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order six
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Somos sequences are integer sequences generated by recurrence relations that are in bilinear
form, meaning that they can be written as a quadratic relation between adjacent sets of
iterates. Such sequences have appeared in number theory, statistical mechanics, and algebraic
combinatorics, as well as arising from reductions of bilinear partial difference equations in the
theory of discrete integrable systems. This article is concerned with the general form of the
Somos-6 recurrence, which is a three-parameter family of bilinear recurrences of order six.
After explaining how it arises by reduction from the bilinear discrete BKP equation (Miwa’s
equation), an invariant Poisson bracket for Somos-6 is presented. Four independent Casimirs
of this bracket, which are the invariants under the action of a group of gauge transformations,
lead to an associated map on a four-dimensional reduced phase space. Two rational first
integrals for this map are constructed, and (for certain parameter choices) these are found to
be in involution for a non-degenerate Poisson bracket associated with a symplectic form on
the reduced phase space, so that the map is Liouville integrable. For generic parameter values
the explicit analytic solution of the Somos-6 recurrence is given in terms of the Kleinian sigma
function for a curve of genus two.

Keywords: Somos sequences, Laurent phenomenon, integrable maps, Poisson bracket,
theta function, Kleinian sigma function

1. Introduction
The properties of the integer sequence defined by the linear recurrence relation
Fn-l—l =F,+ F,_1, with F} = F, =1, (11)

have been studied for centuries. One particularly striking property of the Fibonacci
numbers is that they form a divisibility sequence:

F,|F, whenever m|n. (1.2)
Lucas sequences, defined by
Fn—I—I = Can + ﬁFn—la with F1 = 1, F2 = € Z, ﬁ € Z, (13)

are a natural generalization of Fibonacci numbers that have the same divis-
ibility property (1.2). Being defined by linear recurrences of order two, the
general term in such sequences can be expressed explicitly using exponen-
tial/trigonometric/hyperbolic functions. To be precise, the nth term of the sequence
defined by (1.3) is given by the explicit formula

inny
F, =p"! et a=2pcost, fB=—p (1.4)
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where p,9 € C for generic integers «, 8 € Z.

In the 1940s, Morgan Ward sought an elliptic function generalization of Lucas se-
quences, and was led to define elliptic divisibility sequences [50], which are specified
by a quadratic recurrence of fourth order, namely

Tn4d Tn = X Tpg3 Tpg1 + B (Tn+2)2a (1'5)
with the integer parameters and initial data related by
a=(n)?, B=-mms, T1=1,79,73, 74 €EZ with  79|74.

Observe that the recurrence relation (1.5) is rational [28], in the sense that each
new iterate 7,44 is given by a rational function of the four previous terms; hence the
recurrence gives rise to a rational map in four dimensions. With these constraints
on the initial values and parameters, the nonlinear recurrence (1.5) produces a
sequence of integers 7, € Z satisfying the same divisibility property as in (1.2).
The general term is given by

o(nv)
o(v)"’

Ty =

(1.6)

with o(2) = o(2;g2,93) denoting the Weierstrass sigma function associated with
the elliptic curve E defined by the cubic equation y? = 42> — gz — ¢3. The value
v € C is defined up to the periods of the curve, and fixes a point P € FE, so that the
nth term of the sequence corresponds to [n|P € E, where n|P =P+ P+ ...+ P
(n times) denotes multiple addition of P to itself in the group law of the curve.

If one is prepared to relinquish the divisibility property, then one can consider
linear recurrence relations like (1.3) with arbitrary values of the coefficients and
initial data, and provided that these values are integers it is clear that F,, € Z
for all n. However, for nonlinear recurrences yielding rational maps it is no longer
obvious under what circumstances a sequence of integers can be produced. While
investigating the properties of elliptic theta functions, Michael Somos [47] made
the surprising empirical observation that if one takes the quadratic relation

Tn+6 Tn = Tn+5 Tn+1 T Tn4+4 Tp4+2 + (7'n—|—3)2 (17)
with initial values 7o = 7 = ... = 75 = 1, then an integer sequence beginning
1,1,1,1,1,1,3,5,9,23,75,421, 1103, 5047,41783, 281527, 2534423, . .. (1.8)

is generated. This observation, which initially was based on purely numerical ev-
idence, led to a series of conjectures concerning similar recurrences defined by
quadratic relations [20]. For instance, for the recurrence (1.5), if the coefficients
are @ = 8 =1, and the four initial values are chosen to be 7o =171 =9 =713 =1,
then an integer sequence beginning

1,1,1,1,2,3,7, 23,59, 314, 1529, 8209, 83313, . .. (1.9)

is produced [46]. Various proofs of this observation were soon found [28], but a
further valuable insight (see [20]) was the fact that if the initial data are treated
as variables, then the iterates of the recurrence (1.5) are polynomials in these
variables and their inverses, or in other words, Laurent polynomials. The fact that

Tn € Z[O[,,B,Toil,Tlil,TQil,T?)il] for all n € 7 is known as the Laurent property
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for the recurrence (1.5), and the integrality of the particular sequence (1.9) is an
immediate corollary of this more general fact.

The Laurent property has subsequently become highly relevant to algebraic com-
binatorics, because it is an essential feature of Fomin and Zelevinsky'’s theory of
cluster algebras [17]. A cluster algebra of rank m is a commutative algebra pro-
duced by distinguished sets of generators, called clusters, that live on the vertices
of an m-tree. Each cluster contains m generators zg, ..., Zm,m—_1, and for any cluster
at an adjacent vertex the generators xy, ...,z _; can be ordered as 37971 = z; for
j=1,...,m, so that n — 1 of them are the same, but z( is replaced by z/, | = z,
which is defined by an exchange relation of the form

Ty = c1 M (x) + coMa(x), (1.10)

where c1,co are coefficients and M7 and M, are certain monomials in the other
variables x = (z1,...,Z,—1). In a cluster algebra, the variables in each cluster are
Laurent polynomials in the variables of any initial cluster. Recurrence sequences
can be generated by iterating (1.10) along a particular sequence of vertices that
share the same exchange relation [19]. Hence if a recurrence comes from a cluster
algebra, then it has the Laurent property.

