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Abstract. Let l be a prime number. In the present paper, we
prove that the isomorphism class of an l-monodromically full hy-

perbolic curve of genus zero over a finitely generated extension of
the field of rational numbers is completely determined by the ker-
nel of the natural pro-l outer Galois representation associated to
the hyperbolic curve. This result can be regarded as a genus zero

analogue of a result due to S. Mochizuki which asserts that the iso-
morphism class of an elliptic curve which does not admit complex

multiplication over a number field is completely determined by the
kernels of the natural Galois representations on the various finite
quotients of its Tate module.
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Introduction

Throughout the present paper, let k be a field of characteristic zero,

k an algebraic closure of k, and Gk
def
= Gal(k/k). In the present paper,

we prove that if l is a prime number, then the isomorphism class of
an l-monodromically full hyperbolic curve of genus zero over a finitely
generated extension of the field of rational numbers is completely deter-

mined by the kernel of the associated pro-l outer Galois representation.
In [14], §1, S. Mochizuki proved the following theorem (cf. [14],

Theorem 1.1):

Let (E1, o1 ∈ E1(k)), (E2, o2 ∈ E2(k)) be elliptic curves
over k which do not admit complex multiplication over

k. Suppose that k is a number field — i.e., a finite
extension of the field of rational numbers. Then the
following conditions are equivalent:
(i) (E1, o1) is isomorphic to (E2, o2) over k.
(ii) For i = 1, 2, write T (Ei, oi) for the full Tate module

of (Ei, oi) and

ρ
(n)
(Ei,oi)/k : Gk −→ Aut

(
T (Ei, oi)⊗bZ

(Z/nZ)
)

for the natural Galois representation on T (Ei, oi)⊗bZ

(Z/nZ). Then Ker(ρ
(n)
(E1,o1)/k) = Ker(ρ

(n)
(E2,o2)/k) for

any positive integer n.

In the present paper, we prove a genus zero analogue of the above
result of Mochizuki. The main theorem of the present paper is as
follows (cf. Theorem 6.1):

Theorem A (Galois-theoretic characterization of isomorphism
classes of monodromically full hyperbolic curves of genus zero).
Let l be a prime number; k a finitely generated field of charac-
teristic zero, i.e., a finitely generated extension of the field of ratio-

nal numbers; X1 = (C1, D1 ⊆ C1), X2 = (C2, D2 ⊆ C2) hyperbolic

curves (cf. Definition 1.1, (ii)) of genus zero over k which are l-
monodromically full (cf. Definition 2.2, (i)). Suppose that the fol-

lowing condition (†)prime is satisfied:

(†)prime : There exists a finite Galois extension k′ ⊆ k of

k of extension degree prime to l such that X1⊗k k
′ and

X2 ⊗k k
′ are split (cf. Definition 1.5, (i)).

(For example, if one of the following conditions is satisfied, then the

above condition (†)prime is satisfied:

• X1 and X2 are split.
• If we write ri for the number of the cusps of Xi — i.e., if Xi is of

type (0, ri) — then l is prime to r1! and r2! — or, equivalently,

r1, r2 < l.)
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Then the following conditions are equivalent:

(i) X1 is isomorphic to X2 over k.
(ii) For i = 1, 2, write

ρ
{l}
Xi/k : Gk −→ Out

(
π1((Ci \Di)⊗k k)

(l)
)

for the natural pro-l outer Galois representation associated to

Xi. Then Ker(ρ
{l}
X1/k) = Ker(ρ

{l}
X2/k).

The term “l-monodromically full” is a term introduced in the present
paper, but the corresponding notion was studied by M. Matsumoto and
A. Tamagawa in [11]. It is known (cf. [11], Theorem 1.2, as well as
Corollary 2.6 of the present paper) that many hyperbolic curves are l-
monodromically full. This property of being l-monodromically full may
be regarded as an analogue for hyperbolic curves of the property of
not admitting complex multiplication for elliptic curves. In fact, if a
hyperbolic curve X of type (g, r) over a finitely generated extension
k of the field of rational numbers is l-monodromically full, then the
following hold:

• X has no special symmetry (i.e., roughly speaking, the auto-
morphism group of X over k is isomorphic to the automorphism
group of a general hyperbolic curve of type (g, r) over k — cf.
Definition 3.3, Proposition 3.4).
• X is of {l}-AIJ-type (i.e., roughly speaking, the l-adic Tate

module of the Jacobian variety of the compactification of X is,
as a Galois module, absolutely irreducible — cf. Definition 3.5,
Proposition 3.6).
• X does not have a JCM-component (i.e., roughly speaking,

there is no subabelian variety with complex multiplication over

k of the Jacobian variety of the compactification of X — cf.
Definition 3.7, Proposition 3.8).

