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Analyti
 solutions and integrability for bilinear re
urren
es oforder sixAndrew N.W. Hone(Re
eived 00 Month 200x; in �nal form 00 Month 200x)Somos sequen
es are integer sequen
es generated by re
urren
e relations that are in bilinearform, meaning that they 
an be written as a quadrati
 relation between adja
ent sets ofiterates. Su
h sequen
es have appeared in number theory, statisti
al me
hani
s, and algebrai

ombinatori
s, as well as arising from redu
tions of bilinear partial di�eren
e equations in thetheory of dis
rete integrable systems. This arti
le is 
on
erned with the general form of theSomos-6 re
urren
e, whi
h is a three-parameter family of bilinear re
urren
es of order six.After explaining how it arises by redu
tion from the bilinear dis
rete BKP equation (Miwa'sequation), an invariant Poisson bra
ket for Somos-6 is presented. Four independent Casimirsof this bra
ket, whi
h are the invariants under the a
tion of a group of gauge transformations,lead to an asso
iated map on a four-dimensional redu
ed phase spa
e. Two rational �rstintegrals for this map are 
onstru
ted, and (for 
ertain parameter 
hoi
es) these are found tobe in involution for a non-degenerate Poisson bra
ket asso
iated with a symple
ti
 form onthe redu
ed phase spa
e, so that the map is Liouville integrable. For generi
 parameter valuesthe expli
it analyti
 solution of the Somos-6 re
urren
e is given in terms of the Kleinian sigmafun
tion for a 
urve of genus two.Keywords: Somos sequen
es, Laurent phenomenon, integrable maps, Poisson bra
ket,theta fun
tion, Kleinian sigma fun
tion1. Introdu
tionThe properties of the integer sequen
e de�ned by the linear re
urren
e relationFn+1 = Fn + Fn�1; with F1 = F2 = 1; (1.1)have been studied for 
enturies. One parti
ularly striking property of the Fibona

inumbers is that they form a divisibility sequen
e:FmjFn whenever mjn: (1.2)Lu
as sequen
es, de�ned byFn+1 = �Fn + �Fn�1; with F1 = 1; F2 = � 2 Z; � 2 Z; (1.3)are a natural generalization of Fibona

i numbers that have the same divis-ibility property (1.2). Being de�ned by linear re
urren
es of order two, thegeneral term in su
h sequen
es 
an be expressed expli
itly using exponen-tial/trigonometri
/hyperboli
 fun
tions. To be pre
ise, the nth term of the sequen
ede�ned by (1.3) is given by the expli
it formulaFn = �n�1 sinn#sin# ; � = 2� 
os#; � = ��2; (1.4)Institute of Mathemati
s, Statisti
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able Analysis somossix2 A.N.W. Honewhere �; # 2 C for generi
 integers �; � 2 Z.In the 1940s, Morgan Ward sought an ellipti
 fun
tion generalization of Lu
as se-quen
es, and was led to de�ne ellipti
 divisibility sequen
es [50℄, whi
h are spe
i�edby a quadrati
 re
urren
e of fourth order, namely�n+4 �n = � �n+3 �n+1 + � (�n+2)2; (1.5)with the integer parameters and initial data related by� = (�2)2; � = ��1�3; �1 = 1; �2; �3; �4 2 Z with �2j�4:Observe that the re
urren
e relation (1.5) is rational [28℄, in the sense that ea
hnew iterate �n+4 is given by a rational fun
tion of the four previous terms; hen
e there
urren
e gives rise to a rational map in four dimensions. With these 
onstraintson the initial values and parameters, the nonlinear re
urren
e (1.5) produ
es asequen
e of integers �n 2 Z satisfying the same divisibility property as in (1.2).The general term is given by �n = �(nv)�(v)n2 ; (1.6)with �(z) = �(z; g2; g3) denoting the Weierstrass sigma fun
tion asso
iated withthe ellipti
 
urve E de�ned by the 
ubi
 equation y2 = 4x3 � g2x� g3. The valuev 2 C is de�ned up to the periods of the 
urve, and �xes a point P 2 E, so that thenth term of the sequen
e 
orresponds to [n℄P 2 E, where [n℄P = P + P + : : :+ P(n times) denotes multiple addition of P to itself in the group law of the 
urve.If one is prepared to relinquish the divisibility property, then one 
an 
onsiderlinear re
urren
e relations like (1.3) with arbitrary values of the 
oeÆ
ients andinitial data, and provided that these values are integers it is 
lear that Fn 2 Zfor all n. However, for nonlinear re
urren
es yielding rational maps it is no longerobvious under what 
ir
umstan
es a sequen
e of integers 
an be produ
ed. Whileinvestigating the properties of ellipti
 theta fun
tions, Mi
hael Somos [47℄ madethe surprising empiri
al observation that if one takes the quadrati
 relation�n+6 �n = �n+5 �n+1 + �n+4 �n+2 + (�n+3)2 (1.7)with initial values �0 = �1 = : : : = �5 = 1, then an integer sequen
e beginning1; 1; 1; 1; 1; 1; 3; 5; 9; 23; 75; 421; 1103; 5047; 41783; 281527; 2534423; : : : (1.8)is generated. This observation, whi
h initially was based on purely numeri
al ev-iden
e, led to a series of 
onje
tures 
on
erning similar re
urren
es de�ned byquadrati
 relations [20℄. For instan
e, for the re
urren
e (1.5), if the 
oeÆ
ientsare � = � = 1, and the four initial values are 
hosen to be �0 = �1 = �2 = �3 = 1,then an integer sequen
e beginning1; 1; 1; 1; 2; 3; 7; 23; 59; 314; 1529; 8209; 83313; : : : (1.9)is produ
ed [46℄. Various proofs of this observation were soon found [28℄, but afurther valuable insight (see [20℄) was the fa
t that if the initial data are treatedas variables, then the iterates of the re
urren
e (1.5) are polynomials in thesevariables and their inverses, or in other words, Laurent polynomials. The fa
t that�n 2 Z[�; �; ��10 ; ��11 ; ��12 ; ��13 ℄ for all n 2 Z is known as the Laurent property
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able Analysis somossixAppli
able Analysis 3for the re
urren
e (1.5), and the integrality of the parti
ular sequen
e (1.9) is animmediate 
orollary of this more general fa
t.The Laurent property has subsequently be
ome highly relevant to algebrai
 
