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Abstract. Elliptic N -soliton-type solutions, i.e. solutions emerging from the application of
N consecutive Bäcklund transformations to an elliptic seed solution, are constructed for all
equations in the ABS list of quadrilateral lattice equations, except for the case of the Q4
equation which is treated elsewhere. The main construction, which is based on an elliptic Cauchy
matrix, is performed for the equation Q3, and by coalescence on certain auxiliary parameters,
the corresponding solutions of the remaining equations in the list are obtained. Furthermore,
the underlying linear structure of the equations is exhibited, leading, in particular, to a novel
Lax representation of the Q3 equation.

1. Introduction

In a series of recent papers, soliton type solutions of two-dimensional integrable quadrilateral
lattice equations were explored, [6, 7, 10, 24]. Integrability here is understood in the sense of
the multidimensional consistency property, [32, 13], which states that such equations can be
consistently embedded in a multidimensional lattice, and which has been accepted as a key
integrability characteristic. Several examples of equations exhibiting this property were known
for more than two decades, cf. e.g. [36, 20, 15, 30, 34], but it was only recently that a full list
of scalar multidimensionally consistent equations was obtained, cf. [2], and also [3]. Apart from
lattice equations of KdV type which had been established early on, a number of novel equations
arose from this classification, for which no further structures (such as Lax pairs, inverse scattering
scheme or direct linearization treatments) were a priori known. As was demonstrated in [13, 23]
some of these structures, in fact, follow from the multidimensional consistency of the equation
itself. However, the construction of explicit solutions remained an open problem, and this
was systematically undertaken in the series of papers mentioned above, and they reveal some
surprising new features. In [24] we revealed some of the underlying structures of the equations
in the ABS list, showing that they are deeply interrelated not only through degeneration, but
through Miura type relations as well. In particular, closed-form N solitons for the whole ABS list
were obtained, with the exception of the “top” equation in the list, the so-called Q4 equation,
which was first discovered by V. Adler, [1], as the permutability condition for the Bäcklund
transformations of the famous Krichever-Novikov equation. Recently we have given explicit
N -soliton solutions for Adler’s equation [11] using a new constructive approach in which the
solutions emerge in Hirota form. With respect to the Cauchy-matrix approach considered here,
the equation Q4 has special features which warrant a separate treatment. The main focus in
[24], cf. also [7], was on the construction of “rational soliton solutions” for the Q3 equation,
which turns out to be the equation in which the features of the entire remaining list culminate.
Its underlying structure incorporates ingredients from all the other equations in the ABS list,
and consequently from its explicit N -soliton solutions, the corresponding solutions of all the
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“lower” equations in the ABS list are obtained through degenerations (i.e. via limits on some
fixed parameters). Thus, we were able to present explicitly all such rational N-soliton solutions
for those equations in closed form, (cf. also [19] for bilinear form and Casorati determinant
expressions of the same solutions).

In this paper we will generalise the Cauchy-matrix approach of [24] to the elliptic case, i.e.
to solutions which we could call elliptic N-soliton solutions. The problem of finding such elliptic
solutions should not be confused with the one of finding soliton solutions of the elliptic equation
Q4 (in which the lattice parameters take values as points on an elliptic curve) considered in
[11]. The treatment here follows closely the derivations in [24], but the lifting of the rational
solutions to the elliptic case introduces some new interesting features, such as the emergence of
a non-autonomous Cauchy kernel that incorporates the core strucuture behind these solutions.
Furthermore, some aspects become actually more transparant in the elliptic soliton case, as the
elliptic addition formulae at the heart of the development in some sense drive the construction.
Moreover, we unravel in this paper some of the underlying linear structures behind these solu-
tions, which as a byproduct leads to the construction of a novel Lax pair for Q3, which seems
more natural than the Lax pairs that are obtained from multidimensional consistency following
the recipe in [23, 13]. Thus, we expect that this new Lax representation can prove useful in
the construction of wider classes of solutions, such as finite-gap solutions, and inverse scatter-
ing solutions with radiation. We also envisage that the structures revealed in this paper may
prove important in understanding the general nature of elliptic solutions of integrable discrete
equations and the corresponding many-body systems of Calogero-Moser and Ruijsenaars type,
cf. also [27, 22].

2. Preliminaries: the ABS list

First, we need to establish some notations that we will employ throughout the paper. Equa-
tions within the class of quadrilateral partial difference equations (P∆Es) have the following
canonical form:

Qp,q (u, ũ, û, ˆ̃u) = 0 ,

where we adopt the short-hand notation of vertices along an elementary plaquette on a rectan-
gular lattice:

u = un,m , ũ = un+1,m , û = un,m+1 , ̂̃u = un+1,m+1

Schematically these are indicated in Figure 1. Here p, q are parameters of the equation, related
to the lattice spacing, so each parameter is identified with a direction in the lattice. It is
useful, and actually crucial for the classification problem as solved in [2], to consider the lattice
parameters p, q as points on an algebraic curve, i.e. given by p = (p, P ) , q = (q,Q) , where the
coordinates p, P and q,Q respectively are related through some polynomial equation.

ABS, in [2], considered the case where u is a scalar (i.e. single-field) quantity, and restricted
themselves to the affine-linear case, i.e. the case in which the function Q is assumed to be affine
linear in each of its four arguments. They required the multidimensional consistency property, cf.
[32, 13]. That is, in each pair of directions of the multidimensional lattice a copy of the equation
(chosing values of the lattice parameters p, q, etc., associated with those directions) can be
imposed such that the iteration of well-chosen initial values leads to a unique determination of
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Figure 1. Arrangement of the shifted dependent variable on the vertices of a
quadrilateral and association of the lattice parameters to the edges.

the solution in each lattice point, avoiding possible multivaluedness that would generically occur
in the iteration of the solution by evaluating the values of u on lattice points following different
configurations of quadrialterals. In the integrable case, such multivaluedness does not occur by
the precise structure of the equation and the combinatorics of the evaluation process. More
concretely, this means that any three copies of the equation with different parameters, namely

Qp,q(u, ũ, û, ̂̃u) = 0 , Qp,r(u, ũ, u, ũ) = 0 , Qq,r(u, û, u, û) = 0

can be simultaneously solved, and lead to a unique and single-valued determination of the triple-
shifted point ̂̃u at the vertex of an elementary cube on which initial conditions are given by u,
ũ, û, u, where the denotes the elementary shift in an additional lattice direction associated
with the lattice parameter r.

The classification in [2] yielded, among others, the following list of equations (presented in a
slightly different notation)

Q-list:

Q1 : o
p(u− û)(ũ− ̂̃u)− q2(u− ũ)(û− ̂̃u) =

o

δ
o
p
o
q ( op− o

q) (2.1a)

Q2 : o
p(u− û)(ũ− ̂̃u)− o

q(u− ũ)(û− ̂̃u) + o
p
o
q( op− o

q)(u+ ũ+ û+ ̂̃u) =
= o
p
o
q( op− o

q)( op2 − o
p
o
q + o

q2) (2.1b)

Q3 : o
p(1− o

q2)(uû+ ũ̂̃u)− o
q(1− o

p2)(uũ+ û̂̃u) =

= ( op2 − o
q2)
(

(ûũ+ û̃u) +
o

δ
(1− o

p2)(1− o
q2)

4 o
p
o
q

)
(2.1c)

Q4 : o
p(uũ+ û̂̃u)− o

q(uû+ ũ̂̃u) =

=
o
p
o

Q− o
q
o

P

1− o
p2 oq2

(
(ûũ+ û̃u)− o

p
o
q(1 + uũû̂̃u)

)
(2.1d)

with
o

δ being a fixed parameter, and where the form of Q4 as given in (2.1d) was actually due to
[18], and involves additional parameters

o

P ,
o

Q related to o
p, o
q respectively via the Jacobi elliptic

curve relations:
o

P 2 = o
p4 − γ o

p2 + 1 ,
o

Q2 = o
q4 − γ o

q2 + 1 , in which γ denotes the modulus of this
curve.
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In what follows we will focus mostly on Q3 and its degenerations, and for the purpose of our
treatment we will rewrite (2.1c) in a different parametrisation which is more adapted to the
actual structure of the solutions, namely as follows:

Q3 : P (uû+ ũ̂̃u)−Q(uũ+ û̂̃u) = (p2 − q2)
[(
ûũ+ û̃u)+

∆
PQ

]
(2.2)

in which, following [7, 24], the lattice parameters p, q are related to the parameters o
p, o
q by the

relations
o
p =

P

p2 − a2
,

o
q =

Q

q2 − a2
, (2.3)

and where (p, P ) and (q,Q) are points on a Jacobi elliptic curve (different from the one mentioned
above associated with the Q4 equation) with branch points ±a, ±b, i.e. P 2 = (p2−a2)(p2− b2) ,
and Q2 = (q2− a2)(q2− b2) . The fixed parameter ∆ will have a special significance in terms of
certain arbitrary ceofficients in the solutions, as we shall see. Even though Q3, as given in (2.1c),
has a rational parametrisation, it turns out that for the solution structure, both here (where we
are dealing with elliptic solutions) as in the case of rational solitons as in [24], this new Jacobi
elliptic curve plays a crucial role. Thus, throughout this paper we will consider the parameters
p and q, and the associated parameters P , Q on the elliptic curve, to be the natural parameters
for the solutions, and consequently we prefer to express the solutions of the degenerate cases,
such as Q2 and Q1 in terms of these parameters. Other degenerate cases involve the so-called
H-equations from [2], and they are given by

H-list:

H1 : (w − ̂̃w)(ŵ − w̃) = p2 − q2 (2.4a)

H2 : (w − ̂̃w)(ŵ − w̃) = (p2 − q2)(w + w̃ + ŵ + ̂̃w)− p4 + q4 (2.4b)

H3 : P (wŵ + w̃ ̂̃w)−Q(ww̃ + ŵ ̂̃w) = 2∆
P 2 −Q2

PQ
(2.4c)

where we have now expressed them in terms of the new parameters p and q, whereas in (2.4c) we
have introduced associated parameters P , Q defined by the relations P 2+p2 = a2 , Q2+q2 = a2 .
We have omitted from the list the equations denoted by A1 and A2 in [2], which are equivalent to
Q1 and Q3 respectively upon gauge transformations. In a more recent paper, [3], ABS achieved
a somewhat stronger classification result, still in the scalar and affine-linear case, but otherwise
under less stringent assumptions. The various equations are connected to each other through
degenerations of the parameter curve, from Q4 down to all other equations. Concentrating
on the Q-list alone, the corresponding coalescence diagram is given in Figure 2. The question
as to what is known about explicit solutions of these equations is an interesting one. In fact,
most results so far are obtained for the equations of KdV type, and go already back several
years. Thus, identifying this subclass of equations, we note that H1 is the so-called lattice
potential KdV equation, which also appeared under the guise of the permutability condition
of the Bäcklund transformations of the (continuous) KdV equation, [36], or as the so-called ε-
algorithm in numerical analysis, due to Wynn, cf. [38]. The equation (Q1)0, i.e. the Q1 equation
with fixed parameter δ = 0, is the lattice Schwarzian KdV equation, or cross-ratio equation,
first presented as an integrable lattice equation in [25]. The equation (H3)0 can, up to a point
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Figure 2. Coalescence diagram for equations in the ABS Q list (this was first
given by Adler and Suris in [4]).

transformation, be identified with the lattice potential modified KdV (MKdV) equation, also
referred to as the Hirota equation, and (Q3)0 can be obtained from an interpolating equation that
was first presented in [30], and which hereafter we refer to as the NQC equation following [35].
For all these equations multi-soliton solutions are implicit in the direct linearisation approach
developed for lattice equations in [30, 34]. In fact, inverse scattering type solutions including
radiation are in principle (i.e. on a formal level) included in that scheme as well. Finite-gap
solutions of those equations are the ones that are connected to the periodic reductions of those
lattice equations, i.e. the reduction to finite-dimensional integrable (in the sense of Liouville)
dynamical mappings, cf. [33]. Those were developed for the lattice KdV in [26], whereas finite-
gap solutions for the Hirota equation and the lattice Schwarzian KdV were constructed from a
geometric perspective in [12, 17]. Finally, scaling symmetric solutions, leading to reductions to
discrete Painlevé equations were constructed in [29, 31]. To our knowledge this exhausts the
list of more or less explicit solutions to the lattice equations of KdV type. For any of the new
equations in the ABS list, such as the deformed equations depending on the parameter δ, as
well as H2, Q2 and Q4, no explicit solutions were presented until more recently. The case of Q4
was considered in [6], whilst with the exception of Q4, all of the other new ABS equations were
shown to be Bäcklund related to the older equations [8], which percipitated the generalisation of
the Cauchy-matrix approach to these new systems and hence the results of [7, 24, 19]. The aim
of the present paper is to add a new class of solutions, namely elliptic soliton type solutions, of
the equations in the ABS list to those found in recent years.

The outline of the remainder of the paper is as follows. In section 3 we show that additiona
formulae for elliptic functions (in the Weierstrass class) have a natural interpretation in terms
of partial difference equations. Thus, elliptic functions are shown to arise naturally as seed
solutions of a number of such equations. In section 4 we will set out the ground-work for our
construction of elliptic N -soliton solutions, defining the basic objects and relations in terms of
elliptic Cauchy matrices. These results will subsequently be used in section 5 to arrive at the
main statement (Theorem 5.1) presenting the elliptic N -soliton solution for Q3. Furthermore,we
present a realisation of those solutions in terms of a novel Lax pair for Q3, identifying explicitly
the eigenfunctions. In section 6, we demonstrate that the closed form solution of Q3 of the
previous section arises also from a Bäcklund chain. Finally, in section 7 we show how the
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solutions of Q3 degenerate to analogous solutions of the lower members of the ABS list. Some
direct verifications of the resulting solutions of the Q- and H-equations are also presented.

3. Elliptic addition formulae as solutions of P∆Es

In this section we will show that many of the equations in the ABS list admit elementary
solutions in terms of elliptic functions. In fact, one can consider the lattice equations as models
for basic addition formulae of elliptic functions. We will then, in subsequent sections, generalise
these elementary solutions to more general elliptic solutions, which we will call elliptic solitons,
and we will show that the elementary solutions play the role of the seed solutions for those
elliptic solitons as viewed as arising from a Bäcklund chain.

