
September 1, 2009 13:42 Appliable Analysis somossixAppliable AnalysisVol. 00, No. 00, July 2009, 1{18
Analyti solutions and integrability for bilinear reurrenes oforder sixAndrew N.W. Hone(Reeived 00 Month 200x; in �nal form 00 Month 200x)Somos sequenes are integer sequenes generated by reurrene relations that are in bilinearform, meaning that they an be written as a quadrati relation between adjaent sets ofiterates. Suh sequenes have appeared in number theory, statistial mehanis, and algebraiombinatoris, as well as arising from redutions of bilinear partial di�erene equations in thetheory of disrete integrable systems. This artile is onerned with the general form of theSomos-6 reurrene, whih is a three-parameter family of bilinear reurrenes of order six.After explaining how it arises by redution from the bilinear disrete BKP equation (Miwa'sequation), an invariant Poisson braket for Somos-6 is presented. Four independent Casimirsof this braket, whih are the invariants under the ation of a group of gauge transformations,lead to an assoiated map on a four-dimensional redued phase spae. Two rational �rstintegrals for this map are onstruted, and (for ertain parameter hoies) these are found tobe in involution for a non-degenerate Poisson braket assoiated with a sympleti form onthe redued phase spae, so that the map is Liouville integrable. For generi parameter valuesthe expliit analyti solution of the Somos-6 reurrene is given in terms of the Kleinian sigmafuntion for a urve of genus two.Keywords: Somos sequenes, Laurent phenomenon, integrable maps, Poisson braket,theta funtion, Kleinian sigma funtion1. IntrodutionThe properties of the integer sequene de�ned by the linear reurrene relationFn+1 = Fn + Fn�1; with F1 = F2 = 1; (1.1)have been studied for enturies. One partiularly striking property of the Fibonainumbers is that they form a divisibility sequene:FmjFn whenever mjn: (1.2)Luas sequenes, de�ned byFn+1 = �Fn + �Fn�1; with F1 = 1; F2 = � 2 Z; � 2 Z; (1.3)are a natural generalization of Fibonai numbers that have the same divis-ibility property (1.2). Being de�ned by linear reurrenes of order two, thegeneral term in suh sequenes an be expressed expliitly using exponen-tial/trigonometri/hyperboli funtions. To be preise, the nth term of the sequenede�ned by (1.3) is given by the expliit formulaFn = �n�1 sinn#sin# ; � = 2� os#; � = ��2; (1.4)Institute of Mathematis, Statistis and Atuarial Siene, University of Kent, Canterbury CT2 7NF, U.K.Email: A.N.W.Hone�kent.a.ukISSN: 0003-6811 print/ISSN 1563-504X online 2009 Taylor & FranisDOI: 10.1080/0003681YYxxxxxxxxhttp://www.informaworld.om



September 1, 2009 13:42 Appliable Analysis somossix2 A.N.W. Honewhere �; # 2 C for generi integers �; � 2 Z.In the 1940s, Morgan Ward sought an ellipti funtion generalization of Luas se-quenes, and was led to de�ne ellipti divisibility sequenes [50℄, whih are spei�edby a quadrati reurrene of fourth order, namely�n+4 �n = � �n+3 �n+1 + � (�n+2)2; (1.5)with the integer parameters and initial data related by� = (�2)2; � = ��1�3; �1 = 1; �2; �3; �4 2 Z with �2j�4:Observe that the reurrene relation (1.5) is rational [28℄, in the sense that eahnew iterate �n+4 is given by a rational funtion of the four previous terms; hene thereurrene gives rise to a rational map in four dimensions. With these onstraintson the initial values and parameters, the nonlinear reurrene (1.5) produes asequene of integers �n 2 Z satisfying the same divisibility property as in (1.2).The general term is given by �n = �(nv)�(v)n2 ; (1.6)with �(z) = �(z; g2; g3) denoting the Weierstrass sigma funtion assoiated withthe ellipti urve E de�ned by the ubi equation y2 = 4x3 � g2x� g3. The valuev 2 C is de�ned up to the periods of the urve, and �xes a point P 2 E, so that thenth term of the sequene orresponds to [n℄P 2 E, where [n℄P = P + P + : : :+ P(n times) denotes multiple addition of P to itself in the group law of the urve.If one is prepared to relinquish the divisibility property, then one an onsiderlinear reurrene relations like (1.3) with arbitrary values of the oeÆients andinitial data, and provided that these values are integers it is lear that Fn 2 Zfor all n. However, for nonlinear reurrenes yielding rational maps it is no longerobvious under what irumstanes a sequene of integers an be produed. Whileinvestigating the properties of ellipti theta funtions, Mihael Somos [47℄ madethe surprising empirial observation that if one takes the quadrati relation�n+6 �n = �n+5 �n+1 + �n+4 �n+2 + (�n+3)2 (1.7)with initial values �0 = �1 = : : : = �5 = 1, then an integer sequene beginning1; 1; 1; 1; 1; 1; 3; 5; 9; 23; 75; 421; 1103; 5047; 41783; 281527; 2534423; : : : (1.8)is generated. This observation, whih initially was based on purely numerial ev-idene, led to a series of onjetures onerning similar reurrenes de�ned byquadrati relations [20℄. For instane, for the reurrene (1.5), if the oeÆientsare � = � = 1, and the four initial values are hosen to be �0 = �1 = �2 = �3 = 1,then an integer sequene beginning1; 1; 1; 1; 2; 3; 7; 23; 59; 314; 1529; 8209; 83313; : : : (1.9)is produed [46℄. Various proofs of this observation were soon found [28℄, but afurther valuable insight (see [20℄) was the fat that if the initial data are treatedas variables, then the iterates of the reurrene (1.5) are polynomials in thesevariables and their inverses, or in other words, Laurent polynomials. The fat that�n 2 Z[�; �; ��10 ; ��11 ; ��12 ; ��13 ℄ for all n 2 Z is known as the Laurent property



