
A constructive approach to the soliton solutions
of integrable quadrilateral lattice equations

James Atkinson1, Frank Nijhoff2

1 School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia.
E-mail: jamesa@maths.usyd.edu.au

2 School of Mathematics, The University of Leeds, Leeds, LS2 9JT, UK.
E-mail: frank@maths.leeds.ac.uk

September 25, 2009

Abstract: Scalar multidimensionally consistent quadrilateral lattice equations
are studied. We explore a confluence between the superposition principle for
solutions related by the Bäcklund transformation, and the method of solving
a Riccati map by exploiting two known particular solutions. This leads to an
expression for the N -soliton-type solutions of a generic equation within this
class. As a particular instance we give an explicit N -soliton solution for the
primary model, which is Adler’s lattice equation (or Q4).

1. Introduction

Hirota’s N -soliton solution of the Korteweg-de Vries (KdV) equation [1,2] was
characterised in terms of a Bäcklund transformation originally by Wahlquist and
Estabrook in [3]. Nowadays the close relationship between soliton solutions and
Bäcklund transformations is a part of the landscape of soliton theory.

The discrete systems which form the natural analogues of integrable partial
differential equations of KdV-type are the scalar multidimensionally consistent
quadrilateral lattice equations. Amongst the features which are more transpar-
ent on the level of the discrete equations is the Bäcklund transformation, in fact
a natural auto-Bäcklund transformation is inherent in the discrete equation it-
self because of the multidimensional consistency. This is helpful in defining the
very notion of soliton solution in the discrete setting, where the usual physical
properties attributed to these solutions are less well studied. It also makes the
solutions arising from iterative application of the Bäcklund transformation very
well suited to a treatment on the discrete level. Particularly (we have found)
when combined with an elementary technique for solving the Riccati equation,
which we now take a moment to explain.
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In the scalar case the discrete Riccati equation (Riccati map) is an equation
of the form

R(u, ũ) := a0 + a1u+ a2ũ+ a3uũ = 0, (1.1)

where u = u(n) and ũ = u(n + 1) are values of the dependent variable u as a
function of the independent variable n ∈ Z, and in general the equation is non-
autonomous so that the coefficients a0 . . . a3 ∈ C are functions of n. One of the
many interesting properties of this equation is as follows: given two particular
solutions v = v(n) and w = w(n), the substitution

u =
v − ηw

1− η
(1.2)

reduces (1.1) to a homogeneous linear equation for the new variable η = η(n).
Specifically

η̃ = −R(w, ṽ)
R(v, w̃)

η ⇒ R(u, ũ) = 0 (1.3)

as a consequence of the vanishing of the first and last terms in the expansion

(1− η)(1− η̃)R(u, ũ) = R(v, ṽ)− ηR(w, ṽ)− η̃R(v, w̃) + ηη̃R(w, w̃). (1.4)

This technique has been applied to the Riccati map associated with the lattice
Bäcklund transformation previously [4,5]. In the present communication we show
that a similar technique applied to the superposition principle makes it possible
to construct a closed-form expression for the solution found by the application
of N Bäcklund transformations. In other words, it leads to an expression for the
N -soliton-type solutions.

From classification results due to Adler, Bobenko and Suris (ABS) [6,7] there
has emerged a core list of canonical forms for the scalar multidimensionally
consistent quadrilateral lattice equations. With one notable exception, explicit
N -soliton solutions have been found for all of the equations on the ABS list [8,
5,9], and their relation to the Bäcklund transformation has also been examined
[5]. The exception is the lattice equation discovered by Adler [10] (cf. also [11,
12]), which acquired the name Q4 in [6]. Q4 holds the position as the primary
model on the ABS list because all of the others can be found from this single
equation by a process of degeneration. The principal application of the technique
developed here is therefore to Q4, for which an explicit N -soliton solution has
not (to our knowledge) hitherto been given.

We start in Section 2 by specifying the class of equations under consideration.
In Section 3 the Bäcklund transformation and superposition principle of a generic
equation within this class are written in terms of the associated variable η. The
iterative application of the Bäcklund transformation in this new variable then
leads to the main N -soliton formula in Section 4. In Section 5 we provide a
simple illustrative example, using equation A1 from [6]. In Section 6 we use the
N -soliton formula to exhibit an explicit N -soliton solution of Q4, this builds on
the seed and one-soliton solution constructed for this equation previously in [4].
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2. The class of equations

We will study an equation of a generic form which encompasses all of those listed
by ABS in [6]. Specifically, we consider a polynomial of degree one in four scalar
variables,

Qp,q(u, ũ, û, ˆ̃u) := a0(p, q) + a1(p, q)u+ a2(p, q)ũ+ . . .+ a15(p, q)uũûˆ̃u, (2.1)

in which the coefficients are functions of lattice parameters p and q. We assume
the Kleinian symmetry and covariance of the polynomial,

Qp,q(u, ũ, û, ˆ̃u) = Qp,q(ũ, u, ˆ̃u, û) = Qp,q(û, ˆ̃u, u, ũ), (2.2)

Qp,q(u, ũ, û, ˆ̃u) = −Qq,p(u, û, ũ, ˆ̃u), (2.3)

as well as compatibility of the system

Qp,q(u, ũ, û, ˆ̃u) = 0, Qp,q(ū, ˜̄u, ¯̂u, ˆ̄̃u) = 0,
Qq,r(u, û, ū, ¯̂u) = 0, Qq,r(ũ, ˆ̃u, ˜̄u, ˆ̄̃u) = 0,
Qr,p(u, ū, ũ, ˜̄u) = 0, Qr,p(û, ¯̂u, ˆ̃u, ˆ̄̃u) = 0,

(2.4)

for any p, q and r. By the compatibility of (2.4) we mean that given u, ũ, û, ū,
ˆ̃u, ¯̂u and ˜̄u satisfying the equations on the left, the remaining equations on the
right are all satisfied by the same value of ˆ̄̃u. It is from the polynomial Q that
we then define an autonomous quadrilateral lattice equation,

Qp,q(u, ũ, û, ˆ̃u) = 0, (2.5)

where u = u(n,m), ũ = u(n+1,m), û = u(n,m+1) and ˆ̃u = u(n+1,m+1) are
now values of the dependent variable u as a function of independent variables
n,m ∈ Z. The covariance (2.3) and the compatibility of (2.4) make the lattice
equation multidimensionally consistent [13,14].1

3. Bäcklund transformation and superposition principle

We are interested in the solutions of (2.5) constructed by the application of
N consecutive Bäcklund transformations to an initial seed solution. To apply
the Riccati solution technique we will presuppose that the seed solution admits
covariant extension.

Definition 1. A covariantly extended solution of (2.5) is one which also satisfies
the (compatible) equations

Qp,li(u, ũ,Tiu,Tiũ) = 0, Qq,li(u, û,Tiu,Tiû) = 0, (3.1a)
Qli,lj (u,Tiu,Tju,TiTju) = 0, (3.1b)

for all i, j ∈ {1 . . . N}.

1 It should be expected that all polynomials satisfying (2.1) and (2.2) admit parameterisation
leading to the multidimensional consistency [7,15]. On the other hand, for polynomials with
no non-linear terms the assumption (2.2) seems less natural [16].
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In this definition we have introduced shift operators T1 . . .TN associated with
new lattice parameters l1 . . . lN , so the requirement is that u inhabits an (N+2)-
dimensional lattice satisfying the equations (2.5) and (3.1) throughout. We re-
mark that situations in which there is no natural covariant extension are con-
ceivable. However, covariant-extendibility is not a restriction because generically,
given a solution of (2.5), the multidimensional consistency implies that solutions
of the equations (3.1) exist.2

We give a definition of the (extended) Bäcklund transformation of (2.5).