3.1. Elliptic addition formulae. In this paper we will work throughout exclusively in terms of
Weierstrass functions, and we employ primarily the basic addition formulae for these functions.
In what follows, σ(x) = σ(x|2ω, 2ω′), ζ(x) = ζ(x|2ω, 2ω′), ζ(x) = σ(x|2ω, 2ω′), denote the
standard Weierstrass σ-, ζ- and ℘-functions with simple periods 2ω, 2ω′ ∈ C, see e.g. [5]. Let
us now recall the following elliptic identities:

σ-function: The celebrated three-term identity for Weierstrass σ-function

σ(x+ a)σ(x− a)σ(y + b)σ(y − b)− σ(x+ b)σ(x− b)σ(y + a)σ(y − a)
= σ(x+ y)σ(x− y)σ(a+ b)σ(a− b) (3.1)

can be rewritten in terms of

Φκ(x) :=
σ(x+ κ)
σ(κ)σ(x)

(3.2)

as:
Φκ(x)Φλ(y) = Φκ+λ(x)Φλ(y − x) + Φκ(x− y)Φκ+λ(y) . (3.3)

ζ-function: The Weierstrass ζ-function ζ(x) = σ′(x)/σ(x) obeys

ζ(x) + ζ(y) + ζ(z)− ζ(x+ y + z) =
σ(x+ y)σ(y + z)σ(x+ z)
σ(x)σ(y)σ(z)σ(x+ y + z)

(3.4)

or:
Φκ(x)Φκ(y) = Φκ(x+ y) [ζ(κ) + ζ(x) + ζ(y)− ζ(κ+ x+ y)] (3.5)

℘-function: The Weierstrass ℘-function ℘(x) = −ζ ′(x) obeys:

℘(x)− ℘(y) =
σ(x+ y)σ(y − x)

σ2(x)σ2(y)
(3.6)

or:
Φκ(x)Φ−κ(x) = ℘(x)− ℘(κ) (3.7)

Furthermore, we recall the following basic addition rules

ζ(x+ y)− ζ(x)− ζ(y) =
1
2
℘′(x)− ℘′(y)
℘(x)− ℘(y)

, (3.8)

and

℘(x) + ℘(y) + ℘(x+ y) = (ζ(x+ y)− ζ(x)− ζ(y))2 =
1
4

(
℘′(x)− ℘′(y)
℘(x)− ℘(y)

)2

. (3.9)
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All identities needed in what follows rely on these the above basic addition formulae for the
Weierstrass family.

3.2. From addition formulae to P∆Es. We will now show that the identites given above
lead directly to an interpretation in terms of basic elliptic solutions of certain lattice equations.
Setting

τ = τn,m,h = σ(ξ) with ξ = ξ0 + nδ +mε+ hγ , (3.10)
and using the abbreviations

τ̃ = τn+1,m,h , τ̂ = τn,m+1,h , τ = τn,m,h+1 ,

we can write the three-term relation as:

σ(δ − ε)σ(γ)τ ̂̃τ + σ(ε− γ)σ(δ)τ̃ τ̂ + σ(γ − δ)σ(ε)τ̂ τ̃ = 0 , (3.11)

which is the famous discrete analogue of generalised Toda equation, or Hirota-Miwa equation,
cf. [21]. It is probably significant that the fundamental addition formula for the Weierstrass
σ-function obeys naturally one of the fundamental partial difference equations (P∆Es) in the
theory of integrable systems. We will demonstrate now that other P∆Es, closely related to cases
of the ABS list, emerge naturally from the addition formulae as well.

Thus, setting w = wn,m = ζ(ξ)− nζ(δ)−mζ(ε) we get from (3.4)

(ŵ − w̃)(w − ̂̃w) = ℘(δ)− ℘(ε) , (3.12)

which is the lattice potential KdV equation, cf. [20, 30], or the H1 equation in the ABS list, by
the identification ℘(δ) − e := p2 , ℘(ε) − e := q2 where e = ℘(ω) being a branch point of the
Weierstrass curve:

Γ = {(x, y) | y2 = 4(x− e)(x− e′)(x− e′′) }
Setting v(α) = vn,m(α) = Φα(ξ) and identifying parameters o

pα = Φα(δ) , o
qα = Φα(ε) we also

have
o
pαv̂(α)− o

qαṽ(α)̂̃v(α)
= ŵ − w̃ (3.13a)

o
pαv(α) + o

q−α̂̃v(α)
ṽ(α)

= w − ̂̃w (3.13b)

from which we get that v(α) obeys a quadrilateral equation which generalises the lattice potential
MKdV equation, namely

o
pαv(α)v̂(α) + o

q−αv̂(α)̂̃v(α) = o
qαv(α)ṽ(α) + o

p−αṽ(α)̂̃v(α) (3.14)

Furthermore, setting s(α, β) = Φα+β(ξ) , we have

ṽ(α) v(β) = o
pαs(α, β)− o

p−β s̃(α, β) , v̂(α) v(β) = o
qαs(α, β)− o

q−β ŝ(α, β) (3.15)

from which we can deduce:

( opαs−
o
p−β s̃)(

o
pβ ŝ−

o
p−α̂̃s) = ( oqαs−

o
q−β ŝ)(

o
qβ s̃−

o
q−α̂̃s) (3.16)

which by a point transformation can be shown to be equivalent to (Q3)0, i.e. the Q3 equation
with parameter ∆ = 0.
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3.3. Elliptic (non-germinating) seed solution for Q4. We have observed that the addi-
tion formulae for elliptic functions, and combinations thereof, can be naturally interpreted as
quadrilateral lattice equations of KdV type. Thus, the elliptic functions constitute elementary
solutions of these lattice equations. Such solutions can be viewed as seed solutions for Bäcklund
chains yielding more complicated solutions which could be considered to be elliptic analogues
of the soliton solutions. In the remainder of the paper we will construct entire families of such
solutions, not only for lattice equations of KdV type, but for all equations in the ABS list of
[2] with the exception of Q4 which is treated elsewhere, [11]. Here, however we will restrict
ourselves by showing that also Q4 admits elementary solutions in terms of elliptic functions,
and we will do that by presenting the so-called three-leg formula for the equation in the form
(2.1d). This particular form which essentially is the Jacobi form of Q4, first derived in [18],
and for which the 3-leg form was given in [14], admits a natural parametrization in terms of
Weierstrass functions as follows.

Noting the periodicity properties of the Weierstrass functions, i.e.,

σ(ξ + 2ω) = −e2η(ξ+ω)σ(ξ) , ζ(ξ + 2ω) = ζ(ξ) + 2η , ℘(ξ + 2ω) = ℘(ξ) , (3.17)

in which η = ζ(ω), and ω one of the halfperiods, we can introduce the function

W (x) = Φω(x)e−ηx , (3.18)

which obeys the relations

W (ξ)W (ξ′) = W (ξ + ξ′)
[
ζ(ξ) + ζ(ξ′) + η − ζ(ξ + ξ′ + ω)

]
, W (−ξ) = −W (ξ) . (3.19)

Furthermore, we have

W (ξ)W (ξ + ω) = − eηω

σ2(ω)
, W 2(ξ) = ℘(ξ)− e , (3.20)

and hence as a consequence

(℘(ξ)− e)(℘(ξ + ω)− e) = (e′ − e)(e′′ − e) = g , (3.21)

where e′ = ℘(ω′), e′′ = ℘(ω+ω′) = −e−e′ are the other branch points of the standard Weierstrass
curve y2 = 4(x− e)(x− e′)(x− e′′) . The crux of the matter is the following statement

Proposition 3.1. For arbitrary variables X, Y , Z we have the following identity

(X −W (ξ + δ)) (Y −W (ξ − ε)) (Z −W (ξ − δ + ε))
−t (X −W (ξ − δ)) (Y −W (ξ + ε)) (Z −W (ξ + δ − ε)) =

= s
[
W (δ) (Y W (ξ) +XZ)−W (ε) (XW (ξ) + Y Z)

+
W (δ)W (ε)
W (δ − ε)

(ZW (ξ) +XY )− 1
W (δ − ε)

(g +XY ZW (ξ))
]
, (3.22)

in which

t =
σ(ξ − δ)σ(ξ + ε)σ(ξ + δ − ε)
σ(ξ + δ)σ(ξ − ε)σ(ξ − δ + ε)

, s = (t− 1)
W (δ − ε)
W (ξ)

. (3.23)
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Proof. Eq. (3.22) can be established by direct computation through identities that hold for the
coefficients of each of the monomials XY Z, XY , XZ, Y Z, X, Y , Z and 1. The corresponding
coefficients boil down to the following identities:

t =
W (ξ + ε− δ)W (ξ)−W (δ)W (ε)
W (ξ + δ − ε)W (ξ)−W (δ)W (ε)

=
W (ξ − ε)W (ξ)−W (δ − ε)W (δ)
W (ξ + ε)W (ξ)−W (δ − ε)W (δ)

=
W (ξ + ε− δ)W (ξ − ε)−W (δ − ε)W (ε)
W (ξ + δ − ε)W (ξ + ε)−W (δ − ε)W (ε)

=
W (ξ + δ)W (ξ − ε) +W (δ)W (ε)
W (ξ − δ)W (ξ + ε) +W (δ)W (ε)

=
g +W (ξ + δ)W (ξ − ε)W (ξ + ε− δ)W (ξ)
g +W (ξ − δ)W (ξ + ε)W (ξ − ε+ δ)W (ξ)

,

and which are all equal to the form given in (3.23). All these identities can be proven by using
the basic addition formula (3.19), the only exception being the last equality which follows from
the following version of the three-term relation for the σ-function:

σ(ξ+ δ)σ(ξ− ε)σ(ξ+ ε− δ)σ(ξ)−σ(ξ− δ)σ(ξ+ ε)σ(ξ− ε+ δ)σ(ξ) = σ(2ξ)σ(δ− ε)σ(δ)σ(ε) ,

and a similar formula with ξ replaced by ξ+ω, together with the identification g = e2ηω/σ4(ω) and
the periodicity property (3.17) of the σ-function. �

Identifying in (3.22) the parameters

P = W (δ) , Q = W (ε) , p = ζ(δ + ω)− ζ(δ)− η , q = ζ(ε+ ω)− ζ(ε)− η ,

which implies that the points p = (P, p), q = (Q, q) lie on the elliptic curve

Γ̄ = {(P, p) ∈ C2 | p2 = P 2 + 3e+ gP−2 } ,

cf. [28], and identifying X = W (ξ), we see that the expression in brackets on the right-hand
side of (3.22) can be written in terms of the following quadrilateral expression

Qp,q(u, ũ, û, ̂̃u) := P (uû+ũ̂̃u)−Q(uũ+û̂̃u)+
P 2 −Q2

p+ q

[(
ûũ+ û̃u)− 1

PQ

(
g + uũû̂̃u)] . (3.24)

It is not hard to see that the equation Qp,q(u, ũ, û, ̂̃u) = 0 is, up to some simple scaling transforma-
tions, equivalent to the Q4 equation in the form (2.1d). As a direct corollary of Proposition 3.1 we

have now that u = W (ξ) = W (ξ0 +nδ+mε) , X = ũ = W (ξ̃) , Y = û = W (ξ̂) , Z = ̂̃u = W (̂̃ξ) ,
is an elliptic solution of the Q4 equation, albeit a trivial one in the sense that as a seed solution
of a Bäcklund chain it is non-germinating, in the sense of the discussion of [6]. In the latter pa-
per we have constructed germinating seed solutions for Q4, in a slightly dfferent but equivalent
parametrisation, as well as 1-soliton solutions. In a recent paper [11] we have extended these to
N -soliton solutions for Q4.
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4. Cauchy Matrix Scheme

We will develop now a scheme along the lines of the paper [24] for elliptic soliton solutions,
based on elliptic Cauchy matrices. In this section we derive the basic relations, and in the next
section we will use these relations to find a general elliptic N -soliton solution for Q3.

4.1. Basic ingredients. At this point let us introduce the Lamé function

Ψξ(κ) := Φξ(κ) e−ζ(ξ)κ , (4.1)

which coincides with (3.2) up to an exponential factor, breaking the symmetry between the
argument of the function and the suffix1. The basic identities for the Ψ function are the following:

Ψξ(κ)Ψδ(λ) = eηδκΨξ+δ(κ)Ψδ(λ− κ) + eηδλΨξ(κ− λ)Ψξ+δ(λ) , (4.2a)
Ψξ(κ)Ψδ(κ) = eηδκΨξ+δ(κ) [ζ(ξ) + ζ(δ) + ζ(κ)− ζ(ξ + δ + κ)] , (4.2b)
Ψξ(κ)Ψξ(λ) = Ψξ(κ+ λ) [ζ(ξ) + ζ(κ) + ζ(λ)− ζ(ξ + κ+ λ)] , (4.2c)

in which we have introduced

ηδ = ηδ(ξ) = ζ(ξ + δ)− ζ(ξ)− ζ(δ) =
1
2
℘′(ξ)− ℘′(δ)
℘(ξ)− ℘(δ)

. (4.3)

Furthermore, we have the symmetry: Ψδ(−κ) = −Ψ−δ(κ) .
The starting point for our construction is the “bare” non-autonomous Cauchy matrix

M0 =
(
M0
i,j

)
i,j=1,...,N

, M0
i,j(ξ) := Ψξ(κi + κj) , (4.4)

depending on a variable ξ which is linear in the independent variables n, m, namely ξ = ξ0 +
nδ + mε , with δ, ε being the corresponding lattice parameters. We will assume that the set
rapidity parameters {κi, i = 1, . . . , N} is such that κi +κj 6= 0 (modulo the period lattice of the
Weierstrass functions) .

Furthermore, we redefine henceforth the lattice parameters o
pκ, o

qκ of section 3, to include an
exponential factor, and thus we define

pκ = Ψδ(κ) , qκ = Ψε(κ) (4.5)

Setting κ = ±κi, κ = ±κj , we can derive from the basic addition formula (4.2a) the following
dynamical properties of the elliptic Cauchy matrix:

pκiM
0
i,j = Ψδ(κi)Ψξ(κi + κj)

= eηδ(κi+κj)Ψξ+δ(κi + κj)Ψδ(−κj) + eηδκiΨξ+δ(κi)Ψξ(κj)

= M̃0
i,jp−κje

ηδ(κi+κj) + eηδκiΨξ+δ(κi)Ψξ(κj) .