The general Somos-k recurrence is a quadratic recurrence of order k of the form

5]

Tn+k Tn = Zaj Tn+k—j Tn+js (1.11)
Jj=1

where «; are coefficients. Hickerson used computer algebra to prove that the origi-
nal Somos-6 recurrence (1.7) has the Laurent property [20]. Some time later, Fomin
and Zelevinsky used the machinery of cluster algebras to prove that this property
holds for the general Somos-k recurrence when k = 4,5,6 or 7 [16]. However, note
that general Somos-6 and Somos-7 rceurrences have three terms on the right hand
side, so they do not fit within the framework of cluster algebras, which are defined
by exchange relations with a sum of two monomials, as in (1.10). It appears that for
a generic choice of parameters «; the Laurent property never holds for £ > 8. To
see this for the particular case k = 8, it is sufficient to choose the four parameters
a1 = ... = a4 = 1 and the eight initial values 79 = ... = 77 = 1 for Somos-8, which
at the tenth step yields the non-integer rational value 717 = 420514/7.

In fact, the Laurent property for the general Somos-6 and Somos-7 recurrences
came about in [16] as a special case of that property for the four-term Gale-
Robinson recurrences, that have the form

Tn+k Tn = O Tp4pTntk—p T B Tn+q Tn+k—q T Y Tntr Tn+k—r (1-12)

for distinct positive integers p,q,r with p + ¢ + r = k. Moreover, Fomin and
Zelevinsky’s proof of the Laurent property for (1.12) (Theorem 1.4 in [16]) comes
about as a consequence of the same property for the three-dimensional lattice
equation

Tl+1,m+1,n+1TZ,m,n = TZ+1,m,nTZ,m+1,n+1 - Té,m+1,nTl+1,m,n+1 (1 13)
+Tl,m,n+1Tl+1,m+1,na

with (£,m,n) € Z3. Indeed, every four-term Gale-Robinson recurrence (1.12) arises
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as a one-dimensional reduction of (1.13), by taking

Q(¢,m,n) ™, N =ng +pl +gm + rn, (1.14)

Té,m,n =€
where @) = Q(¢, m,n) is an arbitrary quadratic form in £, m,n and ng is arbitrary;
the coefficients «, 3,y fix the off-diagonal terms in ). The partial difference equa-
tion (1.13) is well known in the literature on discrete integrable systems, where
it goes by the name of Miwa’s equation [31], or the discrete BKP equation; in
the combinatorics literature it is known as the cube recurrence [8]. Similarly, the
three-term Gale-Robinson recurrences (including Somos-4 and Somos-5), which
are obtained from (1.12) by setting one of the parameters a, 3,7 to zero, provide
one-dimensional (ordinary difference) reductions of the Hirota-Miwa equation [53],

TZ«H,m,nTlfl,m,n = TZ,m«H,nTl,mfl,n + Tl,m,n«leZ,m,nfla (115)

which is also known as the bilinear discrete KP equation in the theory of integrable
systems, and as the octahedron recurrence in the combinatorial literature [38, 48].

Somos recurrences and related sequences also appear in connection with solv-
able models in statistical mechanics, as mappings on the parameter spaces of such
models. For instance, in the last example of [40] it is mentioned that the Somos-4
recurrence (1.5) with parameters o = 62, 8 = —6 is the equation for Boltzmann
weights in the hard hexagon model, where it is required that the solutions should
have period five: 7,15 = 7,. Similarly, by considering more general transformations
on the parameters in the sixteen vertex model, Boukraa et al. came up with a
general framework for generating birational maps by compositions of elementary
involutive transformations on matrices (see [3] and references). Certain classes of
the maps obtained in the latter framework are integrable, and some in particular
lead to a fibration of the phase space by elliptic curves, as in the case of the QRT
family of maps [10, 41]. Furthermore, the determinants of the matrices that appear
in [3] satisfy multilinear homogeneous recurrence relations, which can be viewed as
higher degree analogues of (1.11).

The original interest in elliptic divisibility sequences stemmed from their arith-
metical properties, and in particular the appearance of primes and new prime divi-
sors in such sequences [51]. There has been a considerable amount of further interest
in them recently [11-13, 43, 45], especially because they have been used to resolve
Hilbert’s tenth problem for larger subrings of Q than the integers [15]. As observed
by Robinson [42], more general Somos sequences, such as the Somos-4 sequence
(1.9), that do not have the divisibility property (1.2), still have special arithmeti-
cal properties e.g. when taken modulo a prime. Some of Robinson’s conjectures for
Somos-4 were explained in the thesis of Swart [49], who gave an explicit algebraic
construction of the correspondence between a general Somos-4 sequence (defined
over the integers) and a sequence of points Py + [n]P € E, for an elliptic curve
FE, making use of unpublished work of Stephens. Somewhat earlier, the fact that
the general term of a Somos-4 sequence can be expressed analytically using elliptic
theta functions was known privately to several people: Malouf mentions results of
Bombieri and Granville [28], while Robinson refers to formulae of Gardner [42]. For
the case of the original Somos-5 sequence 1,1,1,1,1,2,3,5,11,37,83,274,1217, ...,
which is generated by (1.11) with & = 5 and the coefficients set to 1, the relation
with elliptic curves and theta functions was given by Zagier [54], and was also
explained by Elkies when it arose in connection with a Diophantine problem in
geometry [5].