om-binatori
s, be
ause it is an essential feature of Fomin and Zelevinsky's theory of
luster algebras [17℄. A 
luster algebra of rank m is a 
ommutative algebra pro-du
ed by distinguished sets of generators, 
alled 
lusters, that live on the verti
esof an m-tree. Ea
h 
luster 
ontains m generators x0; : : : ; xm�1, and for any 
lusterat an adja
ent vertex the generators x00; : : : ; x0m�1 
an be ordered as x0j�1 = xj forj = 1; : : : ;m, so that n� 1 of them are the same, but x0 is repla
ed by x0m�1 = xmwhi
h is de�ned by an ex
hange relation of the formxmx0 = 
1M1(x) + 
2M2(x); (1.10)where 
1; 
2 are 
oeÆ
ients and M1 and M2 are 
ertain monomials in the othervariables x = (x1; : : : ; xm�1). In a 
luster algebra, the variables in ea
h 
luster areLaurent polynomials in the variables of any initial 
luster. Re
urren
e sequen
es
an be generated by iterating (1.10) along a parti
ular sequen
e of verti
es thatshare the same ex
hange relation [19℄. Hen
e if a re
urren
e 
omes from a 
lusteralgebra, then it has the Laurent property.The general Somos-k re
urren
e is a quadrati
 re
urren
e of order k of the form�n+k �n = b k2 
Xj=1 �j �n+k�j �n+j; (1.11)where �j are 
oeÆ
ients. Hi
kerson used 
omputer algebra to prove that the origi-nal Somos-6 re
urren
e (1.7) has the Laurent property [20℄. Some time later, Fominand Zelevinsky used the ma
hinery of 
luster algebras to prove that this propertyholds for the general Somos-k re
urren
e when k = 4; 5; 6 or 7 [16℄. However, notethat general Somos-6 and Somos-7 r
eurren
es have three terms on the right handside, so they do not �t within the framework of 
luster algebras, whi
h are de�nedby ex
hange relations with a sum of two monomials, as in (1.10). It appears that fora generi
 
hoi
e of parameters �j the Laurent property never holds for k � 8. Tosee this for the parti
ular 
ase k = 8, it is suÆ
ient to 
hoose the four parameters�1 = : : : = �4 = 1 and the eight initial values �0 = : : : = �7 = 1 for Somos-8, whi
hat the tenth step yields the non-integer rational value �17 = 420514=7.In fa
t, the Laurent property for the general Somos-6 and Somos-7 re
urren
es
ame about in [16℄ as a spe
ial 
ase of that property for the four-term Gale-Robinson re
urren
es, that have the form�n+k �n = � �n+p�n+k�p + � �n+q �n+k�q + 
 �n+r �n+k�r (1.12)for distin
t positive integers p; q; r with p + q + r = k. Moreover, Fomin andZelevinsky's proof of the Laurent property for (1.12) (Theorem 1.4 in [16℄) 
omesabout as a 
onsequen
e of the same property for the three-dimensional latti
eequationT`+1;m+1;n+1T`;m;n = T`+1;m;nT`;m+1;n+1 � T`;m+1;nT`+1;m;n+1+T`;m;n+1T`+1;m+1;n; (1.13)with (`;m; n) 2 Z3. Indeed, every four-term Gale-Robinson re
urren
e (1.12) arises
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able Analysis somossix4 A.N.W. Honeas a one-dimensional redu
tion of (1.13), by takingT`;m;n = eQ(`;m;n) �N ; N = n0 + p`+ qm+ rn; (1.14)where Q = Q(`;m; n) is an arbitrary quadrati
 form in `;m; n and n0 is arbitrary;the 
oeÆ
ients �; �; 
 �x the o�-diagonal terms in Q. The partial di�eren
e equa-tion (1.13) is well known in the literature on dis
rete integrable systems, whereit goes by the name of Miwa's equation [31℄, or the dis
rete BKP equation; inthe 
ombinatori
s literature it is known as the 
ube re
urren
e [8℄. Similarly, thethree-term Gale-Robinson re
urren
es (in
luding Somos-4 and Somos-5), whi
hare obtained from (1.12) by setting one of the parameters �; �; 
 to zero, provideone-dimensional (ordinary di�eren
e) redu
tions of the Hirota-Miwa equation [53℄,T`+1;m;nT`�1;m;n = T`;m+1;nT`;m�1;n + T`;m;n+1T`;m;n�1; (1.15)whi
h is also known as the bilinear dis
rete KP equation in the theory of integrablesystems, and as the o
tahedron re
urren
e in the 
ombinatorial literature [38, 48℄.Somos re
urren
es and related sequen
es also appear in 
onne
tion with solv-able models in statisti
al me
hani
s, as mappings on the parameter spa
es of su
hmodels. For instan
e, in the last example of [40℄ it is mentioned that the Somos-4re
urren
e (1.5) with parameters � = Æ2, � = �Æ is the equation for Boltzmannweights in the hard hexagon model, where it is required that the solutions shouldhave period �ve: �n+5 = �n. Similarly, by 
onsidering more general transformationson the parameters in the sixteen vertex model, Boukraa et al. 
ame up with ageneral framework for generating birational maps by 
ompositions of elementaryinvolutive transformations on matri
es (see [3℄ and referen
es). Certain 
lasses ofthe maps obtained in the latter framework are integrable, and some in parti
ularlead to a �bration of the phase spa
e by ellipti
 
urves, as in the 
ase of the QRTfamily of maps [10, 41℄. Furthermore, the determinants of the matri
es that appearin [3℄ satisfy multilinear homogeneous re
urren
e relations, whi
h 
an be viewed ashigher degree analogues of (1.11).The original interest in ellipti
 divisibility sequen
es stemmed from their arith-meti
al properties, and in parti
ular the appearan
e of primes and new prime divi-sors in su
h sequen
es [51℄. There has been a 
onsiderable amount of further interestin them re
ently [11{13, 43, 45℄, espe
ially be
ause they have been used to resolveHilbert's tenth problem for larger subrings of Q than the integers [15℄. As observedby Robinson [42℄, more general Somos sequen
es, su
h as the Somos-4 sequen
e(1.9), that do not have the divisibility property (1.2), still have spe
ial arithmeti-
al properties e.g. when taken modulo a prime. Some of Robinson's 
onje
tures forSomos-4 were explained in the thesis of Swart [49℄, who gave an expli
it algebrai

onstru
tion of the 
orresponden
e between a general Somos-4 sequen
e (de�nedover the integers) and a sequen
e of points P0 + [n℄P 2 E, for an ellipti
 
urveE, making use of unpublished work of Stephens. Somewhat earlier, the fa
t thatthe general term of a Somos-4 sequen
e 
an be expressed analyti
ally using ellipti
theta fun
tions was known privately to several people: Malouf mentions results ofBombieri and Granville [28℄, while Robinson refers to formulae of Gardner [42℄. Forthe 
ase of the original Somos-5 sequen
e 1; 1; 1; 1; 1; 2; 3; 5; 11; 37; 83; 274; 1217; : : :,whi
h is generated by (1.11) with k = 5 and the 
oeÆ
ients set to 1, the relationwith ellipti
 
