′)x2 = M (2.21)

and take its derivative so as to eliminate M . Here a and b are not free. We have
b = a2−a′/2 and a satisfying the equation a′′′ = 6a′′a+7a′2−16a′a2+4a4 which
is equation XII in the Chazy classification. So, equation (2.21) is integrable by
linearisation through equation (2.20). It is straightforward to show that (2.21)
violates the Painlevé property. Solving it for x′′, we find terms proportional
to x2/x′ (and 1/x′) which were shown to be incompatible with the Painlevé
property. A caveat is in order at this point. While there exist large classes
of linearisable equations without the Painlevé property, there does also exist a
large class of linearisable equations which do satisfy the Painlevé criterion. The
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best known example of equations belonging to this class are the Riccati equation
and its higher order analogues.

Next we turn to a discrete example. We examine the mapping [11]:

xn+1 = xn

( xn
xn−1

+ an

)
(2.22)

When xn passes through the value zero (which may well happen for some
nonzero initial conditions) it is clear from the form of the mapping that all
the subsequent values of x will be zero and the memory of the initial conditions
is forever lost. Thus this singularity is nonconfined. On the other hand, (2.22)
is linearisable in a straightforward way since it can be written as:

yn = yn−1 + an (2.23)

xn+1 = xnyn (2.24)

where one has to solve two linear equations in cascade. Of course the remark
concerning the existence of linearisable systems with the Painlevé property has
its analogue here for linearisable mappings with confined singularities: all map-
pings of the “projective” family fall into this class.

A natural question here is what is the usefulness of non-sufficient integrabil-
ity criterion. First, it is clear that if the slow growth at infinity of the solutions
is guaranteed, as is the case for some integrable autonomous mappings, the
singularity confinement criterion is quite adequate for its deautonomisation.
Moreover it does present some advantage over the algebraic entropy approach
since one does study one singularity at a time (which leads to more manageable
calculations) and not their combined effect, as in the algebraic entropy applica-
tions. Linearisable discrete systems are a class of their own, but this is also true
in the continuous case. When dealing with a linearisable system the singularity
confinement approach may lead to a unnecessarily constrained system (or, as
in the case of (2.22), perhaps miss it altogether). We can illustrate this point
through a specific example. We start with the mapping [16]:

1
xn + xn+1

+
1

xn + xn−1
=

k

xn
(2.25)

A singularity appears whenever the value of x becomes 0. Let us assume that
for some n we have a regular xn−2 and xn−1 = 0. Iterating the mapping we find
that all subsequent x’s are zero unless some constraint holds. The interesting
result is that the singularity can be confined at any step. Thus if we require
that the confinement is attained at the level of xn+m we find that k must be of
the form k = m/(m+ 1). All these mappings are integrable, but not just them.
As a matter of fact (2.25) is integrable, through linearisation, for k an arbitrary
function of n.

While linearisability does not require confined singularities the solutions
must still have finite Nevanlinna order. In fact, as will be explained later in
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this review, the detailed study of the growth properties of the solutions of some
rational mapping does furnish indications as to its linearisability. On the other
hand, for continuous systems no general linearisability criterion is known to
date.

2.5 Further applications of singularity confinement

While singularity confinement was discovered in a purely discrete context its
extension to differential-difference systems [17] does not pose fundamental prob-
lems. The discrete part of the system is considered as a recursion allowing one
to compute a given term from the knowledge of the preceding ones. The idea is
to look for the possible singularities and their propagation under this recursion.
We shall illustrate such an application with the classical example of the Toda
system. We start from

ẍn = exn+1−xn − exn−xn−1 (2.26)

and transform it into a purely algebraic form through the transformation: an =
exn+1−xn , bn = ẋn, leading to:

ȧn = an(bn+1 − bn) (2.27)

ḃn = an − an−1 (2.28)

We look for the spontaneous appearance of a singularity for some n (where the
particle number is interpreted as the number of steps in the recursion). This
means that we do not study the solutions that are allowed to be singular for
every n but only those that become singular at some n. In this context relation
(2.27)–(2.28) is to be interpreted as a recursion:

an = an−1 + ḃn (2.29)

bn+1 = bn +
ȧn
an

(2.30)

We start by assuming that both bn and an are non-divergent and that the
singularity appears in step n+1. In fact, due to the presence of the logarithmic
derivative in (2.30), a pole may appear in bn+1 if an vanishes at some time t0.
Let us start with the simplest case of a single zero i.e. an = ατ where τ = t− t0
and α = α(t) with α(t0) 6= 0. Substituting in (2.30) we find: bn+1 = 1/τ + . . . ,
an+1 = −1/τ2 + . . . Iterating further we obtain: bn+2 = −1/τ + . . . , an+2 =
Aτ + . . . where A is a quantity depending on α and bn. Iterating further we
obtain a finite result for bn+3. Thus the singularity that appeared at bn+1 due
to the simple root in an is confined after two steps. The vanishing-an behaviour
just examined and which induces the divergence of bn+1 is not the only one. One
can imagine higher order zeros of the type an = ατk. Depending on the value
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of k, more and more intermediate steps will be necessary for the confinement
of the singularity: in principle, the confinement of singularity an ∝ τk would
necessitate k+1 steps. However the simplest singular behaviour is also the most
generic one and, for systems comprising parameters to be determined, its study
yields the most important integrability constraints for the system.

The analysis just presented should be interpreted as follows. First, the sin-
gularities that appear do have the Painlevé property (absence of branching).
Second, they do not propagate ad infinitum under the recursion (2.29)–(2.30)
but are confined to a few iteration steps. The first is the usual, Painlevé prop-
erty and the second is the singularity confinement. Both are thus required for
the integrability of differential-difference systems. Extention of such “hybrid”
methods to other systems like, differential-delay or integrodifferential ones have
also been explored. We are not going to discuss them but proceed to a differ-
ent application of the notion of singularity confinement (although, as we shall
explain, the term “singularity” is not quite appropriate in that context).

In [18] Joshi and Lafortune have transposed the notion of confinement to
the ultradiscrete case and proposed an analogue to the singularity confinement
property. In the ultradiscrete systems the nonlinearity is mediated by terms in-
volving the max operator. Typically one is in presence of terms like max(Xn, 0).
When, depending on the initial conditions, the value of Xn crosses zero, the
result of the max(Xn, 0) operation becomes non-analytic: when X is slightly
smaller than 0 the result is zero, while for X > 0 the result is X, and the
derivative at 0 does not exist. It is this non-analyticity that plays the role of
the singularity. Typically if we put X = ε, a term µ = max(ε, 0) propagates
with the iterations of the mapping and perpetuates the non-analyticity unless
by some coincidence it disappears. This disappearance is the equivalent of the
singularity confinement for ultradiscrete systems. In order to give an illustrative
example based on the ultradiscrete Painlevé I equation

Xn+1 +Xn−1 = A+ max(0, Xn)− 2Xn (2.31)

