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A new discrete potential Boussinesq equation is proposed and its multisoliton solutions
are constructed. An ultradiscrete potential Boussinesq equation is also obtained from the
discrete potential Boussinesq equation using the ultradiscretization technique. The detail of
the multisoliton solutions is discussed by using the reduction technique. The lattice potential
Boussinesq equation is also investigated by using the singularity confinement test. The rela-
tion between the proposed discrete potential Boussinesq equation and the lattice potential
Boussinesq equation is clarified.
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1. Introduction

In this article, we propose a new discrete potential Boussinesq (BSQ) equation
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and study the relation to the lattice potential BSQ equation proposed by Nijhoff
et al. [1, 2]
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Here U = Um
n and u = um

n are the dynamical field variable at the site (n,m) of a
rectangular lattice, and δ1, δ2, p, q are the lattice parameters. These are integrable
discrete analogues of the potential BSQ equation

3wtt + 4c0wxx − 6wxwxx − wxxxx = 0 , (3)
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which leads to the BSQ equation[3, 4]

3utt + 4c0uxx − 3(u2)xx − uxxxx = 0 , (4)

by u = wx. Note that Eq.(2) is the lowest order members of a hierarchy of lattice
equations which is called the lattice Gelfand-Dikii(GD) hierarchy[1]. See also recent
works about the lattice potential BSQ equation (2)[5, 6].

In this paper, we propose a new discrete potential BSQ equation and present
multisoliton solutions. It is shown that the multisoliton solution for the discrete
potential BSQ equations can be constructed from one for the discrete KP (Hirota-
Miwa) equation using the reduction technique. Using the discrete potential BSQ
equation, we can construct the ultradiscrete potential BSQ equation. We also study
the relation between the discrete potential BSQ equation (1) and the lattice po-
tential BSQ equation (2). Bilinear equations of the lattice potential BSQ equation
can be derived systematically using the SC test. This reveals the relationship with
other discrete potential BSQ equations.

2. Multisoliton solutions for the Boussinesq equation

First, we review fundamental results about reductions of the KP equation.
It is well known that the solutions of the KP equation[7]

(−4ut + 6uux + uxxx)x + 3uyy = 0 , (5)

can be expressed via a tau function τ(x, y, t) as

u(x, y, t) = 2
∂2

∂x2
log τ(x, y, t), (6)

where τ(x, y, t) satisfies Hirota’s bilinear equation

(D4
x − 4DxDt + 3D2

y)τ · τ = 0 . (7)

Soliton solutions of Hirota’s equation can be written in terms of the Wronskian
determinant [8–11]

τ(x, y, t) = Wr(f1, · · · , fN ) = det(f (n′−1)
n )1≤n,n′≤N , (8)

with f (j)
n = ∂jfn/∂x

j , and where f1, . . . , fN are a set of linearly independent solu-
tions of the linear system

∂f

∂y
=
∂2f

∂x2
,

∂f

∂t
=
∂3f

∂x3
. (9)

For example, ordinary N -soliton solutions are obtained by taking fn = eθ2n−1 +eθ2n

for n = 1, . . . , N , where

θm(x, y, t) = −kmx+ k2
my − k3

mt+ θm;0 , (10)

for m = 1, . . . , 2N , where the 4N parameters k1 < · · · < k2N and θ1;0, . . . , θ2N ;0 are
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real constants. For N = 1, one obtains the single-soliton solution of KP equation:

ui,j(x, y, t) =
1
2
(kj − ki)2sech2

[1
2
(θi − θj)

]
, (11)

where i = 1 and j = 2. The most general form of the N -soliton solution is given
by

τ(x, y, t) = det(AΘK) =
∑

1≤m1<···<mN≤M

Vm1,...,mN
Am1,...,mN

exp θm1,··· ,mN
, (12)

where A = (an,m) is the N ×M coefficient matrix, Θ = diag(eθ1 , · · · , eθM ), and the
M × N matrix K is given by K = (kn−1

m ) [12–17]. Vm1,...,mN
is the Vandermonde

determinant Vm1,...,mN
=
∏

1≤j<j′≤N (kmj′−kmj
) , and Am1,...,mN

is theN×N -minor
whose n-th column is respectively given by the mn-th column of the coefficient
matrix for n = 1, . . . , N . The only time dependence in the tau function comes
from the exponential phases θm1,...,mN

. Also, for all G ∈ GL(N,R), the coefficient
matrices A and A′ = GA produce the same solution of the KP equation. Thus
without loss of generality one can consider A to be in row-reduced echelon form
(RREF). One can also multiply each column of A by an arbitrary positive constant
which can be absorbed in the definition of θ1;0, . . . , θM ;0.

