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A new discrete potential Boussinesq equation is proposed and its multisoliton solutions
are constructed. An ultradiscrete potential Boussinesq equation is also obtained from the
discrete potential Boussinesq equation using the ultradiscretization technique. The detail of
the multisoliton solutions is discussed by using the reduction technique. The lattice potential
Boussinesq equation is also investigated by using the singularity confinement test. The rela-
tion between the proposed discrete potential Boussinesq equation and the lattice potential
Boussinesq equation is clarified.
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1. Introduction
In this article, we propose a new discrete potential Boussinesq (BSQ) equation

mRRUM N6 UL+ U = U UM (6 UNS + 86U, (1)

n—1

and study the relation to the lattice potential BSQ equation proposed by Nijhoff
et al. [1, 2]
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Here U = U]* and u = u]" are the dynamical field variable at the site (n,m) of a

rectangular lattice, and 61, d2, p, g are the lattice parameters. These are integrable
discrete analogues of the potential BSQ equation

3wyt + 4coWer — 6WWry — Wrgze = 0, (3)
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which leads to the BSQ equation[3, 4]
3Utt + 4COux;t - 3<U2)$x — Ugzzx = 07 (4)

by u = w,. Note that Eq.(2) is the lowest order members of a hierarchy of lattice
equations which is called the lattice Gelfand-Dikii(GD) hierarchy[1]. See also recent
works about the lattice potential BSQ equation (2)[5, 6].

In this paper, we propose a new discrete potential BSQ equation and present
multisoliton solutions. It is shown that the multisoliton solution for the discrete
potential BSQ equations can be constructed from one for the discrete KP (Hirota-
Miwa) equation using the reduction technique. Using the discrete potential BSQ
equation, we can construct the ultradiscrete potential BSQ equation. We also study
the relation between the discrete potential BSQ equation (1) and the lattice po-
tential BSQ equation (2). Bilinear equations of the lattice potential BSQ equation
can be derived systematically using the SC test. This reveals the relationship with
other discrete potential BSQ equations.

2. Multisoliton solutions for the Boussinesq equation

First, we review fundamental results about reductions of the KP equation.
It is well known that the solutions of the KP equation[7]

(—4up + 6uty + Ugzr )z + 3ty =0, (5)

can be expressed via a tau function 7(z,y,t) as

82
=21
u(@,y,t) = 255 log7(z,y,1), (6)

where 7(z,y,t) satisfies Hirota’s bilinear equation
(Dy —4DyDy +3D)T -7 =0. (7)

Soliton solutions of Hirota’s equation can be written in terms of the Wronskian
determinant [8-11]

T(l‘, Y, t) = Wr(f17 o 7fN) = det(fén,_l))lgn,n’gl\f 5 (8)
with f,(Lj % fn/O0x7, and where f1,..., fn are a set of linearly independent solu-

tions of the linear system

o s oo o
oy  0x2’ Ot  Ox3’

For example, ordinary N-soliton solutions are obtained by taking f, = e?n-1 4 ef2r
forn=1,..., N, where
Om (2,9, 1) = —kma + k2y — kit + 0o (10)

form =1,...,2N, where the 4N parameters k; < --- < ko and 01,0, ..., 02N, are
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real constants. For NV = 1, one obtains the single-soliton solution of KP equation:

1 1
uij(2,y,8) = S (kj — ki)2880h2[§(9i —65)], (11)
where ¢ = 1 and j = 2. The most general form of the N-soliton solution is given
by

T(z,y,t) = det(AOK) = Z Vin,omn Ama,omn €XD Oy ooy 5 (12)

1<my <--<my<M

where A = (ay,m) is the N x M coefficient matrix, © = diag(e®, - -+, e), and the
M x N matrix K is given by K = (k1) [12-17]. Vina,...mx 1s the Vandermonde
determinant Vi, m, = H1§j<j/§N(kmj, —km,),and Ap,, . m, is the N x N-minor
whose n-th column is respectively given by the m,-th column of the coefficient
matrix for n = 1,...,N. The only time dependence in the tau function comes
from the exponential phases 6p,, . m,.. Also, for all G € GL(N,R), the coefficient
matrices A and A’ = G A produce the same solution of the KP equation. Thus
without loss of generality one can consider A to be in row-reduced echelon form
(RREF). One can also multiply each column of A by an arbitrary positive constant
which can be absorbed in the definition of 61,9, ..., 0:0.