Similarly, we have

p−κiM̃
0
i,j = M0

i,jpκje
−ηδ(κi+κj) − e−ηδκiΨξ(κi)Ψξ+δ(κj) .

1Although most of the results of this paper can be obtained in terms of the Φ-function alone, working with
the function Ψ has certain advantages as the latter is the more natural function in connection with associated
continuum equations. We note, however, that the inclusion of the exponential factor amounts to a specific gauge
transformation on the quantities defined later on in the constructions, and hence could be removed without
affecting the main results.
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We introduce now the plane-wave factors (i.e., discrete exponential functions)

ρ(κ) = ρn,m(κ) =
(
e−2ζ(δ)κ p−κ

pκ

) n (
e−2ζ(ε)κ q−κ

qκ

) m

e2ζ(ξ)κρ0,0(κ)

=
(
σ(κ− δ)
σ(κ+ δ)

) n (σ(κ− ε)
σ(κ+ ε)

) m

e2ζ(ξ)κρ0,0(κ) , (4.6)

and for the specific values κi of κ the quantities ρi := ρ(κi) obeying the shift relations

ρ̃i
ρi

= e2ηδκi
p−κi
pκi

,
ρ̂i
ρi

= e2ηεκi
q−κi
qκi

, (4.7)

where the superscripts ˜, ̂ as before denote the elementary lattice shifts with regard to the
independent variables n and m respectively. Use has been made of (4.3), noting that ξ̃ = ξ+ δ ,
and a similar relation for ηε using ξ̂ = ξ + ε .

Next we introduce the N -component vectors

r = (ρiΨξ(κi))i=1,...,N , s = (cjΨξ(κj))j=1,...,N (4.8)

where cj are N constants w.r.t. the discrete variables n, m, and ρi = ρn,m(κi) , in terms of
which we define now the “dressed” Cauchy matrix:

M = (M i,j)i,j=1,...,N , M i,j = ρiM
0
i,jcj . (4.9)

As a consequence of the relations given earlier, and employing the definitions of the plane-wave
factors, we can now describe the discrete dynamics as follows:

Lemma 4.1. The dressed Cauchy matrix M , defined in (4.9), obeys the following linear rela-
tions under elementary shifts of the independent variables n

eηδKp−KM − M̃p−Ke
ηδK = r̃ sT (4.10a)

MpKe
−ηδK − e−ηδKpKM̃ = r s̃T , (4.10b)

and under shifts of the variable m the similar relations:

eηεKq−KM − M̂q−Ke
ηεK = r̂ sT (4.11a)

MqKe
−ηεK − e−ηεKqKM̂ = r ŝT . (4.11b)

Here we have adopted the matrix notation, with K = diag(κ1, . . . , κN ) denoting the diagonal
matrix of the κi parameters. Similarly, the symbols p±K , q±K denote the diagonal matrices
with entries p±κi , q±κi .

In what follows we will employ the relations (4.10) and (4.11) to obtain nonlinear discrete
equations for specific objects that we will subsequently define in terms of the Cauchy matrix
M .

4.2. The τ-function and related basic objects. Introduce now the τ -function :

f = fn,m = det (1 +M) , (4.12)



12 FRANK W NIJHOFF AND JAMES ATKINSON

where 1 is the N × N unit matrix. From the relations (4.10) and (4.11) we can derive the
discrete dynamics of the τ -function by performing the following computation

f̃ = det
(
1 + M̃

)
= det

{
1 +

[
eηδKp−KM − r̃sT

]
e−ηδK(p−K)−1

}
= det

{
eηδKp−K

[
1 +M − e−ηδK(p−K)−1r̃sT

]
e−ηδK(p−K)−1

}
= det

{
(1 +M)

[
1− (1 +M)−1e−ηδK(p−K)−1r̃sT

]}
= f det

{
1− (1 +M)−1e−ηδK(p−K)−1r̃sT

}
,

and similar computations involving the other lattice shift. Noting that from (4.7) it follows that

e−ηδK(p−K)−1r̃ = eηδKp−1
K

Ψeξ(K)

Ψξ(K)
r , (4.13)

we can use (4.2c) and the Weinstein-Aronszajn formula

det
(
1 + abT

)
= 1 + bT · a

to write

f̃

f
= 1− sT (1 +M)−1 [ζ(ξ) + ζ(K) + ζ(δ)− ζ(ξ +K + δ)]−1 r = Vδ . (4.14)

Here and in what follows the notation ζ(K) denotes the diagonal matrix with entries ζ(κi),
(i = 1, . . . , N), whilst all scalar terms are supposed to be considered as coefficients of the unit
matrix. In (4.14) we have introduce the quantity:

Vα = 1− sT (1 +M)−1(χα, K )−1r = 1− sT (χα, K )−1(1 +M)−1r , (4.15a)

for arbitrary parameter α. In addition to Vα we will also need, for later purpose, the objects

Uα,β = sT (χβ, K )−1(1 +M)−1(χα, K )−1r = Uβ,α , (4.15b)

where both α, β are arbitrary (complex) parameters. In (4.15b) and (4.15a) we have abbreviated

χα,β = χα,β(ξ) := ζ(α) + ζ(β) + ζ(ξ)− ζ(ξ + α+ β) , (4.16)

and where χα,K denotes the diagonal matrix with entries χα,κi .

4.3. Basic linear relations. In order to derive relations for the objects Vα and Uα,β we need
to introduce the N -component column- resp. row vectors:

uα = (1 +M)−1(χα,K)−1r , (4.17a)
tuβ = sT (χβ,K)−1(1 +M)−1 , (4.17b)
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Performing the following calculation:

ũα = (1 + M̃)−1(χ̃α,K)−1r̃ = (1 + M̃)−1(χ̃α,K)−1e2ηδK
Ψeξ(K)p−K

Ψξ(K)pK
r

⇒ e−ηδKpK(1 + M̃)ũα =
Φeξ+α(K)

Φeξ(K) Φα(K)
eηδK

Ψδ(−K) Ψeξ(K)

Ψξ(K)
r

⇒
[
(1 +M)pKe

−ηδK − r s̃T
]
ũα = −ζ(K) + ζ(ξ̃ + α)− ζ(δ)− ζ(K + ξ + α)

ζ(K) + ζ(ξ) + ζ(α)− ζ(K + ξ + α)
r

=

(
−1 +

ζ(α) + ζ(ξ)− ζ(ξ̃ + α) + ζ(δ)
ζ(K) + ζ(ξ) + ζ(α)− ζ(K + ξ + α)

)
r

multiplying both sides by (1 +M)−1 and introducing the vector

u0 := (1 +M)−1r , (4.18)

we get the relation

e−ηδKpKũα = (s̃T ũα)u0 + χα,δuα − u0 ⇒ e−ηδKpKũα = −Ṽα u0 + χα,δuα . (4.19a)

In a similar way one can derive the relation:

eηδKp−Kuα = Vα ũ
0 − χ̃α,−δũα . (4.19b)

A similar set of relations can be derived for the adjoint vectors (4.17b) which involves the adjoint
vector to (4.18), namely

tu0 := sT (1 +M)−1 , (4.20)

and obviously these relations all have their counterparts involving the other lattice shift related
to shifts in the discrete independent variable m instead of n.

Summarising the results of these derivations, we have the following statement:

Lemma 4.2. The N -component vectors given in (4.17), together with the ones defined in (4.18)
and (4.20) obey the following set of linear difference equations

e−ηδKpKũα = −Ṽα u0 + χα,δuα , (4.21a)

eηδKp−Kuα = Vα ũ0 − χ̃α,−δũα , (4.21b)
tuβ pKe

−ηδK = Vβ
tũ0 − χ̃β,−δ tũβ, (4.21c)

tũβ p−Ke
ηδK = −Ṽβ tu0 + χβ,δ

tuβ , (4.21d)

and a similar set of relations involving the shifts in the variable m obtained by replacing p±K

by q±K , δ by ε and ˜ by ̂.
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4.4. Basic nonlinear relations. From the basic relations (4.21) we observe that

sT (χβ,K)−1
(
χα,δuα − Ṽαu0

)
= s̃T

Ψξ(K)
Ψeξ(K)

Φξ+β(K)
Φξ(K) Φβ(K)

e−ηδKpKũα

= s̃T
Φξ+β(K)Φδ(K)
Φeξ(K) Φβ(K)

ũα = s̃T
ζ(K) + ζ(δ) + ζ(ξ + β)− ζ(ξ̃ +K + β)

ζ(K) + ζ(β) + ζ(ξ̃)− ζ(ξ̃ +K + β)
ũα

= s̃T

(
1 +

ζ(δ)− ζ(β) + ζ(ξ + β)− ζ(ξ + δ)

ζ(K) + ζ(β) + ζ(ξ̃)− ζ(ξ̃ +K + β)

)
ũα = (1− Ṽα)− χ̃β,−δŨα,β

= χα,δUα,β − Ṽα(1− Vβ) ,

from which we get the following relation:

Ṽα Vβ = 1− χ̃β,−δŨα,β − χα,δUα,β . (4.22a)

Similarly we have
V̂α Vβ = 1− χ̂β,−εÛα,β − χα,εUα,β . (4.22b)

These relations can also be rewritten as follows(
Ψeξ(α) Ṽα

)
(Ψξ(β)Vβ) = pαe

−ηδα [Ψξ(α+ β)(1− χα,βUα,β)]−p−βeηδβ
[
Ψeξ(α+ β)(1− χ̃α,βŨα,β)

]
(4.23)

provided α+ β 6= 0 (modulo the period lattice of the Weierstrass functions).
We now intend to remove the ξ-dependence in the coefficients of (4.23) by performing yet

another change of variables, namely by defining

Wα := Ψξ(α)Vα , Sα,β := Ψξ(α+β)(1−χα,βUα,β) = Sβ,α , α+β 6= 0 (mod. root lattice,
(4.24)

We now have the following result:

Lemma 4.3. The following difference relations hold between the quantities defined in (4.24)

W̃αWβ = pαe
−ηδαSα,β − p−βeηδβS̃α,β , (4.25a)

ŴαWβ = qαe
−ηεαSα,β − q−βeηεβŜα,β , (4.25b)

where and α + β 6= 0 (mod. period lattice). Furthermore, in the latter case the relations (4.25)
are replaced by the following ones:

W̃αW−α = pαe
−ηδα

{
[ζ(ξ)− ζ(ξ̃)− ζ(α) + ζ(α+ δ)] + [℘(ξ̃)− ℘(α)]Ũα,−α − [℘(ξ)− ℘(α)]Uα,−α

}
,

(4.26a)

ŴαW−α = qαe
−ηεα

{
[ζ(ξ)− ζ(ξ̂)− ζ(α) + ζ(α+ ε)] + [℘(ξ̂)− ℘(α)]Ûα,−α − [℘(ξ)− ℘(α)]Uα,−α

}
.

(4.26b)

As a consequence of the relation (4.26), taking the limit α → −δ and α → −δ respectively,
we obtain the inversion relations

W̃−δWδ = −e
[ζ(eξ)−ζ(ξ)]δ
σ2(δ)

, Ŵ−εWε = −e
[ζ(bξ)−ζ(ξ)]ε
σ2(ε)

. (4.27)
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4.5. NQC equation. We now present the nonlinear P∆E for the variables Sα,β which follow
directly from the relations (4.26), in fact by simple elimination of the W variables.

Proposition 4.4. The variable Sα,β, defined in (4.24), for fixed parameters α, β obeys the
following nonlinear partial difference equation

(pαe−ηδαSα,β − p−βeηδβS̃α,β) (pβe−bηδβŜα,β − p−αebηδα ̂̃Sα,β)

= (qαe−ηεαSα,β − q−βeηεβŜα,β) (qβe−eηεβS̃α,β − q−αeeηεα ̂̃Sα,β) . (4.28)

Furthermore, the following relation holds

(pαe−ηδαSα,β − p−βeηδβS̃α,β) (pα′e−bηδα′
Ŝα′,β′ − p−β′ebηδβ′ ̂̃

Sα′,β′)

= (qβ′e−ηεβ
′
Sβ,β′ − q−βeηεβŜβ,β′) (qα′e−eηεα′

S̃α,α′ − q−αeeηεα ̂̃Sα,α′) (4.29)

between these solutions of the partial difference equation (4.28) with different fixed parameters
α, β, α′, β′.

Eq. (4.28) first appeared in a slightly different form in [30]. It should be noted that the latter
parameters α, β, α′, β′ are to be distinguished from the lattice parameters δ and ε which are
associated with the lattice shifts.

Eq. (4.28) can be cast in a more universal form by setting uα,β = ρ1/2(α)ρ1/2(β)Sα,β , which
leads to an equation of the form:

P (uα,βûα,β + ũα,β ̂̃uα,β)−Q(uα,βũα,β + ûα,β ̂̃uα,β) = (p2 − q2)(ûα,βũα,β + uα,β ̂̃uα,β) , (4.30)

i.e. the Q3 equation for ∆ = 0. Here we have used the identities pαp−α − qαq−α = pβp−β −
qβq−β = p2 − q2 = ℘(δ)− ℘(ε) and we have introduced the parameters P , Q obeying

P 2 = pαpβp−αp−β = (p2 − a2)(p2 − b2) , (4.31a)

Q2 = qαqβq−αq−β = (q2 − a2)(q2 − b2) , (4.31b)

i.e. p = (p, P ), q = (q,Q) are points on a (Jacobi) elliptic curve, with moduli ±a, ±b which are
given by a2 = ℘(α)− e , b2 = ℘(β)− e . From (4.29) it follows also that any four solutions uα,β,
uα′,β′ , uα,α′ , uβ,β′ are connected via the relation

Pα,α′ ûα,βuα′,β′ − Pα′,β
̂̃uα,βuα′,β′ − Pα,β′ ûα,βũα′,β′ + Pβ,β′ ̂̃uα,βũα′,β′ =

= Qα,βũα,α′uβ,β′ −Qα′,β
̂̃uα,α′uβ,β′ −Qα,β′ ũα,α′ ûβ,β′ +Qα′,β′ ̂̃uα,α′ ûβ,β′ , (4.32)

in which the parameters Pα1,α2 , etc. are lattice parameters associated with different elliptic
curves, i.e. they obey relations of the type

P 2
α1,α2

= (p2 − a2
1)(p2 − a2

2) , Q2
α1,α2

= (q2 − a2
1)(q2 − a2

2)

with branch points ±a1, ±a2 which are associated with uniformising parameters α1, α2 (taken
in the set {α, α′, β, β′} ). The various lattice parameters are not independent, but are related
through the quadric relations

P 2
α,α′ − P 2

α′,β − P 2
α,β′ + P 2

β,β′ = (a2 − b2)(a′2 − b′2) ,

and a similar relation for the parameters Q.
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4.6. Miura relations. In addition to the relations between the objects Wα and Sα,β we need
another set of relations involving the object

w := ζ(ξ)− nζ(δ)−mζ(ε)− sTu0 , (4.33)

which, as we shall see, solves the H1 equation.