Real nonsingular (positive) solutions of the KP equation are obtained if k1 <
· · · < kM and all minors of A are nonnegative. Under these assumptions and some
fairly general irreducibility conditions on the coefficient matrix, Eq.(29) produces
(N−, N+)-soliton solutions of the KP equation with N− = M − N and N+ = N ,
as in the simpler case of fully resonant solutions. Asymptotic line solitons are
given by Eq.(11) with the indices i and j labeling the phases θi and θj being
swapped in the transition between two dominant phase combinations along the line
θi = θj . Asymptotic solitons can thus be uniquely characterized by an index pair
[i, j] with 1 ≤ i < j ≤M . Recently, line soliton solutions of the KP II equation were
classified using this formulation [12–17]. Elastic 2-soliton solutions are classified
into three classes: ordinary (O-type), asymmetric (P-type) and resonant (T-type).
The coefficient matrices corresponding to these classes have the following RREFs:

AO =
(

1 a 0 0
0 0 1 b

)
, AP =

(
1 0 0 −b
0 1 a 0

)
, AT =

(
1 0 −c −d
0 1 a b

)
, (13)

where a, b, c, d > 0 are free parameters with ad − bc > 0. These three types of
solutions cover disjoint sectors of the 2-soliton parameter space of amplitudes and
directions. Moreover, their interaction properties are also different. This difference
is obvious in the case of T-type solutions, but also applies to O-type and P-type
solutions, since P-type solutions only exist for unequal amplitude, and the inter-
action phase shift has the opposite sign for O-type and P-type solutions. Inelastic
2-soliton solutions fall into four categories.

It is known that the KP equation reduces to the KdV equation

−4ut + 6uux + uxxx = 0 (14)

by the constraint ∂u/∂y = 0[13, 18–20]. In the bilinear form, the bilinear KP
equation (7) is reduced to the bilinear KdV equation

(D4
x − 4DxDt)τ · τ = 0, (15)
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by the constraint of omitting terms includingDy, which is the so-called 2-reduction.
As mentioned in , this constraint implies that all the solitons of the KdV equation
are parallel to the y-axis. Thus we must have a condition kj = −ki for each [i, j]-
soliton. From the ordering k1 < k2 < · · · < k2N , we must assume

k1 < k2 < · · · < kN < 0 , kN+j = −kN−j+1 for j = 1, · · · , N .

This allow only P-type soliton solution in which A-matrix is

A =


1 0 · · · 0 0 · · · 0 a1,2N

0 1 · · · 0 0 · · · a2,2N−1 0
...

... · · ·
...

... · · ·
...

...
0 0 · · · 1 aN,N · · · 0 0

 .

Let us consider multisoliton solutions of the BSQ equation. It is also known that
the KP equation is reduced to the BSQ equation without uxx

3δ0ut′t′ − 3(u2)xx − uxxxx = 0 , (16)

by the constraint ∂u/∂t = 0 [18–20]. Here we introduced a new independent vari-
able t′ such that y =

√
−δ0t′, δ0 = ±1. In the bilinear form, the bilinear KP

equation (7) is reduced to

(D4
x − 3δ0D2

t′)τ · τ = 0 , (17)

by the constraint of omitting terms including Dt, which is the so-called 3-reduction.
This condition implies that all the solitons of Eq.(16) are parallel to the t-axis.
Thus we must have a condition k2

j + kjki + k2
i = 0, i.e. kj = ωki or kj = ω2ki

(ω = −1/2 + i
√

3/2, ω2 = −1/2 − i
√

3/2, ω3 = 1), for [i, j]-soliton. In the BSQ
equation, k1, ..., k2N take complex values in general. Since k1, ..., k2N are complex
values, we cannot consider the ordering of k1, ..., k2N which was assumed when we
consider KP soliton solutions. However, from the constraint we have a restriction
to the A-matrix such that each row has only 2 or 3 nonzero elements and each col-
umn has only one element. For 2-soliton solutions, 2 types of 2-soliton interactions
are possible, i.e. 2 elastic soliton interactions (O-type and P-type), other 2-soliton
interactions are impossible because some columns in A-matrix have 2 elements.
However, there is no distinction between O-type and P-type solitons because we
don’t have the ordering of k1, ..., k2N . Thus 2-soliton interaction of the BSQ equa-
tion is actually only one type. To get real solutions, we must remove imaginary
numbers by the following ways.

The case of 2 elements:
(i) Suppose that we have 2 elements in the i-th row of the A-matrix. Let the
corresponding wave numbers of these elements be kj1 , kj2 ; (ii) Let kj2 = ωkj1

(or kj2 = ω2kj1); (iii) Using the gauge invariance of τ -function, each element in
the Wronskian determinant can be fi ∼ 1 + ai,j2 exp((ω − 1)kj1x +

√
−δ0(ω2 −

1)k2
j1
t′ + θj2,0) (or fi ∼ 1 + ai,j2 exp((ω2 − 1)kj1x +

√
−δ0(ω − 1)k2

j1
t′ + θj2,0));