Real nonsingular (positive) solutions of the KP equation are obtained if k; <
-+ < kps and all minors of A are nonnegative. Under these assumptions and some
fairly general irreducibility conditions on the coefficient matrix, Eq.(29) produces
(N_, N4 )-soliton solutions of the KP equation with N_ = M — N and Ny = N,
as in the simpler case of fully resonant solutions. Asymptotic line solitons are
given by Eq.(11) with the indices ¢ and j labeling the phases §; and 6; being
swapped in the transition between two dominant phase combinations along the line
¢; = 0;. Asymptotic solitons can thus be uniquely characterized by an index pair
[i, 7] with 1 <4 < j < M. Recently, line soliton solutions of the KP II equation were
classified using this formulation [12-17]. Elastic 2-soliton solutions are classified
into three classes: ordinary (O-type), asymmetric (P-type) and resonant (T-type).
The coefficient matrices corresponding to these classes have the following RREFs:

1a00 100 b 10—c—d
AO:(OOIb)’ AP:<01a 0)’ AT:<01a b)’ (13)

where a,b,c,d > 0 are free parameters with ad — bc > 0. These three types of
solutions cover disjoint sectors of the 2-soliton parameter space of amplitudes and
directions. Moreover, their interaction properties are also different. This difference
is obvious in the case of T-type solutions, but also applies to O-type and P-type
solutions, since P-type solutions only exist for unequal amplitude, and the inter-
action phase shift has the opposite sign for O-type and P-type solutions. Inelastic
2-soliton solutions fall into four categories.
It is known that the KP equation reduces to the KdV equation

—4uy + 6utly, + Uggy = 0 (14)

by the constraint du/dy = 0[13, 18-20]. In the bilinear form, the bilinear KP
equation (7) is reduced to the bilinear KdV equation

(D —4D,.Dy)7 -7 =0, (15)
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by the constraint of omitting terms including D,, which is the so-called 2-reduction.
As mentioned in , this constraint implies that all the solitons of the KdV equation

are parallel to the y-axis. Thus we must have a condition k; = —k; for each [i, j]-
soliton. From the ordering k1 < ko < -+ < kon, we must assume
ki <ky<---<kny<O, kN+j=—kN_j+1f0rj:1,---,N.

This allow only P-type soliton solution in which A-matrix is

10---0 O o 0 a1 2N
01---0 O ce A22N-1 0
00"'1aN,N"' 0 0

Let us consider multisoliton solutions of the BSQ equation. It is also known that
the KP equation is reduced to the BSQ equation without .,

350ut/t/ - 3(u2)xz — Uggzx = 07 (16)

by the constraint Ou/dt = 0 [18-20]. Here we introduced a new independent vari-
able t’ such that y = /—dot’, o = £1. In the bilinear form, the bilinear KP
equation (7) is reduced to

(D1 —360D2)T -7 =0, (17)

by the constraint of omitting terms including Dy, which is the so-called 3-reduction.
This condition implies that all the solitons of Eq.(16) are parallel to the t-axis.
Thus we must have a condition k:JQ + kjk; + k‘? =0, ie kj = wk; or k; = w2k,
(w=—1/2+iV3/2, w? = —1/2 —iV/3/2, w® = 1), for [i, j]-soliton. In the BSQ
equation, ki, ..., ko take complex values in general. Since ki, ..., kon are complex
values, we cannot consider the ordering of k1, ..., koy which was assumed when we
consider KP soliton solutions. However, from the constraint we have a restriction
to the A-matrix such that each row has only 2 or 3 nonzero elements and each col-
umn has only one element. For 2-soliton solutions, 2 types of 2-soliton interactions
are possible, i.e. 2 elastic soliton interactions (O-type and P-type), other 2-soliton
interactions are impossible because some columns in A-matrix have 2 elements.
However, there is no distinction between O-type and P-type solitons because we
don’t have the ordering of ki, ..., kay. Thus 2-soliton interaction of the BSQ equa-
tion is actually only one type. To get real solutions, we must remove imaginary
numbers by the following ways.
The case of 2 elements:

