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Abstract. We construct 9-parameter and 13-parameter dynamical systems
of the plane which map bi-quadratic curves to other bi-quadratic curves and
return to the original curve after two iterations. These generalize the QRT
maps which map each such curve to itself. The new families of maps include
those that were found as reductions of integrable lattices by [11].

1. Introduction

The QRT maps were proposed by Quispel, Roberts and Thompson [14] about
twenty years ago and provided a fruitful starting point for the field of discrete
integrable systems. In particular, the de-autonomization of these maps through
the singularity confinement method led to the discrete Painlevé equations, which
turned out to have very rich connections with other fields, including random matrix
theory.

However, although the QRT mappings are considered as the most general family
of Liouville integrable bi-rational maps of the plane, there exist examples of inte-
grable maps that do not fall in this class. We consider a generalization of QRT
maps, which have been introduced under the name of HKY mappings. Their non-
QRT nature arises from the fact that they preserve a bi-quartic rational integral
instead of a bi-quadratic one. Actually, the iterates of these systems alternate
between 2 birationally equivalent elliptic curves, hence their non-QRT nature. Sev-
eral examples of such systems were exhibited in [7] by Hirota, Kimura and Yahagi,
where they presented third-order mappings with two integrals, which can be in-
tegrated to second-order with bi-quartic invariants, hence the initials HKY under
which these examples are known. Nevertheless, the first researchers that gave ex-
amples of non-QRT type mappings were Haggar, Byrnes, Quispel and Capel in [6].
For this reason, in this paper, we describe these systems as non-QRT mappings.
More examples of non-QRT systems were generated by autonomisations of discrete
Painlevé equations [12], reductions on integrable lattices [11], using an elliptic func-
tion solution [18], solutions of Adler’s lattice equation [1], or by a direct approach
[5, 16, 4].

In this paper, we extend these known examples by providing multi-parameter
families of non-QRT mappings. The main idea that was firstly introduced in [12], is
to construct birational mappings φ which transforms an integral I(x, y) of a QRT
mapping to an involutive homography of itself. The construction then leads to
mappings that preserve a bi-quartic integral and hence lead to non-QRT mappings.
This construction is explained in further detail in Section 2. In Section 3, multipa-
rameter families of examples of non-QRT Liouville integrable mappings of the plane
are presented. Our main results are presented in section 4 where we generalise the
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findings of [11]. Finally, in Section 5, we discuss the integration of these systems,
followed by conclusions in Section 6.

2. From QRT to non-QRT Mappings

The QRT mapping is defined by the composition of two non-commuting involu-
tions i1, i2, which both preserve the same biquadratic invariant

I(x, y) =
XT A0Y

XT A1Y
,

where X, Y are vectors X = (x2, x, 1)T , Y = (y2, y, 1)T and A0, A1 are two 3 × 3
matrices,

Ai =





αi βi γi

δi εi ζi

κi λi µi



.

If these matrices are symmetric, i.e., Ai = AT
i , the QRT mapping is called sym-

metric since its invariant is symmetric under the interchange of x and y. If they
are antisymmetric, i.e., Ai = −AT

i , the QRT is called antisymmetric, otherwise it
is called asymmetric. In the antisymmetric and asymmetric cases, the QRT is the
composition i2 ◦ ii of the non-commuting involutions i1, i2, where the latter are de-
fined by the solution of the equations I(x̃, y)− I(x, y) = 0 and I(x, y)− I(x, y) = 0
respectively. So we have

i1 :







x̃ =
f1(y) − f2(y)x

f2(y) − f3(y)x

ỹ = y

, i2 :







x = x

y =
g1(x) − g2(x)y

g2(x) − g3(x)y

, (1)

where
(f1(y), f2(y), f3(y))T = (A0Y) × (A1Y),

(g1(x), g2(x), g3(x))T = (AT
0 X) × (AT

1 X).

In the symmetric case, the QRT is defined by the composition of i1 or i2 with
the involution j : x = y, y = x, that clearly preserves I(x, y) since the latter is
preserved under the interchange of its arguments. So the symmetric QRT can be
written as the 3−point map:

y =
f1(y) − f2(y)y

f2(y) − f3(y)y
.