Lemma 4.5. Between the objects Wα and w the following relations hold:

ŵ − w̃ =
pαe
−bηδαŴα − qαe−eηεαW̃α̂̃

Wα

=
p−αe

ηδαW̃α − q−αeηεαŴα

Wα
(4.34a)

w − ̂̃w =
pαe
−ηδαWα + q−αe

eηεα̂̃Wα

W̃α

=
p−αe

bηδα̂̃Wα + qαe
−ηεαWα

Ŵα

, (4.34b)

and, furthermore, w obeys the equation H1 in the following form:

(ŵ − w̃)(w − ̂̃w) = p2 − q2 , p2 = ℘(δ)− e, q2 = ℘(ε)− e . (4.35)

Proof. From the relation

e−ηδKpKũα = χα,δuα − Ṽαu0 ⇒ sT e−ηδKpKũα = s̃T
Ψξ(K)
Ψeξ(K)

Ψδ(K)e−ηδKũα

= χα,δs
Tuα − ṼαsTu0

we get
s̃T
[
ζ(K) + ζ(ξ) + ζ(δ)− ζ(K + ξ̃)

]
ũα = (1− Vα)χα,δ − w0Ṽα ,

where w0 = sTu0 . Similarly, from p−Kuα = Vαũ0 − χ̃α,−δũα we can derive the relation:

−sT
[
ζ(K) + ζ(ξ̃)− ζ(δ)− ζ(K + ξ)

]
uα = Vαw̃0 − (1− Ṽα)χ̃α,−δ .

Combining these with the analogous relations involving the other lattice shift, i.e.

ŝT
[
ζ(K) + ζ(ξ) + ζ(ε)− ζ(K + ξ̂)

]
ûα = (1− Vα)χα,ε − w0V̂α ,

−sT
[
ζ(K) + ζ(ξ̂)− ζ(ε)− ζ(K + ξ)

]
uα = Vαŵ0 − (1− V̂α)χ̂α,−δ ,

to eliminate the terms involvingK on the left-hand sides, we obtain the following set of relations:

ŵ − w̃ =
χ̂α,δV̂α − χ̃α,εṼα̂̃

V α

=
χ̂α,−εV̂α − χ̃α,−δṼα

Vα
(4.36a)

w − ̂̃w =
χα,δVα − ̂̃χα,−ε ̂̃V α

Ṽα
=
χα,εVα − ̂̃χα,−δ ̂̃V α

V̂α
. (4.36b)

The relations (4.34) are obtained from (4.36) by substitution for Vα using (4.24), and by using
the expressions for χα,±δ and χα,±ε in terms of the Ψ-function in the form

χα,δ = e−ηδα
pαΨξ(α)
Ψeξ(α)

, χ̃α,−δ = −eηδα
p−αΨeξ(α)

Ψξ(α)
,
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and similar expressions with δ replaced by ε. The latter relations follow directly from the
addition formulae (4.2). Finally, setting α = δ ⇒ p−α = p−δ = 0 , the second forms of the
expressions in the lemma yield:

ŵ − w̃ = −q−δeηεδ
Ŵδ

Wδ
and w − ̂̃w = qδe

−ηεδWδ

Ŵδ

which by multiplication, using qδq−δ = ℘(ε)− ℘(δ) gives us the H1 equation for w. �

5. Elliptic N-soliton solution of Q3

5.1. N-soliton formula for Q3. We are now ready to formulate the main result of this paper,
which comprises a generalization of the rational N -soliton solution for Q3 as obtained in [6, 24]
to the elliptic case. We use the following expression to abbreviate the quadrilateral form of the
equation:

Q∆
p,q(u, ũ, û, ̂̃u) := P (uû+ ũ̂̃u)−Q(uũ+ û̂̃u)− (p2 − q2)

(
(ûũ+ û̃u) +

∆
PQ

)
(5.1)

in which the lattice parameters p, q are points (p, P ), (q,Q) on the elliptic curve:

Γa,b = {(x,X) |X2 = (x2 − a2)(x2 − b2) } , (5.2)

with moduli ±a, ±b, which we refer to as the parameter curve.

Theorem 5.1. The following formula

u(N) = Aρ1/2(α)ρ1/2(β)Sα,β +Bρ1/2(α)ρ1/2(−β)Sα,−β
+Cρ1/2(−α)ρ1/2(β)S−α,β +Dρ1/2(−α)ρ1/2(−β)S−α,−β , (5.3)

for each fixed positive integer N , and parameters and variables given in the previous section,
provide solutions of the quadrilateral equation

Q∆
p,q(u(N), ũ(N), û(N), ̂̃u(N)

) = 0 (5.4)

with arbitrary constant coefficients A,B,C,D, where ∆ is given by

∆ = ℘′(α)℘′(β) det
(
A B
C D

)
. (5.5)

Furthermore, the associated function to u(N):

U (N) = Aρ1/2(α)ρ1/2(β)WαWβ +Bρ1/2(α)ρ1/2(−β)WαW−β

+Cρ1/2(−α)ρ1/2(β)W−αWβ +Dρ1/2(−α)ρ1/2(−β)W−αW−β , (5.6)

factorises the corresponding biquadratic to the quadrilateral, namely it obeys

Hp(u(N), ũ(N)) = U (N)Ũ (N) , Hq(u(N), û(N)) = U (N)Û (N) (5.7)

where

Hp(u, ũ) := P (u2 + ũ2)− (2p2 − a2 − b2)uũ+
∆
P

(5.8a)

Hq(u, ũ) = Q(u2 + û2)− (2q2 − a2 − b2)uû+
∆
Q
. (5.8b)
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Proof: The proof is obtained through direct computation, using the relations between the various
objects established earlier. It follows roughly the same lines of computation as in the rational
case [24], but only differs in a few subtleties regarding the elliptic representation. It breaks down
into three steps.
step # 1: Using the basic relations established between the objects Wα, Wβ and Sα,β one can
obtain relations between the objects u(N), U (N) and the H1 object w, as given in the following
lemma. These constitute what in effect is a Miura transformation betweem Q3 and H1.

Lemma 5.2. The following relations hold between the elliptic N -soliton solution u = u(N) of
Q3, together with its associated object U = U (N), and the elliptic N -soliton solution w of H1:

ŵ − w̃ =
Pû−Qũ− (p2 − q2)̂̃û̃

U
= −Pũ−Qû− (p2 − q2)u

U
(5.9a)

w − ̂̃w =
Pu−Q̂̃u− (p2 − q2)ũ

Ũ
= −P

̂̃u−Qu− (p2 − q2)û

Û
(5.9b)

Proof. These relations, which can be obtained by direct computation term by term in the ex-
pressions (5.3) and (5.6) (after multiplying out the denominators), namely as follows:

Pû−Qũ− (p2 − q2)̂̃u =

= Ẫρ1/2
(α)̂̃ρ1/2

(β)

[
P

(
e2bζ(δ)α pα

p−α

)1/2(
e2bζ(δ)β pβ

p−β

)1/2

e[−ζ(bξ+δ)+ζ(bξ)](α+β)Ŝα,β

−Q
(
e2eζ(ε)α qα

q−α

)1/2(
e2eζ(ε)β qβ

q−β

)1/2

e[−ζ(eξ+ε)+ζ(eξ)](α+β)S̃α,β − (p2 − q2)̂̃Sα,β
]

+ · · ·

= Ẫρ1/2
(α)̂̃ρ1/2

(β)
[
pαpβe

−bηδ(α+β)Ŝα,β − qαqβe−eηε(α+β)S̃α,β − (p2 − q2)̂̃Sα,β]+ · · ·

= Ẫρ1/2
(α)̂̃ρ1/2

(β)
[
pβe
−bηδβ (pαe−bηδαŜα,β − p−βebηδβ ̂̃Sα,β)− qβe−eηεβ (qαe−eηεαS̃α,β − q−βeeηεβ ̂̃Sα,β)]+ · · ·

= Ẫρ1/2
(α)̂̃ρ1/2

(β)
[
pβe
−bηδβ̂̃WαŴβ − qβe−eηεβ̂̃WαW̃β

]
+ · · ·

= Ẫρ1/2
(α)̂̃ρ1/2

(β)(ŵ − w̃)̂̃Wα
̂̃
W β + · · ·

by using in the last steps the basic relation (4.25) in combination with (4.34), and where the
· · · stand for similar expressions for the remaining terms with coefficients B, C, D instead of A,
and with (α, β) replaced by (α,−β), (−α, β) and (−α,−β) respectively. Thus, identifying the

right hand side, up to a common factor (ŵ− w̃) with the variable ̂̃U , we obtain the first relation
in (5.9a). The other relations in (5.9) follow by similar computations. �

step # 2: We next establish the main identities between u = u
(N)
n,m, and U = U

(N)
n,m.
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Lemma 5.3. the following factorisation formulae for the biquadratics associated with the Q3
quadrilateral hold:

UŨ − P (u2 + ũ2) + (2p2 − a2 − b2)uũ =
℘′(α)℘′(β)

P
det(A) , (5.10a)

UÛ −Q(u2 + û2) + (2q2 − a2 − b2)uû =
℘′(α)℘′(β)

Q
det(A) , (5.10b)

in which the 2× 2 matrix A is given by

A =
(
A B
C D

)
. (5.11)

Proof. This can asserted by computing the (Lax type) matrices

L :=
(
Pũ− (p2 − b2)u , eηδβp−βU

e−ηδβpβŨ , −Pu+ (p2 − b2)ũ

)
, (5.12a)

M :=
(
Qû− (q2 − b2)u , eηεβq−βU

e−ηεβqβÛ , −Qu+ (q2 − b2)û

)
. (5.12b)

in two different ways: one directly, and the other by expressing the entries in terms of our basic
objects. In fact, introducing the 2-component vectors:

rTα =
(
ρ1/2(α)Wα, ρ

1/2(−α)W−α
)

, rβ =
(

ρ1/2(β)Wβ

ρ1/2(−β)W−β

)
, (5.13)

we can express L as:

L =
(
−√pβp−β rTαAr̃β , eηδβp−βr

T
αArβ

e−ηδβpβ r̃
T
αAr̃β , −√pβp−β r̃TαArβ

)
, (5.14)

and a similar expression for M . In fact,

Pũ− (p2 − b2)u =

= Aρ1/2(α)ρ1/2(β)
[
p−αp−βe

ηδ(α+β)S̃α,β − pβp−βSα,β
]

+ . . .

= Aρ1/2(α)ρ1/2(β)eηδβp−β
(
p−αe

ηδαS̃α,β − pβe−ηδβSα,β
)

+ . . .

= −Aρ1/2(α)ρ1/2(β)eηδβp−βW̃βWα + . . .

= −√pβp−β
(
Aρ1/2(α)ρ̃1/2(β)WαW̃β + . . .

)
= −√pβp−β rTαAr̃β ,

and similarly,
Pu− (p2 − b2)ũ =

√
pβp−β r̃

T
αArβ .

Evaluating the determinant of L using the general identity

det

 r∑
j=1

xjy
T
j

 = det
(
(yTi · xj)i,j=1,··· ,r

)
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holding for any 2r r-component vectors x, y, we now get:

det(L) = pβp−β det
(
Ar̃β r

T
α + Arβ r̃

T
α

)
= (p2 − b2) det(A) det

(
r̃β r

T
α + rβ r̃

T
α

)
= (p2 − b2) det(A) det

{
(r̃β, rβ)

(
rTα
r̃Tα

)}
= −(p2 − b2) det(A) det (rα, r̃α) det (rβ, r̃β) .

It remains to compute the determinant of the matrix (rα, r̃α) whose columns are the 2-
component vectors rα and r̃α. This is done by using (4.26) as follows:

det (r(a), r̃(a)) = ρ1/2(α)ρ̃1/2(−α)WαW̃−α − ρ̃1/2(α)ρ1/2(−α)W̃αW−α

=
√

pα
p−α

e−ηδαWα W̃−α −
√
p−α
pα

eηδαW̃αW−α

=
√
pαp−α [2ζ(α) + ζ(δ − α)− ζ(δ + α)] =

℘′(α)√
p2 − a2

.

Thus, putting everything together we obtain the result:

det(L) = −(p2 − b2) det(A)
℘′(α)℘′(β)√

p2 − a2
√
p2 − b2

.