(i) Suppose that we have 2 elements in the i-th row of the A-matrix. Let the
corresponding wave numbers of these elements be k; , kj,; (ii) Let kj, = wkj,
(or kj, = w?kj,); (iii) Using the gauge invariance of 7-function, each element in
the Wronskian determinant can be f; ~ 1+ a; j, exp((w — 1)kj, 2 + v/—dp(w? —
Dkt +0j,0) (or fi ~ 14 aig,exp((W® — Dkjx + V=0(w — kI ' + 05,0));
(iv) Reparametrize kj, and kj, by k; = (w — 1)kj, and Q; = /= (w? — l)kal (or
ki = (w? — 1)kj, and Q; = v/—dp(w — 1)k]2-1). Then we have f; ~ 1+ a; j, exp(k;x +
Qit' + 0}, 0) with linear dispersion relations x; — 360022 = 0; (vi) So a set of f; ~
1+ a; j, exp(kiz + Qt' +6,, 0) with linear dispersion relations Ii;l — 3(5()(212 = 0 gives
the real and regular multisoliton solutions.
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The case of 3 elements:
(i) Suppose that we have 3 elements in the i-th row of the A-matrix. Let the
corresponding wave numbers of these elements be k;,, kj,, kj,; (ii) Let kj, = wkj,
and kj, = W2kj1§ (iii) Using the gauge invariance of 7-function, each element in the
Wronskian determinant can be f; ~ 1+a; j, exp((w —1)kj, x4+ (w? — 1)]4:]213/—}—03'270) +
i j, exp((wz—l)kjla:+(w—1)kj21y+0j3,0); (iv) Reparametrize parameters kj, , kj, and
kjs by HZ'?Q = k‘jz —k'jl, Ri3 = kjs —kjl, Q@Q = \/—7(5()(]{]22 —k]2-1> and Ql‘,g = \/—750(]{7?3 —
kJQI) Then we have f; ~ 14 a; j, exp(kix + Qit’ + 65, 0) + ai j, exp(rix + Qit’ + 6, o)
with linear dispersion relations /{i j —350922’]- = 0 for j = 1, 2; For example, consider
N = 1. This gives Y-shape soliton resonance interaction.

The KP equation is reduced to the BSQ equation

3doupy + dcotpy — 3(u2)m — Upgzsr = 0, (18)

by the constraint % = coa%. Here we introduced a new independent variable ¢’
such that y = v/—dpt’. In the bilinear form, the bilinear KP equation (7) is reduced
to

(DX — 4¢gD? — 360D2)T-7=0. (19)

by the constraint of replacing D; by coD,, which is the so-called 3-pseudo
reduction[20]. To realize this constraint in the multisoliton solutions, we can add
the constraint

kj‘? — k= colk; — ki), (20)

1.e.

1 /
k’j = 5 <—k‘1 + 400 - 3k‘l2> y (21)

to the soliton solutions of the KP equation. Note that k; can be real if 4cy > 3k12-
So we can assume the ordering of k1 < ... < kon. From the constraint we have a
restriction to the A-matrix such that each row has only 2 or 3 nonzero elements
and each column has only one element. For 2-soliton solutions, 2 types of 2-soliton
interactions are possible, i.e. 2 elastic soliton interactions (O-type and P-type),
other 2-soliton interactions are impossible because some columns in A-matrix have
2 elements.

Let us consider explicit real and regular multisoliton solutions. For the case of
do = —1, (i) Suppose that we have 2 elements in the i-th row of the A-matrix.
Let the corresponding wave numbers of these elements be k; , kj,; (ii) Let k;, =

: <—k:j1 £ (/4co — 3l<:]2-1>; (iii) Each element in the Wronskian determinant can be
fi~a;j, exp(kjl:r—i—k?1 t'+60;,.0)+a; j, exp(ka,x—i—k]z-Qt’—i—HjQ,o). This gives multisoliton
solutions for the BSQ equation.

If we have 3 elements in the i-th row of the A-matrix, each element in the
Wronskian determinant can be f; ~ a; j, exp(kj, « + kal t'+0j,0) + aij, exp(kj,x +
k3t +0;,0) + aij, exp(kj,x + k3 t' 405, 0). For N = 1, this gives Y-shape resonant
soliton solution.