urves and theta fun
tions was given by Zagier [54℄, and was alsoexplained by Elkies when it arose in 
onne
tion with a Diophantine problem ingeometry [5℄.More re
ently [23℄, this author obtained the expli
it solution to the initial value
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able Analysis 5problem for the general Somos-4 re
urren
e, given in terms of the Weierstrass sigmafun
tion as �n = ABn�(v0 + nv)=�(v)n2 (1.16)(for suitable parameters A;B; v0; v and invariants g2; g3 for the 
urve), and found ananalogous formula for Somos-5, whi
h depends on the parity of n [24℄. Both Somos-4 and Somos-5 
an be understood in terms of asso
iated integrable birational mapsof the plane whose orbits lie on biquadrati
 
urves of genus one, 
orresponding toparti
ular symmetri
 
ases of the QRT family of maps.The purpose of this arti
le is to present expli
it analyti
 formulae for the simplestSomos re
urren
e that is beyond genus one, namely the general Somos-6 re
urren
e�n+6�n = ��n+5�n+1 + ��n+4�n+2 + 
(�n+3)2 (1.17)with three arbitrary 
oeÆ
ients �, �, 
. Although the original re
urren
e (1.7) wastaken with integer initial values, here all 
oeÆ
ients and initial data are taken in C.In the next se
tion Poisson bra
kets and invariant di�erential forms asso
iated withSomos re
urren
es are presented, and it is shown how the iteration of (1.17) 
an beproje
ted down to an iteration of a birational map with an invariant meromorphi
volume form in four dimensions. A dire
t method to 
onstru
t 
onserved quan-tities for Somos sequen
es is des
ribed, and as a result two independent rationalfun
tions are found that are invariant under the iteration of the Somos-6 re
ur-ren
e. These two invariants proje
t down to two independent 
onserved quantitiesfor the 
orresponding four-dimensional map, and in ea
h of the 
ases where oneof the parameters vanishes (i.e. for ��
 = 0) an expli
it non-degenerate Poissonbra
ket is found whi
h means that the map is symple
ti
 and also integrable inthe Liouville-Arnold sense [52℄. In the third se
tion, Baker's addition formula [2℄is used to derive an analyti
 expression for the solution of the re
urren
e (1.17)in terms of the Kleinian sigma fun
tion �(z) asso
iated with a genus two 
urve,whi
h is a quasiperiodi
 fun
tion of z 2 C2. The main result is the following.Theorem 1.1 : Given an algebrai
 
urve X of genus two de�ned by the aÆnemodel X := n(�; �) 2 C2 ����2 = f(�) � 4�5 + 3Xj=0 
j�j;o; (1.18)let �(z) denote the asso
iated Kleinian sigma fun
tion, with }jk(z) =��j�k log �(z) for j; k = 1; 2 being the asso
iated Kleinian }-fun
tions. For ar-bitrary A;B 2 C�, and v0 2 C2, the sequen
e with nth term�n = ABn �(v0 + nv)�(v)n2 (1.19)satis�es a Somos-6 re
urren
e (1.17) where the parameters are given by� = �(3v)2�̂�(2v)2�(v)10 ; � = �(3v)2�̂�(v)18 ; 
 = �(3v)2�(v)18 �}11(3v)��̂}11(2v)��̂}11(v)�;



September 1, 2009 13:42 Appli
able Analysis somossix6 A.N.W. Honewith �̂ = }12(3v) � }12(v)}12(2v) � }12(v) ; �̂ = }12(2v) � }12(3v)}12(2v) � }12(v) = 1� �̂; (1.20)provided that v 2 C2 obeys the 
onstraint������ 1 1 1}12(v) }12(2v) }12(3v)}22(v) }22(2v) }22(3v) ������ = 0: (1.21)Before pro
eeding with further details, it is worth 
omparing the above resultwith some the existing literature on re
urren
es asso
iated with addition formulaein genus two. The division polynomials 
orresponding to the multiples of a generi
point P on an ellipti
 
urve E are well known, and the re
urren
e relations theysatisfy are most easily be proved using the analyti
 formula (1.6) (see 
hapter II in[27℄, or Exer
ise 3.7 in [44℄). Morgan Ward's ellipti
 divisibility sequen
es providea spe
i�
 arithmeti
al realization of the division polynomials, sin
e (modulo somes
aling) they are obtained by substituting numeri
al values into the latter. Cantor
onstru
ted the analogue of the division polynomials for hyperellipti
 
urves, 
or-responding to multiples of a single point on the 
urve [7℄, and derived re
urren
eformulae for them. Onishi made use of the Kleinian sigma fun
tion, and obtainedfurther identities for hyperellipti
 division polynomials de�ned analyti
ally in termsof the so 
alled psi-fun
tion, whi
h in genus two takes the form n(v) = �(nv)�2(v)n2 : (1.22)In the above, v 2 C2 is on the theta divisor, being the image under the Abelmap of a single point on a genus two 
urve; the sigma fun
tion vanishes on thetheta divisor, so �(v) = 0, but �2(v) 6= 0 for v 6= 0 (see Proposition 6.5 in [33℄).Matsutani 
onsidered the genus two psi-fun
tion (1.22), and derived asso
iatedhigher order di�eren
e equations [29, 30℄. In [4℄ we 
onsidered the generalization ofthe genus two psi-fun
tion given by the formula (1.19) but with v being on the thetadivisor, and showed that it satis�es a Somos-8 re
urren
e. Kanayama presented adi�erent analogue of the division polynomials in genus two, by generalizing theformula (1.6) to �n(v) = �(nv)�(v)n2 : (1.23)where v 2 C2 
orresponds to a generi
 element of the Ja
obian of a genus two 
urve(where generi
 means not on the theta divisor, so �(v) 6= 0). Re
urren
e relationsfor �n provided an e�e
tive way to 
onstru
t multipli
ation formulae in genus two[26℄.We shall return to Kanayama's results in the third se
tion, with the proof ofTheorem 1.1. The �nal se
tion of the paper is devoted to some 
on
lusions andfurther open problems.
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kets and 
onserved quantitiesSequen
es generated by iteration of the general Somos-k re
urren
e (1.11) areequivalent to the orbits of the birational map ' on Ck, with 
oordinates(�0; : : : ; �k�1), de�ned by' : 0BBBBB� �0�1...�k�2�k�1
1CCCCCA 7�! 0BBBBB� �1�2...�k�1�k

