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Direct “delay” reductions of the Toda hierarchy
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We apply the direct method of obtaining reductions to the Toda hierarchy of equations.

The resulting equations form a hierarchy of ordinary differential difference equations, also

known as delay-differential equations. Such a hierarchy appears to be the first of its kind

in the literature. All possible reductions, under certain assumptions, are obtained. The Lax

pair associated to this reduced hierarchy is obtained.
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1. Introduction

The Toda equation and its hierarchy form important lattice models in physics. Their

applications range from the study of thermalization in metals to the study of cellular neural

networks and optical lattices. This has led to widespread interest in the study of their solutions.

Reductions provide us with one method of extending our knowledge of solutions. In this paper,

we develop a new approach of deducing reductions that is based on the direct method.

The Toda equation is also important in the theory of the Painlevé equations.1,2) It appears

when the Bäcklund transformations of the second and fourth Painlevé equations are iterated

in the space of parameter values. Any reductions of the Toda equation therefore reflect the

behaviour of the corresponding iterated Painlevé transcendents along invariant curves in the

space coordinatized by the independent variable of the Painlevé equation and the space of its

parameters.

Reductions based on the method of Lie symmetries3) and the method of conditional sym-

metries4) are already known for the Toda equation, although neither appears to have been

applied to the Toda hierarchy. While in the case of PDEs, the results of the direct method are

known to be included in the results of the method of conditional symmetries, we note that no

such relationship is known for differential-difference equations. By using the direct method,

we find reductions that lead to delay-differential equations in which the solutions are iterated

along arbitrary curves.

The Toda hierarchy appears to have been described for the first time in the literature in

1983,5) although its associated recursion operator may have been known earlier.6) The Toda
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hierarchy can be presented as

TLr(u, v) :

{
ut − u(pr+1 − pr+1) = 0

vt − (qr+1 − qr+1
) = 0

(1.1)

where r is the index of the hierarchical flow and pj = pj(n, t), qj = qj(n, t) can be recursively

generated from p0 = 1 , q0 = 0 using

pr+1 =
1
2

(qr + q
r
) + vpr , (1.2a)

qr+1 = 2u2
r∑
l=0

pr−lpl −
1
2

r∑
l=0

qr−lql . (1.2b)

(This choice of notation can be found in.7))

The Toda equation is a widely recognized integrable differential-difference equation8,9){
ut = u(v − v)

vt = 2(u2 − u2)
(1.3)

where u = un(t) = u(n, t), v = vn(t) = v(n, t) ut = ∂u(n, t)/∂t, u = u(n+1, t), u = u(n−1, t),

v = v(n+ 1, t), v = v(n− 1, t) and can also be given by the corresponding Lax pair:10)

λψ = uψ + uψ + vψ (1.4a)

ψt = uψ − uψ . (1.4b)

In both cases we see that the solutions depend on two independent variables n, t. However

in11) we saw that it is possible to reduce a differential-difference equation in two variables

(1.3) to a single variable in η{
−c0H(η) +Hη = H(η)(G(η)−G(η))

p0 − c0G(η) +Gη = 2(H(η)2 −H(η)2)
(1.5)

where p0, c0 are constants. This reduction led to an equation in which iterates and derivatives

of the same variable appeared, compared with (1.3) which involves iterates in one variable

and derivatives in another.

We focus on reductions to equations involving only one independent variable

Hη = K(H,H,H), H : R 7→ R (1.6)

where Hη = dH/dη, H = H(η), H = H(η), with η = η(n, t), η = η(n+1, t) and η = η(n−1, t).

1.1 Direct Method

In 1989, Clarkson and Kruskal12) used a “direct approach” to find reductions of the Boussi-

nesq equation and found new reductions which were not captured by the classical Lie symmetry

approach. This direct approach was later shown to be related to “non-classical” symmetries

of the Boussinesq equation. However such a relationship has not yet been established for

differential-difference equations. In11) a direct method was developed to finding reductions of
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differential-difference equations.