The results of [11] suggest a direct approach to finding non-QRT mappings from
the QRT integral. Specifically, it was shown that if one can find the appropri-
ate I(x, y) or equivalently the appropriate Ai such that a birational mapping φ
transforms I(x, y) to an involutive homography of itself, namely if

I ◦ φ =
aI − b

cI − a
, (2)

then φ will preserve the bi-quartic I +
aI − b

cI − a
and will be an non-QRT map. Note

that in the case when φ is an involution, or more generally a periodic map, one can
get nontrivial non-QRT systems by composing φ with the QRT involution i1 or i2.
Note that in this case, the non-commutativity of i1 or i2 with φ should be checked.
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The authors of [11] identified two cases, which we call Type I and Type II non-
QRT maps, where

Type I : I ′ ◦ φ = −I ′

Type II : I ′ ◦ φ = 1/I ′

Equation (2) can be mapped to each of these two types. If c = 0, type I can be
found after substituting I = I ′ + b/2a. If c 6= 0, we get type II after substituting

I = I ′
√

a2/c2 − b/c + a/c. Therefore, the conserved quantities of φ are I ′2 and
I ′ + 1/I ′, respectively. These two families of mappings at a first glance appear to
be different, but are related [2], since if φ gives a Type I invariant, after defining

K =
1 − I ′

1 + I ′
, we get K ◦ φ = 1/K. So, from now on, we deal only with Type I

non-QRT mappings.
Note also that for both types of non-QRT maps, their even (odd) iteration is a

QRT mapping, since after two consecutive actions of the map, the bi-quadratic is
mapped to itself, I → −I → I or I → 1/I → I. In this sense non-QRT maps can
be described as a “square root” of the associated QRT map.

3. Two Families of Antisymmetric non-QRT Maps

Many examples of 3-point non-QRT maps φ that appear in the literature are
defined for symmetric I(x, y). That is, φ = j ◦ h, where

h :

{

x̃ = F (x, y)
ỹ = y

, j :

{

x = y
y = x

, and h2 = j2 = id

with j of QRT type and h of non-QRT type (without loss of generality of type I).
A natural question then arises: for which bi-quadratic I(x, y) is the involution

j of non-QRT type? If we can find such an I then by composing j with a QRT
involution i1 or i2 of section 2, then we will clearly have an non-QRT mapping.
The question above is answered in Proposition 3.1 followed by Corollary 3.1.

In Corollary 3.2, the same question is answered for the period 4 map j: x =
−y, y = x, where again by composing j with the QRT involution i1, we have
another family of non-QRT maps.

Proposition 3.1. For

I(x, y) =
N(x, y)

D(x, y)
=

XT A0Y

XT A1Y
, (3)

when A1 = AT
1 and A0 = −εAT

0 , there is I(y, x) + εI(x, y) = 0, where ε = ±1.

In order for the paper to be self contained we present a small proof.

Proof. When A1 = AT
1 there is:

D(y, x)−D(x, y) = YT A1X−XT A1Y = YT A1X−YT AT
1 X = YT (AT

1 −A1)X = 0.

Also for A0 = −εAT
0 ,

N(y, x)+εN(x, y) = YT A0X+εXT A0Y = YT A0X+εYT AT
0 X = YT (AT

0 +εA0)X = 0.
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So

I(y, x) + εI(x, y) =
N(y, x)

D(y, x)
+ ε

N(x, y)

D(x, y)
=

N(y, x)D(x, y) + εN(x, y)D(y, x)

D(x, y)D(y, x)
=

=
D(x, y) (N(y, x) + εN(x, y))

D(x, y)2
= 0

�

Corollary 3.1. For A1 = AT
1 and A0 = −εAT

0 , the map

x = y,

y =
f1(y) − f2(y)x

f2(y) − f3(y)x

or y =
f1(y) − f2(y)y

f2(y) − f3(y)y
, (4)

where

(f1, f2, f3)
T = (A0Y) × (A1Y),

for ε = −1 preserves I(x, y) (3) so is a symmetric QRT and for ε = 1 is measure-

preserving1 with density m(x, y) =
(

XT A0Y
)

−1
and preserves I(x, y)2 so is a non-

QRT Liouville integrable map [17].