More recently [23], this author obtained the explicit solution to the initial value
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problem for the general Somos-4 recurrence, given in terms of the Weierstrass sigma
function as

T = AB"o(vg + nv) /o (v)™ (1.16)

(for suitable parameters A, B, v, v and invariants g, g3 for the curve), and found an
analogous formula for Somos-5, which depends on the parity of n [24]. Both Somos-
4 and Somos-5 can be understood in terms of associated integrable birational maps
of the plane whose orbits lie on biquadratic curves of genus one, corresponding to
particular symmetric cases of the QRT family of maps.

The purpose of this article is to present explicit analytic formulae for the simplest
Somos recurrence that is beyond genus one, namely the general Somos-6 recurrence

Tnt+6Tn = QTp5Tp41 + ,67-71+47—n+2 + ’Y(Tn+3)2 (117)

with three arbitrary coefficients «, (3, . Although the original recurrence (1.7) was
taken with integer initial values, here all coefficients and initial data are taken in C.
In the next section Poisson brackets and invariant differential forms associated with
Somos recurrences are presented, and it is shown how the iteration of (1.17) can be
projected down to an iteration of a birational map with an invariant meromorphic
volume form in four dimensions. A direct method to construct conserved quan-
tities for Somos sequences is described, and as a result two independent rational
functions are found that are invariant under the iteration of the Somos-6 recur-
rence. These two invariants project down to two independent conserved quantities
for the corresponding four-dimensional map, and in each of the cases where one
of the parameters vanishes (i.e. for a8y = 0) an explicit non-degenerate Poisson
bracket is found which means that the map is symplectic and also integrable in
the Liouville-Arnold sense [52]. In the third section, Baker’s addition formula [2]
is used to derive an analytic expression for the solution of the recurrence (1.17)
in terms of the Kleinian sigma function o(z) associated with a genus two curve,
which is a quasiperiodic function of z € C?. The main result is the following.

Theorem 1.1: Given an algebraic curve X of genus two defined by the affine
model

3
x= i €0t = =0+ 3 e (1.18)

let o(z) denote the associated Kleinian sigma function, with pi(z) =
—0;0klogo(z) for j,k = 1,2 being the associated Kleinian p-functions. For ar-
bitrary A, B € C*, and v € C?, the sequence with nth term

o(vo +nv)

™m=ADB )

(1.19)

satisfies a Somos-6 recurrence (1.17) where the parameters are given by

_ o(3v)*a
-~ o(2v)20(v)10”

o(3v)23 o(3v)?
18 °

p= 7= W) <p11(3v)—@@11(2V)—BP11(V)>,

o(v)
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&= p12(3v) — P12(V)’ = P12(2v) — p12(3v) _ 1—a, (1.20)
P12(2v) — p12(v) P12(2v) — p12(v)
provided that v € C? obeys the constraint
1 1 1
P12(v) P12(2v) p12(3v) | = 0. (1.21)
022(V) 022(2v) 22(3v)

Before proceeding with further details, it is worth comparing the above result
with some the existing literature on recurrences associated with addition formulae
in genus two. The division polynomials corresponding to the multiples of a generic
point P on an elliptic curve E are well known, and the recurrence relations they
satisfy are most easily be proved using the analytic formula (1.6) (see chapter II in
[27], or Exercise 3.7 in [44]). Morgan Ward’s elliptic divisibility sequences provide
a specific arithmetical realization of the division polynomials, since (modulo some
scaling) they are obtained by substituting numerical values into the latter. Cantor
constructed the analogue of the division polynomials for hyperelliptic curves, cor-
responding to multiples of a single point on the curve [7], and derived recurrence
formulae for them. Onishi made use of the Kleinian sigma function, and obtained
further identities for hyperelliptic division polynomials defined analytically in terms
of the so called psi-function, which in genus two takes the form

o(nv)

Pn(V) = — 7 (1.22)

ao(v)"’

In the above, v € C? is on the theta divisor, being the image under the Abel
map of a single point on a genus two curve; the sigma function vanishes on the
theta divisor, so o(v) = 0, but o9(v) # 0 for v # 0 (see Proposition 6.5 in [33]).
Matsutani considered the genus two psi-function (1.22), and derived associated
higher order difference equations [29, 30]. In [4] we considered the generalization of
the genus two psi-function given by the formula (1.19) but with v being on the theta
divisor, and showed that it satisfies a Somos-8 recurrence. Kanayama presented a
different analogue of the division polynomials in genus two, by generalizing the
formula (1.6) to

Pn(v) = : (1.23)

where v € C2 corresponds to a generic element of the Jacobian of a genus two curve
(where generic means not on the theta divisor, so o(v) # 0). Recurrence relations
for ¢, provided an effective way to construct multiplication formulae in genus two
[26].

We shall return to Kanayama’s results in the third section, with the proof of
Theorem 1.1. The final section of the paper is devoted to some conclusions and
further open problems.
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2. Poisson brackets and conserved quantities
Sequences generated by iteration of the general Somos-k recurrence (1.11) are

equivalent to the orbits of the birational map ¢ on C¥, with coordinates
(T0y...,Tk_1), defined by

70 T1
T1 D) ZL%J
. . . _ (=1 CUTE—t T
pr . : > Tp = —————————. (21)
70
Tk—2 Tk—1
Tk—1 Tk

This birational map preserves a very simple Poisson bracket, which in these coor-
dinates takes the log-canonical form {7,,, 7n} = fmn Tm Tn. The particular form of
the recurrence also means that for any & there is a natural volume form which is
invariant, up to a sign. The following result is easily verified by direct calculation.