For the case of g = 1, (i) Suppose that we have 2 elements in the i-th row of the
A-matrix. Let the corresponding wave numbers of these elements be k;,, kj,; (ii) Let

kj;, = % (—k‘jl + 4 /4co — 3k']2-1); (iii) Using the gauge invariance of T-function, each
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element in the Wronskian determinant can be f; ~ 14a; ;, exp((kj, — l{:‘,‘l)x—i—i(ka2 -
k]?l)t’+0j270); (iv) Reparametrize k;, and kj, by k; = kj, —kj;, and ; = i(k:JQ-2 —krjg-l).
Then we have f; ~ 1+ a; j, exp(k;x + Qit’ + 6, 0) with linear dispersion relations
/@? — 400/@2 — 350(212 = 0.

Next, we consider the case of complex parameters. Suppose that a parameter
k; corresponds to the pivot of A-matrix. If 4¢y < 3k‘i2, then we have a complex
parameter

1 [
]{Zj = 5 <—ki:ti 3k2-2—460> s

among k1, ..., kon. Since some of k1, ..., koy are complex values, we cannot consider
the ordering of ki, ..., ko which was assumed when we consider KP soliton so-
lutions. However, from the constraint we have a restriction to the A-matrix such
that each row has only 2 or 3 nonzero elements and each column has only one
element. For 2-soliton solutions, 2 types of 2-soliton interactions are possible, i.e.
2 elastic soliton interactions (O-type and P-type), other 2-soliton interactions are
impossible because some columns in A-matrix have 2 elements. However, there
is no distinction between O-type and P-type solitons because we don’t have the
ordering of ki, ..., kon. Thus 2-soliton interaction of the BSQ equation is actually
only one type again. To get real solutions, we must remove imaginary numbers by
the following ways.
The case of 2 elements:

(i) Suppose that we have 2 elements in the i-th row of the A-matrix. Let
the corresponding wave numbers of these elements be kj, kj,; (ii) Let kj, =

% <—kj1 + i, /3kj21 — 4co>; (iii) Using the gauge invariance of 7-function, each el-
ement in the Wronskian determinant can be f; ~ 1+ a; j, exp((kj, — kj, )z + (k:]?? -
l{:?l)y—l—ejbo); (iv) Reparametrize kj;, and kj, by k; = kj, —k;, and Q; = \/—50(]6]2-2 -
k]21) Then we have f; ~ 1+ a; j, exp(k;z + Qit’ + 05, o) with linear dispersion rela-
tions /1;1 — 400#;12 — 36092 = 0; (vi) So a set of fi ~ 1+ a; j, exp(kiz + Qit’ + 605, 0)
with linear dispersion relations ki — 4cor? — 302 = 0 gives the real and regular
multisoliton solutions.
The case of 3 elements:

(i) Suppose that we have 3 elements in the i-th row of the A-matrix. Let the
corresponding wave numbers of these elements be kj,, kj,, kj,; (ii) Let kj, =

: (—k:jl + i, /3!’4:]2-1 - 4co> and kj, = 3 (—kjl — 1, /31@]2-1 - 4co>; (iii) Using the gauge
invariance of 7-function, each element in the Wronskian determinant can be
fi~ 1+ @, 5z exp((kj2 - kj1)$ tv _50(k32‘2 - kal)t/ + 9j2,0) + Qi js exp((kas - k:jl)m +
\/—(50(1%2-3 - kal)t’ +60,,0); (iv) Reparametrize kj,, kj, and kj, by k2 = kj, — kj,,
ki3 = kj, — kj,, Qi2 = v/ —(50(k]22 — ki) and Q;3 = v/ —50(143]2-3 - k321) Then we
have f; ~ 1+ a; j, exp(kix + Qit’ + 0}, 0) + a; j, exp(kiz + Qit’ + 6, 0) with linear
dispersion relations mf’j — 40019127]- — 3509127 ; =0 for j =1,2; For example, consider
N = 1. This gives Y-shape soliton resonance interaction.