Remark 3.1. Non-QRT mappings presented in subsection 4.2 of [6] and in section
2 of [5] are subcases of the mapping of the corollary 3.1.

Remark 3.2. QRT mappings with A1 = AT
1 and A0 = −AT

0 , together with their
singularity patterns and their connection to discrete Painlevé, were studied in [19]
under the name of antisymmetric QRTs. From the corollary above, it is clear that
the even(odd) iterations of the mappings of the corollary (3.1), with ε = 1, are the
antisymmetric QRTs. In other words, we have shown that the “square root”of the
antisymmetric QRTs are non-QRT mappings.

Example 3.1. When:

A0 =





(ε − 1)κ 1 0
−ε (ε − 1)λ γ
0 −εγ (ε − 1)µ



 , A1 =





0 0 0
0 0 0
0 0 1



 ,

according to corollary (3.1) there is

I(x, y) = x2y + γx − ε(xy2 + γy) + (ε − 1)(κx2y2 + λxy + µ),

φ : xn+1 = yn, yn+1 = −xn +
εy2

n + (ε − 1)λyn − γ

(ε − 1)κy2
n + yn

,

or

xn+1 + xn−1 =
εx2

n + (ε − 1)λxn − γ

(ε − 1)κx2
n + xn

.

When ε = −1 mapping φ preserves the symmetric integral I(x, y) and is a member
of the symmetric QRT.

1According to [15], a mapping of the plane φ : (x, y) → (x, y) is (anti) measure-preserving with

density m(x, y), if the Jacobian determinant (J) of φ can be written as J =
m(x,y)
m(x,y)

. Anti measure-

preservation corresponds to a measure-preserving and orientation-reversing mapping φ. For all
mappings presented in this work, (anti) measure-preservation is proven by direct computation.
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When ε = 1, I(x, y) is antisymmetric under the interchange of its arguments
and the mapping φ preserves I(x, y)2. Hence it is a non-QRT mapping. Moreover
the even (odd) iterations of φ preserves the antisymmetric I(x, y). Hence it is a
member of the antisymmetric QRT [19]. To see the latter, when n is even, note
that φ reads:

x2m+1 = y2m, y2m+1 = −x2m + y2m − γ/y2m, (5)

When n is odd, we have:

x2m = y2m−1, y2m = −x2m−1 + y2m−1 − γ/y2m−1, (6)

Substituting (6) into (5) we find that the odd x and y satisfy the antisymmetric
QRT map:

x2m+1 = −x2m−1 + y2m−1 − γ/y2m−1, y2m+1 = −y2m−1 + x2m+1 − γ/x2m+1

Similarly, the even x and y also satisfy the antisymmetric QRT:

x2m+2 = −x2m + y2m − γ/y2m, y2m+2 = −y2m + x2m+2 − γ/x2m+2.

Asking the same questions as above for the period-4 mapping j: x = −y, y = x,
we find the following corollary2

Corollary 3.2. The mapping

x = −y,

y =
f1(y) − f2(y)x

f2(y) − f3(y)x
=

βy(δy2 + ζ) + αx(2δy2 + γy4 + ζ)

βxy(δ + γy2) − α(2δy2 + γy4 + ζ)

(7)

or

y =
βy(δy2 + ζ) − αy(2δy2 + γy4 + ζ)

−βyy(δ + γy2) − α(2δy2 + γy4 + ζ)
,

preserves I2 where I is given by

I(x, y) =
XT A0Y

XT A1Y
, with A0 =





0 0 α
0 β 0
−α 0 0



 and A1 =





γ 0 δ
0 0 0
δ 0 ζ



,

so is a non-QRT mapping. Mapping (7) is anti-measure preserving with density
m(x, y) = 1

XT A0Y
, hence a Liouville integrable map.

4. Asymmetric and Symmetric non-QRT Maps

Here we present a family of non-QRT mappings that corresponds to asymmetric
QRT case, and then we specialise this result to the ones that correspond to the
symmetric QRT case.