Lemma 2.1:  The meromorphic (rational) k-form

1
V=—— —digAdn A...ANd1p_y
T0T1.--Tk—1

is preserved by the birational map (2.1) for even k, and anti-preserved for odd k,
i.e. o*V = (=1)kV. This map is a Poisson map with respect to a log-canonical
bracket of rank two,

{Tma 7'n}O = (n - m) Tm Tn; (2'2)
unique up to rescaling, with k — 2 independent Casimirs given by
TjTi+2

;= LI i =0,....k—2.
F e

Remark: In [21] it was shown that the exchange relations of a cluster algebra are
Poisson maps with respect to a suitable log-canonical Poisson bracket. However,
the general Somos-k recurrence (with more than two terms on the right hand side)
is not of the correct form (1.10) for a cluster algebra.

There is another natural way to understand the Casimir functions for the Poisson
bracket {, }g. The Somos-k recurrence has the form of a discrete Hirota bilinear
equation, in the sense that if (1.11) is viewed as an analytic difference equation for
the tau-function 7,, = 7(n) then it can be rewritten as

k 5] k-2
exp <§D"> T'T:ZIO(]‘ exp( 5 Dn> T, (2.3)
‘]:
where D, is the Hirota derivative [22], defined by

0 0

DNF.G(n)= <% — w>N F(n) G(n')

n’'=n
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for N € N. Hirota bilinear equations are invariant under gauge transformations
whereby the tau-function is multiplied by the exponential of an affine linear func-
tion of independent variables. In this case the gauge transformations correspond
to an action of (C*)? on the phase space, such that 7, — A B" 7, for parameters
A, B with AB # 0. The Poisson bracket (2.2) is equivariant under this group ac-
tion, and its Casimirs z; are invariants of the action. Any Casimir of a Poisson
bracket is invariant under Hamiltonian flows; but in general a Casimir need not be
preserved by a Poisson map, although Casimirs are always mapped to Casimirs. In
the case of Somos sequences, the interesting dynamics takes place on the space of
the Casimirs, where it can be described in the following terms.

Lemma 2.2: The map (2.1) induces a birational map ¢ : C*=2 — C*=2 on the

space of Casimirs (xg,...,Tk—3), so that the projection
w Ck — k2
(T[], - ,kal)T — ({L‘[], - ,$k,3)T

intertwines ¢ and @, i.e. - w = w - . The orbits of ¢ are obtained by iteration
of the recurrence

)h/2 H(k*4)/2

§=0 (Zn+j xn+kfj72)j+l

(xn+(k72)/2
(2.4)

k _ k— i
= Zzﬁ Gy ({L‘n+(k72)/2)k/2 ¢ H§:z4)/2(xn+j xn+kfjf2)] t

for k even, and

(k=3)/2 (k=1)/2  (k=3)2
[T @otjoninj2)t = a [ @ntjznir—j2) (2.5)

for k odd. The meromorphic (k — 2)-form

1

V-_-
k3
szo Ty

dzo A ... Adzg_3 (2.6)

is preserved/anti-preserved by ¢ for even/odd k respectively, and the pullback of 1%
is w*V = JyJV where Jy is the Poisson bivector field for the bracket {, }o.

Remark: The generic fibre of the projection w is the gauge group (C*)2, so that
after removing the coordinate hyperplanes {7; = 0} the original phase space has the
structure of a principal fibre bundle. In fact, Somos-k is covariant under the action
of the larger scaling group 7, — A B" C" 7, with non-zero A, B, C, which changes
the coeflicients «; for C' # 1. This scaling group also appeared as a symmetry
of the determinantal variables in [3]. In the case that & is odd, there is a further
freedom to rescale 7, differently for odd/even n, and ¢ projects down to a map on a
(k — 3)-dimensional space of Casimirs, with coordinates (zoz1, 129, ..., Tr_4Tk_3)
(cf. the results for £ =5 in [24]).

Using recurrences due to Cantor [7], Matsutani showed that suitable ratios of
the genus two psi-function (1.22) satisfy a recurrence of the form (2.4) in the case
k = 8 (cf. equation (3.15) in [29]). Henceforth we restrict ourselves to the case
k = 6. In that case the recurrence (2.4) is of order four, and with the coefficients
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a, 3,7 as in (1.17) it is given by

Tt (Tnt3)” (Znt2)” (Tnt1)? Tn = ATnys (Tns2)” Tng1 + BTnta + 7, (2.7)

which corresponds to a birational map in C* with coordinates (zg, 1,2, 23). The
special case of the recurrence (2.7) with § = 0 was found by van der Poorten
(Theorem 3.1 in [36]), based on the continued fraction expansion of the square
root of a sextic polynomial, defining a genus two curve; the corresponding result
in the elliptic case, related to Somos-4, was given in [35].

For what follows it will be more convenient to use the alternative coordinate
system (u,z,y,v) := (xor129, 1, T9, T1x923), in which the map corresponding to
(2.7) takes the form

j=2 5= (aw+ By +v 2.8)
Ty uv

e 8
St <

To be more precise, the above map and the original one defined by (2.7) are con-
jugate to one another via the change of coordinates in C*, but we use the same
symbol ¢ to denote both. This map decomposes as the product ¢ = 11 - 19 of two
involutions that do not commute with one another:

L1 (uaxayav)T = (’U,y,{L‘,U)T,

o (we,y,0)" = (((av+ By +afu v vr ly iy, )T

with L? =1id, j = 1,2. Each of these involutions is itself a product of two commuting
involutions: the permutation +; decomposes as the product of the transpositions
u <> v and z < y, and 1y is the composition of the replacement u — [(av + B)y +
yJu~tv~™! and the replacement z — vy~'z~! (where the other variables are held
fixed).

The rest of this section is concerned with proving the following result.

Theorem 2.3: For arbitrary coefficients v, 3,y the volume-preserving map (2.8)
in C* has two independent rational first integrals Hy, Ho. It is an integrable map
in the Liouville-Arnold sense for afy = 0.