(iv) Reparametrize kj1 and kj2 by κi = (ω − 1)kj1 and Ωi =
√
−δ0(ω2 − 1)k2

j1
(or

κi = (ω2 − 1)kj1 and Ωi =
√
−δ0(ω− 1)k2

j1
). Then we have fi ∼ 1 + ai,j2 exp(κix+

Ωit
′ + θj2,0) with linear dispersion relations κ4

i − 3δ0Ω2
i = 0; (vi) So a set of fi ∼

1+ ai,j2 exp(κix+Ωit
′ + θj2,0) with linear dispersion relations κ4

i − 3δ0Ω2
i = 0 gives

the real and regular multisoliton solutions.
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The case of 3 elements:
(i) Suppose that we have 3 elements in the i-th row of the A-matrix. Let the
corresponding wave numbers of these elements be kj1 , kj2 , kj3 ; (ii) Let kj2 = ωkj1

and kj3 = ω2kj1 ; (iii) Using the gauge invariance of τ -function, each element in the
Wronskian determinant can be fi ∼ 1+ai,j2 exp((ω−1)kj1x+(ω2−1)k2

j1
y+θj2,0)+

ai,j3 exp((ω2−1)kj1x+(ω−1)k2
j1
y+θj3,0); (iv) Reparametrize parameters kj1 , kj2 and

kj3 by κi,2 = kj2−kj1 , κi,3 = kj3−kj1 , Ωi,2 =
√
−δ0(k2

j2
−k2

j1
) and Ωi,3 =

√
−δ0(k2

j3
−

k2
j1

). Then we have fi ∼ 1+ai,j2 exp(κix+Ωit
′ + θj2,0)+ai,j3 exp(κix+Ωit

′ + θj3,0)
with linear dispersion relations κ4

i,j−3δ0Ω2
i,j = 0 for j = 1, 2; For example, consider

N = 1. This gives Y-shape soliton resonance interaction.
The KP equation is reduced to the BSQ equation

3δ0ut′t′ + 4c0uxx − 3(u2)xx − uxxxx = 0 , (18)

by the constraint ∂
∂t = c0

∂
∂x . Here we introduced a new independent variable t′

such that y =
√
−δ0t′. In the bilinear form, the bilinear KP equation (7) is reduced

to

(D4
x − 4c0D2

x − 3δ0D2
t′)τ · τ = 0 . (19)

by the constraint of replacing Dt by c0Dx, which is the so-called 3-pseudo
reduction[20]. To realize this constraint in the multisoliton solutions, we can add
the constraint

k3
j − k3

i = c0(kj − ki) , (20)

i.e.

kj =
1
2

(
−ki ±

√
4c0 − 3k2

i

)
, (21)

to the soliton solutions of the KP equation. Note that kj can be real if 4c0 > 3k2
i .

So we can assume the ordering of k1 < ... < k2N . From the constraint we have a
restriction to the A-matrix such that each row has only 2 or 3 nonzero elements
and each column has only one element. For 2-soliton solutions, 2 types of 2-soliton
interactions are possible, i.e. 2 elastic soliton interactions (O-type and P-type),
other 2-soliton interactions are impossible because some columns in A-matrix have
2 elements.

Let us consider explicit real and regular multisoliton solutions. For the case of
δ0 = −1, (i) Suppose that we have 2 elements in the i-th row of the A-matrix.
Let the corresponding wave numbers of these elements be kj1 , kj2 ; (ii) Let kj2 =
1
2

(
−kj1 ±

√
4c0 − 3k2

j1

)
; (iii) Each element in the Wronskian determinant can be

fi ∼ ai,j1 exp(kj1x+k2
j1
t′+θj1,0)+ai,j2 exp(kj2x+k2

j2
t′+θj2,0). This gives multisoliton

solutions for the BSQ equation.
If we have 3 elements in the i-th row of the A-matrix, each element in the

Wronskian determinant can be fi ∼ ai,j1 exp(kj1x+ k2
j1
t′ + θj1,0) + ai,j2 exp(kj2x+

k2
j2
t′ + θj2,0) + ai,j3 exp(kj3x+ k2

j3
t′ + θj3,0). For N = 1, this gives Y-shape resonant

soliton solution.
For the case of δ0 = 1, (i) Suppose that we have 2 elements in the i-th row of the

A-matrix. Let the corresponding wave numbers of these elements be kj1 , kj2 ; (ii) Let

kj2 = 1
2

(
−kj1 ±

√
4c0 − 3k2

j1

)
; (iii) Using the gauge invariance of τ -function, each
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element in the Wronskian determinant can be fi ∼ 1+ai,j2 exp((kj2−kj1)x+i(k2
j2
−

k2
j1

)t′+θj2,0); (iv) Reparametrize kj1 and kj2 by κi = kj2 −kj1 and Ωi = i(k2
j2
−k2

j1
).

Then we have fi ∼ 1 + ai,j2 exp(κix+ Ωit
′ + θj2,0) with linear dispersion relations

κ4
i − 4c0κ2

i − 3δ0Ω2
i = 0.