Definition 2. When two functions u and v satisfy the system of equations

Qp,r(u, ũ, v, ṽ) = 0, Qq,r(u, û, v, v̂) = 0, (3.2a)
Qli,r(u,Tiu, v,Tiv) = 0, i ∈ {1 . . . N}, (3.2b)

we say they are related by the Bäcklund transformation of (2.5) with Bäcklund
parameter r, and write u r∼ v.

One usually considers only the two-dimensional system (3.2a) in the definition
of the Bäcklund transformation, but here we have included auxiliary equations
so that the Bäcklund transformation preserves the covariant extension. The fol-
lowing statement is locally equivalent to the assumption of multidimensional
consistency described in Section 2.

Lemma 1. If u is a covariantly extended solution of (2.5) then considered as a
system of equations for v the Bäcklund equations u r∼ v are compatible. Moreover
the function v which emerges is again a covariantly extended solution of (2.5).

Now, the special choice of Bäcklund parameter r ∈ {l1 . . . lN} causes an interplay
between the Bäcklund transformation and the covariant extension, and it is this
which facilitates the Riccati solution technique.

Lemma 2. Let u be a covariantly extended solution of (2.5). Then for each
i ∈ {1 . . . N} the substitution

ui =
[T−1

i − ηiTi]u
1− ηi

(3.3)

reduces the Bäcklund equations u li∼ ui to the following compatible homogeneous
linear system for the new variable ηi,

η̃i = −Qp,li(u, ũ,Tiu,T
−1
i ũ)

Qp,li(u, ũ,T
−1
i u,Tiũ)

ηi, η̂i = −Qq,li(u, û,Tiu,T
−1
i û)

Qq,li(u, û,T
−1
i u,Tiû)

ηi, (3.4a)

Tjηi = −
Qlj ,li(u,Tju,Tiu,TjT

−1
i u)

Qlj ,li(u,Tju,T
−1
i u,TjTiu)

ηi, j ∈ {1 . . . N}. (3.4b)

2 All solutions of (2.5) arising as N -cycles of the Bäcklund transformation - which are a
discrete analogue of finite-gap solutions [17–19], do have a natural covariant extension (cf. the
example in Section 6). On the other hand, for solutions which result from a generic initial
value problem on the lattice, a natural covariant extension is not manifest.
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Proof. The covariant extension provides two particular solutions of the system
u

li∼ ui, namely ui = Tiu immediately from (3.1), and ui = T−1
i u, which can be

seen by applying T−1
i to (3.1) and using the symmetry (2.2). Now observe that,

considered as equations for v, the Bäcklund transformation (3.2) is a system of
compatible Riccati maps because of the assumption (2.1). The substitution (3.3)
can then be seen to bring u

li∼ ui to (3.4) by considering an expansion of the
form (1.4) on each equation. The compatibility of (3.4) is inherited. ut

We remark that the behaviour of ηi and ui away from the origin in the lattice
direction associated with shift Ti is likely to be quite special. Actually in practice
we will only use the covariant extension of ui and ηi into the remaining lattice
directions associated with shifts Tj with j 6= i.

Let us turn now to consider the superposition principle for solutions of (2.5)
related by the Bäcklund transformation. Again we state the following without
proof because it is a standard calculation based on the multidimensional consis-
tency.

Lemma 3. Let u be a covariantly extended solution of (2.5) and suppose u1 and
u2 are such that u r1∼ u1 and u r2∼ u2 for some r1 and r2. Then the function u12

determined algebraically by the equation Qr1,r2(u, u1, u2, u12) = 0 satisfies the
Bäcklund relations u1

r2∼ u12 and u2
r1∼ u12.

This brings us to the crux of the method, it lies in considering Lemma 3 in the
case that r1, r2 ∈ {l1 . . . lN}. The resulting interplay with the covariant extension
(in which l1 . . . lN play the role of lattice parameters, cf. Definition 1) leads to
a relation, derived from the superposition formula, connecting now η-variables
associated with each Bäcklund transformation.

Lemma 4. Let u be a covariantly extended solution of (2.5) and suppose the
functions η1 . . . ηN are such that

ui =
[T−1

i − ηiTi]u
1− ηi

⇒ u
li∼ ui, i ∈ {1 . . . N}. (3.5)

Then for each i, j ∈ {1 . . . N} the following identity holds

(T−1
j ηi)(Tiηj) = (T−1

i ηj)(Tjηi). (3.6)

Furthermore the new function ηij defined as

ηij =
1− Tj ηi

1−T−1
j ηi

T−1
i ηj (3.7)

is such that

uij =
[T−1

j − ηijTj ]ui

1− ηij
⇒ ui

lj∼ uij . (3.8)

Proof. The proof is based on Lemma 3 plus a calculation which exploits the
assumptions made about the equation (2.5) described in Section 2. First we
observe that

Qli,lj (u,T
µ
i u,T

ν
ju,T

µ
i Tν

ju) = 0, µ, ν ∈ {+1,−1}, (3.9)
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for all i, j ∈ {1 . . . N}. In the case µ = ν = 1 this is immediate from the covariant
extension (3.1b), the other cases follow from the symmetry (2.2). By combining
(3.9) with the affine-linearity (2.1) we have for each µ, ν ∈ {+1,−1} and each
pair i, j ∈ {1 . . . N}

Qli,lj (u,T
µ
i u,T

ν
ju, z) = Sij(u,T

µ
i u,T

ν
ju)(z − Tµ

i Tν
ju) (3.10)

as an identity in z. Here we have introduced a polynomial S of degree one in
three variables defined in terms of Q as

Sij(w, x, y) := Qli,lj (w, x, y, 1)−Qli,lj (w, x, y, 0) = ∂zQli,lj (w, x, y, z). (3.11)

This new polynomial inherits the symmetry

Sij(w, x, y) = −Sji(w, y, x) (3.12)

from the covariance of Q (2.3). The simplification which occurs by using (3.10)
to replace occurrences of Q with S will be the principal mechanism exploited in
the calculation.

Now, according to Lemma 2 the assumption (3.5) means that each ηi satisfies
(3.4). Using (3.10) in (3.4b) as well as in the equation found by applying T−1

j to
(3.4b), we are able to deduce the following simplified equations for shifts on ηi

into the extended lattice directions,

Tjηi =
Sij(u,Tiu,Tju)
Sij(u,T−1

i u,Tju)
ηi, T−1

j ηi =
Sij(u,Tiu,T

−1
j u)

Sij(u,T−1
i u,T−1

j u)
ηi, (3.13)

which hold for all pairs i, j ∈ {1 . . . N}. The relations (3.13) combined with
(3.12) may be used to directly verify the property (3.6).

We now proceed with the principal calculation; substituting for ui and uj

leads to the following expansion of the superposition formula

(1− ηi)(1− ηj)Qli,lj (u, ui, uj , uij)

= Qli,lj (u,T
−1
i u,T−1

j u, uij)− ηiQli,lj (u,Tiu,T
−1
j u, uij)

− ηjQli,lj (u,T
−1
i u,Tju, uij) + ηiηjQli,lj (u,Tiu,Tju, uij),

= Sij(u,T−1
i u,T−1

j u)(uij − T−1
i T−1

j u)− ηiSij(u,Tiu,T
−1
j u)(uij − TiT

−1
j u)

− ηjSij(u,T−1
i u,Tju)(uij − T−1

i Tju) + ηiηjSij(u,Tiu,Tju)(uij − TiTju),

= Sij(u,T−1
i u,T−1

j u)
(
(uij − T−1

i T−1
j u)− (T−1

j ηi)(uij − TiT
−1
j u)

− (T−1
i ηj)(uij − T−1

i Tju) + (Tjηi)(T−1
i ηj)(uij − TiTju)

)
.