September 1, 2009 13:42 Appliable Analysis somossixAppliable Analysis 3for the reurrene (1.5), and the integrality of the partiular sequene (1.9) is animmediate orollary of this more general fat.The Laurent property has subsequently beome highly relevant to algebrai om-binatoris, beause it is an essential feature of Fomin and Zelevinsky's theory ofluster algebras [17℄. A luster algebra of rank m is a ommutative algebra pro-dued by distinguished sets of generators, alled lusters, that live on the vertiesof an m-tree. Eah luster ontains m generators x0; : : : ; xm�1, and for any lusterat an adjaent vertex the generators x00; : : : ; x0m�1 an be ordered as x0j�1 = xj forj = 1; : : : ;m, so that n� 1 of them are the same, but x0 is replaed by x0m�1 = xmwhih is de�ned by an exhange relation of the formxmx0 = 1M1(x) + 2M2(x); (1.10)where 1; 2 are oeÆients and M1 and M2 are ertain monomials in the othervariables x = (x1; : : : ; xm�1). In a luster algebra, the variables in eah luster areLaurent polynomials in the variables of any initial luster. Reurrene sequenesan be generated by iterating (1.10) along a partiular sequene of verties thatshare the same exhange relation [19℄. Hene if a reurrene omes from a lusteralgebra, then it has the Laurent property.The general Somos-k reurrene is a quadrati reurrene of order k of the form�n+k �n = b k2 Xj=1 �j �n+k�j �n+j; (1.11)where �j are oeÆients. Hikerson used omputer algebra to prove that the origi-nal Somos-6 reurrene (1.7) has the Laurent property [20℄. Some time later, Fominand Zelevinsky used the mahinery of luster algebras to prove that this propertyholds for the general Somos-k reurrene when k = 4; 5; 6 or 7 [16℄. However, notethat general Somos-6 and Somos-7 reurrenes have three terms on the right handside, so they do not �t within the framework of luster algebras, whih are de�nedby exhange relations with a sum of two monomials, as in (1.10). It appears that fora generi hoie of parameters �j the Laurent property never holds for k � 8. Tosee this for the partiular ase k = 8, it is suÆient to hoose the four parameters�1 = : : : = �4 = 1 and the eight initial values �0 = : : : = �7 = 1 for Somos-8, whihat the tenth step yields the non-integer rational value �17 = 420514=7.In fat, the Laurent property for the general Somos-6 and Somos-7 reurrenesame about in [16℄ as a speial ase of that property for the four-term Gale-Robinson reurrenes, that have the form�n+k �n = � �n+p�n+k�p + � �n+q �n+k�q +  �n+r �n+k�r (1.12)for distint positive integers p; q; r with p + q + r = k. Moreover, Fomin andZelevinsky's proof of the Laurent property for (1.12) (Theorem 1.4 in [16℄) omesabout as a onsequene of the same property for the three-dimensional lattieequationT`+1;m+1;n+1T`;m;n = T`+1;m;nT`;m+1;n+1 � T`;m+1;nT`+1;m;n+1+T`;m;n+1T`+1;m+1;n; (1.13)with (`;m; n) 2 Z3. Indeed, every four-term Gale-Robinson reurrene (1.12) arises



September 1, 2009 13:42 Appliable Analysis somossix4 A.N.W. Honeas a one-dimensional redution of (1.13), by takingT`;m;n = eQ(`;m;n) �N ; N = n0 + p`+ qm+ rn; (1.14)where Q = Q(`;m; n) is an arbitrary quadrati form in `;m; n and n0 is arbitrary;the oeÆients �; �;  �x the o�-diagonal terms in Q. The partial di�erene equa-tion (1.13) is well known in the literature on disrete integrable systems, whereit goes by the name of Miwa's equation [31℄, or the disrete BKP equation; inthe ombinatoris literature it is known as the ube reurrene [8℄. Similarly, thethree-term Gale-Robinson reurrenes (inluding Somos-4 and Somos-5), whihare obtained from (1.12) by setting one of the parameters �; �;  to zero, provideone-dimensional (ordinary di�erene) redutions of the Hirota-Miwa equation [53℄,T`+1;m;nT`�1;m;n = T`;m+1;nT`;m�1;n + T`;m;n+1T`;m;n�1; (1.15)whih is also known as the bilinear disrete KP equation in the theory of integrablesystems, and as the otahedron reurrene in the ombinatorial literature [38, 48℄.Somos reurrenes and related sequenes also appear in onnetion with solv-able models in statistial mehanis, as mappings on the parameter spaes of suhmodels. For instane, in the last example of [40℄ it is mentioned that the Somos-4reurrene (1.5) with parameters � = Æ2, � = �Æ is the equation for Boltzmannweights in the hard hexagon model, where it is required that the solutions shouldhave period �ve: �n+5 = �n. Similarly, by onsidering more general transformationson the parameters in the sixteen vertex model, Boukraa et al. ame up with ageneral framework for generating birational maps by ompositions of elementaryinvolutive transformations on matries (see [3℄ and referenes). Certain lasses ofthe maps obtained in the latter framework are integrable, and some in partiularlead to a �bration of the phase spae by ellipti urves, as in the ase of the QRTfamily of maps [10, 41℄. Furthermore, the determinants of the matries that appearin [3℄ satisfy multilinear homogeneous reurrene relations, whih an be viewed ashigher degree analogues of (1.11).The original interest in ellipti divisibility sequenes stemmed from their arith-metial properties, and in partiular the appearane of primes and new prime divi-sors in suh sequenes [51℄. There has been a onsiderable amount of further interestin them reently [11{13, 43, 45℄, espeially beause they have been used to resolveHilbert's tenth problem for larger subrings of Q than the integers [15℄. As observedby Robinson [42℄, more general Somos sequenes, suh as the Somos-4 sequene(1.9), that do not have the divisibility property (1.2), still have speial arithmeti-al properties e.g. when taken modulo a prime. Some of Robinson's onjetures forSomos-4 were explained in the thesis of Swart [49℄, who gave an expliit algebraionstrution of the orrespondene between a general Somos-4 sequene (de�nedover the integers) and a sequene of points P0 + [n℄P 2 E, for an ellipti urveE, making use of unpublished work of Stephens. Somewhat earlier, the fat thatthe general term of a Somos-4 sequene an be expressed analytially using elliptitheta funtions was known privately to several people: Malouf mentions results ofBombieri and Granville [28℄, while Robinson refers to formulae of Gardner [42℄. Forthe ase of the original Somos-5 sequene 1; 1; 1; 1; 1; 2; 3; 5; 11; 37; 83; 274; 1217; : : :,whih is generated by (1.11) with k = 5 and the oeÆients set to 1, the relationwith ellipti urves and theta funtions was given by Zagier [54℄, and was alsoexplained by Elkies when it arose in onnetion with a Diophantine problem ingeometry [5℄.More reently [23℄, this author obtained the expliit solution to the initial value