In the present paper, as an example, we consider hyperbolic curves

of type (0, 4) and obtain results concerning sufficient conditions for
such a hyperbolic curve to be monodromically full (cf. Theorem 7.8,
Corollaries 7.10, 7.11, 8.2). These results, together with Theorem A,
imply the following result (cf. Corollaries 7.12, 8.3):

Theorem B (Galois-theoretic characterization of isomorphism
classes of certain hyperbolic curves of type (0, 4)). Let k be

a finitely generated field of characteristic zero, i.e., a finitely

generated extension of the field of rational numbers; X1 = (C1, D1 ⊆
C1), X2 = (C2, D2 ⊆ C2) hyperbolic curves (cf. Definition 1.1, (ii))
of type (0, 4) over k. Suppose that one of the following conditions is

satisfied:
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• The field k is a number field, i.e., a finite extension of the field

of rational numbers, and, moreover, if we write ok for the ring of

integers of k, then mX1∩o∗
k

= mX2 ∩o∗
k

= ∅ (cf. Definition 7.9).
• The hyperbolic curves X1 and X2 are not NF-isotrivial (cf.

Definition 8.1).

Then the following conditions are equivalent:

(i) X1 is isomorphic to X2 over k.
(ii) There exists an infinite set Σ of prime numbers such that, for

any l ∈ Σ, if we write

ρ
{l}
Xi/k : Gk −→ Out

(
π1((Ci \Di)⊗k k)

(l)
)

for the natural pro-l outer Galois representation associated to

Xi, then Ker(ρ
{l}
X1/k) = Ker(ρ

{l}
X2/k).

On the other hand, one may also take the point of view that The-
orems A and B serve to highlight the difference between the profinite

and pro-l outer Galois representations associated to a hyperbolic curve.
In [11], Matsumoto and Tamagawa compared the profinite and pro-l
outer Galois representations associated to hyperbolic curves. One re-
sult obtained in [11] which shows the difference between the profinite

and pro-l outer Galois representations is the following:

The image of the profinite outer Galois representation
associated to any hyperbolic curve of type (g, r) over a
number field k has trivial intersection with the image
of the outer profinite geometric universal monodromy
representation of π1(Mg,r ⊗k k) (cf. [11], Theorem 1.1
and [8], Corollary 6.4). On the other hand, there ex-
ist many hyperbolic curves of type (g, r) over number
fields k for which the image of the associated pro-l outer
Galois representation contains the image of the outer
pro-l geometric universal monodromy representation of
π1(Mg,r ⊗k k) (cf. [11], Theorem 1.2).

By Theorems A, B (cf. also Theorem C below), one obtains another
result which highlights the difference between the profinite and pro-l
outer Galois representations:

The kernel of the profinite outer Galois representation
associated to any hyperbolic curve over a number field
is always trivial, namely, the kernel does not depend on

the given hyperbolic curve (cf. [8], Theorem C). On
the other hand, the kernel of the pro-l outer Galois
representation associated to a hyperbolic curve over a
number field depends strongly on the given hyperbolic
curve (cf. Theorems A, B, also Theorem C below).
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Finally, in the Appendix, we prove the following finiteness result,
which is related to the main result of the present paper (cf. Corollary
A.4):

Theorem C (Finiteness of the set of isomorphism classes of
certain hyperbolic curves). Let l be a prime number, k a number
field, i.e., a finite extension of the field of rational numbers, (g, r) a

pair of nonnegative integers such that 2g − 2 + r > 0, and N ⊆ Gk

a normal closed subgroup of Gk. Then there are only finitely many
isomorphism classes over k of hyperbolic curves X of type (g, r) over

k for which the kernel of the natural pro-l outer Galois representation

associated to X coincides with N .

This result follows immediately from various well-known finiteness

theorems in number theory and arithmetic geometry, together with the
criterion of Oda-Tamagawa for good reduction of hyperbolic curves. It
seems to the author that this result is likely to be well-known. Since,
however, this result could not be found in the literature, the author
decided to give a proof of it in the Appendix of the present paper.

The present paper is organized as follows: In §1, we review some gen-
eralities concerning outer monodromy representations arising from hy-
perbolic curves. In §2, we define the notion of a Σ-monodromically full

hyperbolic curve, as well as the related notion of a Σ-monodromically

full point. In §3, we consider the relationship between monodromic
fullness and certain properties of hyperbolic curves. In §4, we con-
sider the moduli stacks of hyperbolic curves of genus zero. In §5, we
prove a Grothendieck conjecture-type lemma for certain images of the
universal monodromy. In §6, we derive Theorem A from the results
obtained in §4 and §5. In §7 and §8, we consider the monodromic
fullness of hyperbolic curves of type (0, 4). In particular, we obtain re-
sults concerning sufficient conditions for such a hyperbolic curve to be
monodromically full and prove Theorem B. In the Appendix, we derive
Theorem C as a consequence of various well-known finiteness theorems

in number theory and arithmetic geometry, together with the criterion
of Oda-Tamagawa for good reduction of hyperbolic curves.
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0. Notations and Conventions

Numbers: A finite extension (respectively, finitely generated exten-
sion) of the field of rational numbers will be referred to as a number

field (respectively, finitely generated field of characteristic zero). If p is
a prime number, then a field which may be embedded as a subfield of a
finitely generated extension of the field of fractions of the ring of Witt
vectors with coefficients in an algebraic closure of the finite field of p
elements will be referred to as a generalized sub-p-adic field (cf. [14],
Definition 4.11).

Topological groups: Let G be a topological group and P a property
for a topological group (e.g., “abelian” or “pro-l” for some prime num-
ber l). Then we shall say that G is almost P if there exists an open
subgroup of G that is P.

If G is a topological group, then we shall write Gab for the abelian-

ization of G, i.e., the quotient of G by the closure of the commutator
subgroup of G.