Next, we consider the case of complex parameters. Suppose that a parameter
ki corresponds to the pivot of A-matrix. If 4c0 < 3k2

i , then we have a complex
parameter

kj =
1
2

(
−ki ± i

√
3k2

i − 4c0

)
,

among k1, ..., k2N . Since some of k1, ..., k2N are complex values, we cannot consider
the ordering of k1, ..., k2N which was assumed when we consider KP soliton so-
lutions. However, from the constraint we have a restriction to the A-matrix such
that each row has only 2 or 3 nonzero elements and each column has only one
element. For 2-soliton solutions, 2 types of 2-soliton interactions are possible, i.e.
2 elastic soliton interactions (O-type and P-type), other 2-soliton interactions are
impossible because some columns in A-matrix have 2 elements. However, there
is no distinction between O-type and P-type solitons because we don’t have the
ordering of k1, ..., k2N . Thus 2-soliton interaction of the BSQ equation is actually
only one type again. To get real solutions, we must remove imaginary numbers by
the following ways.

The case of 2 elements:
(i) Suppose that we have 2 elements in the i-th row of the A-matrix. Let
the corresponding wave numbers of these elements be kj1 , kj2 ; (ii) Let kj2 =
1
2

(
−kj1 ± i

√
3k2

j1
− 4c0

)
; (iii) Using the gauge invariance of τ -function, each el-

ement in the Wronskian determinant can be fi ∼ 1 + ai,j2 exp((kj2 − kj1)x+ (k2
j2
−

k2
j1

)y+θj2,0); (iv) Reparametrize kj1 and kj2 by κi = kj2 −kj1 and Ωi =
√
−δ0(k2

j2
−

k2
j1

). Then we have fi ∼ 1 + ai,j2 exp(κix+ Ωit
′ + θj2,0) with linear dispersion rela-

tions κ4
i − 4c0κ2

i − 3δ0Ω2
i = 0; (vi) So a set of fi ∼ 1 + ai,j2 exp(κix+ Ωit

′ + θj2,0)
with linear dispersion relations κ4

i − 4c0κ2
i − 3Ω2

i = 0 gives the real and regular
multisoliton solutions.

The case of 3 elements:
(i) Suppose that we have 3 elements in the i-th row of the A-matrix. Let the
corresponding wave numbers of these elements be kj1 , kj2 , kj3 ; (ii) Let kj2 =
1
2

(
−kj1 + i

√
3k2

j1
− 4c0

)
and kj3 = 1

2

(
−kj1 − i

√
3k2

j1
− 4c0

)
; (iii) Using the gauge

invariance of τ -function, each element in the Wronskian determinant can be
fi ∼ 1 + ai,j2 exp((kj2 − kj1)x+

√
−δ0(k2

j2
− k2

j1
)t′ + θj2,0) + ai,j3 exp((kj3 − kj1)x+√

−δ0(k2
j3
− k2

j1
)t′ + θj3,0); (iv) Reparametrize kj1 , kj2 and kj3 by κi,2 = kj2 − kj1 ,

κi,3 = kj3 − kj1 , Ωi,2 =
√
−δ0(k2

j2
− k2

j1
) and Ωi,3 =

√
−δ0(k2

j3
− k2

j1
). Then we

have fi ∼ 1 + ai,j2 exp(κix + Ωit
′ + θj2,0) + ai,j3 exp(κix + Ωit

′ + θj3,0) with linear
dispersion relations κ4

i,j − 4c0κ2
i,j − 3δ0Ω2

i,j = 0 for j = 1, 2; For example, consider
N = 1. This gives Y-shape soliton resonance interaction.

3. Discrete analogues of the potential Boussinesq equation

3.1. The discrete potential Boussinesq equation

Here, we present the main theorem in this article.
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Theorem 3.1 : The difference-difference equation

Um+2
n−1 U

m−1
n−1 (−δ1Um−1

n + δ2U
m+2
n ) = Um+1

n Um
n−1(−δ1Um−1

n−1 + δ2U
m+2
n−1 ) , (22)

where δ1 = a2(a1 − a3) and δ2 = a3(a1 − a2) and a1, a2, a3 are arbitrary real
constants, is an integrable discrete analogue of the potential BSQ equation (3).

Moreover, the discrete potential BSQ equation has multisoliton solutions

Um
n =

τm
n+1

τm
n

,

τm
n = det(AΘP ) , (23)

where A = (αn,m) is the N × 2N coefficient matrix, Θ = diag(eθ1 , · · · , eθ2N ), eθj =
ps

j(1−pja1)−n(1−pja2)−m, and the M×N matrix P is given by P = (pn−1
m ). where

the 2N parameters p1, ..., p2N are real constants. The A-matrix has a restriction
such that each row has only 2 or 3 nonzero elements and each column has only
one element. In the case having 2 elements (i, j1) and (i, j2) in the i-th row of the
A-matrix, pj2 must satisfy a reduction condition

pj2 =
1
a2

+
(1 − a3pj1)

2a3
±
√
a2(1 − a3pj1)(a2 − 4a3 + 3a2a3pj1)