September 1, 2009 13:42 Appliable Analysis somossixAppliable Analysis 5problem for the general Somos-4 reurrene, given in terms of the Weierstrass sigmafuntion as �n = ABn�(v0 + nv)=�(v)n2 (1.16)(for suitable parameters A;B; v0; v and invariants g2; g3 for the urve), and found ananalogous formula for Somos-5, whih depends on the parity of n [24℄. Both Somos-4 and Somos-5 an be understood in terms of assoiated integrable birational mapsof the plane whose orbits lie on biquadrati urves of genus one, orresponding topartiular symmetri ases of the QRT family of maps.The purpose of this artile is to present expliit analyti formulae for the simplestSomos reurrene that is beyond genus one, namely the general Somos-6 reurrene�n+6�n = ��n+5�n+1 + ��n+4�n+2 + (�n+3)2 (1.17)with three arbitrary oeÆients �, �, . Although the original reurrene (1.7) wastaken with integer initial values, here all oeÆients and initial data are taken in C.In the next setion Poisson brakets and invariant di�erential forms assoiated withSomos reurrenes are presented, and it is shown how the iteration of (1.17) an beprojeted down to an iteration of a birational map with an invariant meromorphivolume form in four dimensions. A diret method to onstrut onserved quan-tities for Somos sequenes is desribed, and as a result two independent rationalfuntions are found that are invariant under the iteration of the Somos-6 reur-rene. These two invariants projet down to two independent onserved quantitiesfor the orresponding four-dimensional map, and in eah of the ases where oneof the parameters vanishes (i.e. for �� = 0) an expliit non-degenerate Poissonbraket is found whih means that the map is sympleti and also integrable inthe Liouville-Arnold sense [52℄. In the third setion, Baker's addition formula [2℄is used to derive an analyti expression for the solution of the reurrene (1.17)in terms of the Kleinian sigma funtion �(z) assoiated with a genus two urve,whih is a quasiperiodi funtion of z 2 C2. The main result is the following.Theorem 1.1 : Given an algebrai urve X of genus two de�ned by the aÆnemodel X := n(�; �) 2 C2 ����2 = f(�) � 4�5 + 3Xj=0 j�j;o; (1.18)let �(z) denote the assoiated Kleinian sigma funtion, with }jk(z) =��j�k log �(z) for j; k = 1; 2 being the assoiated Kleinian }-funtions. For ar-bitrary A;B 2 C�, and v0 2 C2, the sequene with nth term�n = ABn �(v0 + nv)�(v)n2 (1.19)satis�es a Somos-6 reurrene (1.17) where the parameters are given by� = �(3v)2�̂�(2v)2�(v)10 ; � = �(3v)2�̂�(v)18 ;  = �(3v)2�(v)18 �}11(3v)��̂}11(2v)��̂}11(v)�;



September 1, 2009 13:42 Appliable Analysis somossix6 A.N.W. Honewith �̂ = }12(3v) � }12(v)}12(2v) � }12(v) ; �̂ = }12(2v) � }12(3v)}12(2v) � }12(v) = 1� �̂; (1.20)provided that v 2 C2 obeys the onstraint������ 1 1 1}12(v) }12(2v) }12(3v)}22(v) }22(2v) }22(3v) ������ = 0: (1.21)Before proeeding with further details, it is worth omparing the above resultwith some the existing literature on reurrenes assoiated with addition formulaein genus two. The division polynomials orresponding to the multiples of a generipoint P on an ellipti urve E are well known, and the reurrene relations theysatisfy are most easily be proved using the analyti formula (1.6) (see hapter II in[27℄, or Exerise 3.7 in [44℄). Morgan Ward's ellipti divisibility sequenes providea spei� arithmetial realization of the division polynomials, sine (modulo somesaling) they are obtained by substituting numerial values into the latter. Cantoronstruted the analogue of the division polynomials for hyperellipti urves, or-responding to multiples of a single point on the urve [7℄, and derived reurreneformulae for them. Onishi made use of the Kleinian sigma funtion, and obtainedfurther identities for hyperellipti division polynomials de�ned analytially in termsof the so alled psi-funtion, whih in genus two takes the form n(v) = �(nv)�2(v)n2 : (1.22)In the above, v 2 C2 is on the theta divisor, being the image under the Abelmap of a single point on a genus two urve; the sigma funtion vanishes on thetheta divisor, so �(v) = 0, but �2(v) 6= 0 for v 6= 0 (see Proposition 6.5 in [33℄).Matsutani onsidered the genus two psi-funtion (1.22), and derived assoiatedhigher order di�erene equations [29, 30℄. In [4℄ we onsidered the generalization ofthe genus two psi-funtion given by the formula (1.19) but with v being on the thetadivisor, and showed that it satis�es a Somos-8 reurrene. Kanayama presented adi�erent analogue of the division polynomials in genus two, by generalizing theformula (1.6) to �n(v) = �(nv)�(v)n2 : (1.23)where v 2 C2 orresponds to a generi element of the Jaobian of a genus two urve(where generi means not on the theta divisor, so �(v) 6= 0). Reurrene relationsfor �n provided an e�etive way to onstrut multipliation formulae in genus two[26℄.We shall return to Kanayama's results in the third setion, with the proof ofTheorem 1.1. The �nal setion of the paper is devoted to some onlusions andfurther open problems.