(3.14)

The first equality here results from substituting for ui and uj using the equation
on the left of (3.5) and exploiting the assumed affine-linearity of Q (2.1). To get
the second equality from the first we have used (3.10). The third equality follows
from the second by using (3.13) whilst bearing in mind (3.12).
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The expansion (3.14) thus enables us to write an expression for the (covari-
antly extended) solution of (2.5) determined from u, ui and uj by the superpo-
sition formula Qli,lj (u, ui, uj , uij) = 0,

uij =

[
T−1

i T−1
j − (T−1

j ηi)TiT
−1
j − (T−1

i ηj)T−1
i Tj + (Tjηi)(T−1

i ηj)TiTj

]
u

1− (T−1
j ηi)− (T−1

i ηj) + (Tjηi)(T−1
i ηj)

.

(3.15)
It is easily verified that the expression for ηij in (3.7) leads to equality between
uij given on the left of (3.8) and uij found by superposition in (3.15). The
statement (3.8) therefore follows from Lemma 3. ut

Thus it is demonstrated that, beyond what might be expected, the function ηij

is determined completely in terms of ηi and ηj by an expression (3.7) which
does not depend on the particular form of the polynomial Q. The additional
statement of Lemma 4, (3.6), can be viewed as encoding the permutability of
the Bäcklund transformations (specifically uij = uji in (3.8)) as a property of
the η-variables; this property will also play a key role later.

4. Bäcklund iteration

Here we apply N consecutive Bäcklund transformations to a covariantly ex-
tended seed solution of (2.5). Choosing the Bäcklund parameters to coincide
with the lattice parameters l1 . . . lN of the covariant extension (cf. Definition 1)
renders the Bäcklund iteration scheme tractable and yields a closed-form ex-
pression for the resulting N -soliton-type solution. In the main theorem which
follows it is both convenient and (as will be seen) natural to introduce a solution
v and functions φ1 . . . φN which are shifted versions of the seed solution u and
the variables η1 . . . ηN of Section 3.

Theorem. Given a covariantly extended solution of (2.5) denoted by u, let

v =
[∏N

i=1 T−1
i

]
u (4.1)

and for each i ∈ {1 . . . N} suppose the function φi satisfies the system

φ̃i = −Qp,li(Tiv,Tiṽ,T
2
i v, ṽ)

Qp,li(Tiv,Tiṽ, v,T2
i ṽ)

φi, φ̂i = −Qq,li(Tiv,Tiv̂,T
2
i v, v̂)

Qq,li(Tiv,Tiv̂, v,T2
i v̂)

φi, (4.2a)

Tjφi = −
Qlj ,li(Tiv,TiTjv,T

2
i v,Tjv)

Qlj ,li(Tiv,TiTjv, v,T2
i Tjv)

φi, j ∈ {1 . . . N}. (4.2b)

Then the linear difference operators B1 . . .BN defined as

Bi := 1− φiT
2
i , i ∈ {1 . . . N}, (4.3)

commute amongst each other, and the function u(N) defined in terms of these
operators by the expression

u(N) :=

[∏N
i=1 Bi

]
v[∏N

i=1 Bi

]
1
, (4.4)

is a solution of (2.5) related to u by the composition of N Bäcklund transforma-
tions with Bäcklund parameters l1 . . . lN .
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Proof. Let us begin by supposing ηi satisfies (3.4) for each i ∈ {1 . . . N}. Then
according to Lemma 2 the function ui defined by (3.3) satisfies u li∼ ui. In other
words the following is true when we take i = 0:

u1...ij =
[T−1

j − η1...ijTj ]u1...i

1− η1...ij
⇒ u1...i

lj∼ u1...ij , j ∈ {1 . . . N}. (4.5)

Now, using Lemma 4, if we define the functions η1...ij recursively by the expres-
sion

η1...ij =
1− Tjη1...i

1− T−1
j η1...i

T−1
i η1...(i−1)j , i, j ∈ {1 . . . N}, (4.6)

then (4.5) is true for any i = κ ∈ {1 . . . N} as a consequence of it being true
when i = κ− 1.

The recurrence (4.6) is not difficult to solve. Let us exhibit the first few
iterations, writing them in the following way (which requires use of (3.6)) makes
the emerging general formula quite evident:

η1j =
Tj [T−1

1 −η1T1]1
T−1

j [T−1
1 −η1T1]1

T−1
1 ηj ,

η12j =
Tj [T−1

2 −(T−1
1 η2)T2][T−1

1 −η1T1]1
T−1

j [T−1
2 −(T−1

1 η2)T2][T−1
1 −η1T1]1

T−1
1 T−1

2 ηj ,

η123j =
Tj [T−1

3 −(T−1
1 T−1

2 η3)T3][T−1
2 −(T−1

1 η2)T2][T−1
1 −η1T1]1

T−1
j [T−1

3 −(T−1
1 T−1

2 η3)T3][T−1
2 −(T−1

1 η2)T2][T−1
1 −η1T1]1

T−1
1 T−1

2 T−1
3 ηj .

To write the ith term in this sequence we introduce linear difference operators

Ai :=
ix1∏

j

[
T−1

j −
([∏j−1

k=1 T−1
k

]
ηj

)
Tj

]
, i ∈ {1 . . . N}, (4.7)

in terms of which
η1...ij =

TjAi 1
T−1

j Ai 1

[∏i
k=1 T−1

k

]
ηj . (4.8)

This can be verified as the solution of (4.6) directly by substitution.
We now reconstruct the solutions using the equation on the left of (4.5), in

fact it is sufficient to assume i and j are consecutive, so we need only consider
the recurrence

u1...i =
[T−1

i − η1...iTi]u1...(i−1)

1− η1...i
, i ∈ {1 . . . N}. (4.9)

The solution is simply

u1...i =
Aiu

Ai1
, i ∈ {1 . . . N} (4.10)

which, bearing in mind (4.8), can be easily verified by substitution. Thus we
have found an expression for solutions u1...i which satisfy the desired Bäcklund
relations u1...(i−1)

li∼ u1...i, i ∈ {1 . . . N}.
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Now, we began the proof by assuming that, for each i ∈ {1 . . . N}, ηi satisfied
(3.4). Actually if we make the association

ηi =
[∏N

j=1,j 6=i Tj

]
φi, (4.11)

then direct substitution shows that (3.4) is just a consequence of (4.2) and (4.1)
which occurred in the hypotheses of the theorem. Using the association (4.11)
it is straightforward to see that

AN =
[∏N

i=1 Bi

][∏N
i=1 T−1

i

]
. (4.12)

The commutativity of the operators B1 . . .BN , which enables us to remove the
ordering of their product in (4.12), follows from the identity

φi(T2
iφj) = φj(T2

jφi), (4.13)

which is just (3.6) expressed in the shifted variables through (4.11). From (4.12)
and (4.1) it is clear that u(N) in (4.4) is simply u1...N in (4.10) expressed in the
shifted variables, which completes the proof. ut

We conclude this section with a few remarks. The functions φ1 . . . φN arise
in the commuting operators defined in (4.3) making it natural to adopt these
variables in preference to η1 . . . ηN . The function v in (4.1) is one of 2N particular
solutions of the iterative Bäcklund scheme which are provided by the covariant
extension. The others are manifest in (4.4) when the functions φ1 . . . φN are
taken to be the trivial solutions of (4.2), namely constant at 0 or ∞, implying
u(N) ∈ {[T−1

1 · · ·T−1
N ]u = v, [T1T

−1
2 · · ·T−1

N ]u, . . . , [T1 · · ·TN ]u}.
Note that the function u(N) in (4.4) lies on an (N + 2)-dimensional lattice,

the desired N -soliton-type solution as a function of n and m alone is realised
by discarding the covariant extension, i.e., by evaluation at the origin in the
additional lattice directions associated with the shifts T1 . . .TN .