The most general form for a reduction is

u(n, t) = U(n, t,H(η), G(η)), v(n, t) = V (n, t,H(η), G(η)) , (1.7)

where H and G form a coupled system of equations of the form (1.6). For Equations (1.1), it

turns out to be sufficient (see §3) to take the ansatz

u(n, t) = a(n, t) + b(n, t)H(η) (1.8a)

v(n, t) = c(n, t) + d(n, t)G(η) (1.8b)

where η = η(n, t). Central to our argument are the following rules (stated for a, b and H for

conciseness, but they apply also to c, d and G)

• Rule 1: If a(n, t) = a0(n, t) + b(n, t)Γ(η), then we can take Γ ≡ 0 w.l.o.g. by substituting

H(η) 7→ H(η)− Γ(η).

• Rule 2: If b(n, t) has the form b(n, t) = b0(n, t)Γ(η), then we can take Γ ≡ 1 w.l.o.g. by

substituting H(η) 7→ H(η)/Γ(η).

• Rule 3: If η(n, t) is determined by an equation of the form Γ = η0(n, t), where Γ is

invertible, then we can take Γ(η) = η w.l.o.g. by substituting η 7→ Γ−1(η).

Definition 1.1. Given non-zero, differentiable and invertible functions, Γ(η), we refer

to the transformations H(η) → H(η) − Γ(η), H(η) → H(η)/G(η), and η → Γ−1(η) as the

reduction transformations on (1.8).

1.2 Outline of Paper

In Section 2, we will present direct reductions for the first two flows in the hierarchy and

then present an iterative scheme for the reduction of a general rth flow. In Section 3, we show

that the ansätze (1.8) in fact represents the general case and can be assumed without loss

of generality. In Section 4, we will present corresponding reductions of the Lax pairs for the

hierarchy. In Section 5 we will present our conclusions and remarks.

2. Direct reductions of the Toda hierarchy

We perform reductions on the Toda hierarchy (1.1) considering the first two cases r = 1

and r = 2. In the following we indicate generic functions of η (which are assumed to be

differentiable, non-zero and invertible) by the notation Γj(η).

2.1 A direct reduction of the second flow of the Toda hierarchy

Proposition 2.1. Using (1.1) we find that the second flow in the Toda hierarchy is

TL1(u, v) :

{
ut − u(u2 − u2 + v2 − v2) = 0

vt − 2(u2(v + v)− u2(v + v)) = 0
(2.1)
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Then given that the ansätze (1.8) holds, the only possible nonlinear second-order reduction

of (2.1) of the form (1.7) that is unique up to reduction transformations of H, G and η is

given by

−coH +Hη = H(H2 −H2 +G
2 −G2) (2.2a)

−coG+Gη = 2(H2(G+G)−H2(G+G)) (2.2b)

where the reduction is given by η(n, t) = ν(n) + σ(t) , ν(n) being an arbitrary function, with

σ(t) =

{
1
c0

log(c0t+ c1) + c2 if c0 6= 0

a0t+ a1 otherwise
(2.3)

where cj , j = 0, 1, 2, a0, a1 are constants and the reductions of u and v are given by the

following two respective cases

(1) Case c0 6= 0:

u(n, t) =
√

1
c0t+ c1

H(η) , v(n, t) =
√

1
c0t+ c1

G(η) (2.4a)

(2) Case c0 = 0:

u(n, t) =
√
a0H(η) , v(n, t) =

√
a0G(η) (2.4b)

Proof. Under the ansätze (1.8), (2.1) becomes

at + btH + bηtHη = (a+ bH)((a+ bH)2 − (a+ bH)2 + (c+ dG)2 − (c+ dG)2)

(2.5a)

ct + dtH + dηtHη = 2((a+ bH)2(c+ dG+ c+ dG)− (a+ bH)2(c+ dG+ c+ dG))

(2.5b)

We seek nonlinear reduced equations of the form (1.6), therefore we require the terms

HH
2
, HH2, HG2

, HG2 to be present in the reduced equation (2.5a) and we require the term

H2G, to be present in the reduced equation (2.5b). Thus we require the following

bb
2 = bηtΓ1(η) (2.6a)

bb2 = bηtΓ2(η) (2.6b)

bd
2 = bηtΓ3(η) (2.6c)

bd2 = bηtΓ4(η) (2.6d)

db2 = dηtΓ5(η) (2.6e)

If we compare (2.6a, 2.6b, 2.6e) we find that b = √η
t

√
Γ1(η) =

√
ηt
√

Γ5(η) =
√
ηt
√

Γ2(η).