Proposition 4.1. For

I(x, y) =
XT A0Y

XT A1Y
, where A0 =





α β γ
δ ε ζ
κ λ µ



 , A1 =





α1 β1 γ1

δ1 ε1 ζ1

κ1 λ1 µ1



 ,

(8)

2The proof is exactly analogous to the proof of corollary 3.1.
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with

α1 = 2α2f − cαδ + βδb − bαε β1 = 2fαβ + bγδ − cαε − bαζ γ1 = 2fαγ − cαζ
δ1 = 2mα2 − 2cακ + 2bβκ− 2bαλ ε1 = 2mαβ + 2bγκ− 2cαλ − 2bαµ ζ1 = 2mαγ − 2cαµ
κ1 = mαδ − 2fακ + bεκ− bδλ λ1 = mαε + bζκ − 2fαλ − bδµ µ1 = mαζ − 2fαµ

there is I ◦ i2 = I, and I ◦ hi = −I, i = 1, 2, where i2 the QRT involution and

h1 :







x = −
(δy2 + εy + δ)x + 2(κy2 + λy + µ)

2(αy2 + βy + γ)x + δy2 + εy + δ
,

y = y,

h2 :







x = −
(δ1y

2 + ε1y + δ1)x + 2(κ1y
2 + λ1y + µ1)

2(α1y2 + β1y + γ1)x + δ1y2 + ε1y + δ1
,

y = y,

the non-QRT involutions.

Proof. Lets consider the function:

I(x, y, x) =
xx(αy2 + βy + γ) + x(ρy2 + σy + τ) + x(δy2 + εy + ζ) + κy2 + λy + µ

xx(ay2 + by + c) + (x + x)(dy2 + ey + f) + ky2 + ly + m
,

(9)
where α, β, . . . , l, m are parameters and x = f(x, y) is a function of x, y, to be
determined to be an involution, i.e., x = x. Now the solution of the equation
I(x, y, x) + I(x, y, x) = 0, for x will determine the form of the latter. Explicitly x
reads:

x = −
x
(

y2(δ + ρ) + y(ε + σ) + ζ + τ
)

+ 2(κy2 + λy + µ)

2x(αy2 + βy + γ) + y2(δ + ρ) + y(ε + σ) + ζ + τ
.

Substituting this solution back to (9), we get I = I(x, y) which is quadratic in x
and of higher degree than quadratic in y. Clearly, the equation I(x, y) + I(x, y) =
0 by construction has as a solution the previously defined (x̃). A choice of the
parameters of (9), that will lead to biquadratic I(x, y) is ρ = δ, σ = ε, τ = 0, a =
d = k = 0, e = bδ

α
, l = bκ

α
. Then and after the scaling (δ, ε) → (δ/2, ε/2), the integral

I(x, y) =
XT A0Y

XT A1Y
gets the form above and the solution of I(x, y) + I(x, y) = 0 is

exactly h1, h2.
�

Corollary 4.1. The mapping

x = −
(δy2 + εy + δ)x + 2(κy2 + λy + µ)

2(αy2 + βy + γ)x + δy2 + εy + δ
,

y =
g1(x) − yg2(x)

g2(x) − yg3(x)

(10)

and the dual mapping

x = −
(δ1y

2 + ε1y + δ1)x + 2(κ1y
2 + λ1y + µ1)

2(α1y2 + β1y + γ1)x + δ1y2 + ε1y + δ1
,

y =
g1(x) − yg2(x)

g2(x) − yg3(x)

(11)

preserve I2 where I is given by (8), so they are non-QRT maps. Mapping (10)
is measure-preserving, whereas mapping (11) is anti measure-preserving, both with
density m(x, y) = 1

XT A0Y
, hence Liouville integrable maps.
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If we now demand the matrices of (8) to be symmetric, we have the following
corollary:

Corollary 4.2. The mapping

x = y,

y = −
2γy2 + 2δy + 2µ + x(βy2 + εy + δ)

βy2 + εy + δ + 2x(αy2 + βy + γ)

(12)

or

y = −
2γy2 + 2δy + 2µ + y(βy2 + εy + δ)

βy2 + εy + δ + 2y(αy2 + βy + γ)
,

and the dual mapping

x = y,

y = −
2γ1y

2 + 2δ1y + 2µ1 + x(β1y
2 + ε1y + δ1)