On the other hand a direct computation of the determinant gives:

det(L) = −[Pũ− (p2 − b2)u][Pu− (p2 − b2)ũ]− (p2 − b2)UŨ

= (p2 − b2)
[
P (u2 + ũ2)− (2p2 − a2 − b2)uũ− UŨ

]
.

which yields the first of (5.7), the second part of which follows by a similar computation of
det(M), which is obviously obtained from the det(L) by replacing δ by ε and ˜ by ̂. �

step # 3: The final step is to arrive at Q3 by combining the results of step # 1 and # 2 for
the solution u(N) from the Miura relations (5.9), together with the relations (5.7). Thus, since
w obeys the H1 equation, we have:

p2 − q2 = (w − ̂̃w)(ŵ − w̃)

=
1

Ũ
̂̃
U

[
Pû−Qũ− (p2 − q2)̂̃u] [Pu−Q̂̃u− (p2 − q2)ũ

]
⇒ (p2 − q2)

[
Q(ũ2 + ̂̃u2

)− (2q2 − a2 − b2)ũ̂̃u− ∆
Q

]
= P 2(uû+ ũ̂̃u) + (Q2 − P 2)(ũ̂̃u) + (p2 − q2)2ũ̂̃u− PQ(uũ+ û̂̃u) +

−(p2 − q2)P (ûũ+ û̃u) + (p2 − q2)Q(ũ2 + ̂̃u2
)

which after some cancelations leads to Q3 in the form (5.4) and, hence, concludes the proof of
the Theorem.
�
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5.2. Hirota form of the elliptic N-soliton solution. The τ -function can be explicitly com-
puted by using the expansion

f = det (1 +M) = 1 +
N∑
i=1

|Mi,i|+
∑
i<j

∣∣∣∣ Mi,i Mi,j

Mj,i Mj,j

∣∣∣∣+ · · ·+ det(M) .

and using the Frobenius formula for the relevant elliptic Cauchy determinants, cf. [16]. Thus,
from

det
(
ρiΨκi+κj (ξ)cj

)
=

(∏
i

ρici
σ(2κi)

)
σ(ξ + 2

∑
i κi)

σ(ξ)
e−2ζ(ξ)

P
i κi
∏
i<j

(
σ(κi − κj)
σ(κi + κj)

)2

. (5.15)

Introducing the notations

eAi,j :=
(
σ(κi − κj)
σ(κi + κj)

)2

, eθi =
ρici
σ(2κi)

e−2ζ(ξ)κi ,

the Hirota formula for the τ -function thus takes the form:

f = 1 +
N∑
i=1

σ(ξ + 2κi)
σ(ξ)

eθj +
N∑

i<j=1

σ(ξ + 2κi + 2κj)
σ(ξ)

eθi+θj+Ai,j + (5.16)

+
N∑

i<j<k=1

σ(ξ + 2κi + 2κj + 2κk)
σ(ξ)

eθi+θj+θk+Ai,j+Ai,k+Aj,k + · · · .

(5.17)

The expression (5.17) for τ -function f enters solution of Q3 through the main quantities Sα,β
and Wα in the following way. First, we note that Vδ, and hence Wδ can be expressed in terms
of f via (4.14). Second, by setting α = ε, β = δ in (4.22a), using also (4.14), we obtain

Sδ,ε = Ψξ(δ + ε)
̂̃
f

f
. (5.18)

Thus for special parameters α, β associated with the lattice parameters, we have an explicit
expression for these quantities in terms of the τ -function. To get a similar expression for arbitrary
α, β we just need to extend the two-dimensional lattice in terms of the variables n and m
(associated with lattice parameters δ and ε respectively) to a four-dimensional one, containing
additional lattice directions associated with the parameters α and β. The discrete variables
associated with these parameters we will denote by h and l respectively, and hence the extension
amounts to including in the plane-wave factors ρ(κ) a dependence on these variables as follows:

ρ(κ) =
(
e−2ζ(δ)κ p−κ

pκ

)n(
e−2ζ(ε)κ q−κ

qκ

)m(
e−2ζ(α)κa−κ

aκ

)h(
e−2ζ(β)κ b−κ

bκ

)l
e2ζ(ξ)κρ0,0,0,0(κ) ,

(5.19)
whilst extending at the same time the variable ξ covariantly as ξ = ξ0 + nδ+mε+ hα+ lβ . In
(5.19) we have set aκ = Ψα(κ) and bκ = Ψβ(κ). In this extended lattice the elementary lattice
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shifts Tα, Tβ associated with these new lattice directions can be used to express Sα,β and Wα in
terms of the τ -function, in a way similar to (5.18) and (4.14), leading to the expressions

Sα,β = Ψξ(α+ β)
TαTβf

f
, Wα = Ψξ(α)

Tαf

f
, (5.20)

and where the Tα, Tβ denote elementary lattice shifts in the directions associated with the
parameters α, β.

Combining now the expression (5.20) with the explicit form of the the solution (5.3) and of
its associated variable (5.6) we obtain the following result.

Theorem 5.4. The elliptic N -soliton solution (5.3) of Q3 can be written as u(N) = (TAf) /f ,
where the shift operator TA is given by

TAf := Tr

{
r0
β (r0

α)T
(

AΨξ(α+ β)TαTβ , BΨξ(α− β)TαT−1
β

CΨξ(−α+ β)T−1
α Tβ , DΨξ(−α− β)T−1

α T−1
β

)
f

}
(5.21)

whereas the associated solution (5.6) can be written as U (N) = (DAf · f) /f2 where the bilinear
operator DA is given by

DAf ·g := m

[
Tr

{
r0
β (r0

α)T
(

AΨξ(α)Ψξ(β)Tα ⊗ Tβ , BΨξ(α)Ψξ(−β)Tα ⊗ T−1
β

CΨξ(−α)Ψξ(β)T−1
α ⊗ Tβ , DΨξ(−α)Ψξ(−β)T−1

α ⊗ T−1
β

)}
(f ⊗ g)

]
(5.22)

with m denoting the pointwise product in the space of functions of the lattice sites, making use
of the notation (5.13), (5.11) as well as

(r0
α)T =

(
ρ1/2(α), ρ1/2(−α)

)
, r0

β =
(

ρ1/2(β)
ρ1/2(−β)

)
. (5.23)

5.3. Linear scheme for elliptic soliton solutions. We will now show how the corresponding
solutions constructed in section 4 arise naturally from a scheme of linear equations, which in
turn leads to a novel Lax representation for Q3. These also explain the emergence of the Lax
type matrices that were used in the proof of Theorem 5.1.

The objects (4.17) form the basis of the linear structures underlying the lattice equations that
we have studied in the previous sections. In fact, they form the main ingredients, on the basis
of which we can derive Lax pairs for those lattice equations2.

Associated with the Cauchy matrix M we introduce the following parameter-dependent 2N -
component eigenfunctions;

uK(β) := (1 +M)−1

(
Ψξ(β +K) 0

0 Ψξ(−β +K)

)(
ρ1/2(β)
ρ1/2(−β)

)
r0 (5.24a)

tuK(α) := (s0)T
(
ρ1/2(α), ρ1/2(−α)

)( Ψξ(α+K) 0
0 Ψξ(−α+K)

)
(1 +M)−1

(5.24b)

2An alternative approach being the one using the multidimensional consistency property, cf. [23, 13, 32] to
derive Lax pairs from the equations themselves, but the resulting Lax pairs often require awkward prefactors
containing square roots of the relevant biquadratics.
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where the vectors r0 and ts0 are given by

(r0)T = (ρ1, · · · , ρN ) , (s0)T = (c1, · · · , cN ) .

Note that these vectors (5.24) effectively live in the direct product space of the 2-component
vectors labelled by the parameters ±α, ±β and N -component vectors associated with the soliton
parameters κi, (i = 1, . . . , N). The dynamical properties of these vectors are described by the
following set of relations:

Proposition 5.5. The following set of relations describe the behaviour of the vectors given in
(5.24) under the elementary shift in the coordinate n of the multidimensional lattice

eηδKp−KuK(β) =
√
pβp−β ũK(β) + rβũ

0
K , (5.25a)

e−ηδKpKũK(β) =
√
pβp−β uK(β)− r̃βu0

K , (5.25b)
tũK(α)p−Ke

ηδK =
√
pαp−α

tuK(α)− tu0
K r̃

T
α , (5.25c)

tuK(α)pKe
−ηδK =

√
pαp−α

tũK(α) + tũ0
Kr

T
α . (5.25d)

where the 2-component vectors rTα and rβ are given in (5.13), and where the N -component
vectors u0

K and tu0
K are given by

u0
K = (1 +M)−1r , tu0

K = sT (1 +M)−1 , (5.26)

recalling the vectors r and s as defined in (4.8). The shifts in the discrete variable m (and other
lattice directions) are described by similar relations like (5.25), by replacing δ is replaced by ε
(i.e. p±K replaced by q±K), and ˜ by ̂.

Proof. The proof of these relations follow similar derivations as those in section 3, i.e. making
use of the basic relations (4.11) (and (4.10)), for the elliptic Cauchy matrix, as well as the
definitions of the various quantities such the plane-wave factors ρ, (4.6) and the objects (4.15a).
For instance, to prove (5.25a) we proceed as follows:

(1 + M̃)eηδKp−KuK(β) =
[
eηδKp−K(1 +M)− r̃ sT

]
uK(β)

= −(sTuK(β))r̃ + eηδKp−K

(
Ψξ(β +K) 0

0 Ψξ(−β +K)

)(
ρ1/2(β)
ρ1/2(−β)

)
r0

in which the entries in the matrix term on the right hand side are computed as follows

eηδKp−KΨξ(±β +K)ρ1/2(±β)r0 = eηδKp−KΨξ(±β +K)ρ1/2(±β)e−2ηδK
pK

p−K
r̃0

= e−ηδKpKΨξ(±β +K)ρ1/2(±β)r̃0 = eηδKΨδ(K)Ψξ(±β +K)ρ̃1/2(±β)e∓ηδβ
(
p±β
p∓β

)1/2

r̃0

= e−ηδK
[
eηδKΨξ+δ(K)Ψξ(±β) + eηδ(±β+K)Ψδ(∓β)Ψξ+δ(±β +K)

]
ρ̃1/2(±β)e∓ηδβ

(
p±β
p∓β

)1/2

r̃0

= Ψξ+δ(K)Ψξ(±β)ρ1/2(±β)r̃0 +
√
pβp−β ρ̃

1/2(±β)Ψξ+δ(±β +K)r̃0

where use has been made of the addition formula (4.2a) and the shift relations for the plane
wave factors ρ(±β) and in the components of the vector r0. Inserting these expressions in
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the former relation, and multiplying both sides by (1 + M̃)−1 , whilst taking note of the fact
that Ψξ+δ(K)r̃0 = r according to the definitions, we obtain (5.25a), by identifying

sT uK(β) = sT (1 +M)−1

(
Ψξ(β)χ−1

β,K 0
0 Ψξ(−β)χ−1

−β,K

)
Ψξ(K)

(
ρ1/2(β)
ρ1/2(−β)

)
r0

=
(

ρ1/2(β)Ψξ(β)(1− Vβ)
ρ1/2(−β)Ψξ(−β)(1− V−β))

)
and rewriting these 2-vectors in terms of W±β, using the definitions (4.24) and (5.13). Similar
computations yield the other relations in (5.24), where in the latter two we need to indentify
the combination

tuK(α) r =
(
ρ1/2(α)Ψξ(α)(1− Vα) , ρ1/2(−α)Ψξ(−α)(1− V−α)

)
.

�

5.4. Lax representation. Starting from the basic relations (5.25) for the 2N-component vec-
tors (5.24) we will now define first N -component vectors by projecting in the 2-component vector
space by making use of the arbitrary coefficient matrix A of (5.11). Thus, multiplying (5.25a)
and (5.25b) from the left by the 2-component row vector rTαA we obtain respectively

eηδKp−Kr
T
αAuK(β) =

√
pβp−β r

T
αAũK(β) + U (N)ũ0

K (5.27a)

e−ηδKpKr
T
αAũK(β) =

√
pβp−β r

T
αAuK(β)−

[√
pβp−β u

(N) −√pαp−α ũ(N)
]
u0

K(5.27b)

where we have used the identities relating the expressions in the entries of the matrix (5.12a)
and (5.14). Similarly, by multiplying (5.25a) and (5.25b) from the left by the 2-component row
vector r̃TαA we obtain respectively

eηδKp−K r̃
T
αAuK(β) =

√
pβp−β r̃

T
αAũK(β) +

[√
pαp−α u

(N) −√pβp−β ũ(N)
]
ũ0

K(5.27c)

e−ηδKpK r̃
T
αAũK(β) =

√
pβp−β r̃

T
αAuK(β)− Ũ (N)u0

K . (5.27d)

Introducing now the new object

uK(α, β) = rTαAuK(β) . (5.28)

which is a N -component vector, and eliminating the quantity rTαAũK(β) from the pair of
relations (5.27a) and (5.27b) we obtain

(b2 − k2)uK(α, β) = pKe
−ηδKU (N)ũ0

K +
[
Pũ(N) − (p2 − b2)u(N)

]
u0

K (5.29a)

whilst from (5.27c) and (5.27d) we get

(b2 − k2)ũK(α, β) = −p−Ke
ηδKŨ (N)u0

K +
[
Pu(N) − (p2 − b2)ũ(N)

]
ũ0

K . (5.29b)

These relations can be used to constitute one part of a Lax pair, whilst the other part follows by
replacing δ by ε (i.e. p±K replaced by q±K), and ˜ by ̂. Thus, in terms of the 2N-component
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vector

φK(α, β) =
(

u0
K

uK(α, β)

)
(5.30)

the following new Lax representation for Q3 is obtained

pKe
−ηδKφ̃K(α, β) =

1
U (N)

(
−Pũ(N) + (p2 − b2)u(N) , b2 − k2

b2−p2
b2−k2

∆
P − U

(N)Ũ (N) , Pu(N) − (p2 − b2)ũ(N)

)
φK(α, β)

(5.31a)

qKe
−ηεKφ̂K(α, β) =

1
U (N)

(
−Qû(N) + (q2 − b2)u(N) , b2 − k2

b2−q2
b2−k2

∆
Q − U

(N)Û (N) , Qu(N) − (q2 − b2)û(N)

)
φK(α, β)

. (5.31b)

In a similar way we can use the relationns (5.25c) and (5.25d) to derive an “adjoint” Lax pair
for the row vectors defined by

tφK(α, β) =
(
tu0

K , tuK(α, β)
)

, tuK(α, β) = tuK(α)Arβ , (5.32)

for the entries of which one can derive the following coupled set of equations:
tuK(α, β)(a2 − k2) = tũ0

K p−Ke
ηδKU (N) + tu0

K

[
Pũ(N) − (p2 − a2)u(N)

]
, (5.33a)

tũK(α, β)(a2 − k2) = tũ0
K

[
Pu(N) − (p2 − a2)ũ(N)

]
− tu0

K pKe
−ηδKŨ (N) . (5.33b)

In terms of (5.30) one can derive a similar Lax pair, namely

tφ̃K(α, β) p−Ke
ηδK = tφK

1
U (N)

(
−Pũ(N) + (p2 − a2)u(N) , a2−p2

a2−k2
∆
P − U

(N)Ũ (N)

a2 − k2 , Pu(N) − (p2 − a2)ũ(N)

)
(5.34a)

tφ̂K(α, β) q−Ke
ηεK = tφK

1
U (N)

(
−Qû(N) + (q2 − a2)u(N) , a2−q2

a2−k2
∆
Q − U

(N)Û (N)

a2 − k2 , Qu(N) − (q2 − a2)û(N)

)
. (5.34b)

In (5.31) the structure derived from the ellipticN -soliton solutions, following the computations
in this section, leads to 2N×2N Lax matrices with an N×N block structure, each block of which
is labelled by the soliton parameters κi. However, having derived the Lax pair, one can now
consider the variables k (which were diagonal matrices) as general spectral parameters, and
assess the compatibility of the system (5.31) on its own merit. This leads to the following
statement:

Theorem 5.6. The compatibility conditions for the two linear equations (5.31a) and (5.31b) are
satisfied if and only if u(N) obeys Q3 in the form (5.4), making use of the biquadratic identities
(5.7) together with (5.8). The same holds true for the two linear equations (5.34a) and (5.34b).