1CCCCCA ; �k = Pb k2 
`=1 �` �k�` �`�0 : (2.1)This birational map preserves a very simple Poisson bra
ket, whi
h in these 
oor-dinates takes the log-
anoni
al form f�m; �ng = fmn �m �n. The parti
ular form ofthe re
urren
e also means that for any k there is a natural volume form whi
h isinvariant, up to a sign. The following result is easily veri�ed by dire
t 
al
ulation.Lemma 2.1: The meromorphi
 (rational) k-formV = 1�0 �1 : : : �k�1 d�0 ^ d�1 ^ : : : ^ d�k�1is preserved by the birational map (2.1) for even k, and anti-preserved for odd k,i.e. '�V = (�1)kV . This map is a Poisson map with respe
t to a log-
anoni
albra
ket of rank two, f�m; �ng0 = (n�m) �m �n; (2.2)unique up to res
aling, with k � 2 independent Casimirs given byxj = �j �j+2(�j+1)2 ; j = 0; : : : ; k � 2:Remark: In [21℄ it was shown that the ex
hange relations of a 
luster algebra arePoisson maps with respe
t to a suitable log-
anoni
al Poisson bra
ket. However,the general Somos-k re
urren
e (with more than two terms on the right hand side)is not of the 
orre
t form (1.10) for a 
luster algebra.There is another natural way to understand the Casimir fun
tions for the Poissonbra
ket f ; g0. The Somos-k re
urren
e has the form of a dis
rete Hirota bilinearequation, in the sense that if (1.11) is viewed as an analyti
 di�eren
e equation forthe tau-fun
tion �n � �(n) then it 
an be rewritten asexp�k2 Dn� � � � = [ k2 ℄Xj=1 �j exp�k � 2j2 Dn� � � �; (2.3)where Dn is the Hirota derivative [22℄, de�ned byDNn F �G (n) = � ��n � ��n0�N F (n)G(n0) ���n0=n
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able Analysis somossix8 A.N.W. Honefor N 2 N. Hirota bilinear equations are invariant under gauge transformationswhereby the tau-fun
tion is multiplied by the exponential of an aÆne linear fun
-tion of independent variables. In this 
ase the gauge transformations 
orrespondto an a
tion of (C�)2 on the phase spa
e, su
h that �n 7! ABn �n for parametersA;B with AB 6= 0. The Poisson bra
ket (2.2) is equivariant under this group a
-tion, and its Casimirs xj are invariants of the a
tion. Any Casimir of a Poissonbra
ket is invariant under Hamiltonian 
ows; but in general a Casimir need not bepreserved by a Poisson map, although Casimirs are always mapped to Casimirs. Inthe 
ase of Somos sequen
es, the interesting dynami
s takes pla
e on the spa
e ofthe Casimirs, where it 
an be des
ribed in the following terms.Lemma 2.2: The map (2.1) indu
es a birational map '̂ : Ck�2 ! Ck�2 on thespa
e of Casimirs (x0; : : : ; xk�3), so that the proje
tion$ : Ck �! Ck�2(�0; : : : ; �k�1)T 7�! (x0; : : : ; xk�3)Tintertwines ' and '̂, i.e. '̂ �$ = $ � '. The orbits of '̂ are obtained by iterationof the re
urren
e(xn+(k�2)=2)k=2 Q(k�4)=2j=0 (xn+j xn+k�j�2)j+1=Pk=2`=1 �` (xn+(k�2)=2)k=2�`Q(k�4)=2j=` (xn+j xn+k�j�2)j�`+1 (2.4)for k even, and(k�3)=2Yj=0 (xn+j xn+k�j�2)j+1 = (k�1)=2X̀=1 �` (k�3)=2Yj=` (xn+j xn+k�j�2)j�`+1 (2.5)for k odd. The meromorphi
 (k � 2)-formV̂ = 1Qk�3j=0 xj dx0 ^ : : : ^ dxk�3 (2.6)is preserved/anti-preserved by '̂ for even/odd k respe
tively, and the pullba
k of V̂is $�V̂ = J0yV where J0 is the Poisson bive
tor �eld for the bra
ket f ; g0.Remark: The generi
 �bre of the proje
tion $ is the gauge group (C�)2, so thatafter removing the 
oordinate hyperplanes f�j = 0g the original phase spa
e has thestru
ture of a prin
ipal �bre bundle. In fa
t, Somos-k is 
ovariant under the a
tionof the larger s
aling group �n ! ABnCn2 �n with non-zero A;B;C, whi
h 
hangesthe 
oeÆ
ients �j for C 6= 1. This s
aling group also appeared as a symmetryof the determinantal variables in [3℄. In the 
ase that k is odd, there is a furtherfreedom to res
ale �n di�erently for odd/even n, and ' proje
ts down to a map on a(k�3)-dimensional spa
e of Casimirs, with 
oordinates (x0x1; x1x2; : : : ; xk�4xk�3)(
f. the results for k = 5 in [24℄).Using re
urren
es due to Cantor [7℄, Matsutani showed that suitable ratios ofthe genus two psi-fun
tion (1.22) satisfy a re
urren
e of the form (2.4) in the 
asek = 8 (
f. equation (3.15) in [29℄). Hen
eforth we restri
t ourselves to the 
asek = 6. In that 
ase the re
urren
e (2.4) is of order four, and with the 
oeÆ
ients
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 as in (1.17) it is given byxn+4 (xn+3)2 (xn+2)3 (xn+1)2 xn = �xn+3 (xn+2)2 xn+1 + �xn+2 + 
; (2.7)whi
h 
orresponds to a birational map in C4 with 
oordinates (x0; x1; x2; x3). Thespe
ial 
ase of the re
urren
e (2.7) with � = 0 was found by van der Poorten(Theorem 3.1 in [36℄), based on the 
ontinued fra
tion expansion of the squareroot of a sexti
 polynomial, de�ning a genus two 
urve; the 
orresponding resultin the ellipti
 