We shall examine the behaviour of a singularity appearing at, say, n = 1 where
X1 = ε, while X0 is regular and look at the propagation of this singularity
both forwards and backwards. The presence of µ ≡ max(ε, 0) indicates that the
value of X is “singular”. Below we present only the results corresponding to
A > 0, those corresponding to A < 0 leading to similar conclusions. First we
examine the case X0 > A. We find . . . , X−3 = A − ε, X−2 = X0 − A + 2ε,
X−1 = −X0 + A − ε, X0 = X0, X1 = ε, X2 = A − X0 − 2ε + µ, X3 =
2X0 − A + 3ε − 2µ, X4 = A − X0 − ε + µ, X5 = −ε, X6 = X0 + 2ε, . . . .
Here the solution is regular until X1 then singular, confined, between X2 and
X4 and regular from X5 on. Next we consider X0 < 0 and |X0| < A and
obtain the following sequence: . . . , X−13 = X−7 − 2X−5, X−12 = X−6 − 2X−5,
X−11 = X−5, X−10 = X−7−X−5, X−9 = X−6−X−5, X−8 = X−5, X−7 = A+ε,
X−6 = −X0 − 2ε + µ, X−5 = X0 + ε − µ, X−4 = A −X0 − ε + µ, X−3 = −ε,
X−2 = X0 + ε, X−1 = A − 2X0 − ε, X0, X1 = ε, X2 = A − X0 − 2ε + µ,
X3 = X0 + ε − µ, X4 = −X0 + µ, X5 = A − ε, X6 = X3, X7 = X4 − X3,
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X8 = X5 + X3, X9 = X3, X10 = X4 − 2X3, X11 = X5 + 2X3, . . . . One
can see a regular zone between X−3 and X1 and a singular pattern from X2

on as well as until X−4, as can be seen from the persistence of the singular
valued X−5 and X3. This is an anti-confined case, in the sense that a (small)
regular region exist surrounded by singular values extending all the way to
infinity in both directions. As we explained already such a behaviour is deemed
compatible with integrability. The cases 0 < X0 < A and X0 < −A lead to
similar, anti-confined, patterns. Thus in all cases we have either a confined
singularity (a central singular zone with regular behaviour outside) or an anti-
confined singularity (a central regular zone with singular behaviour outside).
Both behaviours are deemed compatible with integrability. The two points
which we consider important in this analysis are that a) one must study all
possible sectors of initial conditions and/or parameters and b) one must consider
the possibility of anti-confined solutions.

In perfect analogy to the discrete case there exist nonintegrable systems with
confined singularities and integrable systems with unconfined singularities [19].
In section (2.4) we presented an example of a nonintegable mapping which did
pass the confinement test. Up to a minor change of sign, which does not modify
the singularity structure, we can rewrite it as

xn+1 = xn−1

(
xn +

1
xn

)
(2.32)

Its ultradiscretisation is straightforward. We find

Xn+1 = Xn−1 + |Xn| (2.33)

using the absolute value of X instead of its equivalent max(X, 0)+max(−X, 0).
We shall examine the behaviour of a singularity appearing at, say, n = 1 where
X1 = ε, while X0 is regular. We distinguish two different sectors X0 < 0
and X0 > 0. In the first case (X0 < 0) we find the sequence: . . . , X−3 = 3X0,
X−2 = 2X0−ε, X−1 = X0+ε, X0, X1 = ε, X2 = X0−ε+2µ, X3 = −X0+2ε−2µ,
X4 = ε, X5 = −X0 + ε, . . . . We can see readily that the singularity, indicated
by the presence of µ, is confined (to X2 and X3 only). Turning to the case
X0 > 0 we find the sequence: . . . , X−4 = −X0 + 2µ + ε, X−3 = −X0 + 2µ,
X−2 = ε, X−1 = −X0 + ε, X0, X1 = ε, X2 = X0 + 2µ − ε, X3 = −X0 + 2µ,
X4 = 2X0 + 4µ − ε, . . . . In this case we are in presence of an anti-confined
solution: a regular part around n = 0 is surrounded by unconfined singularities
both for large positive and large negative n’s. Thus the ultradiscrete mapping
(2.33) has confined singularities despite its nonintegrable character (the latter
being inferred in [19] from the growth properties of its iterates).

The converse situation, of a mapping which while integrable does not pos-
sess confined singularities, does also exist. As expected an example is to be
sought among linearisable systems. In [11] we discovered the “multiplicative”
linearisable mapping

xn+1

xn−1
= a

xn + a

xn + 1
(2.34)
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Without loss of generality the mapping can be ultradiscretised to

Xn+1 = Xn−1 +A+ max(Xn, A)−max(Xn, 0) (2.35)

with A > 0. The complete description of the solution would require examining
several sectors exist but in order to show that there exist unconfined singularities
it suffices to exhibit such a situation in one sector. It turns out that the case
where X0 has a large negative value is one leading to unconfined singularities.
We find: . . . , X−4 = −X0−4A, X−3 = −4A+ε, X−2 = X0−2A, X−1 = −2A+ε,
X0, X1 = ε, X2 = X0 + 2A− µ, X3 = 2A+ ε, X4 = X0 + 3A− µ, X5 = 4A+ ε,
X6 = X0 +4A−µ, X7 = 6A+ ε, . . . . We remark readily that while for negative
indices the solution is regular, a singularity, mediated by µ, appears for positive
n’s and is never confined.

Clearly a better understanding of ultradiscrete integrability would necessi-
tate some input from a Nevanlinna-like theory for ultradiscrete systems.

3 Algebraic entropy

3.1 Introduction

Wondering about the integrability of a recurrence relation, or more generally a
map, naturally invites to analyse its iterates. It is unfortunately usually impossi-
ble to calculate explicitly these iterates by hand or even with any state-of-the-art
formal calculus software, simply because the expressions one should manipulate
are rational fractions of increasing degree of the various initial conditions. The
complexity and size of the calculation make it impossible to conduct.

It was nevertheless seen early enough, that “integrable” maps are not as
complex as generic ones. This was done primarily experimentally, by an accu-
mulation of examples, and later by the elaboration of the concept of algebraic
entropy which we will review here (see [20, 21, 22, 23, 13]).

The basic idea, given a rational map defined on n-dimensional space, is to
examine the growth of the degree of its iterates, and extract a canonical quantity,
which is an index of complexity of the map. This will be the algebraic entropy
(or its avatar the dynamical degree). We will restrict ourselves to birational
maps, that is to say maps of which the inverse is also rational.

The first step is to properly define the degree we consider, ensure that the
entropy is well defined, and is independent of the coordinate system, so that it
is canonical (section 3.2). This leads us to use complex projective space as a
space of initial conditions. If one is interested in recurrences, the dimension of
the space to consider is just the order of the recurrence.

The next step is to explain what influences the value of the entropy. This
makes the link with the singularity analysis: actually, the singularity structure
entirely governs the value of the entropy (section 3.3).

Section 3.4 describes how to calculate the algebraic entropy in practice. The
first method is to list sufficiently many terms of the sequence of degrees of the
iterates, and guess the full sequence from its first few terms. This heuristic
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approach has proved extremely efficient. The second method is to examine the
singularity structure to find the exact value of the entropy. The latter yields
proofs, but cannot always be used.

At this point one can evaluate the interest of the entropy as an integrability
detector: integrable systems have a vanishing entropy, non integrable one have
a non vanishing entropy.

Section 3.5.2 describes the natural extension of the notion to non-autonomous
maps, and to the so-called lattice maps, which are to maps what partial differ-
ence equations are to difference equations. There again the vanishing of the
entropy can be used as an integrability detector.