2a2a3
. (24)

Proof : The Hirota-Miwa (discrete KP) equation is written as

a1(a2 − a3)τ(n1 + 1, n2, n3)τ(n1, n2 + 1, n3 + 1)

+a2(a3 − a1)τ(n1, n2 + 1, n3)τ(n1 + 1, n2, n3 + 1)

+a3(a1 − a2)τ(n1, n2, n3 + 1)τ(n1 + 1, n2 + 1, n3) = 0 , (25)

where τ depends on three discrete independent variables n1, n2 and n3, and a1, a2

and a3 are the difference intervals for n1,n2 and n3, respectively [21].
The Casorati determinant solution for the Hirota-Miwa equation (25) is as

follows[22]:

τ(n1, n2, n3) = det(ψi(n1, n2, n3; s+ j − 1))1≤i,j≤N , (26)

where ψ1, ..., ψN are a set of linearly independent solutions of the linear system

∆nj
ψi(n1, n2, n3; s) = ψi(n1, n2, n3; s+ 1) , (j = 1, 2, 3).

Here ∆nj
are the backward difference operators:

∆nj
f(nj) ≡

f(nj) − f(nj − 1)
aj

, (j = 1, 2, 3). (27)

For example, ordinary N -soliton solutions are obtained by taking

ψi(n1, n2, n3; s) = α2i−1p
s
2i−1(1 − p2i−1a1)−n1(1 − p2i−1a2)−n2(1 − p2i−1a3)−n3

+α2ip
s
2i(1 − p2ia1)−n1(1 − p2ia2)−n2(1 − p2ia3)−n3 , (28)

for n = 1, ..., N where the 4N parameters p1 < · · · < p2N and α1, · · · , α2N are
positive real constants. The most general form of the N -soliton solution is given
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by

τ(x, y, t) = det(AΘP ) =
∑

1≤m1<···<mN≤M

Vm1,...,mN
Am1,...,mN

exp θm1,··· ,mN
, (29)

where A = (αn,m) is the N ×M coefficient matrix, Θ = diag(eθ1 , · · · , eθM ), eθj =
ps

j(1 − pja1)−n(1 − pja2)−m, and the M × N matrix P is given by P = (pn−1
m ).

Vm1,...,mN
is the Vandermonde determinant Vm1,...,mN

=
∏

1≤j<j′≤N (pmj′ − pmj
) ,

and Am1,...,mN
is the N ×N -minor whose n-th column is respectively given by the

mn-th column of the coefficient matrix for n = 1, . . . , N . For all G ∈ GL(N,R),
the coefficient matrices A and A′ = GA produce the same solution of the KP
equation. Thus without loss of generality one can consider A to be in RREF.

Let us consider a reduction of the Hirota-Miwa equation. We assume that there
exists a nonzero constant Φ such that for arbitrary n1, n2 and n3

τ(n1, n2, n3) = Φ τ(n1, n2 − 2, n3 − 1) , (30)

which is a reduction condition (3-reduction). Applying the reduction condition, we
can omit the dependency of n3 and obtain the bilinear form

a1(a2 − a3)τ(n1 + 1, n2)τ(n1, n2 − 1) + a2(a3 − a1)τ(n1, n2 + 1)τ(n1 + 1, n2 − 2)

+a3(a1 − a2)τ(n1, n2 − 2)τ(n1 + 1, n2 + 1) = 0 . (31)

After the change of variables n1 → n, n2 → m, τ(n1, n2) → τm
n , we obtain

a1(a2 − a3)τm+1
n+1 τ

m
n + a2(a3 − a1)τm+2

n τm−1
n+1 + a3(a1 − a2)τm−1

n τm+2
n+1 = 0 ,

(32)

which is the bilinear form of the discrete potential BSQ equation.
Now we impose a constraint on the parameters of the solution so that the reduc-

tion condition is satisfied. For simplicity, we consider the case in which ψ1, ..., ψN
have 2 terms. Then we observe

ψi(n1, n2 + 2, n3 + 1; s)

= ps
j1(1 − pj1a1)−n1(1 − pj1a2)−n2−2(1 − pj1a3)−n3−1

+ps
j2(1 − pj2a1)−n1(1 − pj2a2)−n2−2(1 − pj2a3)−n3−1

= ps
j1(1 − pj1a1)−n1(1 − pj1a2)−n2−2(1 − pj1a3)−n3−1

×

[
1 + Ci

(
pj2

pj1

)s(1 − pj2a1

1 − pj1a1

)−n1
(

1 − pj2a2

1 − pj1a2

)−n2
(

1 − pj2a3

1 − pj1a3

)−n3
]
,

(33)

where

Ci =
(

1 − pj2a2

1 − pj1a2

)−2(1 − pj2a3

1 − pj1a3

)−1

.