If G is a topological group, and H ⊆ G is a closed subgroup of G,
then we shall write ZG(H) for the centralizer of H in G, i.e.,

ZG(H)
def
= { g ∈ G | ghg−1 = h for any h ∈ H } ⊆ G ,

Z loc
G (H) for the local centralizer of H in G, i.e.,

Z loc
G (H)

def
= lim−→

H′⊆H

ZG(H ′) ⊆ G

— where H ′ ⊆ H ranges over the open subgroups of H — Z(G)
def
=

ZG(G) for the center of G, and Z loc(G)
def
= Z loc

G (G) for the local center of
G. It is immediate from the various definitions involved that ZG(H) ⊆
Z loc

G (H) and that if H1, H2 ⊆ G are closed subgroups of G such that
H1 ⊆ H2 (respectively, H1 ⊆ H2; H1 ∩ H2 is open in H1 and H2),
then ZG(H2) ⊆ ZG(H1) (respectively, Z loc

G (H2) ⊆ Z loc
G (H1); Z

loc
G (H1) =

Z loc
G (H2)).
We shall say that a topological group G is center-free (respectively,

slim) if Z(G) = {1} (respectively, Z loc(G) = {1}). Note that it follows
from [15], Remark 0.1.3, that a profinite group G is slim if and only if
every open subgroup of G has trivial center.

If G is a profinite group, then we shall denote the group of auto-
morphisms of G by Aut(G) and the group of inner automorphisms of
G by Inn(G) ⊆ Aut(G). Conjugation by elements of G determines a
surjection G � Inn(G). Thus, we have a homomorphism G→ Aut(G)
whose image is Inn(G) ⊆ Aut(G). We shall denote by Out(G) the quo-
tient of Aut(G) by the normal subgroup Inn(G) ⊆ Aut(G) and refer
to an element of Out(G) as an outomorphism of G. In particular, if
G is center-free, then the natural homomorphism G → Inn(G) is an
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isomorphism; thus, we have an exact sequence of groups

1 −→ G −→ Aut(G) −→ Out(G) −→ 1 .

If, moreover, G is topologically finitely generated, then one verifies eas-
ily that the topology of G admits a basis of characteristic open sub-

groups, which thus induces a profinite topology on the groups Aut(G)
and Out(G) with respect to which the above exact sequence deter-
mines an exact sequence of profinite groups. If J is a profinite group,
and ρ : J → Out(G) is a continuous homomorphism, then we shall de-

note by G
out
o J the profinite group obtained by pulling back the above

exact sequence of profinite groups via ρ. Thus, we have a natural exact

sequence of profinite groups

1 −→ G −→ G
out
o J −→ J −→ 1 .

1. Outer monodromy representations

Throughout the present paper, let k be a field of characteristic zero

and k an algebraic closure of k. If k′ ⊆ k is a(n) (possibly infinite)

algebraic extension of k, then we shall write Gk′
def
= Gal(k/k′).

In the present §, we review some generalities concerning outer mon-

odromy representations arising from hyperbolic curves. In the present
§, let (g, r) be a pair of nonnegative integers such that 2g − 2 + r > 0
and Σ a nonempty set of prime numbers.

Definition 1.1. Let S be a scheme.

(i) Let C be a scheme over S and si : S → C a section of the
structure morphism of C — where i = 1, · · · , r. Then we shall
say that (C, (s1, · · · , sr)) is an r-pointed smooth curve of genus

g over S whose marked points are equipped with an ordering if
C is smooth and proper over S, any geometric fiber of C → S
is a (necessarily smooth and proper) connected curve of genus
g, and the image of si does not intersect the image of sj if i 6= j.

(ii) Let C be a scheme over S and D ⊆ C a closed subscheme of C.
Then we shall say that (C,D ⊆ C) is a hyperbolic curve of type

(g, r) over S if C is smooth and proper over S, any geometric
fiber of C → S is a (necessarily smooth and proper) connected
curve of genus g, and the composite D ↪→ C → S is a finite
étale covering over S of degree r.

Definition 1.2.

(i) We shall denote by Mg,r → Spec k the moduli stack (cf. [5],
[10]) of r-pointed smooth curves of genus g over k whose marked

points are equipped with orderings (cf. Definition 1.1, (i)) and
by (Cg,r →Mg,r, (s

M
1 , · · · , sMr )) the universal curve overMg,r.
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(ii) We shall denote by Mg,[r] → Spec k the moduli stack of hyper-

bolic curves of type (g, r) over k (cf. Definition 1.1, (ii)) and by
(Cg,[r] →Mg,[r], D

M
g,[r] ⊆ Cg,[r]) the universal curve over Mg,[r].