We present conjectures on the value of the entropy, and partial proofs. The
main conjecture is that the algebraic entropy of any map over projective space
of any dimension is the logarithm of an algebraic integer. This puts a limit on
the set of values the entropy can assume, and there is a further conjecture on
these values: in a given dimension there is a minimum for this value. In other
words, there exists an entropy gap, i.e. one cannot approach arbitrarily close to
integrability.

3.2 Definition

Suppose we are given a rational evolution map ϕ acting in an n-dimensional
space. We first write it in a canonical way, using projective space, and the
(n + 1) homogeneous coordinates {x0, x1, . . . , xn} for n-dimensional projective
space, as a polynomial transformation in the homogeneous coordinates.

xi −→ φi(x0, x1, . . . , xn), i = 0 . . . n

If one factors out any common polynomial factors, the degree is well defined,
in a given system of coordinates, although it is not invariant by changes of
coordinates.

Definition: Let dk be the degree of the k-th iterate of ϕ. Define the entropy1

as

ε = lim
k→∞

1
k

Log(dk). (3.1)

Proposition: The entropy is always defined and is invariant under changes
of coordinates: it is a birational invariant associated to the transformation. If
ε = 0, and the growth is polynomial, of the form dk ' α kν then ν and α are
canonically defined (birationally invariant).

This is a direct consequence of the elementary property that any pair of
birational maps ϕ and ψ,

dψ·ϕ ≤ dψ dϕ, (3.2)

To give a flavour of the calculations, let us anticipate on section (3.4), and
examine three simple examples in the two-dimensional plane.

1One may also define the dynamical degree as the exponential of the algebraic entropy.
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Example 1: the Henon map. It is a map in two dimension given in non
homogeneous coordinates (u, v), as

u −→ 1 + v − αu2 (3.3)
v −→ βu (3.4)

Going to homogeneous coordinates [x, y, z] means replacing u by y/x and v by
z/x. This leads to the map

ϕH : [x, y, z] −→ [x2, x2 + xz − αy2, βxy] (3.5)

One gets as a series of degrees of the iterates, for generic values of the
parameters:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ??? (3.6)

Notice that the degree of the map (3.5) is 2. The sequence dk is not only
bounded by 2k, but it saturates this bound. The growth of the sequence of
degrees is maximised. In fact, the map being polynomial in non-homogeneous
coordinates, there cannot be any drop of the degree, and the entropy is just
log(2).

This is not always the case as the following two examples show.
Example 2: exponential, but not maximal growth
Consider the map

ϕ− : [x, y, z] −→ [yz + 2xz − 2xy, yz − xy, yz + xz − 2xy] (3.7)

We get

1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, ??? (3.8)

After the third iterate, the bound dk ≤ dk1 = 2k is not saturated anymore.
However growth of still exponential, but with rate (1 +

√
5)/2, as we will see

later. This means that when one evaluates the iterates, some common factors
appear in the homogeneous coordinates, and this leads to a drop of the degree.
The entropy is non vanishing but is lower than log(2).

Example 3: very low growth
Consider the map:

ϕ+ : [x, y, z] −→ [yz + 4xz + 4xy, yz − 2xz + xy, yz + xz − 2xy] (3.9)

Notice that this map is very similar to the previous one. We get

1, 2, 4, 7, 12, 18, 25, 34, 44, 55, 68, ??? (3.10)

This is not only below the maximal growth, which would again be 2k, since the
map is quadratic, but is not even exponential.
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Comparing to the previous example, it appears that the first four terms of
the sequence of degrees are identical, but additional drops appear at the level of
the fifth iterate. The drop of the degree is such that the growth is polynomial
(quadratic), the entropy vanishes and ν as defined above is 2 . This map is
indeed algebraically integrable: it possesses an algebraic invariant, defining a
linear pencil of elliptic curves, to which the orbits are confined.

3.3 The importance of being singular

One may wonder about the origin of the drop of the degree. It is actually
geometrically very simple, and comes from the singularity structure.

We need to recall what is singularity for a map ϕ of projective space. A point
[x0, x1, . . . , xn] is singular if all the homogeneous coordinates of the image by ϕ
vanish. The set of these points is thus given by n + 1 homogeneous equations.
This set has codimension at least 2: it will be points in CP2, complex curves and
points in CP3, and so on. One important point is that, as soon as the map is
non-linear, and this is the case we will be interested in, there always are singular
points. The vanishing of all homogeneous coordinates means that there is no
image point in CPn. The mere vanishing of a few, but not all coordinates means
that the image “goes to infinity”, but this is harmless for us, contrary to what
happens in affine space. This is what projective space has been invented for: to
cope with points at infinity, which are not to be forgotten when one consider
algebraic varieties and rational maps. Moreover, using complex projective space
simplifies a lot the counting of intersection points, by Bezout theorem.

The maps we consider are almost invertible. They are diffeomorphisms on
a Zariski open set, i.e. they are invertible everywhere except on an algebraic
variety, which we may find as follows: suppose the map ϕ and its inverse ψ =
ϕ−1 are written with homogeneous coordinates. The composed maps ϕ · ψ
and respectively ψ · ϕ are then just multiplication of all coordinates by some
polynomial κϕ and resp. κψ

ψ · ϕ(m) = κϕ(m).id(m) and ϕ · ψ(m) = κψ(m).id(m) (3.11)

The map ϕ is clearly not invertible on the image of the variety of equation
κϕ(m) = 0.

What may happen is that further action of ϕ on these points leads to im-
ages in the singular set of ϕ. This means that κϕ(m) (or a piece of it if it is
decomposable) has to factorize from all the components. This is the origin of
the drop of the degree! This is the link between singularity (in the projective
sense) and the degree sequence.

We may illustrate this with the example given by eqn (3.7), when looking
at the iterates of ϕ on a generic point [x, y, z]. Here κϕ = xyz, and the factor
dropping at the third iterate is x. The situation is a little more intricate for the
further iterates, but this is the essence of the phenomenon.

At his point it is possible to understand what singularity confinement is: if
for all components of the variety κϕ(m) = 0 one encounters singular points of ϕ
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in such a way that some finite order iterate of ϕ -once the common factors are
trimmed- define non ambiguously a proper image in CPn, we have “singularity
confinement” (see section 2 and references therein, as well as section 3.4.2).

3.4 How to calculate the entropy

3.4.1 Heuristic method

As was said above, it is hopeless to attempt a full calculation of the iterates of
a map, the size of the expressions to manipulate being too large in practice.

On may circumvent this difficulty by looking at the successive images of a
generic projective line, i.e. a degree 1 curve, with some running parameter (say
t), and numerical coefficients. The effect at the level of the calculation is to
handle only univariate polynomials (in t), drastically simplifying the computa-
tion. This is the most efficient way to produce the first terms of the sequence of
degrees, and it has been successfully used for map on spaces of large dimension.

This also has a simple geometrical image: one is counting the intersection of
the images with a fixed generic hyperplane. This is exactly in the spirit of the
notion of complexity proposed by Arnold for diffeomorphisms [24].

At this point it is necessary to recall that the image of a variety V by a
(bi)-rational map possibly contains two parts: the “proper image” and some
additional pieces, the ensemble forming the “total image”. The image to con-
sider in relation to Arnold’s definition is of course the proper image. The total
image actually contains, in addition to the proper image, the blow-ups of pos-
sible singular points located on V .

Once one has listed the beginning of the sequence of degrees, it is necessary
to evaluate its growth. The heuristic way is to complete the list in a reasonable
way.