September 1, 2009 13:42 Appliable Analysis somossixAppliable Analysis 72. Poisson brakets and onserved quantitiesSequenes generated by iteration of the general Somos-k reurrene (1.11) areequivalent to the orbits of the birational map ' on Ck, with oordinates(�0; : : : ; �k�1), de�ned by' : 0BBBBB� �0�1...�k�2�k�1
1CCCCCA 7�! 0BBBBB� �1�2...�k�1�k

1CCCCCA ; �k = Pb k2 `=1 �` �k�` �`�0 : (2.1)This birational map preserves a very simple Poisson braket, whih in these oor-dinates takes the log-anonial form f�m; �ng = fmn �m �n. The partiular form ofthe reurrene also means that for any k there is a natural volume form whih isinvariant, up to a sign. The following result is easily veri�ed by diret alulation.Lemma 2.1: The meromorphi (rational) k-formV = 1�0 �1 : : : �k�1 d�0 ^ d�1 ^ : : : ^ d�k�1is preserved by the birational map (2.1) for even k, and anti-preserved for odd k,i.e. '�V = (�1)kV . This map is a Poisson map with respet to a log-anonialbraket of rank two, f�m; �ng0 = (n�m) �m �n; (2.2)unique up to resaling, with k � 2 independent Casimirs given byxj = �j �j+2(�j+1)2 ; j = 0; : : : ; k � 2:Remark: In [21℄ it was shown that the exhange relations of a luster algebra arePoisson maps with respet to a suitable log-anonial Poisson braket. However,the general Somos-k reurrene (with more than two terms on the right hand side)is not of the orret form (1.10) for a luster algebra.There is another natural way to understand the Casimir funtions for the Poissonbraket f ; g0. The Somos-k reurrene has the form of a disrete Hirota bilinearequation, in the sense that if (1.11) is viewed as an analyti di�erene equation forthe tau-funtion �n � �(n) then it an be rewritten asexp�k2 Dn� � � � = [ k2 ℄Xj=1 �j exp�k � 2j2 Dn� � � �; (2.3)where Dn is the Hirota derivative [22℄, de�ned byDNn F �G (n) = � ��n � ��n0�N F (n)G(n0) ���n0=n



September 1, 2009 13:42 Appliable Analysis somossix8 A.N.W. Honefor N 2 N. Hirota bilinear equations are invariant under gauge transformationswhereby the tau-funtion is multiplied by the exponential of an aÆne linear fun-tion of independent variables. In this ase the gauge transformations orrespondto an ation of (C�)2 on the phase spae, suh that �n 7! ABn �n for parametersA;B with AB 6= 0. The Poisson braket (2.2) is equivariant under this group a-tion, and its Casimirs xj are invariants of the ation. Any Casimir of a Poissonbraket is invariant under Hamiltonian ows; but in general a Casimir need not bepreserved by a Poisson map, although Casimirs are always mapped to Casimirs. Inthe ase of Somos sequenes, the interesting dynamis takes plae on the spae ofthe Casimirs, where it an be desribed in the following terms.Lemma 2.2: The map (2.1) indues a birational map '̂ : Ck�2 ! Ck�2 on thespae of Casimirs (x0; : : : ; xk�3), so that the projetion$ : Ck �! Ck�2(�0; : : : ; �k�1)T 7�! (x0; : : : ; xk�3)Tintertwines ' and '̂, i.e. '̂ �$ = $ � '. The orbits of '̂ are obtained by iterationof the reurrene(xn+(k�2)=2)k=2 Q(k�4)=2j=0 (xn+j xn+k�j�2)j+1=Pk=2`=1 �` (xn+(k�2)=2)k=2�`Q(k�4)=2j=` (xn+j xn+k�j�2)j�`+1 (2.4)for k even, and(k�3)=2Yj=0 (xn+j xn+k�j�2)j+1 = (k�1)=2X̀=1 �` (k�3)=2Yj=` (xn+j xn+k�j�2)j�`+1 (2.5)for k odd. The meromorphi (k � 2)-formV̂ = 1Qk�3j=0 xj dx0 ^ : : : ^ dxk�3 (2.6)is preserved/anti-preserved by '̂ for even/odd k respetively, and the pullbak of V̂is $�V̂ = J0yV where J0 is the Poisson bivetor �eld for the braket f ; g0.Remark: The generi �bre of the projetion $ is the gauge group (C�)2, so thatafter removing the oordinate hyperplanes f�j = 0g the original phase spae has thestruture of a prinipal �bre bundle. In fat, Somos-k is ovariant under the ationof the larger saling group �n ! ABnCn2 �n with non-zero A;B;C, whih hangesthe oeÆients �j for C 6= 1. This saling group also appeared as a symmetryof the determinantal variables in [3℄. In the ase that k is odd, there is a furtherfreedom to resale �n di�erently for odd/even n, and ' projets down to a map on a(k�3)-dimensional spae of Casimirs, with oordinates (x0x1; x1x2; : : : ; xk�4xk�3)(f. the results for k = 5 in [24℄).Using reurrenes due to Cantor [7℄, Matsutani showed that suitable ratios ofthe genus two psi-funtion (1.22) satisfy a reurrene of the form (2.4) in the asek = 8 (f. equation (3.15) in [29℄). Heneforth we restrit ourselves to the asek = 6. In that ase the reurrene (2.4) is of order four, and with the oeÆients