Proof. The proof is by direct computation, where the (1,1) and (2,2) entries yield the equalities
at the left-hand sides of (5.9), whilst the (1,2) and (2,1) entries yield the equation inserting the
explicit expressions for the biquadratics Hp and Hq of (5.8). �
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6. Bäcklund scheme for the elliptic soliton solutions

In [24] we showed by explicit computation that the recursive structure of the N -soliton solu-
tions for Q3 coincides with the action of the Bäcklund transformation. Although this is to be
expected, the mechanism of the proof reveals the role of the relations between the various quan-
tities obeying different equations in the ABS list, in particular the Miura type transformations
between them. In Theorem 6.1 we make the statement as in [24], but now for the elliptic soliton
solutions, and uncover the various aspects of the proof which have to be adapted for the elliptic
case.

6.1. Bäcklund transformation from the N- to the (N + 1)-soliton solution. The fol-
lowing theorem relates the elliptic (N + 1)-soliton solution of the form given in (5.3) to the
corresponding elliptic N -soliton solution with one less soliton parameter, thus establishing the
recursive structure between them. In the proof of this theorem an important role is played by
the covariant extension (introduced in [6]) of the N -soliton solution into a new lattice direc-
tion associated with lattice parameter l = kN+1. Thus, as in [24], the shift ρi → ρi denotes
in what follows the covariant extension of the lattice variables into a direction given by this
new parameter, thereby exploiting the multidimensional consistency of Q3. Equivalently this
can be described by the introduction of a new integer lattice variable h associated with the
parameter kN+1, on which the plane wave-factors (4.6) depend through the intial values, in the
usual fashion, i.e. including a new factors with teh lattice parameter δ replaced by κN+1 and
the lattice variable n replaced by h. Having this in mind the following theorem describes the
recursive structure between the elliptic N - and (N + 1)-soliton solutions:

Theorem 6.1. Let u(N) be as defined in (5.3) and let u(N+1) be equal to u(N+1) as defined in
(5.3), depending on additional parameters κN+1, cN+1 and additional plane-wave factor ρN+1,
and where all but the latter plane-wave factors ρi, i = 1, . . . , N , as well as the discrete exponen-
tials ρ(α), ρ(β) are replaced by

ρi = e2ηκN+1
κi σ(κi − κN+1)
σ(κi + κN+1)

ρi , (i 6= N + 1) , ρ(κ) = e2ηκN+1
κσ(κ− κN+1)
σ(κ+ κN+1)

ρ(κ) , (6.1)

with κ = ±α,±β respectively. Then u(N) is related to u(N+1) by the Bäcklund transformation
with Bäcklund parameter kN+1 ∈ Γ, that is the following equations hold

Q∆
p,kN+1

(u(N), ũ(N), u(N+1), ũ
(N+1)

) = 0, Q∆
q,kN+1

(u(N), û(N), u(N+1), û
(N+1)

) = 0, (6.2)

in which Qp,kN+1
, Qq,kN+1

are the quadrilateral expressions of the form given in (5.1)

Proof: The proof of Theorem 6.1 follows a similar pattern as the corresponding proof in [24],
apart from some refinements which involve the non-autonomous elliptic Cauchy kernel and the
structure of the elliptic identities involved in the computations. In the first step we break down
the (N + 1)-soliton expression into components associated with the N -soliton solution. In the
second step we apply the BT to the N -soliton solution and in the final step we compare the
expressions obtained in the two previous steps.
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Step # 1. We first establish a recursive structure between the basic objects like Sα,β and Vα
between the N - and (N +1)-soliton solutions. This uses the breakdown of the Cauchy matrix as
it occurs as the kernel (1+M)−1 in the various objects. First, for the sake of self-containedness,
we repeat the following lemma:

Lemma 6.2. The following identity holds for the inverse of a (N + 1)× (N + 1) block-matrix(
A b

cT d

)−1

=
(
A−1(1 + 1

sb c
TA−1) −1

sA
−1b

−1
sc
TA−1 1

s

)
, (6.3)

in which A is an invertible N × N matrix b and cT are N -component vector column- and
row-vector respectively , and d is a nonzero scalar, where the scalar quantity s, given by

s = d− cTA−1b =
1

det(A)

∣∣∣∣ A b

cT d

∣∣∣∣ , (6.4)

is assumed to be nonzero.

Proof. By direct multiplication, noting that the matrix is invertible if s is nonzero. �

LetM (N+1) be the (N+1)×(N+1) Cauchy matrix with parameters κ1, . . . , κN+1 as defined in
a similar way as in (4.4). Applying the Lemma to compute the inverse of the matrix 1+M (N+1) ,
which can be decomposed as above by setting

A = 1 +M (N) , b = cN+1Ψξ(κN+1)χ−1
κN+1,K

r ,

cT = sTχ−1
K,κN+1

Ψξ(κN+1)ρN+1 , d = 1 + ρN+1cN+1Ψξ(2κN+1) ,

we have

(1 +M (N+1))−1 =

=
(

(1 +M (N))−1 + s−1cN+1ρN+1Ψ2
ξ(κN+1)uκN+1

tuκN+1 −s−1cN+1Ψξ(κN+1)uκN+1

−s−1ρN+1Ψξ(κN+1) tuκN+1 s−1

)
where u(·) and tu(·) are given in (4.17). Applying the explicit form of 1 +M (N+1))−1 to the
definitions (4.15) to compute the elliptic (N + 1)-soliton formulae U (N+1)

α,β and V
(N+1)
α in terms

of the N -soliton ones, we obtain the expressions

U
(N+1)
α,β = U

(N)
α,β +

1
s
ρN+1cN+1Ψ2

ξ(κN+1)
(
U (N)
α,κN+1

− χ−1
α,κN+1

)(
U

(N)
κN+1,β

− χ−1
κN+1,β

)
,(6.5a)

V (N+1)
α = V (N)

α +
1
s
ρN+1cN+1Ψ2

ξ(κN+1)
(
U (N)
α,κN+1

− χ−1
α,κN+1

)
V (N)
κN+1

, (6.5b)

and subsequently using the definitions (4.24) we find the following recurrence relations between
the N and N + 1 elliptic soliton objects:

S
(N+1)
α,β = S

(N)
α,β −

1
s
cN+1ρN+1 S

(N)
α,κN+1

S
(N)
κN+1,β

, (6.6a)

W (N+1)
α = W (N)

α − 1
s
cN+1ρN+1 S

(N)
α,κN+1

W (N)
κN+1

, (6.6b)

where we exclude values for α and β such that α + κN+1 = 0 or β + κN+1 = 0 (modulo the
period lattice of the Weierstrass elliptic functions). Furthermore, the quantity s can be directly
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computed using (6.4) with the identifications of the entries given earlier and using the definitions
(4.15) and (4.24) again, leading to:

s = 1 + ρN+1cN+1S
(N)
κN+1,κN+1

=
f (N+1)

f (N)
. (6.7)

Here the latter equality follows from the second equality in (6.4), which expresses s the ratio
of the τ -function f (N+1) = det(1 + M (N+1)) of the elliptic (N + 1)-soliton solution and the
τ -function f (N) = det(1+M (N)) of the embedded elliptic N -soliton solution. Setting β = κN+1

in (6.6a) and using (6.7) we subsequently obtain the following identification for the quantity s

s =
S

(N)
α,κN+1

S
(N+1)
α,κN+1

=
W

(N)
kN+1

W
(N+1)
kN+1

, (6.8)

which in particular implies that the ratio of Sα,κN+1 between its N - and (N + 1)-elliptic soliton
value, is independent of the parameter α.
Step # 2. Next we apply the BT with the (so far arbitrary) Bäcklund parameter l = (l, L) ∈ Γa,b

to the elliptic N -soliton solution defined in (5.3), i.e. we want to solve the system of discrete
Riccati equations for a new variable v

Q∆
p,l(u

(N), ũ(N), v, ṽ) = 0 , Q∆
q,l(u

(N), û(N), v, v̂) = 0 , (6.9)

relying on the multidimensional consistency of Q3, and the fact that the shifts on the lattice can
be interpreted as Bäcklund transformations. To solve the system (6.9) we reduce the problem by
identifying two particular solutions, which are obtained by the forward- and backward shifts, in
the covariant extension, of the known elliptic N -soliton solutions u(N). This implies we need to
extend all the plane-wave factors by including a lattice direction associated with the parameter
l, i.e. we set

ρ0,0(κ) =
(
e−2ζ(λ)κ `−κ

`κ

)h
ρ0,0,0 ⇒ ρ(κ) = e2ηλκ

`−κ
`κ

ρ(κ) , ρ(κ) = e−2ηλκ
`κ
`−κ

ρi(κ) ,

(6.10a)
in all relevant definitions, where `κ = Ψλ(κ) (λ being the uniformising variable associated with
the point l on the curve Γa,b and on the Weierstrass curve). Similarly we have

ρi = e2ηλκi
`−κi
`κi

ρi , ρ
i

= e−2ηλκi
`κi
`−κi

ρi . (6.10b)

Here the elementary discrete shift in the discrete variable h is indicated by a , in terms of which
the elliptic N -soliton solutions depending on three variables, u(N)

n,m,h, we have

u
(N)
n,m,h = u

(N)
n,m,h+1 , u

(N)
n,m,h = u

(N)
n,m,h−1 .

It is an immediate consequence of the construction behind Theorem 5.1, that the following
equations are satisfied:

Q∆
p,l(u

(N), ũ(N), u(N), ũ
(N)

) = 0 , Q∆
q,l(u

(N), û(N), u(N), û
(N)

) = 0 , (6.11a)

Q∆
p,l(u

(N), ũ(N), u(N), ũ(N)) = 0 , Q∆
q,l(u

(N), û(N), u(N), û(N)) = 0 , (6.11b)
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where (6.11b) holds because of the symmetry of the quadrilaterals. Having established the two
solutions u(N) and u(N) of (6.9) we can now find the general solution of that system in the
interpolating form:

v =
u(N) + tu(N)

1 + t
, (6.12)

in which t is some function to be determined from the following coupled system of homogeneous
linear equations:

t̃

t
= −

Q∆
p,l(u

(N), ũ(N), u(N), ũ
(N)

)

Q∆
p,l(u

(N), ũ(N), u(N), ũ(N))
, (6.13a)

t̂

t
= −

Q∆
q,l(u

(N), û(N), u(N), û
(N)

)

Q∆
q,l(u

(N), û(N), u(N), û(N))
. (6.13b)

The compatibility of this system is equivalent to the compatibility of the BT (6.9) as a coupled
system of discrete Riccati equations, which in turn is a consequence of the multidimensional
consistency of the lattice equation.

Using the explicit expressions for the quadrilaterals (5.1), eqs. (6.13) reduce to

t̃

t
=

Pũ(N) − (p2 − l2)u(N) − Lu(N)

Pũ(N) − (p2 − l2)u(N) − Lu(N)
=
w − w̃
w − w̃

, (6.14a)

t̂

t
=

Qû(N) − (q2 − l2)u(N) − Lu(N)

Qû(N) − (q2 − l2)u(N) − Lu(N)
=
w − ŵ
w − ŵ

, (6.14b)

where in the last step we have made use of eqs. (5.9), replacing ε, respectively δ, by λ. Finally,
using eqs. (4.34) with the same replacements, leading to

w − w̃ =
pαe
−ηδαWα − `αe−eηλαW̃α

W̃α

, w − w̃ =
p−αe

ηδαW̃α + `αe
−η

λ
αWα

Wα
, (6.15)

which by setting subsequently α = −λ ⇒ `α = 0 yields the expressions

t̃

t
= e−(ηδ+ηδ)λ

(
pλ
p−λ

)
W̃−λW̃−λ

W−λW−λ
,

t̂

t
= e−(ηε+ηε)λ

(
qλ
q−λ

)
Ŵ−λŴ−λ

W−λW−λ
.

These relations can be simultaneously integrated, yielding the following expression for the func-
tion t:

t = tn,m = t0 e
−[ζ(ξ)+ζ(ξ)]λ

(
e2ζ(δ)λ pλ

p−λ

)n(
e2ζ(ε)λ qλ

q−λ

)m
W−λW−λ . (6.16)

Using the relation

WαWβ = `αe
−ηλαSα,β − `−βeηλβSα,β ⇒ W λWλ = `λe

−ηλλSλ,λ ,

obtained by replacing δ by λ and ˜ by in (4.25), and using also (4.27) with the same replace-
ments, we can obtain from (6.16) the following result:

1
t

=
σ2(λ)σ(2λ)

t0

ρ(λ)
ρ0,0(λ)

Sλ,λ . (6.17)
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Step # 3. We now compare the expressions for the solution obtained from the recurrence of step
# 1 and the one from the BT of step # 2. On the one hand, the solution from the BT (6.12)
can be recast into the following form

v = u(N) +
1

1 + t
(u(N) − u(N)) ⇒ v = u(N) − 1

1 + t

1
L

(w − w)U (N)
, (6.18)

where we have used the relation w − w = L(u(N) − u
(N))/U (N) , which follows from (5.9b),

setting δ = ε = λ. Setting now in (6.17) the Bäcklund parameter λ = κN+1, i.e. l = kN+1 =
(kN+1,KN+1), which implies that the -shift from now on is the lattice shift associated with the
lattice parameter kN+1, and we choose the integration constant t0, such that we identify (6.17)
as follows:

1
t

= cN+1ρN+1S
(N)
κN+1,κN+1

⇒ s = 1 +
1
t
, (6.19)

comparing the result with (6.7). This identification requires the choice

t0 = σ(2κN+1)σ2(κN+1)/cN+1ρ0.0(κN+1) . (6.20)

On the other hand, inserting the recursion relation (6.6a) into the expression for the elliptic
(N + 1)-soliton solution we find

u(N+1) = Aρ1/2(α) ρ1/2(β)S(N+1)
α,β + · · ·

= Aρ1/2(α) ρ1/2(β)
(
S

(N)
α,β −

1
s
cN+1ρN+1S

(N)
α,κN+1

S
(N)
κN+1,β

)
+ · · ·

= u(N) − 1
s
cN+1ρN+1

[
Aρ1/2(α) ρ1/2(β)S(N)

α,κN+1
S

(N)
κN+1,β

+ · · ·
]
,

= u(N) − 1
s
cN+1ρN+1

Aρ1/2(α) ρ1/2(β)eηκN+1
(α+β)W

(N)
α W

(N)
β (W (N)

κN+1)2

ΨκN+1(α) ΨκN+1(β)
+ · · ·

 ,

where the dots stand for the remaining terms with coefficients B, C, D and with (α, β) replaced
by (α,−β), (−α, β), (−α,−β) respectively, and where in the last step we have made use of the
relations

WαWλ = `αe
−ηλαSα,λ , W βWλ = `βe

−ηλβSβ,λ ,

which follows from the earlier relation setting β = λ, and the same with α and β interchanged,
and subsequently taking λ = κN+1. Taking into account the covariant extension of the plane-
wave factors ρ(α), ρ(β), applying a relation of the form of (4.7), we can conclude from this
computation that

u(N+1) = u(N) − cN+1ρN+1

sKN+1
(W (N)

κN+1
)2U

(N)
, (6.21)

using the expression (5.6) and identifying the factor L with KN+1 through the relation L =
(`−α`α`−β`β)1/2 for λ = κN+1.