However by Rule 2, this implies that
√

Γ1(η) ≡
√

Γ5(η) ≡
√

Γ2(η) ≡ 1 and therefore √η
t

=
√
ηt =

√
ηt. This implies that η(n, t) = ν(n) + σ(t), where ν(n) is an arbitrary function and
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σ(t) is some differentiable function in t only.

Furthermore by comparing (2.6c, 2.6d) we find that d = √η
t

√
Γ3(η) =

√
ηt
√

Γ4(η).

However by Rule 2, this implies that
√

Γ3(η) ≡
√

Γ4(η) ≡ 1 and therefore

b =
√
ηt =

√
σt (2.7a)

d =
√
ηt =

√
σt = b (2.7b)

In order to identify the remaining coefficients a, c we must consider the other non-linear

terms. Thus by requiring that the terms Hη and H
2
HG all remain in the reduced equation,

we require

ab
2 = bηtΓ6(η) ⇒ a = bΓ6(η) ⇒ a = 0 w.l.o.g. (2.8a)

bcd = bηtΓ7(η) ⇒ c = dΓ7(η) ⇒ c = 0 w.l.o.g. (2.8b)

by making use of the fact that s =
√
ηt and of Rule 1.

Now if the linear term in H on the left side of the equation remains in the reduced equation,

then

bt = bb
2Γ8(η) ⇒ σtt = 2(σt)2Γ8(η) . (2.9)

However, since σ only depends on t, while η also depends on n, this equations can only hold

if Γ8 is identically constant. So we let this constant be −c−1 and absorbing the value of 2 so

that −2c−1 = −c0, we find σtt = −(σt)2c0, which we can integrate with respect to t giving

σ(t) =

{
1
c0

log(c0t+ c1) + c2 if c0 6= 0

a0t+ a1 if c0 = 0.
(2.10)

where cj , j = 0, 1, 2, a0, a1 are constants.

The reduced equations (2.5a, 2.5b) are now

−coH +Hη = H(H2 −H2 +G
2 −G2)

−coG+Gη = 2(H2(G+G)−H2(G+G))

On comparison with the reduced equation for the Toda equation11) (the first flow of the

hierarchy), we see a number of similarities, primarily the value of σ(t), which remains the

same for the first two flows of the Toda hierarchy. However for the second flow, the reduced

equations (2.1) do not contain the additional constant term p0 found in the first flow, thus we

look at the third flow to see whether this term reappears.
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2.2 A direct reduction of the third flow of the Toda hierarchy

Proposition 2.2. Using (1.1) we find that the second flow in the Toda hierarchy is

TL2(u, v) :

{
ut − u(u2(v + 2v) + u(v − v)− u2(2v + v) + v3 − v3) = 0

vt − 2(u2(u2 + u2 + v2 + vv + v2)− u2(u2 + u2 + v2 + vv + v2)) = 0

(2.12)

Then given that the ansätze (1.8) holds, the only possible nonlinear second-order reduction

of (2.1) of the form (1.7) that is unique up to reduction transformations of H, G and η is

given by

−coH +Hη = H(H2(G+ 2G) +H(G−G)−H2(2G+G) +G
3 −G3),

(2.13a)

−coG+Gη = 2(H2(H2 +H2 +G
2 +GG+G2)

−H2(H2 +H2 +G2 +GG+G2)) (2.13b)

where the reduction is given by η(n, t) = ν(n) + σ(t) , ν(n) being an arbitrary function, with

σ(t) =

{
1
c0

log(c0t+ c1) + c2 if c0 6= 0

a0t+ a1 otherwise
(2.14)

where cj , j = 0, 1, 2, a0, a1 are constants and the reductions of u and v are given by the

following two respective cases

(1) Case c0 6= 0:

u(n, t) = 3

√
1

c0t+ c1
H(η) , v(n, t) = 3

√
1

c0t+ c1
G(η) (2.15a)

(2) Case c0 = 0:

u(n, t) = 3
√
a0H(η) , v(n, t) = 3

√
a0G(η) (2.15b)