3. Discrete analogues of the potential Boussinesq equation

3.1. The discrete potential Boussinesq equation

Here, we present the main theorem in this article.
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Theorem 3.1: The difference-difference equation
UM 2UM N (=5, UMY 4 5Um ) = U U™ (=5, UT T + 6U™ ), (22)
where §1 = az(a; — a3) and 62 = az(ay — a2) and a1, az, as are arbitrary real

constants, is an integrable discrete analogue of the potential BSQ equation (3).
Moreover, the discrete potential BSQ equation has multisoliton solutions

Um — T’fl—‘rl
T’
= det(AOP), (23)
where A = (anm) is the N x 2N coefficient matriz, © = diag(e?, ... efv), ¥ =

pj(1—pja1) " (1—pjaz)™™, and the M x N matriz P is given by P = (p=1). where
the 2N parameters p1,...,pon are real constants. The A-matrixz has a restriction
such that each row has only 2 or 3 nonzero elements and each column has only
one element. In the case having 2 elements (i,71) and (i, j2) in the i-th row of the
A-matriz, p;, must satisfy a reduction condition

1 (1—aspy) \/ az(1 — aspj, ) (a2 — 4ag + 3azaspj, )

Lo 24
ph a9 + 2a3 2@2@3 ( )
Proof: The Hirota-Miwa (discrete KP) equation is written as
ai(az — az)7(n1 + 1,n2,n3)7(n1,n2 + 1,03 + 1)
+ag(az — a1)T(n1,ne + 1,n3)7(n1 + 1,n9,n3 + 1)
+as(a; — ag)T(n1,n2,n3 + 1)7(n1 + 1,n2 + 1,n3) =0, (25)

where 7 depends on three discrete independent variables ny, no and ns, and a1, as
and ag are the difference intervals for ni,ny and ng, respectively [21].

The Casorati determinant solution for the Hirota-Miwa equation (25) is as
follows|[22]:

7(n1,n2,n3) = det(i(n1, ng, n3; s +j — 1))1<ij<n (26)
where 11, ...,9n are a set of linearly independent solutions of the linear system
Ay Yi(n1,n2,n3;8) = Yi(n1,ng,n3;s +1), (j=1,2,3).

Here A, are the backward difference operators:

B fng) = 10O =D g0y, (21)

a;j

For example, ordinary IN-soliton solutions are obtained by taking

—ns3

i(ni,n2,n3;s) = azi—1p5_1 (1 — p2ic1a1)” ™ (1 — pai—1a2)” " (1 — pai—1a3)

+aip5; (1 — pasar) ™" (1 — paiaz) " (1 — paiaz) ™", (28)

for n = 1,..., N where the 4N parameters p; < --- < pony and aq,--- ,QonN are
positive real constants. The most general form of the N-soliton solution is given
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7(z,y,t) = det(AOP) = Z Vina oo Amaroma €XD Oy oo my > (29)
1<my <--<my<M
where A = (an) is the N x M coefficient matrix, © = diag(e’, - - -, ef), ef

pj(1 — pja1) "(1 — pjaz)™™, and the M x N matrix P is given by P = (prh.
Vins,...mx is the Vandermonde determinant Vi, m,y = H1gj<jng<pm,~/ — Pm,)
and Ay, .. my is the N X N-minor whose n-th column is respectively given by the
my-th column of the coefficient matrix for n = 1,...,N. For all G € GL(N,R),
the coefficient matrices A and A’ = G A produce the same solution of the KP
equation. Thus without loss of generality one can consider A to be in RREF.

Let us consider a reduction of the Hirota-Miwa equation. We assume that there
exists a nonzero constant ® such that for arbitrary ni,ne and ng

T(nla na, n3) = @T(nl,TLQ - 27 ng — 1) ) (30)

which is a reduction condition (3-reduction). Applying the reduction condition, we
can omit the dependency of ng and obtain the bilinear form

ai(ag — a3)t(ny + 1,ng)T(n1,ne — 1) + az(az — a1)7(n1,ne + 1)7(ny + 1,n9 — 2)

+a3(a1 — az)T(nl, nog — 2)T(n1 +1,n0 + 1) =0. (31)

After the change of variables ny — n, ng — m, 7(n1,n2) — 7', we obtain

ay(az — ag)Tﬁﬁng‘ + az(as — al)T,’l”“Tﬁjl + ag(ay — (LQ)T;ZL_lTTﬁJrf =0,

(32)

which is the bilinear form of the discrete potential BSQ equation.