September 1, 2009 13:42 Appliable Analysis somossixAppliable Analysis 9�; �;  as in (1.17) it is given byxn+4 (xn+3)2 (xn+2)3 (xn+1)2 xn = �xn+3 (xn+2)2 xn+1 + �xn+2 + ; (2.7)whih orresponds to a birational map in C4 with oordinates (x0; x1; x2; x3). Thespeial ase of the reurrene (2.7) with � = 0 was found by van der Poorten(Theorem 3.1 in [36℄), based on the ontinued fration expansion of the squareroot of a sexti polynomial, de�ning a genus two urve; the orresponding resultin the ellipti ase, related to Somos-4, was given in [35℄.For what follows it will be more onvenient to use the alternative oordinatesystem (u; x; y; v) := (x0x1x2; x1; x2; x1x2x3), in whih the map orresponding to(2.7) takes the form'̂ : 0BB�uxyv1CCA 7�! 0BB�vy~y~v1CCA ; ~y = vxy ; ~v = (�v + �)y + uv (2.8)To be more preise, the above map and the original one de�ned by (2.7) are on-jugate to one another via the hange of oordinates in C4, but we use the samesymbol '̂ to denote both. This map deomposes as the produt '̂ = �1 � �2 of twoinvolutions that do not ommute with one another:�1 : (u; x; y; v)T 7! (v; y; x; u)T ;�2 : (u; x; y; v)T 7! ([(�v + �)y + ℄u�1v�1; vx�1y�1; y; v)T ;with �2j = id, j = 1; 2. Eah of these involutions is itself a produt of two ommutinginvolutions: the permutation �1 deomposes as the produt of the transpositionsu$ v and x$ y, and �2 is the omposition of the replaement u! [(�v + �)y +℄u�1v�1 and the replaement x ! vy�1x�1 (where the other variables are held�xed).The rest of this setion is onerned with proving the following result.Theorem 2.3 : For arbitrary oeÆients �; �;  the volume-preserving map (2.8)in C4 has two independent rational �rst integrals H1, H2. It is an integrable mapin the Liouville-Arnold sense for �� = 0.Conjeturally, the seond part of the above statement should hold for arbitrary�; �; , and not just in the ases where one or more of the oeÆients vanishes. ForLiouville integrability, the map should be sympleti with H1, H2 being in involu-tion with respet to the assoiated nondegenerate Poisson braket. The tehnialobstale when �� 6= 0 is that there is no general method to onstrut a Poissonbraket for an arbitrary birational map. Yet when �� = 0 it is straightforward toobtain a log-anonial Poisson braket.Proposition 2.4: The map '̂ de�ned by (2.8) preserves a 4-form V̂ . It is aPoisson map with respet to a non-trivial braket of log-anonial type if and onlyif �� = 0. In eah of the three ases � = 0, � = 0,  = 0 separately there is adistint non-degenerate log-anonial braket.Proof : In the ase k = 6 the formula (2.6) gives an invariant 4-form, whih isV̂ = (uxyv)�1du ^ dx ^ dy ^ dv in the alternative set of oordinates. The rest ofthe proof follows from a diret alulation, whih is most easily arried out in theoordinates xj , j = 0; 1; 2; 3. Sine the map de�nes the reurrene (2.7) in thesevariables, the log-anonial braket must take the form fxm; xn g = ~n�m xm xn for



September 1, 2009 13:42 Appliable Analysis somossix10 A.N.W. Honesome onstant oeÆients ~n with ~n = �~�n. Clearly ~0 = 0 and the whole braketis determined by ~1; ~2; ~3. Taking the Poisson braket of eah side of (2.7) for n = 0with x1; x2; x3 suessively gives a system of homogeneous linear equations for theseoeÆients. For �� 6= 0 one �nds ~n = 0 for all n, so there is no non-trivial braketof this type, while for eah ase � = 0, � = 0,  = 0 separately there is a di�erentsolution of the linear system for the ~n, unique up to overall resaling, giving anon-degenerate Poisson braket. The property of being log-anonial is preservedupon hanging to the variables u; x; y; v. For ompleteness the expliit forms ofthe brakets are presented here in terms of these oordinates (only non-vanishingbrakets are given):� = 0 : fu; yg = uy; fx; vg = xv;� = 0 : fu; yg = uy; fx; yg = �xy; fx; vg = xv; = 0 : fu; vg = uv; fx; yg = xy: �In order to obtain �rst integrals (i.e. onserved quantities) for the map '̂ , itis instrutive to present an ad ho method for �nding suh quantities diretly forbilinear reurrenes, whih seems to work whenever the reurrene is assoiatedwith an integrable map. The method is based on the observation that Somos-4sequenes satisfy in�nitely many independent bilinear relations of higher order,with oeÆients that are onstant along eah orbit, but an depend on the hoieof orbit. To be preise, eah Somos-4 sequene satis�es an independent Somos-krelation for every k > 4. This phenomenon is neatly enoded into the slogan \everySomos-4 is a Somos-k" [37℄, and it persists for Somos-5,-6,-7 (subjet to suitableonstraints on the higher values of k that are allowed). As is explained in the nextsetion, a formula for the iterates in terms of theta funtions implies the existeneof in�nitely many relations of higher order. By regarding the oeÆients of thesehigher reurrenes as funtions of the initial data, they furnish onserved quantitiesfor the original map, whih are non-trivial provided that they are not just funtionsof the �j . The existene of these relations of higher order should be related to thenotion of the Hirota-Kimura basis introdued in [34℄.In pratie one an begin to searh for �rst integrals by looking for bilinearrelations along an orbit with spei� numerial values. For example, starting withan even order Somos-2M reurrene one an use it to generate suÆiently manyterms of a partiular sequene, starting with �xed numerial values for the initialdata and �j , in order to alulate the N �N determinant��������� �2N�0 �2N�1�1 : : : \�N+M�N�M : : : �N+1�N�1 (�N )2�2N+1�1 �2N�2 : : : : : : : : : �N+2�N (�N+1)2... ... ... ... ...�3N�1�N�1 �3N�2�N : : : \�2N+M�1�2N�M�1 : : : �2N�2N�2 (�2N�1)2 ���������with N > M , where the hat denotes that the olumn is deleted. If this determinantvanishes then the partiular sequene in question also satis�es a Somos-2N relation,and by alulating a non-zero vetor in the kernel of the matrix one �nds theoeÆients of suh a relation. Morever, the existene of this higher order relationfor a single orbit suggests that the same might hold for a generi orbit. One anhek other numerial sequenes, and then having found the smallest N > Mfor whih the determinant vanishes on these partiular orbits, one an redo thealulation symbolially in order to �nd the oeÆients of the Somos-2N reurrene