Conjecturally, the second part of the above statement should hold for arbitrary
a, 3,7, and not just in the cases where one or more of the coefficients vanishes. For
Liouville integrability, the map should be symplectic with H;, Hs being in involu-
tion with respect to the associated nondegenerate Poisson bracket. The technical
obstacle when afy # 0 is that there is no general method to construct a Poisson
bracket for an arbitrary birational map. Yet when afvy = 0 it is straightforward to
obtain a log-canonical Poisson bracket.

Proposition 2.4: The map ¢ defined by (2.8) preserves a j-form V. It is a
Poisson map with respect to a non-trivial bracket of log-canonical type if and only
if afy = 0. In each of the three cases o = 0, f = 0, v = 0 separately there is a
distinct non-degenerate log-canonical bracket.

Proof: In the case k¥ = 6 the formula (2.6) gives an invariant 4-form, which is
V= (uzyv) 'du A dz A dy A dv in the alternative set of coordinates. The rest of
the proof follows from a direct calculation, which is most easily carried out in the
coordinates z;, j = 0,1,2,3. Since the map defines the recurrence (2.7) in these
variables, the log-canonical bracket must take the form { z,,,, z,, } = ¢,—m Tm x, for
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some constant coefficients ¢,, with ¢, = —c¢_,,. Clearly ¢y = 0 and the whole bracket
is determined by ¢4, é2, ¢3. Taking the Poisson bracket of each side of (2.7) forn =0
with x1, 9, 3 successively gives a system of homogeneous linear equations for these
coefficients. For a8y # 0 one finds ¢, = 0 for all n, so there is no non-trivial bracket
of this type, while for each case a =0, 8 = 0, v = 0 separately there is a different
solution of the linear system for the ¢,, unique up to overall rescaling, giving a
non-degenerate Poisson bracket. The property of being log-canonical is preserved
upon changing to the variables u, x,y,v. For completeness the explicit forms of
the brackets are presented here in terms of these coordinates (only non-vanishing
brackets are given):

{u,y} =uy, A{z,v}=av;
{ua y} = uy, {I, y} = —2Y, {,’E,U} = TV;
{ua U} = uv, {I, y} =2Y.

= ™ L
Il
oo o

O

In order to obtain first integrals (i.e. conserved quantities) for the map ¢ , it
is instructive to present an ad hoc method for finding such quantities directly for
bilinear recurrences, which seems to work whenever the recurrence is associated
with an integrable map. The method is based on the observation that Somos-4
sequences satisfy infinitely many independent bilinear relations of higher order,
with coefficients that are constant along each orbit, but can depend on the choice
of orbit. To be precise, each Somos-4 sequence satisfies an independent Somos-k
relation for every k& > 4. This phenomenon is neatly encoded into the slogan “every
Somos-4 is a Somos-k” [37], and it persists for Somos-5,-6,-7 (subject to suitable
constraints on the higher values of k£ that are allowed). As is explained in the next
section, a formula for the iterates in terms of theta functions implies the existence
of infinitely many relations of higher order. By regarding the coefficients of these
higher recurrences as functions of the initial data, they furnish conserved quantities
for the original map, which are non-trivial provided that they are not just functions
of the a;. The existence of these relations of higher order should be related to the
notion of the Hirota-Kimura basis introduced in [34].

In practice one can begin to search for first integrals by looking for bilinear
relations along an orbit with specific numerical values. For example, starting with
an even order Somos-2M recurrence one can use it to generate sufficiently many
terms of a particular sequence, starting with fixed numerical values for the initial
data and «;, in order to calculate the N x N determinant

o )
TONTO  TON—I1T1 ---  TNAMTN—-M  --- TN+1TN=1 (7TN)

2
TON+1T1 ToONTQ ... TN42TN (TN+1)

o —

9
T3N-1TN—1 T3N—2TN -+ TON4+M—1T2N—M—1 - -- T2NTaN—2 (Tan—1)

with N > M, where the hat denotes that the column is deleted. If this determinant
vanishes then the particular sequence in question also satisfies a Somos-2N relation,
and by calculating a non-zero vector in the kernel of the matrix one finds the
coefficients of such a relation. Morever, the existence of this higher order relation
for a single orbit suggests that the same might hold for a generic orbit. One can
check other numerical sequences, and then having found the smallest N > M
for which the determinant vanishes on these particular orbits, one can redo the
calculation symbolically in order to find the coefficients of the Somos-2/N recurrence
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as functions of the o; and an arbitrary set of initial data 7;, j = 0,...,2M —1 for
the original Somos-2M recurrence.

In the case of interest here, starting from the Somos-6 recurrence (1.17), one can
take the particular numerical sequence (1.8), and one finds that the first even-width
sequence of higher order is a Somos-10. Indeed, in that case the above determinant
with M = 3 and N = 5 becomes

Ti0To ToT1 T773 TeTa (75)2 723 5 3 1
1171 TI0T2 T8T4 7775 (76)> 421 79 5 9
TiaTy TI1T3 ToTs TsTe (77)2| =] 1103 421 23 27 25 | =0.
T1373 T12T4 T10T6 ToT7 (Tg)? 5047 1103 225 115 81

(79)

T14T4 T13T5 T11T7 T1078 \T9 2 41783 5047 2105 675 529

The kernel of the 5 x 5 matrix here is spanned by the vector (—1,1, 15, —19,34)T,
which suggests that the sequence (1.8) should satisfy the Somos-10 recurrence

2
Tn+5Tn—5 = Tn4dTn—4 + 15TpyoTn—2 — 1974171 + 34(Tn) .

To prove this for all n, and generalize it to the case of arbitrary initial data and
arbitrary coefficients «, 3,7 in (1.17), one should assume that in general the kernel
is spanned by (=1, a1, &, @3, d4)”, and then use the first four rows of the above
matrix to obtain a linear system for the &;. In general, the terms 7g,..., 73 that
appear in this system are certain Laurent polynomials in 7q,...,75 and «, 3,7,
determined by iterating (1.17). Upon solving this linear system, it is found that
&1 = 1, so it is independent of the 7;, while g, &3, ¢4 are given by more complicated
expressions in the coefficients and initial data, detailed in (2.11) below. Having
found these ¢;, one can then verify directly that they are invariant under the map
¢ given by (2.1) with k£ = 6, and hence are constant along each orbit, as required.
Subsequently one must then check for dependencies between the ¢;, in order to
count the number of independent first integrals so obtained.