Now we impose a constraint on the parameters of the solution so that the reduc-
tion condition is satisfied. For simplicity, we consider the case in which 1, ..., YN
have 2 terms. Then we observe

pi(ni,n2 +2,n3 4+ 1;5)

—nl( —n2—2( —n3z—1

1- pjla?))

7’!1272(

=p5, (1 —pja1) ™ (1 = pj,a2)

7?7,371

+pj,(1 = pja1)"" (1 — pj,az) 1 —pj,a3)

=p5, (1 —pj,a1) "™ (1 = pja2) " *(1 — pj,a3) "

14+ C; <pj2>s (1 —szal)nl (1 —Pj2a2>n2 (1 —sza?))w
Pj 1 —pja 1 —pj,az 1 —pj,as

X

where
() ()
’ 1 —pj,az 1—pjas
If we apply the reduction condition

(1 —pj,a2)*(1 — pj,a3) = (1 — pj,a2)*(1 — pj,az3) (34)
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i.e.
1 ( aspg1 \/ a2 — a3pj, (a2 —4a3 + 3a2a3p31)
az 2a3 2asas3
we obtain
Pi(n1,n2,n3;s) = (1= pj,a2) 2(1 = pj,as) " "hi(na,ny — 2,n3 — 13s),  (36)
Finally we have a reduction condition
N
7(n1,m2,m3) = [[(1 = praz) ">(1 — pras) "7 (n1,n2 — 2,n3 — 1).
k=1
(37)

In a similar way discussed in section 2, we can consider the general multisoliton
solutions of the discrete potential BSQ equation. O

The reality condition is

< 1 S —ag + 4(13
Pj as ’ P 3612(13
for as < ag, and
S 1 < —ag + 4a3
pjl as ’ pjl 3&2&3

for ag > as. With parameters satisfying these conditions, we can construct real
and regular multisoliton solutions using the formula in Theorem 3.1.

Otherwise, we must use the technique of reparametrization which was used in
section 2. The procedure is as follows. (i) Suppose that we have 2 elements in
the i-th row of the A-matrix. Let the corresponding complex wave numbers of
these elements be p;, and pj,; (iii) Using the gauge invariance of 7-function, each
element in the Wronskian determinant can be f; ~ 1+ «; ;, K; "Q. "™ where K; =
(1 —aip;,)/(1 —aipj,), Q& = (1 — azp;,)/(1 — azpj,); (iv) Choose new parameters
K; and €); to be real numbers.

It is easy to take the ultradiscrete limit in Eq.(22).

Theorem 3.2: The ultradiscrete potential BSQ equation is
Vm—|—2 + lel + Lm+2 Vm+1 + le + Lm+2 (38)
V2 — max(L72 4 ¢ + e, VI 4 ¢) (39)

Proof: Use the standard procedure of ultradiscretization. Equation (22) is rewrit-
ten in the form of

Um+2 Um 11m+2 Um+1 Um Im+12 (40)
n— )
Im+2 5 Um 1 +5 Um+2 (41)
Introduce new variables U = exp(V;"/e), I = exp(Ll/e), 01 =

exp(c1/€), 1/02 = exp(ca/e). Then take the limit ¢ — 01 using the formula
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lim. g+ eln(exp(A/e) + exp(B/e)) = max(A, B) for A, B € R[23]. O

Remark:
Date et al. proposed another discrete potential BSQ equation[24]

vptqvnHan(az — az)vpy + az(as — ar)op )
= v?_‘fvﬁfll(al(ag —az) v+ as(az —ag)v™ ). (42)
By the transformation v;' = ;Til 7', we obtain a bilinear equation
al(ag — ag)T;Z:b,_l 1 + CL2(G3 — a1) m+1 m 1 + a3(a1 — a2> m- 17‘”}:11 =0
(43)
This bilinear equation is obtained by adding the reduction condition
T(n17n27n3) :(I)T(nl_lanQ_l?n:i_l)? (44)

which gives yet another 3-reduction.
For this discrete potential BSQ equation, we can also make an ultradiscrete
analogue of the potential BSQ equation
Xm

n

Xy = xt +X31++11+Ynn11a (45)

Y = max(XT 0+ e, X7+ o), (46)

taking the ultradiscrete limit after setting v = exp(X)"/e€), w)' = exp(Y,"/e),
a1 = exp(cyi/e), ag = exp(ca/€) where w" = alv:ﬁ:ll + au, a1 = aq(ag — ag),

a9 — ag(ag — al).