β1y2 + ε1y + δ1 + 2x(α1y2 + β1y + γ1)

(13)

or

y = −
2γ1y

2 + 2δ1y + 2µ1 + y(β1y
2 + ε1y + δ1)

β1y2 + ε1y + δ1 + 2y(α1y2 + β1y + γ1)
,

preserve I2 where I is given by

I(x, y) =
XT A0Y

XT A1Y
, where A0 =





α β γ
β ε δ
γ δ µ



 , A1 =





α1 β1 γ1

β1 ε1 δ1

γ1 δ1 µ1



 ,

(14)
with

α1 = αε − β2 β1 = 2αδ − 2βγ γ1 = βδ − γε
ε1 = 4αµ − 4γ2 δ1 = 2βµ − 2γδ µ1 = εµ − δ2

so they are non-QRT maps. Mapping (12) is anti measure-preserving, whereas
mapping (13) is measure-preserving, both with density m(x, y) = 1

XT A0Y
, hence

Liouville integrable maps.

Remark 4.1. For α = 0, β = 0, γ = 1/2, δ = 0, ε = a, µ = b/2, the integral (14)
takes the form:

I(y, y) =
2ayy + y2 + y2 + b

2yy + a(y2 + y2) − ab

that the associate mapping (12) is the non-QRT mapping associated with Q3 found
in [11].

Remark 4.2. For α = k2sn(a)sn(b)sn(a − b), β = 0, γ = −sn(a − b), δ = 0,
ε = 2(sn(a) − sn(b)), µ = sn(a)sn(b)sn(a − b), the integral (14) takes the form:

I(y, y) =

((1 + k2y2y2)sn(a)sn(b) − y2 − y2)sn(a − b) + 2yy(sn(a) − sn(b))

((1 + k2y2y2)sn(a)sn(b) + y2 + y2)(sn(a) − sn(b)) + 2yysn(a − b)(k2sn(a)2sn(b)2 − 1)

that the associate mapping (12) is the non-QRT mapping associated with Q4 found
in [11].
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Example 4.1. For α = 1, β = δ = 0, I given by (14) takes the form:

I(x, y) =
x2y2 + γ(x2 + y2) + µ

xy
, or I(y, y) =

y2y2 + γ(y2 + y2) + µ

yy
,

and from (12) there is:

yy = −
µ + γy2

y2 + γ
(15)

that preserves I(y, y)2. Inspired by [8], a discrete Lax pair for (15) is given by

LnΨn = λΨn, Ψn+1 = MnΨn, (16)

where

Ln(λ) =

(

(−1)nyn−1yn −γ

λ − y2
n−1 − y2

n (−1)n µ+γ(y2

n−1
+y2

n
)

yn−1yn

)

,

Mn(λ) =

(

0 −γ

λ − y2
n−1 − y2

n (−1)nγ
µ+γy2

n
+y2

n−1
(γ+y2

n
)

yn−1yn(γ+y2
n
)

)

.

The equation (15) arises as the compatibility condition Ln+1Mn − MnLn = 0 for
the linear system (16).

4.1. Integration of the non-QRT mappings. In exactly the same manner as
in [13], and [9], by integration of a non-QRT mapping we will mean the parametri-
sation of the corresponding invariant curves.

In this setting, the integration of the symmetric QRT, according to Veselov
[17] was first considered by Euler, but of course not inside the modern context of
integrability. A more transparent and explicit method was presented by Baxter [3].
Recently, the authors of [13], [9], independently presented the integration of the
asymetric QRT.