One first try is to calculate the discrete derivatives of the sequence

d′n = dn+1 − dn, d′′n = d′n+1 − d′n, . . . (3.12)

and look for relations between the successive derivatives.
Looking again at the three examples given above, we see that for the Hénon

map (eq. 3.6)

d′n = dn, dn = 2n, (3.13)

For sequence (3.8) we have

{d′n} = 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ... (3.14)

where we recognise (the beginning of) a Fibonacci sequence, which has expo-
nential rate of growth.

For sequence (3.10), we have

{d′n} = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, ... (3.15)
{d′′n} = 1, 1, 2, 1, 1, 2, 1, 1, 2, ... (3.16)
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The second derivative is periodic, which indicates quadratic growth of the de-
gree.

Another possibility is to write down the generating function of the sequence
of degrees

g(s) =
∞∑
k=0

dk s
k (3.17)

and try to fit it with a Pade approximant.
For Hénon (eq. 3.6)

gHénon =
1

1− 2 s
. (3.18)

Remarkably this method works in many cases and the generating function
we find is a rational fraction with integer coefficients!

For the two other examples of section (3.2) we have respectively for ϕ− (eq.
3.8) and ϕ+ (eq. 3.10).

gϕ− =
1

(1− s) (1− s− s2)
(3.19)

gϕ+ =
1 + s2 + 2 s4

(s2 + s+ 1) (1− s)3
(3.20)

The growth of the sequence of degrees is given by the location of the pole of
g which has the smallest modulus. As soon as there is a zero of the denominator
of g inside the unit circle, the entropy does not vanish.

If, as is the case for gϕ+ , all poles have modulus 1, the multiplicity m of the
root 1 (m = 3 for the case) gives the type of polynomial growth. It is of the
degree ν = m− 1 (quadratic for ν = 3).

One could accumulate many example of maps, and believe that the se-
quence of degrees can always be fitted by a rational generating function, but
the situation is more complicated [25].

If the generating function g is a rational fraction with integer coefficients
and constant coefficient of the denominator equal to 1, then two propositions
are true:

• The sequence of degrees verifies a finite recurrence relation with integer
coefficients

• The entropy is the logarithm of an algebraic integer

The first part of this proposition is now proven for maps of CP2 (see next
paragraph and [26, 27, 28]), and there are counterexamples in higher dimen-
sions [25]. The second part is still a conjecture for (bi)rational map of projective
space of arbitrary dimension [13].
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3.4.2 Use of the singularity structure

This is the approach taken in [29, 26, 30].
It is known that given a birational map ϕ : X → Y , it is possible to re-

move the singularities and the non invertibility by blowing up a number of
sub-varieties of X and Y respectively.

ϕ̃

X̃ −→ Ỹ
πX ↓ ↓ πY

X −→ Y
ϕ

The problem is that we want to iterate the map, i.e. we need to have
X̃ = Ỹ . This leads us in general to an infinite sequence of successive blow-ups.
Fortunately it is sometimes possible to realize this regularization with a finite
number of blow-ups. This is precisely what has been called “discrete singularity
confinement” (see section 2 and reference therein). We have in this case

ϕ̃

X̃ −→ X̃
Π ↓ ↓ Π

P −→ P
ϕ

The projection Π is a product of a finite number of blow-ups. The lifted
map ϕ̃ is a smooth map on a rational variety X̃.

The two-dimensional case is particularly interesting, because we can use
intersection theory of curves drawn on two-dimensional varieties. The Picard
group of P2 has one generator. Since the singular varieties always have codi-
mension at least 2, we have to blow-up only points, and each blow-up adds
one generator to the Picard group, with self-intersection −1 (see for example
[31, 32])

There exists a (non-positive) scalar product on the Picard group Pic(X̃) of
X̃. The map ϕ̃ induces an isometry Φ∗ on Pic(X̃). It is possible to represent
the isometry Φ∗ with a matrix µ(ϕ). It is then possible to read the number of
intersections of the images of a generic line under ϕ from the powers of µ(ϕ).
This proves the existence of a finite recurrence relation on the successive degrees:
it is just the characteristic polynomial of µ(ϕ), and since the coefficient of the
leading term is 1, the entropy is the logarithm of an algebraic integer.

Moreover, since the metric is Lorentzian, we know that all (except at most
two) of the eigenvalues lie on the unit circle. Consequently the entropy is the
logarithm of a Salem number (see section (3.6.2). It was also shown that, as soon
as there are enough rational invariants of the map, the entropy vanishes [33, 34].
In the two-dimensional case, this leads to ν = 1 or ν = 2 only. For higher
dimensions, the polynomial growth may have ν > 2 [35].

Remark: We also have examples in higher dimensions, where is is possible
to prove that the sequence of degrees verifies a finite recurrence relation with
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integer coefficients [13, 36], even if it is not a general property of the sequence
of degrees.

3.5 Beyond maps

3.5.1 Non autonomous maps

The notion of entropy may be applied to sequences of maps. This is partic-
ularly important for non autonomous iterations: suppose one has a family of
maps f(A) depending on set of parameters A = [α1, . . . , α2, αr]. We may con-
sider a sequence {fn} of such maps with parameters An = [α1,n, α2,n, . . . , αr,n].
Rather than iterating a fixed map f , construct the sequence F0 = f0, F1 =
f1 · F0, . . . , Fn = fn · Fn−1. It is clear that the definition of entropy is possible
from the sequence of degrees of the Fn’s.

Here again the vanishing of the entropy detects integrability. The prototype
of such integrable non-autonomous maps is the set of discrete Painlevé equations
(see section 2). For all of these the entropy vanishes, and ν = 2 [29, 37, 38].

3.5.2 Lattice maps

The notion of entropy can be extended [39, 40, 41] to the so called lattice
equations, which are to maps what partial differential equations are to ordinary
differential equations. For these systems, the characterisation of integrability
also started around 1990 (see [42, 43, 44, 45, 46, 47, 48, 49]).

For simplicity we will consider the two dimensional case, where the elemen-
tary plaquette of the lattice is a square, but this applies straightforwardly to
higher dimensions and other lattices.

s s

s s
x1

x2

x

x12

The unknown variable y[m,n] is defined at all vertices of the lattice, and the
equation is a constraint of the form

f(x, x1, x2, x12) = 0 (3.21)

with x = y[m,n], x1 = y[m + 1, n], x2 = y[m,n + 1], x12 = y[m + 1, n + 1] for
all vertices [m,n].
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In the simplest case, the above relation is multilinear, so as to determine
any of the values at a corner of the plaquette rationally in terms of the three
others. It defines a 1+1 dimensional evolution.

The space of initial data is infinite dimensional. Initial date are given on
a line which must allow the determination of the values at all points of the
lattice. The simplest possible choice is to take a regular diagonal staircase
going diagonally.

We iterate the relation by calculating the values on diagonals moving away
from the initial staircase, and define a sequence2 of degrees dk.

The most straightforward definition is the same as the one of maps:

ε = lim
k→∞

1
k

log(dk). (3.22)

Proposition: The limit ε defined above exists, is independent of the coor-
dinate system, and if ε = 0 and the growth is polynomial, the degree of that
polynomial is canonically defined.

The reason is the same as for maps (sub-additivity of the log(dk)). The
difference comes from the infinite dimensionality of the space of initial data.
However, due to the structure of the recurrence relation (causality) we need
only 2q + 1 initial values if we want to calculate q steps !