For the examples, as will be seen in the following two sections, it is useful to
introduce the function

f :=
[∏N

i=1 Bi

]
1, (4.14)

which appears in the denominator of the N -soliton formula (4.4). The operator
present here has the expansion

N∏
i=1

Bi = 1−
N∑

i=1

φiT
2
i +

N∑
i=1

N∑
j=i+1

φi(T2
iφj)T2

i T
2
j

−
N∑

i=1

N∑
j=i+1

N∑
k=j+1

φi(T2
iφj)(T2

i T
2
jφk)T2

i T
2
jT

2
k + . . . , (4.15)

so the function f is reminiscent of the one introduced by Hirota [1,2]. Addition-
ally, we observe that the function f can be expressed in a factorised form

f = (1− φ1...N )(1− φ1...N−1) · · · (1− φ12)(1− φ1) (4.16)
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through functions φ1...i, which, for each i ∈ {1 . . . N}, are related to η1...i present
in the proof (4.8) by the relation φ1...i =

[∏N
j=i+1 T−1

j

]
η1...i. Or in terms of the

shifted variables alone

φ1...i =

[
T2

i

∏i−1
j=1 Bj

]
1[∏i−1

j=1 Bj

]
1

φi = 1−
[∏i

j=1 Bj

]
1[∏i−1

j=1 Bj

]
1
, i ∈ {1 . . . N}. (4.17)

5. An explicit N-soliton solution of A1

In this section we provide an illustrative example of the main theorem, in par-
ticular the N -soliton formula (4.4). The solution we consider was (up to a gauge
transformation) discovered previously by other methods in [5].

Consider the expression

Qp,q(u, ũ, û, ˆ̃u) :=
(u+ û)(ũ+ ˆ̃u)

p2 − a2
− (u+ ũ)(û+ ˆ̃u)

q2 − a2
+

δ2a4(p2 − q2)
(p2−a2)2(q2−a2)2

(5.1)

where a ∈ C \ {0} and δ ∈ C are arbitrary constants. This is a polynomial of
the form (2.1); direct calculation will verify that it satisfies all of the properties
listed in Section 2. The equation defined by (5.1) is equivalent to A1 in [6],
the only difference being a point transformation of the lattice parameters p →
a2/(p2 − a2), q → a2/(q2 − a2), which is useful for discussing solutions [5].

The equation defined by (5.1) has an elementary solution, u, of the form

u = Aψ +B/ψ, (5.2)

where

ψ = ψ(n,m) :=
(
a+ p

a− p

)n (
a+ q

a− q

)m

(5.3)

and A,B ∈ C are constants subject to the constraint

AB = (δ/4)2 . (5.4)

We will take u in (5.2) as a seed solution to start the Bäcklund chain. This
solution admits a natural covariant extension; observe that

ψ̃ =
a+ p

a− p
ψ, ψ̂ =

a+ q

a− q
ψ, (5.5)

and consider complementing these with the compatible equations

Tiψ =
a+ li
a− li

ψ, i ∈ {1 . . . N}, (5.6)

in which we have introduced new parameters l1 . . . lN ∈ C \ {−a, a}. The equa-
tions (5.6) extend ψ to the (N + 2)-dimensional lattice (note that the function
appearing in (5.3) should now be interpreted as the evaluation of ψ at the origin
of the extra directions). Of course the solution u defined in terms of ψ by (5.2)
also inhabits the (N + 2)-dimensional lattice, and it is straightforward to see
it satisfies the additional system of equations (3.1). Thus, for the quadrilateral
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lattice equation defined by the polynomial (5.1), we have given a solution (5.2)
and its natural covariant extension through (5.6).

We are interested in the result of N applications of the Bäcklund transfor-
mation to the seed solution u. To apply the N -soliton formula (4.4) we should
construct from u the related solution v and the functions φ1 . . . φN . The solution
v is given in terms of u by (4.1). With u as in (5.2) we use (5.6) to find

v =
[∏N

i=1 T−1
i

]
u = A′ψ +B′/ψ (5.7)

where the new constants A′ and B′ are related to A and B by the equations

A′ = A

N∏
i=1

a− li
a+ li

, B′ = B

N∏
i=1

a+ li
a− li

, (5.8)

but satisfy the same constraint (5.4). So u and v are the same up to a change in
the value of some constants present in the solution. The other ingredient present
in the N -soliton formula (4.4) is the set of functions φ1 . . . φN , these are defined
in terms of v by the system (4.2) for each i ∈ {1 . . . N}. Direct substitution of
(5.1) and (5.7) into (4.2) followed by the use of A′B′ = (δ/4)2, (5.5) and (5.6)
yields the following system for each φi,

φ̃i =
p− li
p+ li

φi, φ̂i =
q − li
q + li

φi, (5.9a)

Tjφi =
lj − li
lj + li

φi, j ∈ {1 . . . N}. (5.9b)

Integrating the equations (5.9a) we can write

φi = φi(n,m) = φi,0

(
p− li
p+ li

)n (
q − li
q + li

)m

, i ∈ {1 . . . N}, (5.10)

where φ1,0 . . . φN,0 are independent of n and m.
So we have constructed the solution v and functions φ1 . . . φN present in the

N -soliton formula (4.4). We proceed by using (5.6) and (5.9b) to write (4.4)
in terms of un-shifted functions ψ and φ1 . . . φN ; first consider the function f
defined in (4.14) which appears in the denominator of (4.4), we find

f = f(φ1, . . . , φN ) = 1−
N∑

i=1

φi +
N∑

i=1

N∑
j=i+1

φiφjX
2
ij

−
N∑

i=1

N∑
j=i+1

N∑
k=j+1

φiφjφkX
2
ijX

2
ikX

2
jk + . . .+ (−1)N

N∏
i=1

(
φi

N∏
j=i+1

X2
ij

)
, (5.11)

where
Xij :=

lj − li
lj + li

= −Xji (5.12)

are constants such that Tjφi = Xijφi. A similar consideration of the numerator
in (4.4) yields, after collecting terms in ψ and 1/ψ,

u(N) = A′ψ
f−

f
+ (B′/ψ)

f+

f
, (5.13)
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where we have introduced the functions f± which are defined in terms of f in
(5.11) by the equations

f± = f±(φ1, . . . , φN ) = f(x±2
1 φ1, . . . , x

±2
N φN ), xi =

a− li
a+ li

, i ∈ {1 . . . N}.
(5.14)

So, through the functions f , f+ and f− given in (5.11) and (5.14), u(N) given in
(5.13) is a rational expression in the un-shifted functions ψ and φ1 . . . φN . Taking
these functions as in (5.3) and (5.10) respectively, (5.13) thus gives the solution
as a function of n and m alone. This is the N -soliton solution which results from
N applications of the Bäcklund transformation to the seed solution u given in
(5.2). It is worth observing that for (5.13) to be a true N -soliton solution, i.e.,
one containing N constants of integration, it is necessary that li 6= 0 for all
i ∈ {1 . . . N} and that li 6= ±lj for all distinct i, j ∈ {1 . . . N} (these conditions
are in addition to the one already mentioned, li 6∈ {−a, a} for all i ∈ {1 . . . N},
which was required for the covariant extension).