It follows from the various definitions involved that we have a com-
mutative diagram

Cg,r \
⋃r

i=1 Im(sMi )
⊆−−−→ Cg,r −−−→ Mg,ry

y
y

Cg,[r] \DM
g,[r]

⊆−−−→ Cg,[r] −−−→ Mg,[r]

such that the two squares in this diagram are cartesian; moreover, as is
well-known, in this commutative diagram, the right-hand vertical arrow
Mg,r → Mg,[r] is a finite étale Galois covering whose Galois group is
isomorphic to the symmetric group on r letters Sr. In particular, we
obtain a commutative diagram

1 1 1y
y

y

1 −−−→ Ng,r −−−→ π1(Cg,r \
⋃r

i=1 Im(sMi )) −−−→ π1(Mg,r) −−−→ 1∥∥∥
y

y

1 −−−→ Ng,r −−−→ π1(Cg,[r] \DM
g,[r]) −−−→ π1(Mg,[r]) −−−→ 1

y
y

y

1 −−−→ 1 −−−→ Sr Sr −−−→ 1y
y

y

1 1 1

— where Ng,r is the kernel of the surjection π1(Cg,r \
⋃r

i=1 Im(sMi )) �

π1(Mg,r), and the vertical and horizontal sequences are exact. (See [20]
for the fundamental groups of stacks.)

Definition 1.3.

(i) We shall write

∆Σ
g,r

for the maximal pro-Σ quotient of the kernel Ng,r of the sur-
jection π1(Cg,r \

⋃r
i=1 Im(sMi )) � π1(Mg,r) (cf. Remark 1.3.1

below).
(ii) We shall write

ρΣ
g,r (respectively, ρΣ

g,[r] ; ρΣ-geom
g,r ; ρΣ-geom

g,[r] )
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for the natural homomorphism determined by the above com-
mutative diagram

π1(Mg,r) −→ Out(∆Σ
g,r)

(respectively, π1(Mg,[r]) −→ Out(∆Σ
g,r) ;

π1(Mg,r ⊗k k) −→ Out(∆Σ
g,r) ;

π1(Mg,[r] ⊗k k) −→ Out(∆Σ
g,r)) .

(iii) Let S be a scheme that is connected and of finite type over k,
and X = (C,D ⊆ C) a hyperbolic curve of type (g, r) over S.
Then the classifying morphism S →Mg,[r] of X determines —

up to π1(Mg,[r] ⊗k k)-inner automorphism — a section sX/S of
the natural exact sequence

1 −→ π1(Mg,[r] ⊗k k) −→ π1(Mg,[r])×Gk
π1(S) −→ π1(S) −→ 1 .

Thus, by considering the composite of sX/S and ρΣ
g,[r], we obtain

a homomorphism

ρΣ
X/S : π1(S) −→ Out(∆Σ

g,r)

which is determined up to Im(ρΣ-geom
g,[r] )-inner automorphism.

Remark 1.3.1. If follows immediately from, for example, [11], Lemma
2.1, that ∆Σ

g,r is naturally isomorphic to the maximal pro-Σ quotient of
the fundamental group of the geometric fiber of the universal curve
Cg,r \

⋃r
i=1 Im(sMi )→Mg,r at a geometric point ofMg,r. In particular,

it follows immediately from, for example, [17], Corollary 1.3.4, that
∆Σ

g,r is slim (cf. the discussion entitled “Topological groups” in §0);
moreover, there exists a natural bijection between the following two
sets:

• The set of the cusps of the geometric fiber of the universal curve
Cg,r \

⋃r
i=1 Im(sMi )→Mg,r at a geometric point ofMg,r.

• The set of the conjugacy classes of the cuspidal inertia sub-
groups of ∆Σ

g,r associated to the cusps of the geometric fiber of

the universal curve Cg,r \
⋃r

i=1 Im(sMi ) → Mg,r at a geometric
point ofMg,r.

Lemma 1.4 (Kernels of the universal outer monodromy rep-
resentations).

(i) The action of π1(Mg,[r]) on the set of the conjugacy classes of

the cuspidal inertia subgroups of ∆Σ
g,r induced by ρΣ

g,[r] factors

through the quotient π1(Mg,[r]) � π1(Mg,[r])/π1(Mg,r) ' Sr,

and the resulting action of Sr on the set of the conjugacy classes

of the cuspidal inertia subgroups of ∆Σ
g,r is faithful.

(ii) The kernel of ρΣ
g,[r] is contained in π1(Mg,r) and coincides

with the kernel of ρΣ
g,r.



10 YUICHIRO HOSHI

Proof. Assertion (i) follows immediately from the various definitions in-
volved, together with Remark 1.3.1. Assertion (ii) follows immediately
from assertion (i), together with Remark 1.3.1. �

Definition 1.5. Let S be a scheme and X = (C,D ⊆ C) a hyperbolic
curve of type (g, r) over S.

(i) We shall say that the hyperbolic curve X is split if the finite
étale covering obtained as the composite D ↪→ C → S (cf.
Definition 1.1, (ii)) is trivial, i.e., D is isomorphic to the disjoint
union of r copies of S over S.

(ii) Let X0 = (C0, D0 ⊆ C0) be a hyperbolic curve over S. Then
we shall say that X0 is a hyperbolic partial compactification of
X if there exists an open immersion C \D ↪→ C0 \D0 over S.

(iii) Suppose that g ≥ 2. Then it is immediate that the pair (C, ∅ ⊆
C) is a hyperbolic partial compactification of the hyperbolic

curve X. We shall write Xcpt = (C,D ⊆ C)cpt def
= (C, ∅ ⊆ C)

and refer to as the compactification of X.

Remark 1.5.1. Let S be a scheme that is connected and of finite type
over k, and X a hyperbolic curve of type (g, r) over S.