To proceed with the integration of the non-QRT mappings (4) and (7), we should
first make the following observation. Let us consider

I(xn−1, xn; n) = (−1)n XT
n−1A0Xn

XT
n−1A1Xn

,

then

I(xn, xn+1; n + 1) − I(xn−1, xn; n) = (−1)n+1

(

XT
nA0Xn+1

XT
nA1Xn+1

+
XT

n−1A0Xn

XT
n−1A1Xn

)

,

that is satisfied by mappings (4) and (7). Then the invariant curves that the HKY
under consideration lies is:

XT
n−1A0Xn − (−1)nKXT

n−1A1Xn = 0, (17)

where K is the integration constant associated with the initial conditions (x−1, x0),
K = I(x−1, x0). Then, after defining M = A0−(−1)nKA1, the way to parametrise
XT

n−1MXn = 0, is exactly the one presented in [13] for the asymmetric QRT.
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5. Conclusions

In the previous sections, multiparameter mappings of non-QRT type were pre-
sented. By construction they preserve a bi-quartic invariant that can be consid-
ered as the square of a QRT bi-quadratic one. Apart from the preservation of a
bi-quartic integral, these systems turn to be (anti) measure-preserving and hence
Liouville integrable.

Commenting on the search for general solution of such integrable systems, it
should be noted that by fixing an initial condition say (x−1, x0), we have K =
I(x−1, x0) and equation (17) defines, in general, two elliptic curves: one for n odd
and the other for n even. The non-QRT system at each step maps one curve to
the other and vice versa and since the latter is bi-rational, these two curves are
birationally equivalent and hence they should have the same j-invariant. In this
sense we should not expect to find the general solution of a non-QRT map as an
addition formula on one elliptic curve since the latter simply alternates between
two birationally equivalent elliptic curves. Also in this setting by construction, by
finding a non-QRT map we have two birationally equivalent curves and the non-
QRT map is the birational relation between these two curves. Note also that these
are special classes of birationally equivalent curves since the birational relation that
maps one to the other and the inverse of it are the same birational map and the
one we call the non-QRT map.

It should be pointed out, that although general multiparameter families of these
systems are presented, we have by no means exhausted all possble non-QRT map-
pings of the plane. A natural extension of this work is to consider systems whose
higher iterates are QRT maps. If the third iteration is a QRT mapping, then they
preserve I3, with I associated to the QRT bi-quadratic invariant. This will be
considered elsewhere.
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of the Bäcklund Transformation. Journal of Nonlinear Mathematical Physics, 15:34–42, 2008.

[2] J. Atkinson, Private communication.
[3] R.J. Baxter. Exactly Solved Models in Statistical Mechanics. Associated Press, London, 1982,

p. 471.
[4] Allan P Fordy and Pavlos G Kassotakis. Multidimensional Maps of QRT Type. Journal of

Physics A: Mathematical and General, 39:10773–10786, 2006.
[5] B. Grammaticos, and A. Ramani. Integrable Mappings with Transcendental Invariants. Com.

Non. Sci. Num. Simu.,12: 350-356, 2007.
[6] F.A. Haggar, G.B. Byrnes, G.R.W. Quispel, and H.W. Capel. k-integrals and k-Lie symmetries

in discrete dynamical systems. Physica A, 233:379–394, 1996.
[7] R. Hirota, K. Kimura, and H. Yahagi. How to Find Conserved Quantities of Nonlinear Discrete

Equations. J. Phys. A:Math. Gen.,34: 10377-10386, 2001.

[8] Andrew N.W. Hone Laurent Polynomials and Superintegrable Maps. Symmetry, Integrability

and Geometry: Methods and Applications, (SIGMA) 3 (2007),022, 18 pages.
[9] A. Iatrou and J.A. Roberts. Integrable Mappings of the Plane Preserving Biquadratic Invariant

Curves II. Nonlinearity, 15:459–89.



10 P. KASSOTAKIS AND N. JOSHI

[10] D. Jogia, J. A. G. Roberts and F. Vivaldi. An Algebraic Geometric Approach to Integrable
Maps of the Plane. Journal of Physics A: Mathematical and General, 39:1133–1149, 2006.

[11] N. Joshi, B. Grammaticos, T. Tamizhmani and A. Ramani. From Integrable Lattices to
Non-QRT Mappings. Letters in Mathematical Physics, 78:27–37, 2006.

[12] K. Kimura, H. Yahagi, R. Hirota, A. Ramani, B. Grammaticos, and Y. Ohta. A New Class
of Integrable Discrete Systems. J. Phys. A:Math. Gen.,35: 9205-9212, 2002.

[13] A. Ramani, A.S. Carstea, B. Grammaticos and Y. Ohta. On The Autonomous Limit of
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