ase, related to Somos-4, was given in [35℄.For what follows it will be more 
onvenient to use the alternative 
oordinatesystem (u; x; y; v) := (x0x1x2; x1; x2; x1x2x3), in whi
h the map 
orresponding to(2.7) takes the form'̂ : 0BB�uxyv1CCA 7�! 0BB�vy~y~v1CCA ; ~y = vxy ; ~v = (�v + �)y + 
uv (2.8)To be more pre
ise, the above map and the original one de�ned by (2.7) are 
on-jugate to one another via the 
hange of 
oordinates in C4, but we use the samesymbol '̂ to denote both. This map de
omposes as the produ
t '̂ = �1 � �2 of twoinvolutions that do not 
ommute with one another:�1 : (u; x; y; v)T 7! (v; y; x; u)T ;�2 : (u; x; y; v)T 7! ([(�v + �)y + 
℄u�1v�1; vx�1y�1; y; v)T ;with �2j = id, j = 1; 2. Ea
h of these involutions is itself a produ
t of two 
ommutinginvolutions: the permutation �1 de
omposes as the produ
t of the transpositionsu$ v and x$ y, and �2 is the 
omposition of the repla
ement u! [(�v + �)y +
℄u�1v�1 and the repla
ement x ! vy�1x�1 (where the other variables are held�xed).The rest of this se
tion is 
on
erned with proving the following result.Theorem 2.3 : For arbitrary 
oeÆ
ients �; �; 
 the volume-preserving map (2.8)in C4 has two independent rational �rst integrals H1, H2. It is an integrable mapin the Liouville-Arnold sense for ��
 = 0.Conje
turally, the se
ond part of the above statement should hold for arbitrary�; �; 
, and not just in the 
ases where one or more of the 
oeÆ
ients vanishes. ForLiouville integrability, the map should be symple
ti
 with H1, H2 being in involu-tion with respe
t to the asso
iated nondegenerate Poisson bra
ket. The te
hni
alobsta
le when ��
 6= 0 is that there is no general method to 
onstru
t a Poissonbra
ket for an arbitrary birational map. Yet when ��
 = 0 it is straightforward toobtain a log-
anoni
al Poisson bra
ket.Proposition 2.4: The map '̂ de�ned by (2.8) preserves a 4-form V̂ . It is aPoisson map with respe
t to a non-trivial bra
ket of log-
anoni
al type if and onlyif ��
 = 0. In ea
h of the three 
ases � = 0, � = 0, 
 = 0 separately there is adistin
t non-degenerate log-
anoni
al bra
ket.Proof : In the 
ase k = 6 the formula (2.6) gives an invariant 4-form, whi
h isV̂ = (uxyv)�1du ^ dx ^ dy ^ dv in the alternative set of 
oordinates. The rest ofthe proof follows from a dire
t 
al
ulation, whi
h is most easily 
arried out in the
oordinates xj , j = 0; 1; 2; 3. Sin
e the map de�nes the re
urren
e (2.7) in thesevariables, the log-
anoni
al bra
ket must take the form fxm; xn g = ~
n�m xm xn for
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onstant 
oeÆ
ients ~
n with ~
n = �~
�n. Clearly ~
0 = 0 and the whole bra
ketis determined by ~
1; ~
2; ~
3. Taking the Poisson bra
ket of ea
h side of (2.7) for n = 0with x1; x2; x3 su

essively gives a system of homogeneous linear equations for these
oeÆ
ients. For ��
 6= 0 one �nds ~
n = 0 for all n, so there is no non-trivial bra
ketof this type, while for ea
h 
ase � = 0, � = 0, 
 = 0 separately there is a di�erentsolution of the linear system for the ~
n, unique up to overall res
aling, giving anon-degenerate Poisson bra
ket. The property of being log-
anoni
al is preservedupon 
hanging to the variables u; x; y; v. For 
ompleteness the expli
it forms ofthe bra
kets are presented here in terms of these 
oordinates (only non-vanishingbra
kets are given):� = 0 : fu; yg = uy; fx; vg = xv;� = 0 : fu; yg = uy; fx; yg = �xy; fx; vg = xv;
 = 0 : fu; vg = uv; fx; yg = xy: �In order to obtain �rst integrals (i.e. 
onserved quantities) for the map '̂ , itis instru
tive to present an ad ho
 method for �nding su
h quantities dire
tly forbilinear re
urren
es, whi
h seems to work whenever the re
urren
e is asso
iatedwith an integrable map. The method is based on the observation that Somos-4sequen
es satisfy in�nitely many independent bilinear relations of higher order,with 
oeÆ
ients that are 
onstant along ea
h orbit, but 
an depend on the 
hoi
eof orbit. To be pre
ise, ea
h Somos-4 sequen
e satis�es an independent Somos-krelation for every k > 4. This phenomenon is neatly en
oded into the slogan \everySomos-4 is a Somos-k" [37℄, and it persists for Somos-5,-6,-7 (subje
t to suitable
onstraints on the higher values of k that are allowed). As is explained in the nextse
tion, a formula for the iterates in terms of theta fun
tions implies the existen
eof in�nitely many relations of higher order. By regarding the 
oeÆ
ients of thesehigher re
urren
es as fun
tions of the initial data, they furnish 
onserved quantitiesfor the original map, whi
h are non-trivial provided that they are not just fun
tionsof the �j . The existen
e of these relations of higher order should be related to thenotion of the Hirota-Kimura basis introdu
ed in [34℄.In pra
ti
e one 
an begin to sear
h for �rst integrals by looking for bilinearrelations along an orbit with spe
i�
 numeri
al values. For example, starting withan even order Somos-2M re
urren
e one 
an use it to generate suÆ
iently manyterms of a parti
ular sequen
e, starting with �xed numeri
al values for the initialdata and �j , in order to 
al
ulate the N �N determinant��������� �2N�0 �2N�1�1 : : : \�N+M�N�M : : : �N+1�N�1 (�N )2�2N+1�1 �2N�2 : : : : : : : : : �N+2�N (�N+1)2... ... ... ... ...�3N�1�N�1 �3N�2�N : : : \�2N+M�1�2N�M�1 : : : �2N�2N�2 (�2N�1)2 ���������with N > M , where the hat denotes that the 
olumn is deleted. If this determinantvanishes then the parti
ular sequen
e in question also satis�es a Somos-2N relation,and by 
al
ulating a non-zero ve
tor in the kernel of the matrix one �nds the
oeÆ
ients of su
h a relation. Morever, the existen
e of this higher order relationfor a single orbit suggests that the same might hold for a generi
 orbit. One 
an
he
k other numeri
al sequen
es, and then having found the smallest N > Mfor whi
h the determinant vanishes on these parti
ular orbits, one 
an redo the
al
ulation symboli
ally in order to �nd the 
oeÆ
ients of the Somos-2N re
urren
e
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tions of the �j and an arbitrary set of initial data �j, j = 0; : : : ; 2M � 1 forthe original Somos-2M re
urren
e.In the 
ase of interest here, starting from the Somos-6 re
urren
e (1.17), one 
antake the parti
ular numeri
al sequen
e (1.8), and one �nds that the �rst even-widthsequen
e of higher order is a Somos-10. Indeed, in that 
ase the above determinantwith M = 3 and N = 5 be
omes���������� �10�0 �9�1 �7�3 �6�4 (�5)2�11�1 �10�2 �8�4 �7�5 (�6)2�12�2 �11�3 �9�5 �8�6 (�7)2�13�3 �12�4 �10�6 �9�7 (�8)2�14�4 �13�5 �11�7 �10�8 (�9)2
���������� = ���������� 75 23 5 3 1421 75 9 5 91103 421 23 27 255047 1103 225 115 8141783 5047 2105 675 529