If we apply the reduction condition

(1 − pj1a2)2(1 − pj1a3) = (1 − pj2a2)2(1 − pj2a3) , (34)
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i.e.

pj2 =
1
a2

+
(1 − a3pj1)

2a3
±
√
a2(1 − a3pj1)(a2 − 4a3 + 3a2a3pj1)

2a2a3
, (35)

we obtain

ψi(n1, n2, n3; s) = (1 − pj2a2)−2(1 − pj2a3)−1ψi(n1, n2 − 2, n3 − 1; s) , (36)

Finally we have a reduction condition

τ(n1, n2, n3) =
N∏

k=1

(1 − pka2)−2(1 − pka3)−1τ(n1, n2 − 2, n3 − 1) .

(37)

In a similar way discussed in section 2, we can consider the general multisoliton
solutions of the discrete potential BSQ equation. �

The reality condition is

pj1 <
1
a3
, pj1 >

−a2 + 4a3

3a2a3
,

for a2 < a3, and

pj1 >
1
a3
, pj1 <

−a2 + 4a3

3a2a3
,

for a2 > a3. With parameters satisfying these conditions, we can construct real
and regular multisoliton solutions using the formula in Theorem 3.1.

Otherwise, we must use the technique of reparametrization which was used in
section 2. The procedure is as follows. (i) Suppose that we have 2 elements in
the i-th row of the A-matrix. Let the corresponding complex wave numbers of
these elements be pj1 and pj2 ; (iii) Using the gauge invariance of τ -function, each
element in the Wronskian determinant can be fi ∼ 1 + αi,j2K

−n
i Ω−m

i where Ki =
(1 − a1pj2)/(1 − a1pj1), Ωi = (1 − a2pj2)/(1 − a2pj1); (iv) Choose new parameters
Ki and Ωi to be real numbers.

It is easy to take the ultradiscrete limit in Eq.(22).

Theorem 3.2 : The ultradiscrete potential BSQ equation is

V m+2
n−1 + V m−1

n−1 + Lm+2
n = V m+1

n + V m
n−1 + Lm+2

n−1 , (38)

V m+2
n = max(Lm+2

n + c1 + c2, V
m−1
n + c2) . (39)

Proof : Use the standard procedure of ultradiscretization. Equation (22) is rewrit-
ten in the form of

Um+2
n−1 U

m−1
n−1 I

m+2
n = Um+1

n Um
n−1I

m+2
n−1 , (40)

Im+2
n = −δ1Um−1

n + δ2U
m+2
n . (41)

Introduce new variables Um
n = exp(V m

n /ε), Im
n = exp(Lm

n /ε), δ1 =
exp(c1/ε), 1/δ2 = exp(c2/ε). Then take the limit ε → 0+ using the formula
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limε→0+ ε ln(exp(A/ε) + exp(B/ε)) = max(A,B) for A,B ∈ R[23]. �

Remark:
Date et al. proposed another discrete potential BSQ equation[24]

vm
n−1v

m−1
n (a1(a2 − a3)vm

n+1 + a2(a3 − a1)vm+1
n )

= vm−1
n−1 v

m+1
n+1 (a1(a2 − a3)vm−1

n + a2(a3 − a1)vm
n−1) . (42)

By the transformation vm
n = τm+1

n+1 /τ
m
n , we obtain a bilinear equation

a1(a2 − a3)τm
n+1τ

m
n−1 + a2(a3 − a1)τm+1

n τm−1
n + a3(a1 − a2)τm−1

n−1 τ
m+1
n+1 = 0 .

(43)

This bilinear equation is obtained by adding the reduction condition

τ(n1, n2, n3) = Φ τ(n1 − 1, n2 − 1, n3 − 1) , (44)

which gives yet another 3-reduction.
For this discrete potential BSQ equation, we can also make an ultradiscrete

analogue of the potential BSQ equation

Xm
n−1 +Xm−1

n + Y m+1
n = Xm−1

n−1 +Xm+1
n+1 + Y m

n−1 , (45)

Y m
n = max(Xm−1

n+1 + c1, X
m
n + c2) , (46)

taking the ultradiscrete limit after setting vm
n = exp(Xm

n /ε), w
m
n = exp(Y m

n /ε),
α1 = exp(c1/ε), α2 = exp(c2/ε) where wm

n = α1v
m−1
n+1 + α2v

m
n , α1 = a1(a2 − a3),

α2 = a2(a3 − a1).

3.2. The lattice potential Boussinesq equation

Singularity confinement (SC) test was proposed by Grammaticos et al. as a detector
of integrability in discrete systems[25]. This property has been applied to several
problems [26–30]. The SC test is also powerful tool for constructing solutions for
discrete integrable systems[28–30]. In this section, we apply the SC test to the
lattice potential BSQ equation and obtain bilinear equations using the result of SC
test.