September 1, 2009 13:42 Appliable Analysis somossixAppliable Analysis 11as funtions of the �j and an arbitrary set of initial data �j, j = 0; : : : ; 2M � 1 forthe original Somos-2M reurrene.In the ase of interest here, starting from the Somos-6 reurrene (1.17), one antake the partiular numerial sequene (1.8), and one �nds that the �rst even-widthsequene of higher order is a Somos-10. Indeed, in that ase the above determinantwith M = 3 and N = 5 beomes���������� �10�0 �9�1 �7�3 �6�4 (�5)2�11�1 �10�2 �8�4 �7�5 (�6)2�12�2 �11�3 �9�5 �8�6 (�7)2�13�3 �12�4 �10�6 �9�7 (�8)2�14�4 �13�5 �11�7 �10�8 (�9)2
���������� = ���������� 75 23 5 3 1421 75 9 5 91103 421 23 27 255047 1103 225 115 8141783 5047 2105 675 529

���������� = 0:
The kernel of the 5� 5 matrix here is spanned by the vetor (�1; 1; 15;�19; 34)T ,whih suggests that the sequene (1.8) should satisfy the Somos-10 reurrene�n+5�n�5 = �n+4�n�4 + 15�n+2�n�2 � 19�n+1�n�1 + 34(�n)2:To prove this for all n, and generalize it to the ase of arbitrary initial data andarbitrary oeÆients �; �;  in (1.17), one should assume that in general the kernelis spanned by (�1; ~�1; ~�2; ~�3; ~�4)T , and then use the �rst four rows of the abovematrix to obtain a linear system for the ~�j . In general, the terms �6; : : : ; �13 thatappear in this system are ertain Laurent polynomials in �0; : : : ; �5 and �; �; ,determined by iterating (1.17). Upon solving this linear system, it is found that~�1 = , so it is independent of the �j , while ~�2; ~�3; ~�4 are given by more ompliatedexpressions in the oeÆients and initial data, detailed in (2.11) below. Havingfound these ~�j , one an then verify diretly that they are invariant under the map' given by (2.1) with k = 6, and hene are onstant along eah orbit, as required.Subsequently one must then hek for dependenies between the ~�j , in order toount the number of independent �rst integrals so obtained.Although we have explained how to look for higher relations of even order(Somos-2N), one should also hek for relations of odd order, again by alulat-ing suitable determinants. It turns out that for Somos-6 sequenes the �rst higherrelation one �nds is atually a Somos-9 reurrene. Before we state the exat re-sults for this ase, it is helpful to present ertain polynomials pj = pj(u; x; y; v) forj = 0; 1; 2, whih are the building bloks for the �rst integrals:p0 = uxyv;p1 = ��uv(x2y2 + xu+ yv) + �xy(xu2 + yv2) + xyu2v2+�(x2yu+ xy2v + uv) + 2xy(u+ v) + �2�xy(u+ v)+��2xy + �2(xu+ yv) + ��(x+ y) + �2;p2 = ���uv(x+ y) + x2y2(u+ v)�+ uxyv(u+ v) + �u2v2+��xy(ux+ vy) + uv�+ �2x2y2 + �xy(x+ y) + 2xy: (2.9)
Observe that these polynomials are invariant under the involution �1.



September 1, 2009 13:42 Appliable Analysis somossix12 A.N.W. HoneProposition 2.5: The iterates of the Somos-6 reurrene (1.17) also satisfy theSomos-9 reurrene�n+5�n�4 = �� �n+4�n�3 � � �n+3�n�2+2 �n+2�n�1 + (�4 + �H1 + �H2) �n+1�n; (2.10)as well as the Somos-10 reurrene�n+5�n�5 =  �n+4�n�4 + (��2 + H2) �n+2�n�2+(�3 � �3 � H1) �n+1�n�1 + �(�4 + �H1 + �H2) (�n)2; (2.11)where the quantities H1 and H2 are onstant along eah orbit. These Hj are gauge-invariant Laurent polynomials in the variables �0; : : : ; �5, and eah of them is the ra-tio of two homogeneous polynomials of degree six. In terms of the variables u; x; y; vthey are given expliitly byH1 = p1(u; x; y; v)p0(u; x; y; v) ; H2 = p2(u; x; y; v)p0(u; x; y; v) ; (2.12)with the pj as de�ned in (2.9) above.
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Figure 1. A plot of 25; 000 points on the orbit of the point (u; x; y; v) = (1; 1; 1; 1) for the map (2.8) with� = � =  = 1, projeted onto three dimensions, namely the (u; x; y) omponents of eah iterate.The proof of Theorem 2.3 is now ompleted by noting that Hj = Hj(u; x; y; v)for j = 1; 2 are two independent �rst integrals for the map '̂ de�ned by (2.8), andthen one an verify diretly that fH1;H2g = 0 for eah of the three di�erent ases� = 0, � = 0,  = 0 where there is a non-degenerate log-anonial braket, sothe map is integrable in the Liouville-Arnold sense in those ases. The intersetionof the level sets for the two �rst integrals (2.12) de�nes a surfae in C4. The realversion of suh a surfae, in the ase � = � =  = 1, H1 = 19, H2 = 14, whih