Arranging the solution as we have done in (5.13) is suggestive of further struc-
ture behind this expression. This further structure has a natural interpretation
in the contexts of the Cauchy-matrix approach described in [5] (where this so-
lution was first given) and the Casorati approach [8,9]. To finish this section we
describe how this structure should be interpreted in relation to the approach in-
troduced in Sections 3 and 4. The main idea is to extend the functions φ1 . . . φN

into one further special lattice direction. This direction is associated with lattice-
parameter a and we denote shifts in this direction by Ta,

Taφi =
a− li
a+ li

φi, i ∈ {1 . . . N}, (5.15)

which inspecting (5.14) enables us to write f± = T±2
a f . (Note that to be consis-

tent ψ should take values in {0,∞} away from the origin in this special direction,
but this won’t play a role in the present construction.) The form of the solution
(5.13) then motivates the introduction of a new linear difference operator

X := A′ψT−2
a + (B′/ψ)T2

a (5.16)

for which the following facts can be verified

X1 = v, [Bi,X] = 0, i ∈ {1 . . . N}. (5.17)

The first is clear from the definition (5.16) whilst bearing in mind (5.7), the
second follows from (5.16) and the definition of the operators B1 . . .BN in (4.4)
because

ψ(T−2
a φi) = φi(T2

iψ), (1/ψ)(T2
aφi) = φi(1/T2

iψ), i ∈ {1 . . . N}, (5.18)

which are immediate from (5.15) and (5.6). Now, using the properties (5.17) in
(4.4) and the definition (4.14) we find

u(N) =
Xf

f
. (5.19)

Thus, for this example, have uncovered the presence of an operator X defined in
(5.16) which, due to the properties (5.17), enables the N -soliton formula (4.4)
to be written in the simplified form (5.19).
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6. An explicit N-soliton solution of Q4

We now use the N -soliton formula (4.4) to give an explicit N -soliton solution
for the equation listed as Q4 in [6]. The construction of a seed solution for Q4
is itself an interesting problem which was solved previously in [4], where the
ensuing one-soliton solution was also given. The full N -soliton solution which
results from this seed solution is given here for the first time.

6.1. The equation Q4. We consider Q4 in the Jacobi form [20], which is related
by a change of variables to the Weierstrass form given originally by Adler [10]
(and expressed more concisely in [11]). It may be defined in terms of the poly-
nomial

Qp,q(u, ũ, û, ˆ̃u) := p(uũ+ûˆ̃u)−q(uû+ũˆ̃u)−pQ− qP

1− p2q2

(
uˆ̃u+ ũû− pq(1 + uũûˆ̃u)

)
.

(6.1)
In Section 2 we did not specify the set from which the lattice parameters were
taken, here p = (p, P ) and q = (q,Q) are points on an elliptic curve, p, q ∈ Γ,

Γ = Γ(k) :=
{
(x,X) |X2 = 1 + x4 − (k + 1/k)x2

}
, (6.2)

where k ∈ C \ {−1, 0, 1}, the Jacobi elliptic modulus, is a fixed constant. The
properties listed in Section 2 may all be verified directly for the polynomial (6.1).

In our consideration of solutions for Q4 a central role will be played by the
natural product that turns Γ into an abelian group. We recall some facts and
establish some notation regarding this here. To start with let us write the rational
representation of the group product:

p · q =
(
pQ+ qP

1− p2q2
,
Pp(q4 − 1)−Qq(p4 − 1)

(1− p2q2)(qP − pQ)

)
, (6.3)

and note the group identity is the point e = (0, 1) and the inverse of a point p
is p−1 = (−p, P ). This group structure on Γ is naturally parameterised through
the Jacobi elliptic functions by introducing the mapping

f : z 7→
(√

k sn(z; k), cn(z; k)dn(z; k)
)
. (6.4)

By convention (see for example Chapter 5 of [21]) the primitive periods of the
function z 7→ sn(z; k) are denoted 4K and 2iK ′ (here i denotes the imaginary
unit). The mapping f defined in (6.4) is a bijection from the fundamental paral-
lelogram in C with vertices 0, 4K, 2iK ′ and 4K + 2iK ′ to the curve Γ, it brings
the group product (6.3) down to addition on the torus, f(y) · f(z) = f(y + z).

Because the group is abelian, the subset of Γ defined as Λ := {p ∈ Γ | p2 = e}
is also a subgroup. Explicitly

Λ =
{
(0, 1), (0,−1),

(
1/ε,−1/ε2

)
ε→0

,
(
−1/ε, 1/ε2

)
ε→0

}
, (6.5a)

f−1(Λ) = {0, 2K, iK ′, 2K + iK ′} . (6.5b)

In what follows a technical, but important role will be played by this subgroup.
One reason for this is that if p ∈ Λ, q ∈ Λ or p · q−1 ∈ Λ, then the polynomial
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(6.1) is reducible (in the projective sense, i.e., the leading order term of the
polynomial is reducible when the unbounded points are considered). In partic-
ular this means that the Bäcklund transformation of the equation defined by
(6.1), with Bäcklund parameter chosen from Λ (6.5), reduces to one of the point
symmetries

{u→ u, u→ −u, u→ 1/u, u→ −1/u} . (6.6)

Although its role here is not essential, the three-leg form of Q4, which was
established in [6] and given for the Jacobi variables in [23], will be useful. Intro-
ducing the uniformizing variables α, β and ξ by writing p = f(α), q = f(β) and
u =

√
k sn(ξ), we have the following identity

Qp,q(u, ũ, û, ˆ̃u) =
k3
√
k sn(ξ; k)sn(α; k)sn(β; k)sn(α− β; k)

1− γ
×(

[sn(ξ + α; k)− sn(ξ̃; k)][sn(ξ − β; k)− sn(ξ̂; k)][sn(ξ − α+ β; k)− sn( ˆ̃ξ; k)]γ

−[sn(ξ − α; k)− sn(ξ̃; k)][sn(ξ + β; k)− sn(ξ̂; k)][sn(ξ + α− β; k)− sn( ˆ̃ξ; k)]
)
,

(6.7)

in which we have introduced γ given by

γ =
1− k2sn(α; k)sn(β; k)sn(ξ; k)sn(ξ + α− β; k)
1− k2sn(α; k)sn(β; k)sn(ξ; k)sn(ξ − α+ β; k)

,

=
Θ(ξ + α; k)Θ(ξ − β; k)Θ(ξ − α+ β; k)
Θ(ξ − α; k)Θ(ξ + β; k)Θ(ξ + α− β; k)

.

(6.8)

The second way of writing γ in (6.8) which involves the Jacobi Θ function (see
appendix) leads to the three-leg form, the equality between the two expressions
for γ is an elliptic function identity ((A.5) in the appendix). Assuming the first
expression for γ in (6.8) the identity (6.7) may be verified using only the addition
formula encoded in (6.3).