Proof. Under the ansätze (1.8), (2.12) becomes

at + btH + bηtHη = (a+ bH)[(a+ bH)2((c+ dG) + 2(c+ dG))

+(a+ bH)2(c+ dG− c− dG)

−(a+ bH)2(2(c+ dG) + c+ dG) + (c+ dG)3 − (c+ dG)3]

(2.16a)

ct + dtH + dηtHη = 2[(a+ bH)2((a+ bH)2 + (a+ bH)2 + (c+ dG)2

+(c+ dG)(c+ dG) + (c+ dG)2)

−(a+ bH)2((a+ bH)2 + (a+ bH)2 + (c+ dG)2
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+(c+ dG)(c+ dG) + (c+ dG)2)]

(2.16b)

We seek nonlinear reduced equations of the form (1.6), therefore we require the terms HG3,

HG3, HH2
G to be present in the reduced equation (2.5a) and we require the terms H2G2,

to be present in the reduced equation (2.5b). Thus we require the following

bd
3 = bηtΓ1(η) (2.17a)

bd3 = bηtΓ2(η) (2.17b)

bb
2
d = bηtΓ3(η) (2.17c)

b2d2 = dηtΓ4(η) (2.17d)

If we compare (2.17a, 2.17b) we find that d = 3
√
η
t

3

√
Γ1(η) = 3

√
ηt

3
√

Γ2(η) However by Rule

2, this implies that 3

√
Γ1(η) ≡ 3

√
Γ2(η) ≡ 1 and therefore 3

√
η
t

= 3
√
η. This implies that

η(n, t) = ν(n) + σ(t), where ν(n) is an arbitrary function and σ(t) is some differentiable

function in t only. If we compare (2.17c, 2.17d) we find that b = 3
√
η
t

3

√
Γ3(η) = 3

√
ηt

3
√

Γ4(η)

However by Rule 2, this implies that 3

√
Γ3(η) ≡ 3

√
Γ4(η) ≡ 1 and therefore

b = 3
√
ηt = 3

√
σt (2.18a)

d = 3
√
ηt = 3

√
σt = b (2.18b)

To determine the remaining coefficients a and c we require the nonlinear terms HH2 and H2
G

to be present in the reduced equation (2.5a), hence we have the following

bb
2
c = bηtΓ5(η) ⇒ c = dΓ5(η) ⇒ c = 0 (2.19a)

ab
2
d = bηtΓ6(η) ⇒ a = bΓ6(η) ⇒ a = 0 (2.19b)

by application of Rule 1.

Now if the linear term in H on the left side of the equation remains in the reduced equation,

then

bt = bb
2
dΓ7(η) ⇒ σtt = 3(σt)2Γ7(η) . (2.20)

However, since σ only depends on t, while η also depends on n, this equations can only hold

if Γ7 is identically constant. So we let this constant be −c−1 and absorbing the value of 3 so

that −3c−1 = −c0, we find σtt = −(σt)2c0, which we can integrate with respect to t giving

σ(t) =

{
1
c0

log(c0t+ c1) + c2 if c0 6= 0

a0t+ a1 if c0 = 0.
(2.21)

where cj , j = 0, 1, 2, a0, a1 are constants.
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The reduced equations are now (2.5a, 2.5b) are now

−coH +Hη = H(H2(G+ 2G) +H(G−G)−H2(2G+G) +G
3 −G3),

−coG+Gη = 2(H2(H2 +H2 +G
2 +GG+G2)

−H2(H2 +H2 +G2 +GG+G2)) (2.22a)

Having established a clear pattern from the reduced equations of the flows of the hierarchy,

we can state the an expression for the reductions of the rth flow of the hierarchy.

2.3 A direct reduction of a general flow of the Toda hierarchy

We use (1.1) and (1.2) and the results of §2.1 and §2.2 to give an iterative scheme.