We start from the slightly simplified form of the lattice potential BSQ equation

p3 − q3

p− q + um+1
n+1 − um

n+2

− p3 − q3

p− q + um+2
n − um+1

n+1

= (p+ 2q + um
n+1 − um+2

n+2 )(p− q + um+2
n+1 − um+1

n+2 )

−(p+ 2q + um
n − um+2

n+1 )(p− q + um+1
n − um

n+1) . (47)

Introducing new variables

Im
n = p− q + um+1

n−1 − um
n , V m

n = p+ 2q + um−2
n−1 − um

n , (48)
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Eq.(47) is written as

p3 − q3

Im
n+2

− p3 − q3

Im+1
n+1

= V m+2
n+2 I

m+1
n+2 − V m+2

n+1 I
m
n+1 , (49)

Im
n + V m+2

n+1 = Im+2
n+1 + V m+3

n . (50)

After the independent variable transformation m+n→ m, Eqs.(47),(48) and (49),
(50) are rewritten in the following form:

p3 − q3

p− q + um+2
n+1 − um+2

n+2

− p3 − q3

p− q + um+2
n − um+2

n+1

= (p+ 2q + um+1
n+1 − um+4

n+2 )(p− q + um+3
n+1 − um+3

n+2 )

−(p+ 2q + um
n − um+3

n+1 )(p− q + um+1
n − um+1

n+1 ) , (51)

and

Im
n = p− q + um

n−1 − um
n , V m

n = p+ 2q + um−3
n−1 − um

n , (52)

and

p3 − q3

Im+2
n+2

− p3 − q3

Im+2
n+1

= V m+4
n+2 I

m+3
n+2 − V m+3

n+1 I
m+1
n+1 , (53)

Im
n + V m+3

n+1 = Im+3
n+1 + V m+3

n . (54)

After some calculation, we get the form which is suitable to perform the SC test:

um
n = p+ 2q + um−3

n−1 − 1
p− q + um−1

n−1 − um−1
n

×
( p3 − q3

p− q + um−2
n−1 − um−2

n
− p3 − q3

p− q + um−2
n−2 − um−2

n−1

+(p+ 2q + um−4
n−2 − um−1

n−1 )(p− q + um−3
n−2 − um−3

n−1 )
)
, (55)

V m
n =

1
Im−1
n

(
V m−1

n−1 I
m−3
n−1 +

p3 − q3

Im−2
n

− p3 − q3

Im−2
n−1

)
, (56)

Im
n = Im−3

n−1 + V m
n − V m

n−1 . (57)

Performing the SC test, we obtain the following result:

Pattern 1
We have the following pattern:

{Im−1
n , Im

n , I
m
n+1, I

m+1
n+1 } → {0,∞,∞, 0} ,

{V m
n , V m+3

n+1 } → {∞,∞} .
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Note that um
n takes ∞. One can see finite values for all dependent variables in fur-

ther steps, so the singularity is confined. Suppose that this singularity was created
by a function Fm

n which has a zero at (m,n).

If we see Eq.(55), we notice that there is a possibility to have a singularity when
um

n → 0. However, this will not make singularity. Thus
Pattern 2

{um
n } → {0} ,

and one can see finite values for all dependent variables in further steps, so the
singularity is confined. Suppose that this singularity pattern was created by a
function Gm

n which has a zero at (m,n).
Using the singularity pattern 1, we obtain the independent variable transforma-

tion

Im
n = α

Fm+1
n Fm−1

n−1

Fm
n F

m
n−1

. (58)

Since um
n and Im

n are related by Eq.(52), um
n should have Fm

n in the denominator.
Thus from the singularity pattern 2 we have

um
n = β

Gm
n

Fm
n

. (59)

Note

Im
n = p− q + β

Gm
n−1

Fm
n−1

− β
Gm

n

Fm
n

, V m
n = p+ 2q + β

Gm−3
n−1

Fm−3
n−1

− β
Gm

n

Fm
n

. (60)

Using Eq.(60), we obtain the following equations:

(p− q)Fm−1
n−1 F

m−1
n + βGm−1

n−1 F
m−1
n − βFm−1

n−1 G
m−1
n = αFm

n F
m−2
n−1 , (61)

p3 − q3

α
Fm+1

n Fm
n+1 − α(p+ 2q)Fm+2

n+1 F
m−1
n

−αβGm−1
n Fm+2

n+1 + αβFm−1
n Gm+2

n+1 = γFm
n F

m+1
n+1 , (62)

α
Fm

n F
m−2
n−1

Fm−1
n Fm−1

n−1

− p3 − q3

α2

Fm+1
n−1 F

m
n

Fm+2
n Fm−1

n−1

+
γ

α

Fm
n−1F

m+1
n

Fm+2
n Fm−1

n−1

= α
Fm+3

n+1 F
m+1
n

Fm+2
n+1 F

m+2
n

− p3 − q3

α2

Fm+1
n Fm

n+1

Fm+2
n+1 F

m−1
n

+
γ

α

Fm
n F

m+1
n+1

Fm+2
n+1 F

m−1
n

, (63)

where γ is a decoupling constant. Note that V is written in the following form:

V m
n = (p+ 2q) + β

Gm−2
n−1

Fm−2
n−1

− β
Gm+1

n

Fm+1
n

=
p3 − q3

α2

Fm
n−1F

m−1
n

Fm+1
n Fm−2

n−1

− γ

α

Fm−1
n−1 F

m
n

Fm+1
n Fm−2

n−1

. (64)
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Assuming γ = 0, we obtain

(p− q)Fm−1
n−1 F

m−1
n + βGm−1

n−1 F
m−1
n − βFm−1

n−1 G
m−1
n = αFm

n F
m−2
n−1 , (65)

p3 − q3

α
Fm+1

n Fm
n+1 − α(p+ 2q)Fm+2

n+1 F
m−1
n − αβGm−1

n Fm+2
n+1

+αβFm−1
n Gm+2

n+1 = 0 , (66)

αFm−1
n Fm+3

n+1 − p3 − q3

α2
Fm+2

n Fm
n+1 = δFm

n F
m+2
n+1 , (67)

where δ is a decoupling constant. After changing back to original independent
variables (m− n→ m), we have

(p− q)Fm
n−1F

m−1
n + βGm

n−1F
m−1
n − βFm

n−1G
m−1
n = αFm

n F
m−1
n−1 , (68)

p3 − q3

α
Fm+1

n Fm−1
n+1 − α(p+ 2q)Fm+1

n+1 F
m−1
n − αβGm−1

n Fm+1
n+1

+αβFm−1
n Gm+1

n+1 = 0 , (69)

αFm−1
n Fm+2

n+1 − p3 − q3

α2
Fm+2

n Fm−1
n+1 = δFm

n F
m+1
n+1 . (70)

Note that Eq.(70) can be derived by vanishing G from Eqs.(68) and (69). This is
a discrete analogue of a bilinear form of the potential BSQ equation (3). Thus we
have the following theorem.

Theorem 3.3 : Solutions of Eq.(47) (Eqs.(49) and (50)) are expressed in the
following form using the τ -function:

um
n =

Gm
n

Fm
n

, Im
n =

Fm+1
n Fm−1

n−1

Fm
n F

m
n−1

= p− q +
Gm+1

n−1

Fm+1
n−1

− Gm
n

Fm
n

,

V m
n = p+ 2q +

Gm−2
n−1

Fm−2
n−1

− Gm
n

Fm
n

.

Moreover, Fm
n is given by τm

n of the discrete potential BSQ equation (22) in The-
orem 3.1 when parameters have relations

α

δ
=
a3(a1 − a2)
a1(a3 − a2)

,
p3 − q3

α2δ
=
a2(a1 − a3)
a1(a3 − a2)

.

Note that Hietarinta and Zhang gave the Casorati determinant form of the τ -
functions Fm

n and Gm
n [6].

Remark:
In the case of p3 − q3 = 0, Eq.(62) is

−α(p+ 2q)Fm+1
n+1 F

m−1
n − αβGm−1

n Fm+1
n+1 + αβFm−1

n Gm+1
n+1 = γFm

n F
m
n+1 . (71)

Equation (63) is written as

α
Fm

n F
m−1
n−1

Fm−1
n Fm

n−1

+
γ

α

Fm+1
n−1 F

m+1
n

Fm+2
n Fm

n−1

= α
Fm+2

n+1 F
m+1
n

Fm+1
n+1 F

m+2
n

+
γ

α

Fm
n F

m
n+1

Fm+1
n+1 F

m−1
n

. (72)
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After some calculation, we have

αFm−1
n−1 F

m+1
n+1 − γ

αF
m
n+1F

m
n−1

Fm−1
n Fm+1

n
=
αFm+2

n+1 F
m
n−1 −

γ
αF

m+1
n−1 F

m+1
n+1

Fm
n F

m+2
n

. (73)

After decoupling, we obtain

αFm−1
n−1 F

m+1
n+1 − γ

α
Fm

n+1F
m
n−1 = δFm−1

n Fm+1
n , (74)

which is nothing but Eq.(43). Thus we conclude that this special case gives a
discrete potential BSQ equation which has the same τ -function to Eq.(42).

4. Conclusion

We have proposed a new discrete potential BSQ equation. We have constructed
the bilinear equations and multisoliton solutions for the discrete potential BSQ
equation. The bilinear equations and multisoliton solutions have been constructed
by one of 3-reductions of the Hirota-Miwa equation. Using the discrete poten-
tial BSQ equation, we have presented the ultradiscrete potential BSQ equation.
We have also studied the lattice potential Boussinesq equation using the singu-
larity confinement test. Although the lattice potential Boussinesq equation is in
very complicated form, we can find bilinear equations easily by using singularity
confinement test. We have investigated the relationships among our new discrete
potential BSQ equation, the discrete potential BSQ equation of Date et al. and the
lattice BSQ equation by Nijhoff et al.

An interesting problem is to present explicit forms of soliton solutions of the
ultradiscrete potential BSQ equation. Since 3-reduction condition is very compli-
cated, it is not easy to see which solutions can survive in the ultradiscrete limit.
We will address this problem in the near future.
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