Although we have explained how to look for higher relations of even order
(Somos-2N), one should also check for relations of odd order, again by calculat-
ing suitable determinants. It turns out that for Somos-6 sequences the first higher
relation one finds is actually a Somos-9 recurrence. Before we state the exact re-
sults for this case, it is helpful to present certain polynomials p; = p;(u, z,y,v) for
7 =0,1,2, which are the building blocks for the first integrals:

Pbo = uxryv,
p1 = aBuv(z?y? + zu + yv) + ayry(zu? + yv?) + yryu?ev?

+By(x?yu + zy?v + wv) + 2oy (u + v) + ?Bry(u + v)
+af?zy + oy(zu + yv) + afy(z +y) + oy, (2.9)

po = af (uv(ac +y) + 22y?(u + v)) + yuzyv(u + v) + fu’e?
+ay (fﬂy(wﬁ +oy) + UU) + B2ay? + Byzy(z +y) + 7wy

Observe that these polynomials are invariant under the involution ¢;.
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Proposition 2.5:  The iterates of the Somos-6 recurrence (1.17) also satisfy the
Somos-9 recurrence

Tn45Tn—4 = —B TnyaTn-3 — QY Tpg3Ty 2 (2.10)
+72 TngoTn—1 + (' + aHy + BH2) Trs1Tn,

as well as the Somos-10 recurrence

Tn45Tn—5 = Y TntaTn—a + (B> + YH2) Tny2Tn_2 (2.11)
+(B% — &®y — yH}) Tai1Tn-1 + a(a + aHy + BH3) (10)?, '

where the quantities Hy and Ho are constant along each orbit. These H; are gauge-
invariant Laurent polynomials in the variables 1y, ..., 75, and each of them is the ra-
tio of two homogeneous polynomials of degree siz. In terms of the variables u, z,y,v
they are given explicitly by

pl(U,fE,y,’U) H2 — pZ(UaxayaU) (212)

Hl = ) )
p[](U,IE,y,’U) pU(ua z,Y, U)

with the p; as defined in (2.9) above.

Figure 1. A plot of 25,000 points on the orbit of the point (u,z,y,v) = (1,1,1,1) for the map (2.8) with
a = =+v =1, projected onto three dimensions, namely the (u,z,y) components of each iterate.

The proof of Theorem 2.3 is now completed by noting that H; = H;(u,z,y,v)
for j = 1,2 are two independent first integrals for the map ¢ defined by (2.8), and
then one can verify directly that {Hy, Ho} = 0 for each of the three different cases
a =0, 8 =0,v =0 where there is a non-degenerate log-canonical bracket, so
the map is integrable in the Liouville-Arnold sense in those cases. The intersection
of the level sets for the two first integrals (2.12) defines a surface in C*. The real
version of such a surface, in the case « = =y =1, H; = 19, Hy = 14, which
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corresponds to the sequence (1.8), can be seen in Figure 1, where a real orbit of
the map ¢ has been projected onto R?; in accordance with the Liouville-Arnold
theorem, the structure of a real 2-torus is visible. From (2.9) the defining equations
of the surface are quadratic in each of the coordinates u, z,y, v. The orbits of QRT
maps lie on biquadratic curves in C?, so the map ¢ can be viewed as a four-
dimensional analogue of the QRT family. Other analogues of QRT maps in higher
dimensions were constructed in [18].

3. Sigma function formulae

The connection of higher order Somos sequences with multidimensional theta func-
tions was explained by Elkies in posts to Propp’s “bilinear” forum [39]. The crucial
observation of Elkies is that while suitable expressions in theta functions satisfy
Somos recurrences, the number of available parameters appears insufficient to ac-
count for a general Somos-k sequence when £ is large. To be precise, suppose that
we are given a complex torus C?/L, where the lattice £ = Z9 & QZ9 is specified by
the symmetric g X g complex matrix Q lying in the Siegel upper half-space (i.e. the
imaginary part of €2 is positive definite). The standard Riemann theta function is
an entire function defined by the Fourier series

@(Z;Q) _ Z 67ri(n,Qn)+27ri(n,z)’ (31)
neZ9

where (, ) denotes the standard scalar product in dimension g. For a positive
integer w, an entire function f = f(z) on CY is said to be L-quasiperiodic of weight
w if for all z it satisfies

fetm)=f()  and  f(n+ Qm) = e rmOm) 2niv(ma ().

for all m € 79. A standard result says that the vector space of such functions
has dimension w9 (see Proposition 1.3 in chapter II of [32]). Up to multiplication
by a scalar, the standard theta function (3.1) is the unique £-quasiperiodic entire
function of weight one.