September 1, 2009 13:42 Appliable Analysis somossixAppliable Analysis 13orresponds to the sequene (1.8), an be seen in Figure 1, where a real orbit ofthe map '̂ has been projeted onto R3; in aordane with the Liouville-Arnoldtheorem, the struture of a real 2-torus is visible. From (2.9) the de�ning equationsof the surfae are quadrati in eah of the oordinates u; x; y; v. The orbits of QRTmaps lie on biquadrati urves in C2, so the map '̂ an be viewed as a four-dimensional analogue of the QRT family. Other analogues of QRT maps in higherdimensions were onstruted in [18℄.3. Sigma funtion formulaeThe onnetion of higher order Somos sequenes with multidimensional theta fun-tions was explained by Elkies in posts to Propp's \bilinear" forum [39℄. The ruialobservation of Elkies is that while suitable expressions in theta funtions satisfySomos reurrenes, the number of available parameters appears insuÆient to a-ount for a general Somos-k sequene when k is large. To be preise, suppose thatwe are given a omplex torus Cg=L, where the lattie L = Zg�
Zg is spei�ed bythe symmetri g� g omplex matrix 
 lying in the Siegel upper half-spae (i.e. theimaginary part of 
 is positive de�nite). The standard Riemann theta funtion isan entire funtion de�ned by the Fourier series�(z; 
) = Xn2Zg e�i(n;
n)+2�i(n;z); (3.1)where ( ; ) denotes the standard salar produt in dimension g. For a positiveinteger w, an entire funtion f = f(z) on Cg is said to be L-quasiperiodi of weightw if for all z it satis�esf(z+m) = f(z) and f(z+
m) = e��iw(m;
m)�2�iw(m;z)f(z);for all m 2 Zg. A standard result says that the vetor spae of suh funtionshas dimension wg (see Proposition 1.3 in hapter II of [32℄). Up to multipliationby a salar, the standard theta funtion (3.1) is the unique L-quasiperiodi entirefuntion of weight one.Now, given the sequene with nth term�n = ABnCn2�(z0 + nz; 
); (3.2)it is straightforward to verify that (for �xed n) eah of the produts �n+j�n�j forj = 0; : : : ; 2g is an L-quasiperiodi funtion of weight two with respet to shifts ofthe argument ~z = z0 + nz. Sine the spae of suh funtions has dimension 2g, itfollows that these produts satisfy a linear relation, whose oeÆients an dependon C and z but are independent of n (and are also independent of the gauge fatorsA;B). As the same linear relation holds for all n, the sequene of these �n satis�esa Somos-k reurrene with k � 2g+1. The formula (3.2) depends on A;B;C; z0; zand 
, whih means at most 3 + 2g + g(g + 1)=2 = (g + 2)(g + 3)=2 omplexparameters, while the general reurrene (1.11) of order k has bk=2 oeÆientsand k initial data. So if we have a generi hoie of parameters in (3.2) suhthat the minimum order relation is for k = 2g+1, then the number of parametersrequired for the solution of the initial value problem for the general reurrene isk + bk2 = 3� 2g > (g + 2)(g + 3)=2 for g > 1. (However, note that for odd k thequantity A in (3.2) need not be onstant, but an depend on the parity of n; f.[24℄.)



September 1, 2009 13:42 Appliable Analysis somossix14 A.N.W. HoneTo formulate the expliit analytial results for Somos-6, it is onvenient to workwith the Kleinian sigma funtion in genus two rather than working diretly withtheta funtions. Given a urve X of genus two de�ned by the quinti equation�2 = f(�) � 4�5 + 4Xj=0 j�j; (3.3)it is always possible to remove the oeÆient 4 by making a shift in the � oordi-nate, � ! � + onst. By resaling both � and �, one of the other four remainingoeÆients (as long as it is non-zero) an be set to be 1, whih leaves three mod-uli for genus two urves. However, having set 4 ! 0, we prefer to leave the fouroeÆients 0; 1; 2; 3. From (3.3) the urve is realized as a two-sheeted overof the Riemann sphere with �ve branh points in the �nite omplex plane and asingle branh point 1 at in�nity. The vetor spae of holomorphi di�erentials istwo-dimensional, being generated by ��1d� and ��1�d�, whih are onvenientlyorganized into a vetor of anonial holomorphi di�erentials, denoteddu = 0� d��� d�� 1A :The period matries of the urve are2! = 0� Ha1 d�� Ha2 d��Ha1 � d�� Ha2 � d�� 1A ; 2!0 = 0� Hb1 d�� Hb2 d��Hb1 � d�� Hb2 � d�� 1A ;where (a1; a2; b1; b2) is a anonial homology basis for the ompat Riemann surfaeorresponding to X, with non-vanishing intersetions aj � bk = Æjk.The Jaobian of X is the omplex torus Ja(X) = C2=�, where � = 2!Z2�2!0Z2is the period lattie generated by the a- and b-periods. The elements (P1; P2) ofthe symmetri produt Sym2(X) an be identi�ed with degree zero divisors D =(P1 �1) + (P2 �1), whih are mapped to Ja(X) by the Abel map:u = Z P11 du+ Z P21 du 2 Ja(X)(where the map is based at 1).The Kleinian sigma funtion �(u) is an odd funtion of (u1; u2)T = u 2 C2,quasiperiodi with respet to shifts by elements of the period lattie �. The sigmafuntion is de�ned in terms of the standard Riemann theta funtion by �(u) =e ~Q(u)�((2!)�1u�K; 
), where 
 = !�1!0 is the normalized matrix of b-periods,K is a normalized half-period vetor of Riemann onstants, and the funtion ~Q isa ertain sum of quadrati, linear and onstant terms in u; for preise details see[2, 6℄. The Kleinian � and } funtions are de�ned by�j(u) = � log �(u)�uj ; }jk(u) = ��2 log �(u)�uj�uk ; j; k = 1; 2:The Kleinian } funtions solve the Jaobi inversion problem: given u 2 Ja(X)whih is the image of the pair of points (P1; P2) under the Abel map, with