Finally, noting that

w − w =
`αe
−η

λ
αWα + `−αe

ηδαWα

Wα
= `λe

−η
λ
λW λ

Wλ
⇒ w − w =

W 2
λ

Sλ,λ
, (6.22)
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we can compare the expressions for v in (6.18) and u(N+1) in (6.21) and conclude that they are
the same provided that

1
1 + t

=
1
s
cN+1ρN+1SκN+1,κN+1 ,

and which holds as a consequence of (6.19). Thus, we have established that with the above choice
(6.20) of the integration constant t0 in (6.16) the Bäcklund transformed solution coincides with
the corresponding elliptic (N + 1)-soliton solution given by the Cauchy-matrix objects. This
then completes the proof of Theorem 6.1.
�

Theorem 6.1 establishes the precise connection between the structure of the N -soliton solution
as given by the Cauchy matrix approach, and the way to generate a soliton hierarchy through
Bäcklund transforms. What we conclude is that these two approaches coincide up to a subtle
identification of the relevant constants in the solution. Since, as was remarked in the Corollary of
section 3 that the soliton solutions of Q3 really live in an extended four-dimensional lattice, the
precise identification of those constants is of interest, since they contain possibly the additional
lattice directions. In fact, in [6, 10] we established the first soliton type solutions for Q4 through
the Bäcklund approach, and it is of interest to see how that approach connects to a (yet unknown)
representation of multi-soliton solutions in terms of a scheme similar to the one set up in this
paper for Q3.

7. Elliptic soliton solutions for degenerate subcases of Q3

In the same way as in the rational soliton case of [24], one can obtain from the elliptic
N -soliton solution for Q3 the corresponding elliptic N -soliton solutions for all ”lower” ABS
equations through limits on the parameters α, β (adjusting, where necessary, the coefficients
A,B,C,D in an appropriate manner). This follows the coalescence scheme of Figure 3. The

Q3

��

// Q2

��

// Q1

��

H3 // H2 // H1

Figure 3. Coalescence scheme employed to construct elliptic N -soliton-type so-
lutions for the degenerate sub cases of equation Q3.

upper horizontal sequence in this scheme, involving the degenerations of the Q-equations, are
obtained from performing careful limits of the type β → α, whilst the vertical limit from Q- to
H-equations is obtained from the limits α or β → 0. We observe that this degeneration scheme
roughly follows the pattern of the limits of the NQC equation that were studied in [30] leading
to the various degenerations of KdV type lattice equations.
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7.1. Q-degenerations. We first make the following observation which can be independently
validated:

Lemma 7.1. The quantity
z = zα + (℘(α)− ℘(ξ))Uα,−α , (7.1)

where Uα,−α is defined as before, and where we have introduced

zα = zn,m(ξ;α) := ζ(ξ) +
n

2
(ζ(α− δ)− ζ(α+ δ)) +

m

2
(ζ(α− ε)− ζ(α+ ε)) , (7.2)

obeys the Q1 equation in the following form:

(p2 − a2)(z − z̃)(ẑ − ̂̃z)− (q2 − a2)(z − ẑ)(z̃ − ̂̃z) =
1
4

(℘′(α))2

(
1

p2 − a2
− 1
q2 − a2

)
. (7.3)

Proof. To prove this lemma, let us consider the quantity z as defined in (7.1), with zα given in
(7.2). From the definition we have, using (4.26),

z̃ − z = ζ(ξ + δ)− ζ(ξ) +
1
2

(ζ(α− δ)− ζ(α+ δ)) +
(
℘(α)− ℘(ξ̃)

)
Ũα,−α − (℘(α)− ℘(ξ))Uα,−α

= − 1
pα
eηδα W̃αW−α +

1
2

(ζ(α+ δ) + ζ(α− δ)− 2ζ(α))

= − 1
pα
eηδα W̃αW−α −

1
2

℘′(α)
℘(δ)− ℘(α)

,

where the latter form arises by using (3.8). Since z remains unchanged under flipping the sign
of α, because zα = z−α and Uα,β is symmetric with respect to the interchange of α and β, we
also have

z̃ − z = − 1
p−α

e−ηδα W̃−αWα +
1
2

℘′(α)
℘(δ)− ℘(α)

.

Hence, we have

(p2−a2)
(
z̃ − z +

1
2

℘′(α)
℘(δ)− ℘(α)

)(̂̃z − ẑ − 1
2

℘′(α)
℘(δ)− ℘(α)

)
= (p2−a2)

eηδαe−bηδα
pαp−α

W̃αW−α
̂̃
W−αŴα ,

where the expression on the right-hand side is invariant under interchanges δ ↔ ε , ̂ ↔ ˜ ,
taking into account that pαp−α = ℘(δ) − ℘(α) = p2 − a2 . and that ηδ − η̂δ = ηε − η̃ε . Thus,
we have that

(p2 − a2)
(
z̃ − z +

1
2

℘′(α)
℘(δ)− ℘(α)

)(̂̃z − ẑ − 1
2

℘′(α)
℘(δ)− ℘(α)

)
=

= (q2 − a2)
(
ẑ − z +

1
2

℘′(α)
℘(ε)− ℘(α)

)(̂̃z − z̃ − 1
2

℘′(α)
℘(ε)− ℘(α)

)
which after some cancellations leads to

(p2 − a2)(z̃ − z)(̂̃z − ẑ)− (q2 − a2)(ẑ − z)(̂̃z − z̃) =
1
4

(℘′(α))2

(
1

p2 − a2
− 1
q2 − a2

)
,

which is eq. (7.3). �
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The identification with the equation Q1 (2.1a) can be made by identifying the lattice param-
eters

o
p =

1
2
℘′(α)
p2 − a2

,
o
q =

1
2
℘′(α)
q2 − a2

, (7.4)

making it evident that z defined in (7.1) provides a solution of Q1 in that form with the fixed
parameter δ2 = 1. The elliptic soliton solutions for the more general parameter case of Q1 are
obtained as an immediate corollary of Theorem 5.1, by considering the limit β → α. This leads
to the following result:

Theorem 7.2. The following formula

u(N) = Aρ(α)Sα,α +Dρ(−α)S−α,−α + 2Bz + C

in which S±α,±α, ρ(±α) are defined as before, where z is given as in Lemma 7.1, and where the
coefficients are subject to the relation

AD −B2 =
∆

℘′(α)2
,

constitutes the elliptic N -soliton solution of the (Q1)∆ equation, given in the form

(p2 − a2)(u− ũ)(û− ̂̃u)− (q2 − a2)(u− û)(ũ− ̂̃u) + ∆
(

1
p2 − a2

− 1
q2 − a2

)
= 0 . (7.5)

Hence, (7.5) leads to a solution of the equation Q1 in the form (2.1a) using the identifications
of lattice parameters given by (7.4), for generic value of the fixed parameter.

Proof. Taking the limit β = α+ γ, and letting γ → 0 in (5.3) the terms with coefficients A and
D are regular under this limit, whilst the terms with coefficients B and C possess a singularity
due to the prefactor Ψξ(±α∓ β) in the quantities S±α,∓β. Thus we have the limits

ρ1/2(±β) → ρ1/2(±α)
{

1± γzα+

+
1
2
γ2
[
z2
α ±

n

2
(℘(α+ δ)− ℘(α− δ))± m

2
(℘(α+ ε)− ℘(α− ε))

]
+ O(γ3)

}
Ψξ(±α∓ β) → ∓1

γ

[
1− 1

2
γ2℘(ξ) + O(γ3)

]
Ψξ(±α± β) → Ψξ(±2α)

[
1± γη±2α +

1
2
γ2
(
℘(2α)− ℘(ξ ± 2α) + η2

±2α

)
+ O(γ3)

]
χ±α,∓β → ±γ (℘(α)− ℘(ξ)) +

1
2
γ2
(
℘′(±α) + ℘′(ξ)

)
+ O(γ3) ,

χ±α,±β → χ±α,±α + γ (℘(ξ ± 2α)− ℘(α)) +
1
2
(
℘′(ξ ± 2α)∓ ℘′(α)

)
+ O(γ3) ,

and introducing

Tα,β = sTχ−1
α,K(1 +M)−1χ−2

β,K (℘(β)− ℘(ξ + β +K)) r . (7.6)
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we have also

Uα,−β → Uα,−α − γTα,−α + O(γ2) ,

⇒ Sα,−β → −1
γ

+ (℘(α)− ℘(ξ))Uα,−α + γ

[
1
2
℘(ξ)− (℘(α)− ℘(ξ) (η−α Uα,−α + Tα,−α))

]
,

and

Uα,β → Uα,α + γTα,α + O(γ2) ,
⇒ Sα,β → Sα,α + γΨξ(2α) [η2α (1− χα,αUα,α)− (℘(ξ + 2α)− ℘(α))Uα,α − χα,αTα,α] .

Assuming the coefficients B and C to behave as:

B → B0 +B1γ + · · · , C → C0 + C1γ + · · · ,

where the singularity can be avoided if we choose C0 = B0. �

We now consider the limit to the case of the equation Q2. An extension of Lemma 7.1 is the
following statement:

Lemma 7.3. The following quantity obtained from the expansion of the Q3 elliptic soliton
formula, namely

z′± =
1
2

[
℘(ξ)−z2

α ±
n

2
(℘(α+ δ)− ℘(α− δ)) +

m

2
(℘(α+ ε)− ℘(α− ε))

]
− (℘(α)− ℘(ξ)) [(η∓α + zα) Uα,−α + T±α,∓α] (7.7)

obeys the following relations

(p2 − a2)
[
(z − z̃)(ẑ′± − ̂̃z′±) + (z′± − z̃′±)(ẑ − ̂̃z)]

−(q2 − a2)
[
(z − ẑ)(z̃′± − ̂̃z′±) + (z′± − ẑ′±)(z̃ − ̂̃z)] =

= ±1
2
℘′(α)(z − ̂̃z)(ẑ − z̃) +

1
4

(
1

p2 − a2
− 1
q2 − a2

)[
± ℘′(α)℘′′(α)

−(℘′(α))2(z + z̃ + ẑ + ̂̃z)± 1
2

(℘′(α))3

(
1

p2 − a2
+

1
q2 − a2

)]
. (7.8)

Proof. The proof is by direct expansion of the Q3 solution using the expansions u(N) = − 1
γ +

z + γz+ in the case that we take the coefficients A = D = C = 0, or the expansion u(N) =
1
γ + z− γz− in the case we take the coefficients A = D = B = 0, and using the expansion of the
proof of Theorem 7.2 to obtain the explicit form of the quantities z±. �

A combination of the quantities z± of Lemma 7.3 yields the core of the general elliptic soliton
solution of the equation Q2, as is expressed in the following statement.



ELLIPTIC SOLUTIONS OF ABS LATTICE EQUATIONS 35

Theorem 7.4. The following function

u(N) = (℘(α)− ℘(ξ)) (Tα,−α + T−α,α)− ℘′(ξ)Uα,−α − ℘(ξ)− 1
6

(
℘′′′(α)
℘′(α)

− 3
2

(℘′′(α))2

(℘′(α))2

)
+
(
B1 + C1

2B0
−zα

)[
B1 + C1

2B0
−zα − 2 (℘(α)− ℘(ξ))Uα,−α

]
− A1D1

B2
0

− A1

B0
ρ(α)Sα,α

−D1

B0
ρ(−α)S−α,−α , (7.9)

where A1, D1, B0, B1, C1 are constants3 and with the notations as introduced earlier, i.e.
(4.15b), (4.24), (7.6) and (7.2), and the identifications (7.4), obeys the equation Q2 in the form
(2.1b).