6.2. Construction of the solution v. The solution for Q4 given in [4] was found as
a ‘fixed-point’ [18,19] or ‘1-cycle’ [17] of the Bäcklund transformation. That is, a
solution which is related to itself, v t∼ v for some freely chosen Bäcklund parame-
ter t = (t, T ) ∈ Γ\Λ. In Definition 2 we introduced the extended Bäcklund trans-
formation. However for the moment we adhere to [4] and use the un-extended
version, so that the defining equations for v are

Qp,t(v, ṽ, v, ṽ) = 0, Qp,t(v, v̂, v, v̂) = 0. (6.9)

These are compatible symmetric biquadratic correspondences, their solution is in
terms of shifts on an elliptic curve which, whilst being again of Jacobi type, has
an elliptic modulus different than the modulus k associated with the equation.
Thus, in order to write the solution of (6.9) we need to introduce a second elliptic
modulus, k∗, associated with the solution, v. The new modulus is defined in terms
of the free parameter t by the relation

k∗ +
1
k∗

= 2
1− T

t2
. (6.10)
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In addition to the new modulus we also define a new mapping

f∗ : z 7→
(√

k∗ sn(z; k∗), cn(z; k∗)dn(z; k∗)
)
, (6.11)

which is a bijection from the fundamental parallelogram in C with vertices 0,
4K∗, 2iK ′

∗, and 4K∗ + 2iK ′
∗, to the new elliptic curve Γ∗ = Γ(k∗). Note that

in (6.3) we gave the rational representation of the group product on Γ indepen-
dently of the modulus k, so the product on Γ∗ has the same rational represen-
tation, and of course f∗(y) · f∗(z) = f∗(y + z).

Now, in order to write the solution of (6.9) explicitly, we also need to introduce
a relation between Γ and Γ∗. Specifically

δ :=
{

((p, P ) , (p∗, P∗)) ∈ Γ× Γ∗
∣∣∣ p2

∗ = p
pT − tP

1− p2t2
, P∗ =

1
t

(
p− pT − tP

1− p2t2

)}
.

(6.12)
The relation δ does not establish a bijection between the two curves, in fact a
generic point on one curve is related to two points on the other.3 In order to
write down the solution of (6.9) we introduce two points in Γ∗,

p∗ = (p∗, P∗) = f∗(α∗), q∗ = (q∗, Q∗) = f∗(β∗) (6.13)

which are defined in terms of the lattice parameters p and q through δ,

(p, p∗), (q, q∗) ∈ δ. (6.14)

The solution v is then given by

v =
√
k∗ sn(ξ∗; k∗), ξ∗ = ξ∗0 + nα∗ +mβ∗, (6.15)

where ξ∗0 is an arbitrary constant.
That the function v in (6.15) satisfies (6.9) was demonstrated in [4]. Here our

main concern is that this function satisfies Qp,q(v, ṽ, v̂, ˆ̃v) = 0, i.e., is a solution
of the equation defined by (6.1). This can actually be verified quite easily by
first checking the following identity:

Qp,q(u, ũ, û, ˆ̃u) =
1
2

( p
p∗
− q

q∗

)
Qp∗,q−1

∗
(u, ũ, û, ˆ̃u) +

1
2

( p
p∗

+
q

q∗

)
Qp∗,q∗(u, ũ, û, ˆ̃u),

(6.16)
which holds on any function u = u(n,m), relying only on (6.14). It turns out
that each term in (6.16) vanishes on the function v given in (6.15). This can be
seen by using (6.7), where the substitution (u, p, q) → (v, p∗, q±1

∗ ) leads to the
identifications (k, α, β, ξ) → (k∗, α∗,±β∗, ξ∗), whilst from (6.15) ξ̃∗ = ξ∗+α∗ and
so on. (The function v is the ‘non-germinating seed’ [4] or ‘singular’ [7] solution
of the equations Qp∗,q±1

∗
(u, ũ, û, ˆ̃u) = 0.)

To finish this subsection we give the covariant extension of the solution v,
which is necessary in order to apply the N -soliton formula (4.4). This is very
natural because v was constructed as a 1-cycle of the Bäcklund transformation,

3 Consideration of the definition (6.12) reveals that (p, p∗) ∈ δ ⇔ (t · p−1, p∗) ∈ δ ⇔
(p, p−1

∗ ) ∈ δ, therefore δ establishes a bijection between the sets {{p, p−1 · t} | p ∈ Γ} and

{{p∗, p−1
∗ } | p∗ ∈ Γ∗}. The group structure on Γ∗ turns the latter set here into an abelian

2-group [22], so δ endows the former set with this structure as well.
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in fact a covariantly extended solution emerges if we construct the 1-cycle of the
extended Bäcklund transformation (3.2). This amounts to complementing the
system (6.9) with the equations

Qli,t(v,Tiv, v,Tiv) = 0, i ∈ {1 . . . N}, (6.17)

where we have introduced the Bäcklund parameters li = (li, Li) ∈ Γ, i ∈
{1 . . . N} and the shifts T1 . . .TN . The function v in (6.15) may be extended to
solve the system (6.17) explicitly by introducing the points l∗i = (l∗i , L

∗
i ) = f∗(λ∗i ),

i ∈ {1 . . . N} such that

(li, l∗i ) ∈ δ, i ∈ {1 . . . N}, (6.18)

and complementing (6.15) with the (evidently compatible) equations

Tiξ∗ = ξ∗ + λ∗i , i ∈ {1 . . . N}. (6.19)

6.3. Integration of the equations for φ1 . . . φN . In the previous subsection we
have recalled from [4] an explicit solution, v in (6.15), for the equation Q4, and
given its natural covariant extension through (6.19). To apply the main theorem
in Section 4 it remains to give the functions φ1 . . . φN which we construct from
v by integration of the equations (4.2). It turns out that with Q as in (6.1) and
v as in (6.15), the system (4.2) for φi may be reduced by the substitution

φi =
Θ(ξ∗ + 2λ∗i ; k∗)

Θ(ξ∗; k∗)
ρi (6.20)

to the following autonomous system for the new variable ρi
4:

ρ̃i =
(
p∗li − pl∗i
p∗li + pl∗i

)
Θ(λ∗i − α∗; k∗)
Θ(λ∗i + α∗; k∗)

ρi, ρ̂i =
(
q∗li − ql∗i
q∗li + ql∗i

)
Θ(λ∗i − β∗; k∗)
Θ(λ∗i + β∗; k∗)

ρi,

(6.21a)

Tjρi =
(
l∗j li − lj l

∗
i

l∗j li + lj l∗i

)
Θ(λ∗i − λ∗j ; k∗)
Θ(λ∗i + λ∗j ; k∗)

ρi, j ∈ {1 . . . N}. (6.21b)

We can integrate the equations (6.21a), so that

ρi = ρi,0

((
p∗li − pl∗i
p∗li + pl∗i

)
Θ(λ∗i − α∗; k∗)
Θ(λ∗i + α∗; k∗)

)n((
q∗li − ql∗i
q∗li + ql∗i

)
Θ(λ∗i − β∗; k∗)
Θ(λ∗i + β∗; k∗)

)m

(6.22)
for i ∈ {1 . . . N}, where ρ1,0 . . . ρN,0 are independent of n and m. Thus for each
i ∈ {1 . . . N} the function φi is given by (6.20) in terms of ξ∗ (6.15), (6.19) and
the new function ρi (6.22), (6.21b).