We may evaluate explicitly the degrees with the same trick as for maps:
initial data are given a fractional linear value in terms of some unknown t, all
with the same denominator.

When the entropy vanishes, the growth of the degree is polynomial, and the
degree of that polynomial is a secondary characterisation of the complexity.

The entropy for lattice maps is again a very good integrability detector[39,
40, 41, 50], and enjoys similar properties, especially for what concerns the values
it can assume (e.g. being the log of an algebraic integer).

3.6 What values for the algebraic entropy?

3.6.1 Vanishing entropy

Of first importance is the value 0 for ε, as it signals the fall-off of complexity
which is one of the signatures of integrability [14, 51, 28]. Moreover when ε = 0
the secondary invariant ν classifies different polynomial growth rates.

If ν = 1, the system is believed to be linearisable [52, 53].
The ν = 2 case is particularly interesting: appears in two dimensions as soon

as there is an algebraic invariant and is related to automorphisms of rational
elliptic surfaces.

Higher values of ν appear in dimensions larger than 2 [35].
It is probable that all values of ν can be attained at the price of increasing

the dimension, but explicit realisations remain to be found.
2We may actually define a number of different entropies for lattice equations (see [40]))
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3.6.2 Non vanishing entropy

The set of non-vanishing values taken by the entropy ε is also of interest, because
these values are not arbitrary. For two dimensional maps for example, ε is
known to be the logarithm of a Salem number (see section 3.4.2). This is a
quite strong constraint: as such numbers are believed to be bounded below,
this in turn implies that there is a minimum for the entropy of two-dimensional
maps.

It is natural to wonder what values ε can assume in general.

Definition: Let µ(n) be the infimum of exp(ε) over birational maps of Pn,
ε being the algebraic entropy.

Proposition

• This infimum exists

• µ(n+ 1) ≤ µ(n)

• µ(2) ≤ sLehmer

• µ(k) < sLehmer, ∀k ≥ 3

• limn→∞ µ(n) = 0

Here sLehmer denote the root of

PL = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1 (3.23)

of modulus larger than 1. This number is approximately 1.17628. This is
conjectured (Lehmer’s conjecture) to be the smallest possible Salem number.

Proof

The first part of the proposition is trivial. The second part is elementary
since it is always possible, given a map over projective space of dimension n
to add a dimension which is just a spectator. The resulting map has the same
entropy as the original one.

To prove the third part of the proposition, it is sufficient to produce a map
with entropy exactly log(sLehmer), see [27, 28]. Actually, if Lehmer’s conjecture
is true we have the equality µ(2) = sLehmer.

To prove the fourth part of the proposition, it sufficient to produce a map
with entropy lower than log(sLehmer). Take for example the monomial map
(in dimension n = 3). given by

[x, y, z, t] −→ [xz, yt, yz, xy] (3.24)

The characteristic polynomial of the matrix associated to the map is s3− s2 +1
and yields exp(ε) ' 1.1509639 which is strictly lower than µ(2). Notice that the
algebraic integer giving the entropy is complex.
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To prove the last part of the proposition, monomial maps are again useful.
Their entropy is given by the matrix of the exponents appearing in the map and
is easy to evaluate. Consider the map of Pn

Λ : [x0, x1, . . . , xn] −→ [x1x0, x2, xn, x3xn, . . . , x0xn, x
2
n] (3.25)

which is essentially a permutation with a quadratic perturbation.
The entropy may be calculated from the characteristic polynomial of the

matrix associated to Λ. It is the maximal root of the polynomial

Qn = sn − sn−1 − 1 (3.26)

We find a sequence of entropies

εn '
log(n)
n

(3.27)

This ends the proof, and leads to the conjecture:
Conjecture: One may conjecture that the sequence log(µ(n)) is a monoton-

ically decreasing sequence of strictly positive numbers, going to zero as n→∞.
In other words: in a given dimension one cannot get arbitrarily close to

integrability, as measured with the algebraic entropy. The price to pay is to
increase the dimension (i.e. the order of the equation). This also means than any
arbitrarily small non integrable perturbation of an integrable systems takes it
to a finite distance form integrability, if this distance is measured with algebraic
entropy.

4 Analytic and arithmetic approaches

4.1 Introduction

In this section we will explore an analogue of the Painlevé property for differ-
ence equations that is complex analytic in nature. The Painlevé property for
differential equations concerns the singularity structure of solutions in the com-
plex domain. In order to extend these ideas to the discrete world we consider
difference equations, such as

F (z; y(z − 1), y(z), y(z + 1)) = 0, (4.1)

for some function F . Equation (4.1) is a functional relation that needs to be
satisfied for all z ∈ C. This is in contrast to the discrete setting in which one
considers a solution of the corresponding discrete equation,

F (n; yn−1, yn, yn+1) = 0, (4.2)

to be a sequence (yn), rather than a function y on C. Note that in this section,
the fundamental objects studied are solutions of equations of the form (4.1). We
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do not consider starting from a sequence (yn) of equation (4.2) and extending
it to a solution y(z) of equation (4.1), which is a highly non-unique process.

The general solutions of difference equations contain arbitrary periodic func-
tions. For example, the general solution of

y(z + 1)− 5y(z) + 6y(z + 1) = 0

is
y(z) = 2zπ1(z) + 3zπ2(z),

where π1 and π2 are arbitrary period 1 functions. Clearly the general solution
can have arbitrarily bad singularities if we choose the periodic functions appro-
priately. On the other hand, large classes of difference equations are known to
admit many meromorphic solutions. In particular, if R is a nonconstant rational
function, then the first-order difference equation

w(z + 1) = R(w(z))

is known to admit the family of solutions

w(z) = W (z + π(z)),

where W is a particular nonconstant meromorphic function and π is an arbi-
trary period one function [54, 55, 56, 57]. This holds for integrable as well as
nonintegrable equations.

In [52], Ablowitz, Halburd and Herbst suggested that a difference analogue
of the Painlevé property is that the equations should admit sufficiently many
finite-order meromorphic solutions. Nevanlinna theory provides a sophisticated
theory of the value distribution of meromorphic functions. Those meromorphic
functions of finite order are particularly well behaved and provide a natural class
of “nice” meromorphic functions.

We will outline how Nevanlinna theory can be used to obtain strong neces-
sary conditions for a difference equation to have admissible meromorphic solu-
tions of finite order. Roughly speaking, a meromorphic solution of a particular
difference equation is called admissible if it more complicated than all of the co-
efficients of the difference equation. The strong necessary conditions mentioned
above include precise forms for the coefficients of the equation.

The remarkable formal similarity between Nevanlinna theory and Diophan-
tine approximation has been noted by several authors including Osgood and
Vojta. This similarity suggests that discrete equations with solutions in a num-
ber field k should be considered to be of Painlevé type if the logarithmic height
grows polynomially rather than exponentially. In the case k = Q, the logarth-
mic height of the non-zero rational number x = a/b, with a and b coprime, is
h(x) = log max{|a|, |b|}. Preliminary classification results are described. We
will conclude with the work of Roberts and Vivaldi on discrete equations over
finite fields.
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4.2 Basic terminology

Let f be a meromorphic function. The main idea of Nevanlinna theory is to
encode important information about f in the asymptotic behaviour of certain
real-valued functions of a positive variable r. These functions represent averages
of certain functions of f over the disc |z| ≤ r or over the circle |z| = r. For more
information on Nevanlinna theory, see [58].