(i) It follows immediately from Lemma 1.4, (i), that the hyperbolic
curve X is split if and only if the image Im(ρΣ

X/S) is contained

in the image Im(ρΣ
g,r).

(ii) Let X0 be a hyperbolic partial compactification of X. Then it
follows immediately from the various definitions involved that
the homomorphism ρΣ

X0/S factors through the homomorphism

ρΣ
X/S ; thus, we obtain natural surjections

π1(S) � Im(ρΣ
X/S) � Im(ρΣ

X0/S) .

In particular, if g ≥ 2, then we obtain natural surjections

π1(S) � Im(ρΣ
X/S) � Im(ρΣ

Xcpt/S) .

Lemma 1.6 (Universal pro-l outer monodromy representa-
tions). Suppose that Σ is of cardinality one. Then the following

hold:

(i) The natural surjection π1(Mg,r) � Gk = π1(M0,3) induces a

surjection Ker(ρΣ
g,r) � Ker(ρΣ

0,3). In particular, we obtain a

commutative diagram

1 −−−→ π1(Mg,r ⊗k k) −−−→ π1(Mg,r) −−−→ Gk −−−→ 1

ρΣ-geom
g,r

y ρΣ
g,r

y
yρΣ

0,3

1 −−−→ Im(ρΣ-geom
g,r ) −−−→ Im(ρΣ

g,r) −−−→ Im(ρΣ
0,3) −−−→ 1

— where the horizontal sequences are exact.
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(ii) The natural surjection π1(Mg,[r]) � Gk = π1(M0,3) induces a

surjection Ker(ρΣ
g,[r]) � Ker(ρΣ

0,3). In particular, we obtain a

commutative diagram

1 −−−→ π1(Mg,[r] ⊗k k) −−−→ π1(Mg,[r]) −−−→ Gk −−−→ 1

ρΣ-geom
g,[r]

y ρΣ
g,[r]

y
yρΣ

0,3

1 −−−→ Im(ρΣ-geom
g,[r] ) −−−→ Im(ρΣ

g,[r]) −−−→ Im(ρΣ
0,3) −−−→ 1

— where the horizontal sequences are exact.
(iii) The commutative diagram

Mg,r ⊗k k −−−→ Mg,[r] ⊗k ky
y

Mg,r −−−→ Mg,[r]

induces a commutative diagram

1 −−−→ Im(ρΣ-geom
g,r ) −−−→ Im(ρΣ-geom

g,[r] ) −−−→ Sr −−−→ 1
y

y
∥∥∥

1 −−−→ Im(ρΣ
g,r) −−−→ Im(ρΣ

g,[r]) −−−→ Sr −−−→ 1

— where the horizontal sequences are exact, and the vertical

arrows are injective.

Proof. Assertion (i) is a consequence of a result concerning Oda’s prob-

lem: If r 6= 0, then the desired surjectivity was proven in [9], Corollary
4.2.2; on the other hand, if r = 0, then the desired surjectivity fol-
lows from [9], Theorem 3B, together with [8], Theorem C, or a result
obtained in [24].

Assertion (ii) follows immediately from assertion (i), together with
Lemma 1.4, (ii). Assertion (iii) follows immediately from Lemma 1.4,
(ii). �

In the rest of the present §, we consider the almost slimness (cf. the
discussion entitled “Topological groups” in §0) of the images of outer
monodromy representations.

Proposition 1.7 (Almost slimness of the images of outer mon-
odromy representations). Let H ⊆ Im(ρΣ

g,[r]) be a closed subgroup

of the image Im(ρΣ
g,[r]). Then the following hold:

(i) If Σ consists of exactly one prime number l, then H is almost
pro-l (cf. the discussion entitled “Topological groups” in §0).

(ii) Suppose that k is a generalized sub-l-adic field (cf. the dis-

cussion entitled “Numbers” in §0) for some l ∈ Σ and that

there exists a hyperbolic curve X of type (g, r) over a finite ex-

tension k′ ⊆ k of k such that H contains the image Im(ρΣ
X/k′).
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Then H is almost slim (cf. the discussion entitled “Topologi-

cal groups” in §0). In particular, the images Im(ρΣ
g,r), Im(ρΣ

g,[r]),

and Im(ρΣ
X/k′) — where X is a hyperbolic curve of type (g, r)

over a finite extension k′ ⊆ k of k — are almost slim.

Proof. First, we consider assertion (i). It follows from [2], Corollary 7,
together with the fact that ∆Σ

g,r is topologically finitely generated (cf.

Remark 1.3.1) and pro-l, that the image Im(ρΣ
g,[r]) is almost pro-l. Thus,

H is almost pro-l, as desired. This completes the proof of assertion (i).
Next, we consider assertion (ii). Suppose that there exists a hyper-

bolic curve X of type (g, r) over a finite extension k′ ⊆ k of k such
that H contains the image Im(ρΣ

X/k′). Then since ∆Σ
g,r is center-free

(cf. Remark 1.3.1), it follows from [14], Theorem 4.12, together with
[17], Corollary 1.5.7, that there exists a natural bijection

Autk(X ⊗k′ k)
∼−→ Z loc

Out(∆Σ
g,r)(Im(ρΣ

X/k′))

(cf. the discussion entitled “Topological groups” in §0); in particular,
Z loc

Out(∆Σ
g,r)(Im(ρΣ

X/k′)) is finite. On the other hand, since Im(ρΣ
X/k′) ⊆ H,

it follows that Z loc
Out(∆Σ

g,r)(H) ⊆ Z loc
Out(∆Σ

g,r)(Im(ρΣ
X/k′)) (cf. the discussion

entitled “Topological groups” in §0) is finite. Therefore, it follows from
Lemma 1.8 below that H is almost slim. This completes the proof of
assertion (ii). �

Lemma 1.8 (Almost slimness and the finiteness of local cen-
ter). Let G be a profinite group. Then the following conditions are

equivalent:

(i) G is almost slim (cf. the discussion entitled “Topological

groups” in §0).
(ii) The local centre Z loc(G) (cf. the discussion entitled “Topological

groups” in §0) is finite.