It remains to satisfy the reader that the substitution (6.20) reduces the system
(4.2) to the autonomous system (6.21). Let us focus on the first equation of
(4.2a), the other equations present in (4.2) are similar. We begin by using the

4 The ρ variable introduced here is different from the one defined in [4].
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identity (6.16) which leads to the following reformulation of the first equation in
(4.2a)

φ̃i = −Qp,li(Tiv,Tiṽ,T
2
i v, ṽ)

Qp,li(Tiv,Tiṽ, v,T2
i ṽ)

φi

=
(
p∗li − pl∗i
p∗li + pl∗i

) Qp∗,l∗i
−1(Tiv,Tiṽ,T

2
i v, ṽ)

Qp∗,l∗i
(Tiv,Tiṽ, v,T2

i ṽ)
φi.

(6.23)

That Qp∗,l∗i
(Tiv,Tiṽ,T

2
i v, ṽ) = 0 and Qp∗,l∗i

−1(Tiv,Tiṽ, v,T
2
i ṽ) = 0 has also

been exploited here, these are verifiable using the expansion (6.7). We then
propose the following string of equalities

Qp∗,l∗i
−1(Tiv,Tiṽ,T

2
i v, ṽ)

Qp∗,l∗i
(Tiv,Tiṽ, v,T2

i ṽ)

=
1− k2

∗sn(λ∗i ; k∗)sn(λ∗i + α∗; k∗)sn(ξ∗ + λ∗i ; k∗)sn(ξ∗ + α∗ + λ∗i ; k∗)
1− k2

∗sn(λ∗i ; k∗)sn(λ∗i − α∗; k∗)sn(ξ∗ + λ∗i ; k∗)sn(ξ∗ + α∗ + λ∗i ; k∗)
,

=
Θ(λ∗i − α∗; k∗)Θ(ξ∗ + 2λ∗i + α∗; k∗)Θ(ξ∗; k∗)
Θ(λ∗i + α∗; k∗)Θ(ξ∗ + α∗; k∗)Θ(ξ∗ + 2λ∗i ; k∗)

,

=
Θ(λ∗i − α∗; k∗)Θ(ξ̃∗ + 2λ∗i ; k∗)Θ(ξ∗; k∗)
Θ(λ∗i + α∗; k∗)Θ(ξ̃∗; k∗)Θ(ξ∗ + 2λ∗i ; k∗)

.

(6.24)

The first equality here can be verified using (6.7) (modulo some manipulation).
The second follows from the first by an addition formula ((A.5) listed in the
appendix). The third equality is immediate from the second because ξ̃∗ = ξ∗+α∗
by (6.15). Finally, combining (6.24) with (6.23) motivates the substitution (6.20)
and clearly results in the first equation of (6.21a).

6.4. The N -soliton solution. In Sections 6.2 and 6.3 we have given the ingredi-
ents for the N -soliton formula (4.4), that is a solution v, its covariant extension,
and the functions φ1 . . . φN . To write down the N -soliton solution constructed
from these ingredients we consider first the function f defined in (4.14) which
appears in the denominator of (4.4). Substituting (6.20) and (6.15) into (4.14)
whilst bearing in mind the expansion (4.15), and subsequently using (6.21b) and
(6.19) to write the result in terms of the un-shifted functions ξ∗ and ρ1 . . . ρN ,
we find

f = 1−
N∑

i=1

Θ(ξ∗ + 2λ∗i ; k∗)
Θ(ξ∗; k∗)

ρi +
N∑

i=1

N∑
j=i+1

Θ(ξ∗ + 2λ∗i + 2λ∗j ; k∗)
Θ(ξ∗; k∗)

ρiρjX
2
ij

−
N∑

i=1

N∑
j=i+1

N∑
κ=j+1

Θ(ξ∗ + 2λ∗i + 2λ∗j + 2λ∗κ; k∗)
Θ(ξ∗; k∗)

ρiρjρκX
2
ijX

2
iκX

2
jκ + . . . , (6.25)

where we have introduced the constants

Xij :=
(
l∗j li − lj l

∗
i

l∗j li + lj l∗i

)
Θ(λ∗i − λ∗j ; k∗)
Θ(λ∗i + λ∗j ; k∗)

=
(
l∗i l

∗
j − lilj

l∗i l
∗
j + lilj

)
H(λ∗i − λ∗j ; k∗)
H(λ∗i + λ∗j ; k∗)

(6.26)
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for each i, j ∈ {1 . . . N}. These constants appear because Tjρi = Xijρi as can
be seen by comparing (6.26) and (6.21b). The equality between the alternative
forms we have given for Xij in (6.26) can be verified using (A.2) together with
the addition formula encoded in (6.3) and the relations (6.18). A similar consid-
eration of the numerator in the N -soliton formula (4.4), whilst bearing in mind
(A.2), makes it natural to introduce a new function g,

g = 1−
N∑

i=1

H(ξ∗ + 2λ∗i ; k∗)
H(ξ∗; k∗)

ρi +
N∑

i=1

N∑
j=i+1

H(ξ∗ + 2λ∗i + 2λ∗j ; k∗)
H(ξ∗; k∗)

ρiρjX
2
ij

−
N∑

i=1

N∑
j=i+1

N∑
κ=j+1

H(ξ∗ + 2λ∗i + 2λ∗j + 2λ∗κ; k∗)
H(ξ∗; k∗)

ρiρjρκX
2
ijX

2
iκX

2
jκ + . . . . (6.27)

The N -soliton solution for the equation defined by (6.1) may then be expressed
as

u(N) = v
g

f
(6.28)

with v, f and g as in (6.15), (6.25) and (6.27), explicitly for N ∈ {0, 1, 2} this is

u(0) =
H(ξ∗; k∗)
Θ(ξ∗; k∗)

, u(1) =
H(ξ∗; k∗)−H(ξ∗+2λ∗1; k∗)ρ1

Θ(ξ∗; k∗)−Θ(ξ∗+2λ∗1; k∗)ρ1
, u(2) =

H(ξ∗; k∗)−H(ξ∗+2λ∗1; k∗)ρ1−H(ξ∗+2λ∗2; k∗)ρ2+H(ξ∗+2λ∗1+2λ∗2; k∗)ρ1ρ2X
2
12

Θ(ξ∗; k∗)−Θ(ξ∗+2λ∗1; k∗)ρ1−Θ(ξ∗+2λ∗2; k∗)ρ2+Θ(ξ∗+2λ∗1+2λ∗2; k∗)ρ1ρ2X2
12

.

The functions ξ∗ and ρ1 . . . ρN appearing in the solution are given in (6.15) and
(6.22). The modulus k and the constants p = (p, P ) and q = (q,Q) taken from
Γ = Γ(k) defined in (6.2) are fixed (they appear in the equation), whereas the
constants t = (t, T ) ∈ Γ \ Λ and li = (li, Li) = f(λi) ∈ Γ, ρi,0 ∈ C ∪ {∞} for
i ∈ {1 . . . N} may all be chosen freely. The modulus k∗ is determined from t
by (6.10), whilst the parameters p∗ = (p∗, P∗) = f∗(α∗), q∗ = (q∗, Q∗) = f∗(β∗)
and l∗i = (l∗i , L

∗
i ) = f∗(λ∗i ) for i ∈ {1 . . . N} which lie in Γ∗ = Γ(k∗) are all

determined from their counterparts in Γ by the relation δ defined in (6.12),
(p, p∗), (q, q∗), (l1, l∗1) . . . (lN , l

∗
N ) ∈ δ.