September 1, 2009 13:42 Appliable Analysis somossixAppliable Analysis 15Pj = (�j ; �j) for j = 1; 2, the points Pj 2 X an be reonstruted from their� oordinates via the formulae }12(u) = ��1�2, }22(u) = �1 + �2.For our purposes, the most important property of the genus two sigma funtionis the addition formula�(u+ v)�(u� v)�(u)2�(v)2 = }22(u)}12(v) � }12(u)}22(v) + }11(v)� }11(u); (3.4)whih was found by Baker [2℄. Theorem 1.1 is a onsequene of the following result,whih is a diret appliation of Baker's formula.Proposition 3.1: For generi A;B 2 C� and v0, v 2 C2, the sequene of �nde�ned by (1.19), in terms of the genus two sigma funtion, satis�es a Somos-8 reurrene. It satis�es a Somos-6 reurrene if and only if the shift v on theJaobian Ja(X) satis�es the onstraint (1.21).Proof : The proof is essentially the same as the proof of Theorem 2 in [4℄, where thease of shifts v on the theta divisor (where �(v) = 0) was onsidered. Upon substi-tuting (1.19) into a general Somos-8 reurrene with four oeÆients �1; �2; �3; �4,one obtains an expression of the formC0(v) + C11(v)}11(u) + C12(v)}12(u) + C22(v)}22(u) = 0; (3.5)where u = v0 + nv, and the oeÆients C0, Cjk are funtions of v and linear inthe �j. Sine this must hold for all n, and the funtions }jk(u) for j; k = 1; 2 donot satisfy a linear relation, this means that C0 and the Cjk must vanish, andthis uniquely determines the oeÆients �j of the Somos-8 reurrene, whih areobtained by solving a linear system. However, this linear system is degenerate ifand only if the determinant (1.21) vanishes. In that ase one �nds that a Somos-6relation (1.17) holds instead. �The preeding result an be understood more learly by making a slight extension(as well as a orretion) of some results derived by Kanayama. Upon di�erentiat-ing the tau-funtion (1.19) with respet to the oordinates v1; v2, one obtains theformula �j�k log �n = n2�}jk(v) � }jk(v0 + nv)�; j; k = 1; 2; (3.6)where �j denotes �=�vj . In the speial ase that A = B = 1 and v0 ! 0, onehas �n = �n as given by (1.23), and then (3.6) redues to an expression for theseond logarithmi derivatives of �n whih was found in [26℄. The latter expressionwas the key to Kanayama's reursive method for alulating the multipliationformulae for the genus two Kleinian } funtions in genus two, i.e. for alulat-ing }jk(2v); }jk(3v); : : : in terms of Abelian funtions evaluated at the argumentv. Using the tau-funtion and the funtion �n, it is instrutive to onsider theombination �nm(v;v0) de�ned by�nm = [(�1)2�n+m�n�m � (�m)2�n+1�n�1 + �m+1�m�1(�n)2℄=(�m�n)2= 1�m�1(�m)2(�n)3 �������1�n+m �0�n+m�1 �1�m�n�m�n+1 �m�1�n �0�n�m+1�m+1�n �m�n�1 �1�n�m ������ ; (3.7)for integers n 2 Z, m � 1 (and note that ��n = ��n, so �0 = 0, and �1 = 1, but



September 1, 2009 13:42 Appliable Analysis somossix16 A.N.W. Hone�1 is kept in (3.7) for the sake of homogeneity). Observe that �nm is independentof A;B, and for eah m the above determinant is a 3�3 minor of an in�nite matrixof Casorati type. Another appliation of Baker's formula (3.4) allows �nm to berewritten as a determinant analogous to (1.21).Lemma 3.2: The ombination (3.7) an be rewritten as the determinant�nm = ������ 1 1 1}12(v) }12(mv) }12(v0 + nv)}22(v) }22(mv) }22(v0 + nv) ������ : (3.8)Corollary 3.3: The quantity �nm an be written as a salar produt of twovetors in C2, so that �nm = (m; ln), wherem(v) = �}22(mv)� }22(v)}12(mv)� }12(v)� ; ln(v;v0) = 1n2 ��1�2 log �n��22 log �n � : (3.9)Proof : From the formula (3.6), the elements }jk(v0 +nv) in the third olumn of(3.8) an be replaed in terms of }jk(v) and logarithmi derivatives of �n. The salarprodut of the vetors m and ln is then obtained by expanding the determinantabout its third olumn. �Remark: Proposition 2.3 in Kanayama's thesis [26℄ asserts that, for all m;n, thequantity �nm(v; 0) (de�ned by (3.7) with �k = �k for every k) vanishes identially.However, this result is inorret: indeed, suh a reurrene haraterizes elliptidivisibility sequenes [50℄ (or equivalently, division polynomials for ellipti urves),so should not be satis�ed by the sequene of �n(v), whih are genus two Abelianfuntions.It is lear that 1 = 0 and �n1 = 0. Generially, 2 and 3 are two linearlyindependent vetors in C2, so that 4 6= 0 is given by a non-zero linear ombination4 = �22+�33, and hene �n4 = �2�n2+�3�n3 for all n, whih implies that �nsatis�es a Somos-8 reurrene. However, if 2 and 3 are linearly dependent thena non-trivial relation �2�n2 + �3�n3 = 0 must hold, and so �n satis�es a Somos-6reurrene. The ondition for the vetors 2 and 3 to be linearly dependent ispreisely equivalent to the onstraint (1.21). Thus we see that Corollary 3.3 yieldsan alternative proof of Proposition 3.1, albeit a less onstrutive one. The samearguments show that the solution (1.19) of a Somos-6 reurrene does not satisfya Somos-8, but does satisfy a Somos-10 reurrene, in agreement with Proposition2.5, as well as a Somos-2k for all k � 5. In�nitely many odd-order relations alsofollow (Somos-9,-11; : : :) by taking a suitably modi�ed version of �nm.The proof of Theorem 1.1 is ompleted by substituting the sigma funtion formula(1.19) into (1.17) to obtain a linear system of the same form as (3.5), and then thisgives an unique solution for the oeÆients �; �;  subjet to the onstraint (1.21).Remark: Lemma 3.2 provides alternative ways to rewrite the onstraint (1.21).In terms of Kanayama's phi-funtion, or the sigma funtion, it is �32 = [(�1)3�5�(�2)3�4 + �1(�3)3℄=(�2�3)2 = 0, or�32 = �(v)3�(5v) � �(2v)3�(4v) + �(v)�(3v)3�(v)2�(2v)2�(3v)2 = 0:The latter expression shows that on the Jaobian of a generi genus two urveX the onstraint set does not interset the theta divisor. Indeed, when �(v) = 0
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