Proposition 2.3. The reduced rth flow of the Toda hierarchy can be generated by

TLr(u, v) :

{
−c0H +Hη −H(pr+1(η)− pr+1(η)) = 0

−c0G+Gη + p01 − (qr+1(η)− qr+1(η)) = 0
(2.23)

where pj = pj(η), qj = qj(η) can be recursively generated from p0 = 1 , q0 = 0 using

pr+1(η) =
1
2

(qr(η) + qr(η)) +Gpr(η) , (2.24a)

qr+1(η) = 2H2
r∑
l=0

pr−l(η)pl(η)− 1
2

r∑
l=0

qr−l(η)ql(η) . (2.24b)

and the value p01 represents the additional term in the first flow.11) The reduction is given by

η(n, t) = ν(n) + σ(t) , ν(n) being an arbitrary function, with

σ(t) =

{
1
c0

log(c0(t) + c1) + c2 if c0 6= 0

a0t+ a1 otherwise
(2.25)

where cj , j = 0, 1, 2, a0, a1 are constants and the reductions of u and v are given by the

following two respective cases

(1) Case c0 6= 0:

u(n, t) = r

√
1

c0t+ c1
H(η) , v(n, t) = r

√
1

c0t+ c1
G(η) (2.26a)

(2) Case c0 = 0:

u(n, t) = r
√
a0H(η) , v(n, t) = r

√
a0G(η) (2.26b)

Remark 2.1. Within the hierarchy each set of reduced equations (2.23) form a system of

differential-difference equations, which evolves on a sequence of domains containing points

P = {η0, ηo, η0, . . .} , (2.27)

where if η0 = ν(n) + σ(t), then η0 = ν(n + 1) + σ(t). In any interior of any domain in n,

where the mapping ν(n) → ν(n + 1) is defined, we get a semi-infinite chain of points P and
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a corresponding sequence of domains on which these iterates are defined. Since ν(n) is an

arbitrary function we have an infinite-dimensional family of reductions.

3. Generalization of the ansätze

In11) it was shown that the ansätze (1.8) represent the general case for the first flow in the

Toda hierarchy, the Toda equation. For the other flows within the hierarchy we show how the

ansätze represent the general case (1.8) for the second flow. It can be shown that this holds

true for the rth flow of the hierarchy. Consider the general reduction

u(n, t) = U(n, t,H(η(n, t)), G(η(n, t))) (3.1a)

v(n, t) = V (n, t,H(η(n, t)), G(η(n, t))) . (3.1b)

Under these transformations the second flow of the Toda equation (2.1) becomes

Ut + UHHηηt + UGGηηt = U(U2 − U2 + V
2 − V 2) , (3.2a)

Vt + VHHηηt + VGGηηt = 2(U2(V + V )− U2(V + V )) . (3.2b)

For the reduced equations to each contain the nonlinear terms in H,G we require

U
2 = U2Γ1(η,H,G) V = V Γ2(η,H,G) , (3.3)

then rewriting Γ1 and Γ2 in these equations appropriately, we can sum up to get

U = e(t)Γ3(η,H,G) + f(t) V = j(t)Γ4(η,H,G) . (3.4)

Redefining Γ3 = H̃ and Γ4 = G̃ where H̃ and G̃ are new variables replacing H and G, we

regain the linear ansätze assumed earlier (1.8). It is possible to show this for the other flows

in the hierarchy.

4. Lax Pairs

The general Lax pair7) for the Toda hierarchy is given by

λψ = uψ + uψ + vψ (4.1a)

ψt = 2uPrψ −Qr+1ψ (4.1b)

where Pr = Pr(λ, n, t) , Qr = Qr(λ, n, t) are monic polynomials in the spectral parameter λ

of the type

Pr =
r∑
j=0

λjpr−j , (4.2a)

Qr = λr+1 +
r∑
j=0

λjqr−j − pr+1. (4.2b)

The Lax pair for the hierarchy can be derived independently of this formula, by looking at

the compatibility between (4.1a) and (4.1b), setting Pr =
∑r−1

j=0 αjλ
j , Qr =

∑r
j=0 βjλ

j and
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finding appropriate values for αj , βj .

Then using (4.1), the Lax pair for the Toda equation10) is given as

uψ + uψ + vψ = λψ , (4.3a)

ψt = 2uP0ψ −Q0ψ , (4.3b)

where P0 = 1 , Q0 = (λ − v). To illustrate this notation we present the reduction for the

second and third flows, then give the reduction for the general Lax pair.