Now, given the sequence with nth term

Tw = AB"C™ O(z0 + nz; Q), (3.2)

it is straightforward to verify that (for fixed n) each of the products 7,4 ;7,—; for
j=0,...,29 is an L-quasiperiodic function of weight two with respect to shifts of
the argument z = zg + nz. Since the space of such functions has dimension 29, it
follows that these products satisfy a linear relation, whose coefficients can depend
on C and z but are independent of n (and are also independent of the gauge factors
A, B). As the same linear relation holds for all n, the sequence of these 7, satisfies
a Somos-k recurrence with & < 29+, The formula (3.2) depends on A, B, C, 7,z
and Q, which means at most 3 +2g + g(9 +1)/2 = (g9 + 2)(9 + 3)/2 complex
parameters, while the general recurrence (1.11) of order k has |k/2]| coefficients
and k initial data. So if we have a generic choice of parameters in (3.2) such
that the minimum order relation is for & = 29%!, then the number of parameters
required for the solution of the initial value problem for the general recurrence is
k+ 5] =3x29> (g+2)(g+3)/2 for g > 1. (However, note that for odd & the
quantity A in (3.2) need not be constant, but can depend on the parity of n; cf.
24].)
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To formulate the explicit analytical results for Somos-6, it is convenient to work
with the Kleinian sigma function in genus two rather than working directly with
theta functions. Given a curve X of genus two defined by the quintic equation

4

p? = f(v) =4’ + Z i, (3.3)

J=0

it is always possible to remove the coefficient ¢4 by making a shift in the v coordi-
nate, v — v + const. By rescaling both x4 and v, one of the other four remaining
coefficients (as long as it is non-zero) can be set to be 1, which leaves three mod-
uli for genus two curves. However, having set ¢4 — 0, we prefer to leave the four
coefficients cg, ¢1,c9,c3. From (3.3) the curve is realized as a two-sheeted cover
of the Riemann sphere with five branch points in the finite complex plane and a
single branch point oo at infinity. The vector space of holomorphic differentials is
two-dimensional, being generated by x~'dv and p~'vdy, which are conveniently
organized into a vector of canonical holomorphic differentials, denoted

dv
m
du =
vdv
w
The period matrices of the curve are
dv dv dv dv
a1 B ax p , fbl B sz H
2w = , 2w = ,
vdv vdv vdy vdr
fal W ax ygbl B sz K

where (a1, as; by, be) is a canonical homology basis for the compact Riemann surface
corresponding to X, with non-vanishing intersections a; - by, = 6.

The Jacobian of X is the complex torus Jac(X) = C2/A, where A = 2w7%2@2w'7?
is the period lattice generated by the a- and b-periods. The elements (Py, P;) of
the symmetric product Sym?(X) can be identified with degree zero divisors D =
(Py — o0) + (P2 — 00), which are mapped to Jac(X) by the Abel map:

P1 PQ
u:/ du+/ du € Jac(X)

o o

(where the map is based at oc).

The Kleinian sigma function o(u) is an odd function of (uy,us)? = u € C2,
quasiperiodic with respect to shifts by elements of the period lattice A. The sigma
function is defined in terms of the standard Riemann theta function by o(u) =
e?™ O((2w)~'u — K;Q), where Q = w™'w' is the normalized matrix of b-periods,
K is a normalized half-period vector of Riemann constants, and the function Q is
a certain sum of quadratic, linear and constant terms in u; for precise details see
[2, 6]. The Kleinian ¢ and p functions are defined by

_ 0logo(u)

9% logo
Cj(u) Tuj’ @jk(u):_L(u)

k=1,2.
aujauk 3 ]’ Y

The Kleinian p functions solve the Jacobi inversion problem: given u € Jac(X)
which is the image of the pair of points (P, P») under the Abel map, with
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P; = (vj,p;) for j = 1,2, the points P; € X can be reconstructed from their
v coordinates via the formulae p19(u) = —v11v9, poa(u) = vy + vs.

For our purposes, the most important property of the genus two sigma function
is the addition formula

U(u;(Lu‘),gZE:); v) _ P22(0) p12(v) — pra(W) P2 (V) + p11(v) — p11(u),  (3.4)

which was found by Baker [2]. Theorem 1.1 is a consequence of the following result,
which is a direct application of Baker’s formula.

Proposition 3.1: For generic A,B € C* and vy, v € C?, the sequence of T,
defined by (1.19), in terms of the genus two sigma function, satisfies a Somos-
8 recurrence. It satisfies a Somos-6 recurrence if and only if the shift v on the
Jacobian Jac(X) satisfies the constraint (1.21).

Proof: The proofis essentially the same as the proof of Theorem 2 in [4], where the
case of shifts v on the theta divisor (where o(v) = 0) was considered. Upon substi-
tuting (1.19) into a general Somos-8 recurrence with four coefficients a1, ag, a3, ay,
one obtains an expression of the form

Co(v) + Cr1(v)p11(u) + Crz(v)pia(u) + Coz(v)gp22(u) = 0, (3.5)

where u = vg + nv, and the coefficients Cy, Cj;, are functions of v and linear in
the a;. Since this must hold for all n, and the functions p;x(u) for j,k = 1,2 do
not satisfy a linear relation, this means that Cy and the C}; must vanish, and
this uniquely determines the coefficients «; of the Somos-8 recurrence, which are
obtained by solving a linear system. However, this linear system is degenerate if
and only if the determinant (1.21) vanishes. In that case one finds that a Somos-6
relation (1.17) holds instead. O

The preceding result can be understood more clearly by making a slight extension
(as well as a correction) of some results derived by Kanayama. Upon differentiat-
ing the tau-function (1.19) with respect to the coordinates vq,v9, one obtains the
formula

;0 log T, = n* (@jk(v) — pjk(vo + nV)), k=12, (3.6)

where 0; denotes d/0v;. In the special case that A = B = 1 and vy — 0, one
has 7, = ¢, as given by (1.23), and then (3.6) reduces to an expression for the
second logarithmic derivatives of ¢,, which was found in [26]. The latter expression
was the key to Kanayama’s recursive method for calculating the multiplication
formulae for the genus two Kleinian gp functions in genus two, i.e. for calculat-
ing ©;r(2v), p;k(3v),... in terms of Abelian functions evaluated at the argument
v. Using the tau-function and the function ¢,, it is instructive to consider the
combination Ay, (v, vq) defined by

Apm = [(¢1)2Tn+m7'n—m - (¢m)27'n+17n—1 + ¢m+1¢m—1(7'n)2]/(¢m7'n)2
¢lTn+m ¢07'n+m—1 ¢1—m7'n (37)
= ST | PmTatl Sm-1Tn PoTnomet |,

¢m+1Tn ¢m7'n—1 ¢17'n—m

for integers n € Z, m > 1 (and note that ¢_,, = —¢y, so ¢g = 0, and ¢; = 1, but
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¢1 is kept in (3.7) for the sake of homogeneity). Observe that A, is independent
of A, B, and for each m the above determinant is a 3 x 3 minor of an infinite matrix
of Casorati type. Another application of Baker’s formula (3.4) allows A,,, to be
rewritten as a determinant analogous to (1.21).