Proof. First, to prove the implication

(i) =⇒ (ii) ,

suppose that condition (i) is satisfied, i.e., there exists an open subgroup
H ⊆ G of G that is slim. By replacing H by a suitable open subgroup
of H, we may assume without loss of generality that H is normal in
G. Now since H is slim, it follows that Z loc(H) = Z loc(G) ∩H = {1}.
Thus, the composite Z loc(G) ↪→ G � G/H is injective; in particular,
Z loc(G) is finite. This completes the proof of the above implication.
Finally, to prove the implication

(ii) =⇒ (i) ,

suppose that condition (ii) is satisfied. Since Z loc(G) ⊆ G is finite,
there exists an open subgroup H ⊆ G of G such that Z loc(G) ∩ H =
{1}. On the other hand, since Z loc(H) = Z loc(G) ∩H, it follows that
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Z loc(H) = {1}, i.e., H is slim. This completes the proof of the above
implication. �

2. Monodromically full points and curves

In the present §, we define the notion of a Σ-monodromically full

hyperbolic curve (cf. Definition 2.2 below), as well as the related notion
of a Σ-monodromically full point (cf. Definition 2.1 below). In the
present §, let (g, r) be a pair of nonnegative integers such that 2g−2+
r > 0 and Σ a nonempty set of prime numbers.

First, we define the notion of a Σ-monodromically full, strictly Σ-
monodromically full, and quasi-Σ-monodromically full point.

Definition 2.1. Let S be a scheme that is connected and of finite type
over k, X = (C,D ⊆ C) a hyperbolic curve of type (g, r) over S, and
s ∈ S a closed point of S. Write Xs for the hyperbolic curve over the
residue field k(s) of S at s obtained as the fiber of X → S at s ∈ S,
i.e., Xs = (C ×S Spec k(s), D ×S Spec k(s)).

(i) We shall say that s ∈ S is a Σ-monodromically full point with

respect to X/S if, for any l ∈ Σ, the closed subgroup Im(ρ
{l}
Xs/k(s))

of Im(ρ
{l}
X/S) — here, Im(ρ

{l}
Xs/k(s)) and Im(ρ

{l}
X/S) are determined

up to Im(ρ
{l}-geom
g,[r] )-conjugation — contains Im(ρ

{l}
X/S)∩ Im(ρ

{l}
g,r).

(ii) We shall say that s ∈ S is a strictly Σ-monodromically full

point with respect to X/S if, for any l ∈ Σ, the closed subgroup

Im(ρ
{l}
Xs/k(s)) of Im(ρ

{l}
X/S) — here, Im(ρ

{l}
Xs/k(s)) and Im(ρ

{l}
X/S) are

determined up to Im(ρ
{l}-geom
g,[r] )-conjugation — coincides with

Im(ρ
{l}
X/S).

(iii) We shall say that s ∈ S is a quasi-Σ-monodromically full point

with respect to X/S if, for any l ∈ Σ, the closed subgroup

Im(ρ
{l}
Xs/k(s)) of Im(ρ

{l}
X/S) — here, Im(ρ

{l}
Xs/k(s)) and Im(ρ

{l}
X/S) are

determined up to Im(ρ
{l}-geom
g,[r] )-conjugation — is an open sub-

group of Im(ρ
{l}
X/S).

If l is a prime number, then for simplicity, we write l-monodromically
full (respectively, strictly l-monodromically full; quasi-l-monodromically
full) instead of {l}-monodromically full (respectively, strictly {l}-mono-
dromically full; quasi-{l}-monodromically full).

Remark 2.1.1. Let S be a scheme that is connected and of finite type
over k, X a hyperbolic curve over S, and s ∈ S a closed point of S.
Consider the following conditions:

(i) s ∈ S is strictly Σ-monodromically full with respect to X/S.
(ii) s ∈ S is Σ-monodromically full with respect to X/S.
(iii) s ∈ S is quasi-Σ-monodromically full with respect to X/S.
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Then, as the terminologies suggest, it follows immediately from the
various definitions involved that the implications

(i) =⇒ (ii) =⇒ (iii)

hold.

Next, we define the notion of a Σ-monodromically full, strictly Σ-
monodromically full, and quasi-Σ-monodromically full hyperbolic curve.
Roughly speaking, a Σ-monodromically full (respectively, strictly Σ-
monodromically full; quasi-Σ-monodromically full) hyperbolic curve is
a hyperbolic curve corresponding to a Σ-monodromically full (respec-
tively, strictly Σ-monodromically full; quasi-Σ-monodromically full)
point of the moduli stack with respect to the universal curve.