���������� = 0:
The kernel of the 5� 5 matrix here is spanned by the ve
tor (�1; 1; 15;�19; 34)T ,whi
h suggests that the sequen
e (1.8) should satisfy the Somos-10 re
urren
e�n+5�n�5 = �n+4�n�4 + 15�n+2�n�2 � 19�n+1�n�1 + 34(�n)2:To prove this for all n, and generalize it to the 
ase of arbitrary initial data andarbitrary 
oeÆ
ients �; �; 
 in (1.17), one should assume that in general the kernelis spanned by (�1; ~�1; ~�2; ~�3; ~�4)T , and then use the �rst four rows of the abovematrix to obtain a linear system for the ~�j . In general, the terms �6; : : : ; �13 thatappear in this system are 
ertain Laurent polynomials in �0; : : : ; �5 and �; �; 
,determined by iterating (1.17). Upon solving this linear system, it is found that~�1 = 
, so it is independent of the �j , while ~�2; ~�3; ~�4 are given by more 
ompli
atedexpressions in the 
oeÆ
ients and initial data, detailed in (2.11) below. Havingfound these ~�j , one 
an then verify dire
tly that they are invariant under the map' given by (2.1) with k = 6, and hen
e are 
onstant along ea
h orbit, as required.Subsequently one must then 
he
k for dependen
ies between the ~�j , in order to
ount the number of independent �rst integrals so obtained.Although we have explained how to look for higher relations of even order(Somos-2N), one should also 
he
k for relations of odd order, again by 
al
ulat-ing suitable determinants. It turns out that for Somos-6 sequen
es the �rst higherrelation one �nds is a
tually a Somos-9 re
urren
e. Before we state the exa
t re-sults for this 
ase, it is helpful to present 
ertain polynomials pj = pj(u; x; y; v) forj = 0; 1; 2, whi
h are the building blo
ks for the �rst integrals:p0 = uxyv;p1 = ��uv(x2y2 + xu+ yv) + �
xy(xu2 + yv2) + 
xyu2v2+�
(x2yu+ xy2v + uv) + 
2xy(u+ v) + �2�xy(u+ v)+��2xy + �2
(xu+ yv) + ��
(x+ y) + �
2;p2 = ���uv(x+ y) + x2y2(u+ v)�+ 
uxyv(u+ v) + �u2v2+�
�xy(ux+ vy) + uv�+ �2x2y2 + �
xy(x+ y) + 
2xy: (2.9)
Observe that these polynomials are invariant under the involution �1.
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able Analysis somossix12 A.N.W. HoneProposition 2.5: The iterates of the Somos-6 re
urren
e (1.17) also satisfy theSomos-9 re
urren
e�n+5�n�4 = �� �n+4�n�3 � �
 �n+3�n�2+
2 �n+2�n�1 + (�4 + �H1 + �H2) �n+1�n; (2.10)as well as the Somos-10 re
urren
e�n+5�n�5 = 
 �n+4�n�4 + (��2 + 
H2) �n+2�n�2+(�3 � �3
 � 
H1) �n+1�n�1 + �(�4 + �H1 + �H2) (�n)2; (2.11)where the quantities H1 and H2 are 
onstant along ea
h orbit. These Hj are gauge-invariant Laurent polynomials in the variables �0; : : : ; �5, and ea
h of them is the ra-tio of two homogeneous polynomials of degree six. In terms of the variables u; x; y; vthey are given expli
itly byH1 = p1(u; x; y; v)p0(u; x; y; v) ; H2 = p2(u; x; y; v)p0(u; x; y; v) ; (2.12)with the pj as de�ned in (2.9) above.
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Figure 1. A plot of 25; 000 points on the orbit of the point (u; x; y; v) = (1; 1; 1; 1) for the map (2.8) with� = � = 
 = 1, proje
ted onto three dimensions, namely the (u; x; y) 
omponents of ea
h iterate.The proof of Theorem 2.3 is now 
ompleted by noting that Hj = Hj(u; x; y; v)for j = 1; 2 are two independent �rst integrals for the map '̂ de�ned by (2.8), andthen one 
an verify dire
tly that fH1;H2g = 0 for ea
h of the three di�erent 
ases� = 0, � = 0, 
 = 0 where there is a non-degenerate log-
anoni
al bra
ket, sothe map is integrable in the Liouville-Arnold sense in those 
ases. The interse
tionof the level sets for the two �rst integrals (2.12) de�nes a surfa
e in C4. The realversion of su
h a surfa
e, in the 
ase � = � = 
 = 1, H1 = 19, H2 = 14, whi
h
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orresponds to the sequen
e (1.8), 
an be seen in Figure 1, where a real orbit ofthe map '̂ has been proje
ted onto R3; in a

ordan
e with the Liouville-Arnoldtheorem, the stru
ture of a real 2-torus is visible. From (2.9) the de�ning equationsof the surfa
e are quadrati
 in ea
h of the 
oordinates u; x; y; v. The orbits of QRTmaps lie on biquadrati
 
urves in C2, so the map '̂ 
an be viewed as a four-dimensional analogue of the QRT family. Other analogues of QRT maps in higherdimensions were 
onstru
ted in [18℄.3. Sigma fun
tion formulaeThe 
onne
tion of higher order Somos sequen
es with multidimensional theta fun
-tions was explained by Elkies in posts to Propp's \bilinear" forum [39℄. The 
ru
ialobservation of Elkies is that while suitable expressions in theta fun
tions satisfySomos re
urren
es, the number of available parameters appears insuÆ
ient to a
-
ount for a general Somos-k sequen
e when k is large. To be pre
ise, suppose thatwe are given a 
omplex torus Cg=L, where the latti
e L = Zg�
Zg is spe
i�ed bythe symmetri
 g� g 
omplex matrix 
 lying in the Siegel upper half-spa
e (i.e. theimaginary part of 
 is positive de�nite). The standard Riemann theta fun
tion isan entire fun
tion de�ned by the Fourier series�(z; 
) = Xn2Zg e�i(n;
n)+2�i(n;z); (3.1)where ( ; ) denotes the standard s
alar produ
t in dimension g. For a positiveinteger w, an entire fun
tion f = f(z) on Cg is said to be L-quasiperiodi
 of weightw if for all z it satis�esf(z+m) = f(z) and f(z+
m) = e��iw(m;
m)�2�iw(m;z)f(z);for all m 2 Zg. A standard result says that the ve
tor spa
e of su
h fun
tionshas dimension wg (see Proposition 1.3 in 
hapter II of [32℄). Up to multipli
ationby a s
alar, the standard theta fun
tion (3.1) is the unique L-quasiperiodi
 entirefun
tion of weight one.Now, given the sequen
e with nth term�n = ABnCn2�(z0 + nz; 
); (3.2)it is straightforward to verify that (for �xed n) ea
h of the produ
ts �n+j�n�j forj = 0; : : : ; 2g is an L-quasiperiodi
 fun
tion of weight two with respe
t to shifts ofthe argument ~z = z0 + nz. Sin
e the spa
e of su
h fun
tions has dimension 2g, itfollows that these produ
ts satisfy a linear relation, whose 
oeÆ
ients 
an dependon C and z but are independent of n (and are also independent of the gauge fa
torsA;B). As the same linear relation holds for all n, the sequen
e of these �n satis�esa Somos-k re
urren
e with k � 2g+1. The formula (3.2) depends on A;B;C; z0; zand 
, whi
h means at most 3 + 2g + g(g + 1)=2 = (g + 2)(g + 3)=2 
omplexparameters, while the general re
urren
e (1.11) of order k has bk=2
 