The proximity function is

m(r, f) =
1
2π

∫ 2π

0

log+ |f(reiθ)| dθ,

where log+ x := max(log x, 0). The enumerative function is

N(r, f) :=
∫ r

0

n(t, f)− n(0, f)
t

dt+ n(0, f) log r,

where n(r, f) is the number of poles of f (counting multiplicities) in |z| ≤ r.
The Nevanlinna characteristic function

T (r, f) = m(r, f) +N(r, f)

measures “the affinity” of f for infinity. For a ∈ C,

T

(
r,

1
f − a

)
= m

(
r,

1
f − a

)
+N

(
r,

1
f − a

)
measures the “affinity” of f for the value a.

Nevanlinna’s First Main Theorem says that for any meromorphic function
f and any a ∈ C,

T

(
r,

1
f − a

)
= T (r, f) +O(1), r →∞.

This says that asymptotically (as r → ∞), the affinity of f for the value ∞ is
the same as its affinity for the value a.

Several important classes of meromorphic functions are characterised by the
rate of growth of T (r, f). For example, f is a constant if and only if T (r, f)
is bounded and f is rational if and only if T (r, f) = O(log r). The order of a
meromorphic function is defined to be

ρ(f) := lim sup
r−→∞

log T (r, f)
log r

.

The order is well-defined for any meromorphic function but it may be infinite.
Finite-order meromorphic functions play a special role in the theory.

The Nevanlinna characteristic is a natural measure of the complexity of
a meromorphic function. We will denote by S(r, f), any positive function of
r ≥ r0, for some r0, such that

S(r, f) = o(T (r, f)),
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for all r ∈ [r0,∞)\E, where E is a set of finite logarithmic measure (i.e.
∫
E

dr <
∞). The appearance of so called exceptional sets, such as E, is ubiquitous in
Nevanlinna theory as they arise naturally in a number of important technical
lemmas. Furthermore, we denote by S(f) the set of all meromorphic functions
g such that T (r, g) = S(r, f).

Let R(z, f) be a rational function of y with coefficients aµ that are mero-
morphic functions of z. Let d = degfR(z, f) be the degree of R as a rational
function of f . Then an extremely useful identity originally due to Valiron [59]
and generalized by Mohon’ko [60], says that if the characteristic function of
the coefficients are small compared to the characteristic of f , more precisely, if
aµ ∈ S(f), then

T (r,R(z, f)) = dT (r, f) + S(r, f). (4.3)

An important estimate for meromorphic solutions of difference equations due to
Yanagihara [56] is that, given ε > 0,

T (r, f(z ± 1)) ≤ (1 + ε)T (r + 1, f(z)) +O(1), (4.4)

for sufficiently large r.

4.3 Finite-order solutions

Consider the first-order difference equation

y(z + 1) = R(z, y(z)), (4.5)

where R is as described above. A meromorphic solution y of equation (4.5) is
called admissible if the coefficient functions aµ(z) in R satisfy aµ ∈ S(y). Note
that if R(z, y) ≡ R(y) has constant coefficients, then a meromorphic solution is
admissible precisely if it is non-constant. Similarly, if the coefficients aµ of R
are all rational functions, then a meromorphic solution is admissible precisely if
it is non-rational.

Let y be an admissible solution of equation (4.5). Taking the Nevanlinna
characteristic of both sides of equation (4.5) and using the estimates (4.3) and
(4.4) yields

(1 + ε)T (r + 1, y) ≥ dT (r, y) + S(r, y). (4.6)

Ignoring the S(r, y) term in the inequality (4.6) implies that T (r, y) grows ex-
ponentially if d > 1. Even though, by definition, the S(r, y) term has a possible
small exceptional set associated with it, this conclusion remains valid (see [61]).
So the only difference equation of the form (4.5) with a finite-order admissible
meromorphic solution is the difference Riccati equation

y(z + 1) =
a1(z)y(z) + a2(z)
a3(z)y(z) + a4(z)

, (4.7)

where aj ∈ S for j ∈ 1, . . . , 4. The case in which R is rational in z and y was first
done by Yanagihara [56]. It is well known that equation (4.7) can be linearised.
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This is reminiscent of the fact that the only differential equation of the form
y′ = R(z, y) with the Painlevé property is the (differential) Riccati equation.

It is clear that some sort of admissibility condition is required in the above,
so long as we only consider a single solution. Otherwise, we could construct
equations of essentially any form as follows. Let y be any finite-order meromor-
phic function and define f(z) = y(z + 1) − y(z)7. Then by construction, there
is a finite-order meromorphic solution of the equation

y(z + 1) = y(z)7 + f(z). (4.8)

This is a very special solution of equation (4.8) and it is not admissible because,
intuitively, the complexity of f is approximately the same as the complexity of
y.

There are several elementary inequalities involving the Nevanlinna charac-
teristics of combinations of meromorphic functions f , g, h, including

T (r, fg) ≤ T (r, f) + T (r, g), (4.9)
T (r, f + g), ≤ T (r, f) + T (r, g) + log 2. (4.10)

Also, Grammaticos, Tamizhmani, Ramani and Tamizhmani [12] showed that

T (r, fg + gh+ hf) ≤ T (r, f) + T (r, g) + T (r, g) + log 3. (4.11)

For higher order difference equations, these identities are useful in obtaining
restrictions on the degrees of functions that appear in equations with finite-order
admissible solutions. For example, if either of the equations

y(z + 1) + y(z − 1) = R(z, y(z)) or y(z + 1)y(z − 1) = R(z, y(z))

has a finite-order admissible meromorphic solution, then d := degyR(z, y) ≤ 2.
The proof is essentially the same as the first-order case only we use the identities
(4.9–4.10) [52]. Similarly Ramani, Grammaticos, Tamizhmani and Tamizhmani
[62] considered the equation

(y(z + 1) + y(z))(y(z) + y(z − 1)) =
P (z, y(z)
Q(z, y(z)

,

where P (z, y) and Q(z, y) are polynomials in y with no common factors. They
showed that degyP ≤ 4 and degyQ ≤ 2. These sorts of results are useful as a
first step in classifying equations, however, more subtle arguments are required
to obtain precise information on the forms of the coefficient functions.

The most complete classification result based on the existence of finite-order
meromorphic solutions obtained to date is the following [61].

Theorem 4.1 If the equation

y(z + 1) + y(z − 1) = R(z, y(z)), (4.12)
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where R(z, y) is rational in y and meromorphic in z, has an admissible meromor-
phic solution of finite order, then either y satisfies a difference Riccati equation

y(z + 1) =
p(z + 1) y(z) + q(z)

y(z) + p(z)
, (4.13)

where p, q ∈ S(y), or equation (4.12) can be transformed by a linear change in
y to one of the following equations:

y(z + 1) + y(z) + y(z − 1) =
π1z + π2

y(z)
+ κ1 (4.14)

y(z + 1)− y(z) + y(z − 1) =
π1z + π2

y(z)
+ (−1)zκ1 (4.15)

y(z + 1) + y(z − 1) =
π1z + κ1

y(z)
+

π2

y(z)2
(4.16)

y(z + 1) + y(z − 1) =
π1z + π3

y(z)
+ π2 (4.17)

y(z + 1) + y(z − 1) =
(π1z + κ1)y(z) + π2

(−1)−z − y(z)2
(4.18)

y(z + 1) + y(z − 1) =
(π1z + κ1)y(z) + π2

1− y(z)2
(4.19)

y(z + 1)y(z) + y(z)y(z − 1) = p (4.20)
y(z + 1) + y(z − 1) = p y(z) + q (4.21)

where πk, κk ∈ S(y) are arbitrary finite-order periodic functions with period k.