Definition 2.2. Let X be a hyperbolic curve of type (g, r) over k.

(i) We shall say that X is Σ-monodromically full if, for any l ∈ Σ,

the closed subgroup Im(ρ
{l}
X/k) — which is determined up to

Im(ρ
{l}-geom
g,[r] )-conjugation — of Im(ρ

{l}
g,[r]) contains Im(ρ

{l}
g,r).

(ii) We shall say that X is strictly Σ-monodromically full if, for

any l ∈ Σ, the closed subgroup Im(ρ
{l}
X/k) — which is deter-

mined up to Im(ρ
{l}-geom
g,[r] )-conjugation — of Im(ρ

{l}
g,[r]) contains

Im(ρ
{l}-geom
g,[r] ), or, equivalently, the closed subgroup Im(ρ

{l}
X/k) of

Im(ρ
{l}
g,[r]) coincides with Im(ρ

{l}
g,[r]).

(iii) We shall say that X is quasi-Σ-monodromically full if, for any

l ∈ Σ, the closed subgroup Im(ρ
{l}
X/k) — which is determined up

to Im(ρ
{l}-geom
g,[r] )-conjugation — of Im(ρ

{l}
g,[r]) is an open subgroup

of Im(ρ
{l}
g,[r]).

If l is a prime number, then for simplicity, we write l-monodromically
full (respectively, strictly l-monodromically full; quasi-l-monodromically
full) instead of {l}-monodromically full (respectively, strictly {l}-mono-
dromically full; quasi-{l}-monodromically full).

Remark 2.2.1. Let X be a hyperbolic curve over k. Consider the
following conditions:

(i) X is strictly Σ-monodromically full.
(ii) X is Σ-monodromically full.
(iii) X is quasi-Σ-monodromically full.

Then, as the terminologies suggest, it follows immediately from the
various definitions involved that the implications

(i) =⇒ (ii) =⇒ (iii)

hold.
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Remark 2.2.2. LetX be a hyperbolic curve over k and Σ1, Σ2 nonempty
sets of prime numbers. Suppose that Σ2 ⊆ Σ1. Consider the following
conditions:

(i) X is Σ1-monodromically full (respectively, strictly Σ1-monodromi-

cally full; quasi-Σ1-monodromically full).
(ii) X is Σ2-monodromically full (respectively, strictly Σ2-monodromi-

cally full; quasi-Σ2-monodromically full).

Then it follows immediately from the various definitions involved that
the implication

(i) =⇒ (ii)

holds.

Remark 2.2.3. Let X be a hyperbolic curve of type (g, r) over k.
Suppose that r ≤ 1. Consider the following conditions:

(i) X is Σ-monodromically full.
(ii) X is strictly Σ-monodromically full.

Then it follows immediately from the various definitions involved that
the equivalence

(i)⇐⇒ (ii)

holds.

Remark 2.2.4. Let X be a hyperbolic curve of type (g, r) over k.
Suppose that r ≥ 2. Consider the following conditions:

(i) X is strictly Σ-monodromically full.
(ii) X is not split (cf. Definition 1.5, (i)).

Then it follows immediately from Remark 1.5.1, (i), that the implica-
tion

(i) =⇒ (ii)

holds.

Remark 2.2.5. Let X1 be a hyperbolic curve over k and X2 a hyper-
bolic partial compactification of X1 (cf. Definition 1.5, (ii)). Consider
the following conditions:

(i) X1 is Σ-monodromically full (respectively, strictly Σ-monodromi-

cally full; quasi-Σ-monodromically full).
(ii) X2 is Σ-monodromically full (respectively, strictly Σ-monodromi-

cally full; quasi-Σ-monodromically full).

Then it follows immediately from Remark 1.5.1, (ii), that the implica-
tion

(i) =⇒ (ii)

holds.

Remark 2.2.6. Let X be a hyperbolic curve over k, and k′ ⊆ k a
finite extension of k. Consider the following conditions:

(i) X is a quasi-Σ-monodromically full hyperbolic curve over k.
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(ii) X ⊗k k
′ is a quasi-Σ-monodromically full hyperbolic curve over

k′.

Then it follows immediately from the various definitions involved that
the equivalence

(i)⇐⇒ (ii)

holds.

Remark 2.2.7. Let X be a hyperbolic curve of type (g, r) over k.
Consider the following conditions:

(i) X is split and Σ-monodromically full.

(ii) For any l ∈ Σ, the closed subgroup Im(ρ
{l}
X/k) — which is deter-

mined up to Im(ρ
{l}-geom
g,[r] )-conjugation — of Im(ρ

{l}
g,[r]) coincides

with Im(ρ
{l}
g,r).

Then it follows immediately from Remark 1.5.1, (i), together with the
various definition involved, that the equivalence

(i)⇐⇒ (ii)

holds.

Remark 2.2.8. Let S be a scheme that is connected and of finite type
over k, X a hyperbolic curve over S, and s ∈ S a closed point of S.
Write k(s) for the residue field of S at s and Xs for the hyperbolic curve
over k(s) obtained as the fiber of X → S at s ∈ S (cf. Definition 2.1).
Consider the following conditions:

(i) Xs is a Σ-monodromically full (respectively, strictly Σ-monodro-

mically full; quasi-Σ-monodromically full) hyperbolic curve over
k(s).