oeÆ
ientsand k initial data. So if we have a generi
 
hoi
e of parameters in (3.2) su
hthat the minimum order relation is for k = 2g+1, then the number of parametersrequired for the solution of the initial value problem for the general re
urren
e isk + bk2
 = 3� 2g > (g + 2)(g + 3)=2 for g > 1. (However, note that for odd k thequantity A in (3.2) need not be 
onstant, but 
an depend on the parity of n; 
f.[24℄.)
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it analyti
al results for Somos-6, it is 
onvenient to workwith the Kleinian sigma fun
tion in genus two rather than working dire
tly withtheta fun
tions. Given a 
urve X of genus two de�ned by the quinti
 equation�2 = f(�) � 4�5 + 4Xj=0 
j�j; (3.3)it is always possible to remove the 
oeÆ
ient 
4 by making a shift in the � 
oordi-nate, � ! � + 
onst. By res
aling both � and �, one of the other four remaining
oeÆ
ients (as long as it is non-zero) 
an be set to be 1, whi
h leaves three mod-uli for genus two 
urves. However, having set 
4 ! 0, we prefer to leave the four
oeÆ
ients 
0; 
1; 
2; 
3. From (3.3) the 
urve is realized as a two-sheeted 
overof the Riemann sphere with �ve bran
h points in the �nite 
omplex plane and asingle bran
h point 1 at in�nity. The ve
tor spa
e of holomorphi
 di�erentials istwo-dimensional, being generated by ��1d� and ��1�d�, whi
h are 
onvenientlyorganized into a ve
tor of 
anoni
al holomorphi
 di�erentials, denoteddu = 0� d��� d�� 1A :The period matri
es of the 
urve are2! = 0� Ha1 d�� Ha2 d��Ha1 � d�� Ha2 � d�� 1A ; 2!0 = 0� Hb1 d�� Hb2 d��Hb1 � d�� Hb2 � d�� 1A ;where (a1; a2; b1; b2) is a 
anoni
al homology basis for the 
ompa
t Riemann surfa
e
orresponding to X, with non-vanishing interse
tions aj � bk = Æjk.The Ja
obian of X is the 
omplex torus Ja
(X) = C2=�, where � = 2!Z2�2!0Z2is the period latti
e generated by the a- and b-periods. The elements (P1; P2) ofthe symmetri
 produ
t Sym2(X) 
an be identi�ed with degree zero divisors D =(P1 �1) + (P2 �1), whi
h are mapped to Ja
(X) by the Abel map:u = Z P11 du+ Z P21 du 2 Ja
(X)(where the map is based at 1).The Kleinian sigma fun
tion �(u) is an odd fun
tion of (u1; u2)T = u 2 C2,quasiperiodi
 with respe
t to shifts by elements of the period latti
e �. The sigmafun
tion is de�ned in terms of the standard Riemann theta fun
tion by �(u) =e ~Q(u)�((2!)�1u�K; 
), where 
 = !�1!0 is the normalized matrix of b-periods,K is a normalized half-period ve
tor of Riemann 
onstants, and the fun
tion ~Q isa 
ertain sum of quadrati
, linear and 
onstant terms in u; for pre
ise details see[2, 6℄. The Kleinian � and } fun
tions are de�ned by�j(u) = � log �(u)�uj ; }jk(u) = ��2 log �(u)�uj�uk ; j; k = 1; 2:The Kleinian } fun
tions solve the Ja
obi inversion problem: given u 2 Ja
(X)whi
h is the image of the pair of points (P1; P2) under the Abel map, with
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able Analysis 15Pj = (�j ; �j) for j = 1; 2, the points Pj 2 X 
an be re
onstru
ted from their� 
oordinates via the formulae }12(u) = ��1�2, }22(u) = �1 + �2.For our purposes, the most important property of the genus two sigma fun
tionis the addition formula�(u+ v)�(u� v)�(u)2�(v)2 = }22(u)}12(v) � }12(u)}22(v) + }11(v)� }11(u); (3.4)whi
h was found by Baker [2℄. Theorem 1.1 is a 
onsequen
e of the following result,whi
h is a dire
t appli
ation of Baker's formula.Proposition 3.1: For generi
 A;B 2 C� and v0, v 2 C2, the sequen
e of �nde�ned by (1.19), in terms of the genus two sigma fun
tion, satis�es a Somos-8 re
urren
e. It satis�es a Somos-6 re
urren
e if and only if the shift v on theJa
obian Ja
(X) satis�es the 
onstraint (1.21).Proof : The proof is essentially the same as the proof of Theorem 2 in [4℄, where the
ase of shifts v on the theta divisor (where �(v) = 0) was 
onsidered. Upon substi-tuting (1.19) into a general Somos-8 re
urren
e with four 
oeÆ
ients �1; �2; �3; �4,one obtains an expression of the formC0(v) + C11(v)}11(u) + C12(v)}12(u) + C22(v)}22(u) = 0; (3.5)where u = v0 + nv, and the 
oeÆ
ients C0, Cjk are fun
tions of v and linear inthe �j. Sin
e this must hold for all n, and the fun
tions }jk(u) for j; k = 1; 2 donot satisfy a linear relation, this means that C0 and the Cjk must vanish, andthis uniquely determines the 
oeÆ
ients �j of the Somos-8 re
urren
e, whi
h areobtained by solving a linear system. However, this linear system is degenerate ifand only if the determinant (1.21) vanishes. In that 
ase one �nds that a Somos-6relation (1.17) holds instead. �The pre
eding result 
an be understood more 
learly by making a slight extension(as well as a 
orre
tion) of some results derived by Kanayama. Upon di�erentiat-ing the tau-fun
tion (1.19) with respe
t to the 
oordinates v1; v2, one obtains theformula �j�k log �n = n2�}jk(v) � }jk(v0 + nv)�; j; k = 1; 2; (3.6)where �j denotes �=�vj . In the spe
ial 
ase that A = B = 1 and v0 ! 0, onehas �n = �n as given by (1.23), and then (3.6) redu
es to an expression for these
ond logarithmi
 derivatives of �n whi
h was found in [26℄. The latter expressionwas the key to Kanayama's re
ursive method for 
al
ulating the multipli
ationformulae for the genus two Kleinian } fun
tions in genus two, i.e. for 
al
ulat-ing }jk(2v); }jk(3v); : : : in terms of Abelian fun
tions evaluated at the argumentv. Using the tau-fun
tion and the fun
tion �n, it is instru
tive to 
onsider the
ombination �nm(v;v0) de�ned by�nm = [(�1)2�n+m�n�m � (�m)2�n+1�n�1 + �m+1�m�1(�n)2℄=(�m�n)2= 1�m�1(�m)2(�n)3 �������1�n+m �0�n+m�1 �1�m�n�m�n+1 �m�1�n �0�n�m+1�m+1�n �m�n�1 �1�n�m ������ ; (3.7)for integers n 2 Z, m � 1 (and note that ��n = ��n, so �0 = 0, and �1 = 1, but
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able Analysis somossix16 A.N.W. Hone�1 is kept in (3.7) for the sake of homogeneity). Observe that �nm is independentof A;B, and for ea
h m the above determinant is a 3�3 minor of an in�nite matrixof Casorati type. Another appli
ation of Baker's formula (3.4) allows �nm to berewritten as a determinant analogous to (1.21).Lemma 3.2: The 
ombination (3.7) 
an be rewritten as the determinant�nm = ������ 1 1 1}12(v) }12(mv) }12(v0 + nv)}22(v) }22(mv) }22(v0 + nv) ������ : (3.8)Corollary 3.3: The quantity �nm 
an be written as a s
alar produ
t of twove
tors in C2, so that �nm = (
m; ln), where
m(v) = �}22(mv)� }22(v)}12(mv)� }12(v)� ; ln(v;v0) = 1n2 ��1�2 log �n��22 log �n � : (3.9)Proof : From the formula (3.6), the elements }jk(v0 +nv) in the third 
olumn of(3.8) 
an be repla
ed in terms of }jk(v) and logarithmi
 derivatives of �n. The s
alarprodu
t of the ve
tors 
m and ln is then obtained by expanding the determinantabout its third 
olumn. �Remark: Proposition 2.3 in Kanayama's thesis [26℄ asserts that, for all m;n, thequantity �nm(v; 0) (de�ned by (3.7) with �k = �k for every k) vanishes identi
ally.However, this result is in
orre
t: indeed, su
h a re
urren
e 
hara
terizes ellipti
divisibility sequen
es [50℄ (or equivalently, division polynomials for ellipti
 