Proof. The result is obtained by systematic expansion with respect to the parameter γ as intro-
duced in the proof of Corrollary 7.2. The solution (5.3) of the Q3 equation under the expansions
given earlier takes the form

u(N) =
1
γ
u−1 + u0 + γu1 + O(γ2) , (7.10)

in which the coefficients u−1, u0 and u1 are obtained from the expansions of the various ingredi-
ents of the elliptic N -soliton solution as given earlier. Here we still have the freedom to impose
a dependence of the coefficients A, B, C, D on γ as we want, and we shall chose these such that
the coefficients u−1, u0 are actually constant. This can be achieved by chosing

A = γA1 , D = γD1 , B = B0 + γB1 + γ2B2 , C = −B0 + γC1 + γ2C2 ,

in which A1, D1, B0, B1, B2, C1, C2 are all assumed to be of order 1 in powers of γ, and which
will be specified further lateron. Thus, we obtain u−1 = −2B0 , u0 = C1 −B1 and u1 given by

u1 = (C2 −B2) + (C1 +B1)z +B0(z′+ + z′−) +A1ρ(α)Sα,α +D1ρ(−α)S−α,−α ,

where z is given in (7.1) and z′± in (7.7). Next we employ the same expansions on the Q3
quadrilateral (5.1), where for arbitrary coefficients A, B, C, D, ∆ is given by (5.5). Thus, on
the equation we can compute the expansion by noting that up to fourth in powers of γ we have:

P = (p2 − a2)
[
1− 1

2
γ
℘′(α)
p2 − a2

− 1
4
γ2

(
℘′′(α)
p2 − a2

+
1
2

(℘′(α))2

(p2 − a2)2

)
− 1

12
γ3

(
℘′′′(α)
p2 − a2

+
3
2
℘′(α)℘′′(α)
(p2 − a2)2

+
3
4

(℘′(α))3

(p2 − a2)3

)
− 1

48
γ4

(
℘′′′′(α)
p2 − a2

+
3
2

(℘′′(α))2

(p2 − a2)2
+ 2

℘′(α)℘′′′(α)
(p2 − a2)2

+
9
2

(℘′(α))2℘′′(α)
(p2 − a2)3

+
15
8

(℘′(α))4

(p2 − a2)4

)
+ O(γ5)

]
,

3We note that the solution (7.9) of Q2 presented in Theorem 7.5 depends effectively on three coefficients,
A1/B0, D1/B0 and (B1 +C1)/B0. We could have replaced these coefficients by single symbols, but for the clarity
of the proof we have abstained from doing that.
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and similarly for Q. Inserting this expansion into the Q3 quadrilateral we obtain up to the
required order in powers of γ

Qp,q(u, ũ, û, ̂̃u) =

(p2 − a2)(u− ũ)(û− ̂̃u)− (q2 − a2)(u− û)(ũ− ̂̃u)−
(

1
2
γ℘′(α) +

1
4
γ2℘′′(α)

)
(u− ̂̃u)(û− ũ)

−1
8

(
γ2(℘′(α))2 + γ3℘′(α)℘′′(α) +

1
4
γ4(℘′′(α))2 +

1
3
γ4℘′(α)℘′′′(α)

) [
uû+ ũ̂̃u
p2 − a2

− uũ+ û̂̃u
q2 − a2

]

− 1
16

(
γ3(℘′(α))3 +

3
2
γ4(℘′(α))2℘′′(α)

) [
uû+ ũ̂̃u

(p2 − a2)2
− uũ+ û̂̃u

(q2 − a2)2

]

− 5
128

γ4(℘′(α))4

[
uû+ ũ̂̃u

(p2 − a2)3
− uũ+ û̂̃u

(q2 − a2)3

]

+ det(A)(℘′(α))2

(
1

p2 − a2
− 1
q2 − a2

){
1 + γ

[
℘′′(α)
℘′(α)

+
1
2
℘′(α)

(
1

p2 − a2
+

1
q2 − a2

)]
+

1
2
γ2

[
1
4

(℘′(α))2

(
3

(p2 − a2)2
+

3
(q2 − a2)2

+
2

(p2 − a2)(q2 − a2)

)
+
℘′′′(α)
℘′(α)

+
3
2
℘′′(α)

(
1

p2 − a2
+

1
q2 − a2

)]}
Inserting the expansion (7.10), we find that terms of of order 0 and 1 in powers of γ (there are
no negative powers) cancel, provided that

(det(A))0 =
1
4
u2
−1 , (det(A))1 =

1
2
u−1u0 ,

where (det(A))i indicates the ith order of the expansion of the determinant, and these hold
identically true for the choices of u−1 and u0 given above. The dominant order is then quadratic
in γ and yields the following relation

Qp,q(u, ũ, û, ̂̃u) =

= γ2

{
(p2 − a2)(u1 − ũ1)(û1 − ̂̃u1)− (q2 − a2)(u1 − û1)(ũ1 − ̂̃u1)

+
(

1
p2 − a2

− 1
q2 − a2

)
(℘′(α))2

[
(det(A))2 −

1
8

(
2u2

0 + u−1(u1 + ũ1 + û1 + ̂̃u1)
)

+
1
24
u2
−1

(
℘′′′(α)
℘′(α)

− 3
2

(℘′′(α))2

(℘′(α))2

)
+

1
64
u2
−1(℘′(α))2

(
1

(p2 − a2)2
− 1

(p2 − a2)(q2 − a2)
+

1
(q2 − a2)2

)]}
+ O(γ3) .

(7.11)

Thus, if Qp,q(u, ũ, û, ̂̃u) = 0 as for the Q3 solution we started out with, then the dominant
coefficient in the expansion in powers of γ must vanish as well, leading to the conclusion that
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with the identifications (7.4), as well as setting

v = 2
u1

u−1
+
u2

0 − 4(det(A))2

u2
−1

− 1
6

(
℘′′′(α)
℘′(α)

− 3
2

(℘′′(α))2

(℘′(α))2

)
(7.12)

the function v obeys the Q2 equation in the form (2.1b) with the identifications (7.4). �

7.2. H-degenerations. The degenerate limits from the solutions of Q3 to those of the H-
equations are obtained through the limit β → 0. As an immediate corollary of theorem 5.1 we
have the following result:

Theorem 7.5. The following formula

v(N) = in+m
[(
A+B(−1)n+m

)
ρ1/2(α)Wα +

(
C +D(−1)n+m

)
ρ1/2(−α)W−α

]
, (7.13)

in which W±α and ρ(±α) are defined as before, constitutes the elliptic N -soliton solution of the
(H3)∆ equation, given in the form

Pα(vv̂ + ṽ̂̃v)−Qα(vṽ + v̂̂̃v) + 2(p2 − q2)
∆α

PαQα
= 0 . (7.14)

where Pα =
√
a2 − p2 , Qα =

√
a2 − q2 , and where

∆α = ℘′(α) det(A) .

Furthermore, the associated solution

V (N) = in+m
[(
A−B(−1)n+m

)
ρ1/2(α)Wα +

(
C −D(−1)n+m

)
ρ1/2(−α)W−α

]
, (7.15)

together with v(N) are Miura related to the elliptic N -soliton solution w of H1 via the relations:

ŵ − w̃ =
Pαv̂ −Qαṽ̂̃

V
= −Pαṽ −Qαv̂

V
(7.16a)

w − ̂̃w =
Pαv −Qα̂̃v

Ṽ
= −Pα

̂̃v −Qαv
V̂

(7.16b)

Proof. The proof is by simple expansions of the elliptic functions in the solution (5.3), namely
by observing that as β → 0, we have

ρ1/2(±β) ∼ (±i)n+m

[
1± β (ζ(ξ)− nζ(δ)−mζ(ε)) +

1
2
β2 (ζ(ξ)− nζ(δ)−mζ(ε))2 + O(β3)

]
,

(7.17)
choosing an appropriate branch of the square root of ρ(β), as well as

χα,β →
1
β
− ηα + β℘(ξ + α) + O(β2) , Ψξ(α+ β) → Ψξ(α)

(
1 + ηαβ + O(β2)

)
,

χβ,K → 1
β
− ηK + β℘(ξ +K) + O(β2) ⇒ Uα,β → β(1− Vα) + β2Zα + O(β3) ,
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in which

Zα = sT ηK(1 +M)−1χ−1
α,K r with ηK = ζ(ξ +K)− ζ(ξ)− ζ(K) . (7.18)

Hence,
Sα,β = Ψξ(α+ β) [1− χα,βUα,β] → Wα + βΨξ(α)(ηα − Zα) + O(β2) (7.19)

and, thus, we get the limiting behaviour

u(N) → v(N) + βv′ + O(β2) (7.20a)

v′ := in+m
{(
A−B(−1)n+m

)
ρ1/2(α) [Ψξ(α)(ηα − Zα) + (ζ(ξ)− nζ(δ)−mζ(ε))Wα]

+
(
C −D(−1)n+m

)
ρ1/2(−α) [Ψξ(−α)(η−α − Z−α) + (ζ(ξ)− nζ(δ)−mζ(ε))W−α]

}
,

(7.20b)

as given in (7.13). In the quadrilateral (5.1) we have the following limits:

P → 1
β
Pα + O(β) , Q→ 1

β
Qα + O(β) and ∆ = ℘′(α)℘′(β) det(A)→ −2

β3
∆α ,

so that the dominant behaviour of the quadrilateral (5.1) reduces to the left-hand side of (7.14).
Finally, with Ψξ(±β)→ ±β−1

(
1− 1

2℘(ξ)β2 + O(β3)
)

we get the expansions

Wβ = Ψξ(β)(1− Vβ) → 1
β

[
1− β(sT u0)− β2

(
(sT ηK u0) +

1
2
℘(ξ)

)
+ O(β3)

]
⇒ ρ1/2(±β)W±β → ± 1

β
(±i)n+m

(
1± βw +

1
2
β2w′ + O(β3)

)
,

where w is, once again, the solution (4.33) of the equation H1, and where

w′ :=
(
ζ(ξ)− nζ(δ)−mζ(ε)− sT u0

)2 − ℘(ξ)− 2(sT ηK u0)− (sT u0)2 . (7.21)

This implies, in particular, that

U (N) → (β−1 +
1
2
βw′)V (N) + wv(N) + O(β2) , (7.22)

from which in turn follow that the relations (5.9) through these expansion reduce to the relations
given in (7.16) as β → 0. �

The quantity v′ that is obtained in the higher orders of (7.20a) obeys also some interesting
relations, which can be easily obtained from (5.9) by pushing the expansions one step further.
Thus, as a corollary, we obtain

Corollary 7.6. The quantity v′ defined in (7.20b) obeys the following Miura type relations

Pαv̂
′ −Qαṽ′ = (ŵ − w̃)ŵ̃v , Pαv

′ −Qα̂̃v′ = (w − ̂̃w)ŵṽ , (7.23a)

Pαṽ
′ −Qαv̂′ = (w̃ − ŵ)v ̂̃w , Pα̂̃v′ −Qαv′ = −(w − ̂̃w)w̃v̂ , (7.23b)

where v is the solution of the equation H3 as given in (7.13) and where w is the solution (4.33)
of the equation H1 and where the parameters Pα, Qα are given as in Theorem 7.5.
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It is noteworthy that the quantity w′, i.e. (7.21), that appears in the higher orders of the
expansions is, in fact, the object that solves the H2 equation. Thus, we can state the following:

Theorem 7.7. The quantity w′ as defined in (7.21), i.e.

w′ = w2 − ℘(ξ)− 2(sT ηK u0)− (sT u0)2 ,

is a solution of the H2 equation, i.e. it solves the set of relations

w′ + w̃′ − p2 = 2ww̃ , w′ + ŵ′ − q2 = 2ww̃ , (7.24)

which is a Miura relation (non-auto-BT) between H1 and H2, where w is a solution of H1, and
where w′ is a solution of

(w′ + w̃′ − p2)(ŵ′ + ̂̃w′ − p2) = (w′ + ŵ′ − q2)(w̃′ + ̂̃w′ − q2) , (7.25)

which coincides with (2.4b).

Proof. To prove Theorem 7.7 we proceed in s similar fashion as in section 4. From (4.18), using
(4.6), we have using the definitions:

pKe
−ηδK(1 + M̃)ũ0 = pKe

−ηδK r̃

= e−ηδKe−2ζ(δ)Kp−Ke
2[ζ(eξ)−ζ(ξ)]K Ψeξ(K)

Ψξ(K)
r

= eηδKΨδ(−K)
Ψeξ(K)

Ψξ(K)
r = −

[
ζ(ξ̃)− ζ(δ) + ζ(K)− ζ(ξ +K)

]
r

= (ηK − ηδ) r =
[
(1 +M)pKe

−ηδK − r s̃T
]
ũ0 ,

where the last step follows by applying (4.10b). Multiplying both sides from the left by (1 +
M)−1 we obtain the relation

pKe
−ηδKũ0 = (1 +M)−1 ηK r −

(
ηδ − (s̃T ũ0)

)
u0 . (7.26a)

In a similar way, using (4.10a), we obtain the relation

p−Ke
ηδKu0 = −(1 + M̃)−1 η̃K r̃ −

(
ηδ + (sT u0)

)
ũ0 , (7.26b)

taking into account that from the definitions we have η̃−δ = −ηδ . Multiplying (7.26a) from the
left by sT we now compute

sT pKe
−ηδKũ0 = s̃T

Ψξ(K)
Ψeξ(K)

Ψδ(K)e−ηδKũ0

= s̃T
[
ζ(ξ) + ζ(K) + ζ(δ)− ζ(ξ̃ +K)

]
ũ0 = −s̃t(ηδ + η̃K)ũ0

= sT (1 +M)−1ηK r −
(
ηδ − (s̃T ũ0)

)
sTu0 ,

and hence we obtain

−ηδ(s̃T ũ0)− s̃T η̃K ũ0 = tu0 ηK r −
(
ηδ − (s̃T ũ0)

)
(sT u0) . (7.27)
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The same equation is obtained by multiplying (7.26b) from the left by s̃T and performing a
similar calculation. Using the abbreviations w0 := (sT u0) , w1 := (sT ηKu

0) we can rewrite
(7.27) more conveniently in the form:

w1 + w̃1 = ηδw0 − ηδw̃0 − w0w̃0 ⇒ 2(w1 + w̃1) + w2
0 + w̃2

0 + η2
δ = (w0 − w̃0 + ηδ)2 .

Using the addition formula for the Weierstrass elliptic function

η2
δ = (ζ(ξ + δ)− ζ(ξ)− ζ(δ))2 = ℘(ξ + δ) + ℘(ξ) + ℘(δ)

and noting that from the definition (4.33) we have that w̃−w = ηδ +w0− w̃0 , we finally obtain;(
℘(ξ) + w2

0 + 2w1 − w2
)

+
(
℘(ξ̃) + w̃2

0 + 2w̃1 − w̃2
)

+ ℘(δ) = −2w w̃ (7.28)

which after identifying the expressions between brackets with the object w′ in (7.21) leads to
the first part of the Miura transform (7.24) setting ℘(δ) = p2. The other part of the Miura
transform follows by the usual replacements, and subsequently the H2 equation for w′ is derived
by applying the trivial identity (2ww̃)(2ww̃)̂ = (2wŵ)(2wŵ)̃ . �

An alternative proof of Theorem 7.7, using the expansion (7.22), can be readily given, but
we believe it is instructive to provide a direct verification based on the form of the solution. We
note that the Miura relations (7.24) were first given in [8].
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