The following partial classification result was obtained for the product case
in [63].

Theorem 4.2 Let y be an admissible finite-order meromorphic solution of the
equation

y(z + 1)y(z − 1) =
c2(y(z)− c+)(y(z)− c−)
(y(z)− a+)(y(z)− a−)

=: R(z, y(z)), (4.22)

where the coefficients are meromorphic functions, c2 6≡ 0 and degy(R) = 2. If
the order of the poles of y is bounded, then either y satisfies a difference Riccati
equation

y(z + 1) =
py(z) + q

y(z) + s
(4.23)

where p, q, s ∈ S(y), or equation (4.22) can be transformed by a bilinear change
in y to one of the equations

y(z + 1)y(z − 1) =
γy(z)2 + δλzy(z) + γµλ2z

(y(z)− 1)(y(z)− γ)
(4.24)

y(z + 1)y(z − 1) =
y(z)2 + δeiπz/2λzy(z) + µλ2z

y(z)2 − 1
(4.25)
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where λ ∈ C, and δ, µ, γ ∈ S(y) are arbitrary finite-order periodic functions such
that δ and γ have period 2 and µ has period 1.

The proofs of Theorems 4.1 and 4.2 have to main parts. The first uses
Nevanlinna theory to show that admissible solutions have many poles and that
the behaviour of T (r, y) is dominated by N(r, y). The main new tool here is the
following difference analogue of the lemma on the logarithmic derivative.

Theorem 4.3 ([64, 65]) Let f(z) be a meromorphic function of finite order
and let c ∈ C. Then

m

(
r,
f(z + c)
f(z)

)
= S(r, f).

This theorem is the main source of the possible exceptional sets that have al-
ready been mentioned. A similar result to Theorem 4.3 was obtained indepen-
dently by Chiang and Feng [66]. Their result does not contain an exceptional
set, however, it does not give a direct comparison between m

(
r, f(z+c)

f(z)

)
and

T (r, f). We need such a comparison for our purposes.
The second main part of the proofs of Theorems 4.1 and 4.2 is a counting

argument, showing that for every point in a disc of radius r at which y takes one
of the special values for which the right side of the equation becomes infinite,
then one can find sufficiently many poles of y (counting multiplicities) in the
disc of radius r + 1, unless the equation is one of the special cases listed in the
theorem. This part of the argument has many similarities with the standard
singularity (non-)confinement calculations (see [61]).

Recently it has been shown in [67] that the conclusions of Theorems 4.1, 4.2
and 4.3 hold if we replace the assumption that y is of finite order by the weaker
assumption that

lim sup
r→∞

log+ log+ T (r, y)
log r

< 1.

This is equivalent to saying that y has hyper-order strictly less than one. This
assumption perhaps looks closer in spirit to the zero algebraic entropy condition.

4.4 Vojta’s dictionary and Diophantine integrability

Mathematicians since the late nineteenth century have commented on the strong
formal similarity between number theory and complex function theory. Kro-
necker [68] points out that it is useful to think of the numbers in a number
field k as functions of the prime ideals of the ring of integers Ok. Just over
a century later, Osgood [69] and Vojta [70] independently drew attention to
the remarkable formal similarity between Nevanlinna theory and Diophantine
approximation. Vojta went so far as to produce a “dictionary” relating, or
translating, key ideas, definitions and theorems between the two fields.

Vojta’s dictionary is just a heuristic but it is a very powerful source of pre-
cise conjectures. For example, a meromorphic function f in Nevanlinna theory
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corresponds to an infinite subset of a number field k in Diophantine approxi-
mation. The Nevanlinna characteristic T (r, f) corresponds to the logarithmic
height h(x) = logH(x) of some x ∈ k. If k = Q, then the height of any nonzero
x ∈ Q is H(x) = max{|a|, |b|}, where a and b are coprime integers such that
x = a/b. A weak version of Nevanlina’s second main theorem corresponds to
the well known approximation theorem of Roth. A Diophantine analogue of the
lemma on the logarithmic derivative and a new analogue of Nevanlinna’s second
main theorem have recently appeared in [71].

Let us apply Vojta’s dictionary to the idea that a difference equation of
“Painlevé type” in Nevanlinna theory is one with many finite-order meromor-
phic solutions. A related infinite list of numbers in a number field can obviously
be generated by moving back to the corresponding discrete equation with coeffi-
cients and initial conditions in the number field. Demanding that the meromor-
phic solution be of finite-order corresponds to demanding that the logarithmic
height of the solution of the discrete equation does not grow exponentially. Such
discrete equations are referred to in [72] as being Diophantine integrable.

Slow height growth over the rationals has been used by a several authors
as a detector of integrability and as a tool for numerically calculating en-
tropies. Abarenkova, Anglès d’Auriac, Boukraa, Hassani, and Maillard [73]
used slow height to determine values of a parameter for which a family of
maps is integrable. Height growth and integrability have also been explored
in [74, 75, 76, 77].

Numerically testing for slow height growth is perhaps the quickest and sim-
plest of the standard tests, provided the equation has fixed parameters in a
number field (e.g., Q). As an example we consider the so-called q-PVI equation,
which is the system

fnfn+1

cd
=

gn+1 − αqn+1

gn+1 − γ

gn+1 − βqn+1

gn+1 − δ
, (4.26)

gngn+1

γδ
=

fn − aqn

fn − c

fn − bqn

fn − d
,

subject to the constraint q = αβγδ/abcd. The system (4.26) was discovered by
Jimbo and Sakai as the compatibility condition for an isomonodromy problem
[78] and is an integrable discretization of the sixth Painlevé equation (PVI). Fig-
ure 1 is a plot of log log max{H(fn),H(gn)} against log n for iterates of equation
(4.26) with the initial conditions f0 = 2/3, g0 = 3/4 and the choice of param-
eters (α, β, γ, δ, a, b, c, d) = (15/7, 4/3, 1/2, 1, 8/7, 5/7, 2, 1/7). The two graphs
represent two different choices for q, namely, q = 1/2(= αβγδ/abcd, i.e., the
integrable case corresponding to the asymptotically linear graph) and q = 2.
From the graph we see that the logarithmic heights h(fn) and h(gn) appear to
grow polynomially in the integrable case and exponentially in the non-integrable
case.
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Figure 1: Plot of log log max{H(fn),H(gn)} vs log n for equation (4.26)

4.5 Height growth and the discrete Painlevé equations

In this section we describe in outline some methods for proving a number of
estimates about height growth. Many of the techniques used to obtain necessary
condtions for a difference equation to have a finite-order meromorphic solution
also appear to have Diophantine analogues. For example, the identities (4.9–
4.11) correspond to

h(xy) ≤ h(x) + h(y);
h(x+ y) ≤ h(x) + h(y) + log 2;

h(yz + zx+ xy) ≤ h(x) + h(y) + h(z) + log 3.