To ensure that the N -soliton solution (6.28) has distinct functional depen-
dence on each of the N constants of integration ρ1,0 . . . ρN,0 appearing in (6.22),
and so constitutes a true N -soliton solution, we should take some care in how
we choose the parameters l1 . . . lN . First of all we should choose l1 . . . lN ∈
Γ \ (Λ ∪Λ · t), this restriction ensures that, for each i ∈ {1 . . . N}, the Bäcklund
equations associated with parameter li are not reducible, and also that the covari-
ant extension provides two distinct solutions of the Bäcklund equations applied
to the solution v, i.e., Tiv 6= T−1

i v. Furthermore, because we construct higher
soliton solutions by superposition, we should also stipulate that li · l−1

j 6∈ Λ for all
distinct i, j ∈ {1 . . . N}. Let us remark though, that soliton solutions for which
li ∈ Λ · t for some i ∈ {1 . . . N} or li · l−1

j ∈ Λ for some distinct i, j ∈ {1 . . . N},
are constructable by quadrature5, or recoverable from the solution given here by
taking a subtle limit.

5 Although the main results here rely on there being two, a single particular solution is in
fact sufficient to subsequently solve a Riccati equation by quadrature.
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6.5. Special lattice directions. Rather than avoiding them altogether, we will
now make particular use of the elements in Λ. It is quite straightforward to see
that Γ ∩ Γ∗ = Λ, so Λ is a subgroup of both Γ and Γ∗6. It turns out that the
relation δ (6.12) is compatible with this shared subgroup structure on the two
curves, p ∈ Λ ⇒ (p, p) ∈ δ. We will focus on the element e ∈ Λ as well as one
other element which for convenience we denote by l 1

2
,

l 1
2

:=
(
1/ε,−1/ε2

)
ε→0

= f(iK ′) = f∗(iK ′
∗). (6.29)

Note that for a generic point p = (p, P ) ∈ Γ, p · l 1
2

= (1/p,−P/p2). We now
introduce two elements of δ,7

(t, e), (t · l 1
2
, l 1

2
) ∈ δ (6.30)

and to each we associate a new special lattice direction into which we extend ξ∗
and ρ1 . . . ρN , denoting the shifts by T0 and T 1

2
. Specifically (using the properties

listed in the appendix)

T0ξ∗ = ξ∗, T 1
2
ξ∗ = ξ∗ + iK ′

∗,

T0v = v, T 1
2
v = 1/v,

T0ρj = −ρj , T 1
2
ρj = −eiπλ∗j /K∗ρj ,

T0φj = −φj , T 1
2
φj = −

(
sn(ξ∗ + 2λ∗j ; k∗)/sn(ξ∗; k∗)

)
φj ,

(6.31)

for j ∈ {1 . . . N} (again, note that in (6.31) i denotes the imaginary unit). Our
primary interest in these special lattice directions is that they facilitate the
construction of a new operator

X := vT0T 1
2

(6.32)

which has the two properties

X1 = v, [Bj ,X] = 0, j ∈ {1 . . . N}. (6.33)

Using these properties in (4.4) we are able to establish a rather simple relation-
ship between the functions f and g appearing in the N -soliton solution (6.28),
namely

g = T0T 1
2
f, (6.34)

which can also be verified directly using (6.31) and the expressions for f and g
(6.25) and (6.27).

6 This is closely related to a characterisation of the deformation Γ → Γ∗ which was estab-
lished in [24].

7 Actually we could choose the points (e, e), (l 1
2
, l 1

2
) ∈ δ here, which at first seems more

natural, however the subsequent calculations require more effort.
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7. Discussion

We have described a technique which enables solution of the Bäcklund iteration
scheme for a class of integrable lattice equations. To express the solution after
N applications of the Bäcklund transformation we require that the covariant
extension of the initial solution be known. This is a natural concept emerging
from the feature of the lattice equations that lattice and Bäcklund directions are
distinguished only by the difference of a parameter, and therefore the technique
can be said to have a manifestly discrete origin. The relative mildness of the
covariant-extendibility requirement means that this approach usefully separates
two hitherto intertwined aspects of the soliton-type solutions; the choice of seed
solution on the one hand, and the solution of the Bäcklund iteration on the
other.

The N -soliton formula we have discovered holds for all equations listed by
Adler, Bobenko and Suris (ABS) in [6] and is independent of the particular form
of the polynomial defining the equation. It can be said to have Hirota form,
but the technique also introduces some new features, in particular there is a
commuting family of second-order linear difference operators naturally associ-
ated with the solution, and these operators essentially factorise the Hirota-type
polynomial.

An explicit N -soliton solution of the primary model listed in [6], Q4, has been
given as a particular instance of the N -soliton formula. We expect this solution
can be written (and directly verified) in a Cauchy-matrix form generalising re-
sults in [5], in fact an elliptic Cauchy-matrix approach has been developed by
the authors alongside the present work [25]. Direct verification of this solution
through bilinearization and a Casorati determinant form as in [26], which would
generalise results of [9], is also likely to be possible.
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A. Jacobi elliptic and theta functions

In Section 6 the equation considered and its solution are given in terms of the
Jacobi elliptic and theta functions. Definitions of these functions we adhere to
can be found in Chapter 5 of [21]. For the convenience of the reader this appendix
recalls some of the properties of these functions.

By convention the elliptic modulus is denoted by k and the half-periods of
sn(z) = sn(z; k) by 2K and iK ′. Increments in the argument by the half-periods
result in the following behaviour

sn(z + 2K) = −sn(z), sn(z + iK ′) =
1

k sn(z)
. (A.1)

The function sn(z) may be written in terms of the Jacobi theta functions H(z) =
H(z; k) and Θ(z) = Θ(z; k),

√
k sn(z) =

H(z)
Θ(z)

. (A.2)
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In turn these functions satisfy the basic relations

H(z + 2K) = H(−z) = −H(z),
Θ(z + 2K) = Θ(−z) = Θ(z),

H(z + iK ′) = ie−iπ(2z+iK′)/4KΘ(z),

Θ(z + iK ′) = ie−iπ(2z+iK′)/4KH(z),

(A.3)

where i is the imaginary unit. We also note the important addition formula

H(x+ y)H(x− y)H(z + w)H(z − w)
+H(x+ z)H(x− z)H(w + y)H(w − y)
+H(x+ w)H(x− w)H(y + z)H(y − z) = 0,

(A.4)

from which others can be derived. One identity in particular is used in the text:

1− k2sn(a)sn(b)sn(c)sn(c+ a− b)
1− k2sn(a)sn(b)sn(c)sn(c− a+ b)

=
Θ(c+ a)Θ(c− b)Θ(c− a+ b)
Θ(c− a)Θ(c+ b)Θ(c+ a− b)

. (A.5)

To derive (A.5) we choose

w = c− (a− b)/2, x = c+ (a− b)/2,
y = (b− a)/2, z = (a+ b)/2 + iK ′

and
w = c− (a− b)/2 + iK ′, x = c+ (a− b)/2 + iK ′,
y = (b− a)/2, z = (a+ b)/2

in (A.4), leading respectively to

Θ(c+ a)Θ(c− b)H(c− a+ b)−Θ(c− a)Θ(c+ b)H(c+ a− b)
= H(2c)H(b− a)Θ(a)Θ(b)/H(c) (A.6)

and

Θ(c+ a)Θ(c− b)Θ(c− a+ b)−Θ(c− a)Θ(c+ b)Θ(c+ a− b)
= H(2c)H(b− a)H(a)H(b)/Θ(c), (A.7)

which we have simplified using (A.3). Elimination of H(2c)H(b−a) between (A.6)
and (A.7) followed by the use of H(z) =

√
k sn(z)Θ(z) from (A.2) to remove the

remaining occurrences of H results in (A.5).
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