4.1 Second Flow

Using (4.1) and (4.2) for r = 2 we derive the Lax pair for the second flow of the hierarchy

λψ = uψ + uψ + vψ (4.4a)

ψt = 2u(λ+ v)ψ − (λ2 + u2 − u2 − v2)ψ (4.4b)

then from the results of Proposition 2.1, we find from (4.4)

±
√
σ′(t)Hψ ±

√
σ′(t)Hψ ±

√
σ′(t)Gψ = λψ . (4.5)

We define a new spectral parameter ζ = λ√
σ′

and choose a definite sign in b = ±
√
σ′, say the

positive sign, then we obtain for φ(η, ζ) = ψ(n, t)

ψt = ζtφζ + σ′φη = σ′(c0ζφζ + φη) . (4.6)

Thus we get the reduced second flow Lax pair

ζφ = Hφ+Hφ+Gφ (4.7a)

c0ζφζ + φη = 2H(ζ +G)φ− (ζ2 +H2 −H2 −G2)φ (4.7b)

We note that the character of the Lax pair has changed from a spectral problem to

a monodromy problem, since now derivatives in ζ also appear in the linear problem. By

differentiating equation (4.7a) in two different ways, once with respect to ζ and once with

respect to η, and using (4.7b) to replace ζ , while using (4.7a) to replace φ, we can show that

the compatibility conditions for the linear system (4.7) are precisely equations (2.2).

4.2 Third Flow

Using (4.1) and (4.2) for r = 3 we derive the Lax pair for the second flow of the hierarchy

λψ = uψ + uψ + vψ (4.8a)

ψt = 2u(λ2 + λv + u2 + u2 + v2)ψ

−
(
λ3 + λ2u2 + u2v − u2(2v + v)− v3

)
ψ (4.8b)
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then from the results of Proposition 2.2, we find from (4.8)

3
√
σ′(t)Hψ + 3

√
σ′(t)Hψ + 3

√
σ′(t)Gψ = λψ . (4.9)

Using the new spectral parameter ζ, and the change of variables φ(η, ζ) = ψ(n, t), we get the

reduced third flow Lax pair

ζφ = Hφ+Hφ+Gφ (4.10a)

c0ζφζ + φη = 2H(ζ2 + ζG+H2 +H2 +G2)φ

−
(
ζ3 + +ζ2H2 +H2G−H2(2G+G)−G3

)
φ .

(4.10b)

Similarly for the third flow we find we again have a monodromy problem, though we can

consider the compatibility in a similar manner to the second flow.

Remark 4.1. It is clear how the reduced hierarchy for the Toda equation progresses and thus

we simply state the general reduced Lax pair to calculate up to the rth flow:

ζφ = Hφ+Hφ+Gφ (4.11a)

c0ζφζ + φη = 2HPrφ−Qr+1φ (4.11b)

where Pr = Pr(ζ, η) , Gr = Gr(ζ, η) are monic polynomials in the spectral parameter ζ of the

type

Pr(ζ, η) =
r∑
j=0

ζjpr−j(η) , (4.12a)

Qr(ζ, η) = ζr+1 +
r∑
j=0

ζjqr−j(η)− pr+1(η) (4.12b)

where p(η), q(η) are given by (2.24).

5. Conclusions and Remarks

In Section 2, we have extended the reduction of the Toda equation (given in11)), to the

Toda hierarchy and have thus obtained the most general possible reductions for the ansätze

(1.8). Our results from the second and third flows led to the iterative scheme for a reduction up

to the rth flow. In Section 3, we showed that the ansätze assumed in fact represents the most

general case. Finally in Section 4, we showed that the reduced equations from the hierarchy

also inherit a linear problem.

The inheritance of a linear problem through the reduction indicates that the set of equa-

tions (2.23) are integrable. These results suggest that the system (2.23) is analogous to the

well known reductions of completely integrable partial differential equations, namely the clas-

sical Painlevé equations. However, questions remain open on how close such an analogy might

be.

11/13



J. Phys. Soc. Jpn. Full Paper

6. Acknowledgements

The authors thank the Issac Newton Institute for Mathematical Sciences, where this paper

was completed. We also wish to thank Pavlos Kassotakis for insightful conversations. This re-

search is supported by the Australian Research Council Discovery Project Grant #DP0664624.

12/13



J. Phys. Soc. Jpn. Full Paper

References
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