Lemma 3.2:  The combination (3.7) can be rewritten as the determinant

1 1 1
Apm = pu(v) plg(mv) 012 (VU + TLV) . (38)
P22(V) p22(mv) pa22(vo + nv)

Corollary 3.3: The quantity Apy, can be written as a scalar product of two
vectors in C2, so that Ay = (Cm, 1), where

_ [ 922(mv) — paa(v) _ 1 (01051logm,
cm(V) = <@12(mv) - @12(")) ’ (v, vo) = n? <—3§ log Tn) ' (3.9)

Proof: From the formula (3.6), the elements p;;(vo +nv) in the third column of
(3.8) can be replaced in terms of ;i (v) and logarithmic derivatives of 7,,. The scalar
product of the vectors ¢, and 1, is then obtained by expanding the determinant
about its third column. a

Remark: Proposition 2.3 in Kanayama’s thesis [26] asserts that, for all m,n, the
quantity A, (v,0) (defined by (3.7) with 7, = ¢, for every k) vanishes identically.
However, this result is incorrect: indeed, such a recurrence characterizes elliptic
divisibility sequences [50] (or equivalently, division polynomials for elliptic curves),
so should not be satisfied by the sequence of ¢, (v), which are genus two Abelian
functions.

It is clear that ¢; = 0 and A,; = 0. Generically, cs and c3 are two linearly
independent vectors in C2, so that ¢4 # 0 is given by a non-zero linear combination
C4 = KoCy + Kk3c3, and hence A4 = kKoApo + k3,3 for all n, which implies that 7,
satisfies a Somos-8 recurrence. However, if co and c3 are linearly dependent then
a non-trivial relation k9,2 + k34,3 = 0 must hold, and so 7, satisfies a Somos-6
recurrence. The condition for the vectors ¢ and c3 to be linearly dependent is
precisely equivalent to the constraint (1.21). Thus we see that Corollary 3.3 yields
an alternative proof of Proposition 3.1, albeit a less constructive one. The same
arguments show that the solution (1.19) of a Somos-6 recurrence does not satisfy
a Somos-8, but does satisfy a Somos-10 recurrence, in agreement with Proposition
2.5, as well as a Somos-2k for all £ > 5. Infinitely many odd-order relations also
follow (Somos-9,-11,...) by taking a suitably modified version of A,.

The proof of Theorem 1.1 is completed by substituting the sigma function formula
(1.19) into (1.17) to obtain a linear system of the same form as (3.5), and then this
gives an unique solution for the coefficients a, 8,7 subject to the constraint (1.21).

Remark: Lemma 3.2 provides alternative ways to rewrite the constraint (1.21).
In terms of Kanayama’s phi-function, or the sigma function, it is Azs = [(¢1)3¢5 —

(¢2)3 s + ¢1(43)°]/ (2h3)* = 0, or

a(v)3o(5v) — o(2v)3o(4v) + o(v)o(3v)?
o(v)2o(2v)%0(3v)?

Agg = =0.

The latter expression shows that on the Jacobian of a generic genus two curve
X the constraint set does not intersect the theta divisor. Indeed, when o(v) = 0
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the constraint equation generically has a double pole. For the above numerator
to vanish at leading order requires that o(2v)3c(4v)=0, but o(2v) # 0 since 2v
corresponds to the reduced divisor of two points, and so 4v must also lie on the
theta divisor in Jac(X). To satisfy (1.21), the numerator must vanish up to third
order, which puts constraints on the moduli of X.

4. Conclusions

An analytic solution for the general Somos-6 recurrence has been presented. Be-
cause it depends on nine complex parameters, namely A, B € C*, the coefficients
g, €1, C2, c3 of the genus two curve, and two points vy, v on its Jacobian with v
constrained by (1.21), we can assert that it represents the general solution of (1.17),
since there are six initial data and three coefficients in the recurrence. However,
compared with the elliptic case it is much more difficult to solve the initial value
problem in genus two. The geometrical meaning of the constraint (1.21) is still not
clear, but recently we learned from results of Atkinson that it is related to the
lattice Schwarzian KP equation [1].

Recently we have used the Lax pair for the discrete BKP equation to obtain a
3 x 3 Lax pair for the map ¢ associated with Somos-6. This leads to a genus four
trigonal spectral curve possessing an involution with two fixed points, and the two-
dimensional Jacobian for the solutions corresponds to an associated Prym variety,
as for the known algebro-geometric solutions of discrete BKP [9]. The details of
this construction will be presented elsewhere. The problem of how to construct an
invariant Poisson bracket for the map ¢ when a7 # 0 is still open, but it is hoped
that the Lax pair will shed some light on this.
Acknowledgements: Some of this work was carried out with a Visiting Fellowship
at the Isaac Newton Institute, Cambridge, during the Programme on Discrete
Integrable Systems. I have benefited from various correspondence and conversations
with several people, in particular J. Propp, N. Elkies, Y. Suris and A. Bobenko.
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