There is also a simple analogue of the Valiron-Mohon’ko estimate (see [72]). In
order to obtain more precise information on the coefficient functions appearing
in equations with solutions having slow height growth, we consider an analogue
of singularity confinement.

The logarithmic height on a number field can be expressed as a certain sum
over the places (equivalence classes of absolute values) of the number field. In
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the simplest case k = Q, the only nontrivial absolute values are the the p-adic
absolute values | · |p and usual absolute value, | · |∞, which is often referred to
as the absolute value associated with the “prime at infinity”. The p-adic value
of the nonzero rational number x is |x|p = p−r, where r is defined to be the
unique integer such that x = pra/b, where p divides neither a nor b. In terms
of these absolute values we have for any nonzero x ∈ Q,

h(x) =
∑
p≤∞

log+ |x|p,

where the sum is over all primes (finite and infinite). An analogue of singularity
confinement can be described in terms of absolute values.

Let us consider the equation

yn+1 + yn−1 =
αn + βnyn

y2
n

, (4.27)

where αn 6= 0 and βn are rational functions of n with coefficients in Q. If αn = A
and βn = Bn + C, where A, B and C are constants, then equation (4.27) is a
known discrete Painlevé equation with a continuum limit to the first Painlevé
equation. If αn and βn are both constants then equation (4.27) can be solved
in terms of the Weierstrass elliptic function.

For the rest of this section, we assume that at least one of the functions
αn+2 − αn or βn+2 − 2βn+1 + βn is not identically zero. With respect to a
particular absolute value on Q we can define a scale, εn, against which we can
compare the size of the iterate yn. Since αn+2 − αn is a rational function of n,
then either it is identically zero or there is an integer n0 such that αn+2−αn 6= 0
for all n > n0. The same is true for the rational function βn+2 − 2βn+1 + βn.

Let κp = 1 for all primes p < ∞ and κ∞ = 3. For sufficiently small δ > 0,
we define εn > 0 as follows.

1. If |αn+2 − αn| 6= 0 then

ε−δn = κp max{1, |αn|−1
, |αn| , |βn| , |αn+1| , |αn−1| , |βn−1| , |βn+1| ,

2 |αn−2|−1
, |αn−2| , |βn−2| , |αn − αn−2| , |αn − αn−2|−1},(4.28)

2. If |αn+2 − αn| ≡ 0 and |βn+2 − 2βn+1 + βn| 6= 0 then

ε−δn = κp max{1, |αn| , |αn|−1
, |βn| , |αn+1| , |αn−1| , |βn+1| ,

|βn − 2βn−1 + βn−2|−1}. (4.29)

The following estimates (see [79]) represent a version of the singularity (non-
)confinement calculation interpreted in terms of a particular absolute value on
Q.

Theorem 4.4 Let (yn)k+3
n=k−1 ⊆ Q/{0} with k − 1 ≥ r0 satisfy equation (4.27)

where αn 6≡ 0, αn, βn ∈ Q(n) and at least one of the functions αn+2 − αn or
βn+2−2βn+1+βn is not identically zero. If |yk−1| ≤ |yk|−1/2 and, for sufficiently
small δ > 0, |yk| < εk then
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1. yk+1 = αk

y2
k

+ βk

yk
+Ak, where |Ak| ≤ |yk|−1/2.

2. yk+2 = −yk + βk+1
αk

y2
k +Bk, where |Bk| ≤ |yk|3−4δ

3. yk+3 = αk+2−αk

y2
k+2

+
βk+2−2

αk+2
αk

βk+1+βk

yk+2
+ Ck,

where |Ck| ≤ max
{
|αk+2−αk

αk
||yk+2|1−δ, |yk+2|−1/2

}
for non-Archimedean

absolute values and |Ck| ≤ 2|αk+2−αk

αk
||yk+2|1−δ+3|yk|−1/2 for Archimedean

absolute values.

In [79], this theorem is used to prove that if equation (4.27) has an admissible
solution with polynomial height growth, then αn = A and βn = Bn+C, where
A, B and C are constants, corresponding to the discrete Painlevé equation
mentioned above. This supports the idea that slow height growth leads to
discrete integrable equations.

4.6 Finite fields

So far we have considered discrete equations over R, C and Q. We conclude this
review with a brief description of the work of Roberts and Vivaldi and Jogia
[80, 81] on rational symplectic maps over finite fields and the use of statistics
concerning the lengths of orbits as a detector of integrability. The main theo-
retical idea underlying this analysis is the celebrated Hasse-Weil bound, which
provides a sharp estimate for the number of points on a given algebraic curve
over a finite field.

For any prime number p, let Fp denote the field of integers modulo p. Let
C(Fp) be an irreducible algebraic curve over Fp of genus g. Then the number
]C(Fp) of points on this curve is constrained by the Hasse-Weil bound

p+ 1− 2g
√
p ≤ ]C(Fp) ≤ p+ 1 + 2g

√
p.

Now consider a rational map f : F2
p → F2

p. Since the phase space is finite, all
orbits of f are periodic. If f has a polynomial first integral, I(x, y), then all
points on a particular orbit must lie on a curve C of the form I(x, y) = α, for
some α ∈ Fp. Hence the Hasse-Weil bound provides a necessary condition for
the existence of such a first integral that is irreducible and of genus g.

For any rational map on R2 or C2 of infinite order possessing a rational
integral, the genus of each level set is 0 or 1 [82]. Generically the genus is
1 unless the curve possesses singularities. In [80, 81], the authors considered
rational maps with coefficients in Q. They considered reductions of these maps
modulo various primes p and looked at the lengths of orbits (either the maximum
orbit length, or the average orbit length for each p). By exploring different values
of parameters, they found that the orbit lengths compared to the Hasse-Weil
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(upper) bound clearly indicates the values of the parameters for which the map
is integrable. When the integrable case corresponds to a non-integer rational
value of the parameter, a sieve method can be used to deduce the value by
exploring a number of choices of the prime p.
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[44] V. E. Adler, Bäcklund transformation for the Krichever-Novikov equation.
Intern. Math. Research Notices 1 (1998), pp. 1–4. arXiv:solv-int/9707015.

[45] A.I. Bobenko and Yu.B. Suris, Integrable systems on quad-graphs. Intern.
Math. Research Notices 11 (2002), pp. 573–611. arXiv:nlin/0110004.

[46] F. Nijhoff, Lax pair for the Adler (lattice Krichever-Novikov) system. Phys.
Lett. A 297 (2002), pp. 49–58. arXiv:nlin.SI/0110027.

[47] V.E. Adler and Yu.B. Suris, Q4: integrable master equation related to an
elliptic curve. Intern. Math. Research Notices 47 (2004), pp. 2523–2553.
arXiv:nlin.SI/0309030.

38



[48] J. Hietarinta, Searching for CAC-maps. J. Nonlinear Math. Phys. 12
(2005), pp. 223–230.

[49] V.E. Adler, A.I. Bobenko, and Yu.B. Suris, Discrete nonlinear hyperbolic
equations. Classification of integrable cases. Funct. Anal. Appl. (to appear).
arXiv:0705.1663.

[50] J. Hietarinta and C-M. Viallet, Searching for integrable lattice maps using
factorization. P. Phys. A 40 (2007), pp. 12629–12643. arXiv:0705.1903.

[51] J. Hietarinta and C.-M. Viallet. Discrete Painlevé and singularity con-
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