3.2. The lattice potential Boussinesq equation

Singularity confinement (SC) test was proposed by Grammaticos et al. as a detector
of integrability in discrete systems|[25]. This property has been applied to several
problems [26-30]. The SC test is also powerful tool for constructing solutions for
discrete integrable systems[28-30]. In this section, we apply the SC test to the
lattice potential BSQ equation and obtain bilinear equations using the result of SC
test.

We start from the slightly simplified form of the lattice potential BSQ equation

P’ - B P’ -¢
1 2 1
p—gtugy —uly  p—gtun ™ -t

2 1
= (p+2q+upyq —upts )(P q—+ U?ﬂ - uﬁz )

—(p+2q +up —up (P — g +up T Uy (47)
Introducing new variables

IM=p—q+ul —u, V"=p+2¢+ulF —ulr, (48)
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Eq.(47) is written as

P-¢ P-4

_ m+2 rm—+1 m+2 rm
m Im+1 - Yn+2 In+2 Yo+l fn+lo (49)
n+2 n+1
m m+2 _ tm+2 m+3
In + Vn—|—1 - In—l—l + Vn : (50)

After the independent variable transformation m+mn — m, Eqs.(47),(48) and (49),
(50) are rewritten in the following form:

3 3 3 3
P’ —q B P’ —q
m+2 m—+2 m+2 m+2
p_Q+un+1 —Upio P—q+un —Upyq

=(p+2¢+ U?jﬁl - uff;)(p —q+ Unmj13 - U?fz?’)

—(p+2q+uy —ul ) p - q+uptt =i, (51)
and
L' =p—q+upy —uy, V' =p4 2ttt -y (52)
and
P=¢ PP =@ mragmes  ymes pusl (53)
I;LnJr—EQ ITTan:_lz ke L e
I ymas = sy (54)

After some calculation, we get the form which is suitable to perform the SC test:

1

unm:p—|—2q+u;n:13—

p—qtumt —up?
pS . q3 p3 o q3
x m—2 m—2 m—2 m—2
P—q+u, { —Un P—qt+u, 5 — U, {
H(p+ 20+ — T — g+ - ) ), (55)
1 . 3 p3 o q3 p3 o q3
Vnm — Tnfl (Vn”il Igl_l + 2 — 2 , (56)
n n n—1
Im=1"3+vm_vm,. (57)

Performing the SC test, we obtain the following result:

Pattern 1
We have the following pattern:
{Irrznilv :an ;LnJrl?IrTlel} - {0700’0070}7

{Va ViIi® — {oo, 00}



July 29, 2009

2:51

Applicable Analysis apa-maruno

12 Taylor & Francis and I.T. Consultant

Note that u]' takes co. One can see finite values for all dependent variables in fur-
ther steps, so the singularity is confined. Suppose that this singularity was created
by a function F}" which has a zero at (m,n).

If we see Eq.(55), we notice that there is a possibility to have a singularity when
up' — 0. However, this will not make singularity. Thus
Pattern 2

{un'} — {0},

and one can see finite values for all dependent variables in further steps, so the
singularity is confined. Suppose that this singularity pattern was created by a
function G which has a zero at (m,n).

Using the singularity pattern 1, we obtain the independent variable transforma-
tion

1 —1
Im = QL‘* L (58)
"o EmE™,

Since u; and I are related by Eq.(52), u;' should have F}" in the denominator.
Thus from the singularity pattern 2 we have

Gm
m_ gin 59
Uy, ﬂFﬁ” (59)
Note
Grm, Ggm G2 @Gm
I =p— n-l _ gZn m— 42 n—l _ = 60
n =p chrﬁFg11 Fm Vi'=p+ Q+ﬁF;”_‘l3 BFHL (60)

Using Eq.(60), we obtain the following equations:

(p— ) F P+ BG E T = BEII G = aFET?(61)
p3 - q3 1 2 1
—FUETL —alp+ 2q) B ET

n

—aBGR IR + aBET G = yFETAY (62)
0 N U W S N Y
FTan—ngn_—ll a2 F;L71+2F£n_—11 a Fran—i-ZF:ln_—ll
_ FﬁﬁSFZf“ - 3 — ¢ F;Ln—&-l ™ v FﬁFﬁﬁl (63)
F;Z}fFZZ”Q o2 FgfleqTq o F;LTEQFKLA ’

where 7 is a decoupling constant. Note that V is written in the following form:

G Gml g FEm Erl oy ERER

_ n—1 s n
Vnrn - (p+ 2q) +I8F:Ln7712 B ﬁF?’TLn+1 - a2 F;Ln+1F,2TiE2 - aF;Ln+1FT:rLEQ . (64)
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Assuming v = 0, we obtain

(p— @) F B+ BGR E = BEI G = aF FT?,(65)
3

_ 3
p q F;L’l’b-i-l 7717_1’_1 _ a(p—l— 2q)Fm+2Fm—1 o aﬁGzz—lFm—l-Q

o n+l - n n—+1
+afFmTIGMi2 =0, (66)
1 m+3 P —q° 2 +2
Qb = s B = SRR (67)

where § is a decoupling constant. After changing back to original independent
variables (m —n — m), we have

(p— @) F  F + BG B = BE G = aF R (68)
p3 - q3 1 1 1 1 1 1
Ffln"r F —a(p+ 2q)FZ{_ﬁ E" —aBGy™ F;’:ﬁ
+apFEmlgmil =0, (69)
m—1pm+2 p3 — q3 m+2 rm—1 __ m rm-+1
ok} FnJrl a7 E Fn+1 =0F, Fn+1 . (70)

Note that Eq.(70) can be derived by vanishing G from Egs.(68) and (69). This is
a discrete analogue of a bilinear form of the potential BSQ equation (3). Thus we
have the following theorem.

Theorem 3.3: Solutions of Eq.(47) (Eqs.(49) and (50)) are expressed in the
following form using the T-function:

—1 +1
g = G2 BRSO Gy
"o EFpn EmFE™ Fmt o Fm
Gm—2 Gm
VT =p+2 nol _ Zn
n p+ q+FﬁE2 Fm

Moreover, E" is given by 17" of the discrete potential BSQ equation (22) in The-
orem 8.1 when parameters have relations

o _ag(a—a) PP —¢’ _ aza—as)
5  ailaz —az)’ 28 ai(ag —az)

Note that Hietarinta and Zhang gave the Casorati determinant form of the 7-
functions F* and GJ'[6].
Remark:
In the case of p? — ¢® = 0, Eq.(62) is

—a(p+29) F/ A EM T — oG EI + apE TG = yE L (T1)

Equation (63) is written as

FyEM oy FPVEMY OFTPEM oy FUET (72)

« =« — .
m—1 rm m+2 rm m~+1 rm—+2 m+1 rm—1
F" anl aF” anl FnJrlF" aFnJrlF"
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After some calculation, we have

m—1 rrm+1 Y mm m m+2rm Y pm+1l pm41
aF UV F L — o B _ aF O TE - o BT E (73)

FTTLnfl FTTL)’L+1 F’ran;ZH*Z

After decoupling, we obtain

QPP S = LR = R (74)

which is nothing but Eq.(43). Thus we conclude that this special case gives a
discrete potential BSQ equation which has the same 7-function to Eq.(42).

4. Conclusion

We have proposed a new discrete potential BSQ equation. We have constructed
the bilinear equations and multisoliton solutions for the discrete potential BSQ
equation. The bilinear equations and multisoliton solutions have been constructed
by one of 3-reductions of the Hirota-Miwa equation. Using the discrete poten-
tial BSQ equation, we have presented the ultradiscrete potential BSQ equation.
We have also studied the lattice potential Boussinesq equation using the singu-
larity confinement test. Although the lattice potential Boussinesq equation is in
very complicated form, we can find bilinear equations easily by using singularity
confinement test. We have investigated the relationships among our new discrete
potential BSQ equation, the discrete potential BSQ equation of Date et al. and the
lattice BSQ equation by Nijhoff et al.

An interesting problem is to present explicit forms of soliton solutions of the
ultradiscrete potential BSQ equation. Since 3-reduction condition is very compli-
cated, it is not easy to see which solutions can survive in the ultradiscrete limit.
We will address this problem in the near future.
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