urves),so should not be satis�ed by the sequen
e of �n(v), whi
h are genus two Abelianfun
tions.It is 
lear that 
1 = 0 and �n1 = 0. Generi
ally, 
2 and 
3 are two linearlyindependent ve
tors in C2, so that 
4 6= 0 is given by a non-zero linear 
ombination
4 = �2
2+�3
3, and hen
e �n4 = �2�n2+�3�n3 for all n, whi
h implies that �nsatis�es a Somos-8 re
urren
e. However, if 
2 and 
3 are linearly dependent thena non-trivial relation �2�n2 + �3�n3 = 0 must hold, and so �n satis�es a Somos-6re
urren
e. The 
ondition for the ve
tors 
2 and 
3 to be linearly dependent ispre
isely equivalent to the 
onstraint (1.21). Thus we see that Corollary 3.3 yieldsan alternative proof of Proposition 3.1, albeit a less 
onstru
tive one. The samearguments show that the solution (1.19) of a Somos-6 re
urren
e does not satisfya Somos-8, but does satisfy a Somos-10 re
urren
e, in agreement with Proposition2.5, as well as a Somos-2k for all k � 5. In�nitely many odd-order relations alsofollow (Somos-9,-11; : : :) by taking a suitably modi�ed version of �nm.The proof of Theorem 1.1 is 
ompleted by substituting the sigma fun
tion formula(1.19) into (1.17) to obtain a linear system of the same form as (3.5), and then thisgives an unique solution for the 
oeÆ
ients �; �; 
 subje
t to the 
onstraint (1.21).Remark: Lemma 3.2 provides alternative ways to rewrite the 
onstraint (1.21).In terms of Kanayama's phi-fun
tion, or the sigma fun
tion, it is �32 = [(�1)3�5�(�2)3�4 + �1(�3)3℄=(�2�3)2 = 0, or�32 = �(v)3�(5v) � �(2v)3�(4v) + �(v)�(3v)3�(v)2�(2v)2�(3v)2 = 0:The latter expression shows that on the Ja
obian of a generi
 genus two 
urveX the 
onstraint set does not interse
t the theta divisor. Indeed, when �(v) = 0
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able Analysis somossix REFERENCES 17the 
onstraint equation generi
ally has a double pole. For the above numeratorto vanish at leading order requires that �(2v)3�(4v)=0, but �(2v) 6= 0 sin
e 2v
orresponds to the redu
ed divisor of two points, and so 4v must also lie on thetheta divisor in Ja
(X). To satisfy (1.21), the numerator must vanish up to thirdorder, whi
h puts 
onstraints on the moduli of X.4. Con
lusionsAn analyti
 solution for the general Somos-6 re
urren
e has been presented. Be-
ause it depends on nine 
omplex parameters, namely A;B 2 C�, the 
oeÆ
ients
0; 
1; 
2; 
3 of the genus two 
urve, and two points v0;v on its Ja
obian with v
onstrained by (1.21), we 
an assert that it represents the general solution of (1.17),sin
e there are six initial data and three 
oeÆ
ients in the re
urren
e. However,
ompared with the ellipti
 
ase it is mu
h more diÆ
ult to solve the initial valueproblem in genus two. The geometri
al meaning of the 
onstraint (1.21) is still not
lear, but re
ently we learned from results of Atkinson that it is related to thelatti
e S
hwarzian KP equation [1℄.Re
ently we have used the Lax pair for the dis
rete BKP equation to obtain a3� 3 Lax pair for the map '̂ asso
iated with Somos-6. This leads to a genus fourtrigonal spe
tral 
urve possessing an involution with two �xed points, and the two-dimensional Ja
obian for the solutions 
orresponds to an asso
iated Prym variety,as for the known algebro-geometri
 solutions of dis
rete BKP [9℄. The details ofthis 
onstru
tion will be presented elsewhere. The problem of how to 
onstru
t aninvariant Poisson bra
ket for the map '̂ when ��
 6= 0 is still open, but it is hopedthat the Lax pair will shed some light on this.A
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