(ii) s ∈ S is a Σ-monodromically full (respectively, strictly Σ-mono-

dromically full; quasi-Σ-monodromically full) point with respect
to X/S.

Then it follows immediately from the various definitions involved that
the implication

(i) =⇒ (ii)

holds.

The following result is a result essentially obtained in [11] (cf. [11],
Theorem 1.2). Note that in [11], the following theorem in the case
where Σ is of cardinality one, and k is a number field was proven.
However, by a similar argument used in the proof of [11], Theorem 1.2,
one may prove the following theorem.

Theorem 2.3 (Existence of many monodromically full points).
Let k be a finitely generated field of characteristic zero (cf. the

discussion entitled “Numbers” in §0); k an algebraic closure of k; S a

scheme that is connected, regular, of finite type, and separated
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over k; X a hyperbolic curve over S (cf. Definition 1.1, (ii)); Σ a

nonempty finite set of prime numbers; SMF ⊆ S(k) the subset of S(k)
consisting of closed points of S which are strictly Σ-monodromically
full with respect to X/S (cf. Definition 2.1, (ii)). Fix an inclusion

k ↪→ C; in particular, we obtain an inclusion S(k) ↪→ S(C). Then the

subset SMF ⊆ (S(k) ⊆) S(C) is dense with respect to the complex
topology of S(C). If, moreover, S is rational (i.e., there exists an

open subscheme of S which is isomorphic to an open subscheme of Pn
k

for some positive integer n), then the complement S(k) \ (S(k) ∩ SMF)
in S(k) of S(k)∩SMF forms a thin set in S(k) in the sense of Hilbert’s

irreducibility theorem.

Proof. This follows from the fact that a finitely generated field of char-
acteristic zero is Hilbertian, together with a similar argument to the
argument used in the proof of [11], Theorem 1.2, by replacing [11],
Lemma 3.1 (respectively, [11], Lemma 3.3) by Lemma 2.4 (respectively,
Lemma 2.5) below. �

Lemma 2.4 (Existence of a certain open subgroup). Let G be

a profinite group, Σ a nonempty finite set of prime numbers, and for

each l ∈ Σ, G � Ql a quotient of G which is topologically finitely
generated and almost pro-l (cf. the discussion entitled “Topological

groups” in §0). Then there exists a normal open subgroup N ⊆ G of G
satisfying the following condition: If H is a profinite group and H → G
is a continuous homomorphism such that the composite H → G �

G/N is surjective, then the composite H → G � Ql is surjective
for each l ∈ Σ.

Proof. If Σ is of cardinality one, then Lemma 2.4 follows from [11],
Lemma 3.1; in particular, for each l ∈ Σ, there exists a normal open
subgroup Nl ⊆ G satisfying the following condition: If H is a profinite
group and H → G is a continuous homomorphism such that the com-
posite H → G→ G/Nl is surjective, then the composite H → G→ Ql

is surjective. Now write N
def
=

⋂
l∈ΣNl ⊆ G. Then it is immediate

that this normal open subgroup N of G satisfies the condition in the
statement of Lemma 2.4. This completes the proof of Lemma 2.4. �

Lemma 2.5 (Finitely generatedness of the images of outer
monodromy representations). Let k be a finitely generated field
of characteristic zero (cf. the discussion entitled “Numbers” in §0),
S a scheme that is connected and of finite type over k, X a hyperbolic

curve over S, and l a prime number. Suppose that S is regular and

separated over k. Then the quotient Im(ρ
{l}
X/S) of π1(S) is topologi-

cally finitely generated.

Proof. To verify Lemma 2.5, it is immediate that by replacing k by a
finite extension of k, we may assume without loss of generality that



18 YUICHIRO HOSHI

S is geometrically connected over k and that S has a k-rational point

s ∈ S(k). Then we have an exact sequence

1 −→ π1(S ⊗k k) −→ π1(S) −→ Gk −→ 1 .

Since π1(S ⊗k k) is topologically finitely generated (cf. [7], Exposé II,
Théorème 2.3.1), to verify Lemma 2.5, it suffices to show that the image
of the composite

Gk −→ π1(S)
ρ
{l}
X/S−→ Out(∆{l}

g,r)

— where the first arrow is the homomorphism (which is determined
up to π1(S ⊗k k)-inner automorphism) induced by s ∈ S(k), and (g, r)
is the type of the hyperbolic curve X over S — is topologically finitely

generated; in particular, since the above composite coincides with the

pro-l outer monodromy representation ρ
{l}
Xs/k associated to the hyper-

bolic curve Xs over k obtained as the fiber of X → S at s ∈ S(k), to
verify Lemma 2.5 — by replacing X by Xs — we may assume without
loss of generality that S = Spec k.

Since k is finitely generated field of characteristic zero, there exist a
finite extension k′ ⊆ k of k, a subfield k0 ⊆ k′ of k′, and a scheme V0

over k0 satisfying the following conditions:

(i) k0 is a number field (cf. the discussion entitled “Numbers” in
§0).

(ii) V0 is regular, separated, geometrically connected, and of finite
type over k0.

(iii) V0 has a k0-rational point v ∈ V0(k0).
(iv) The function field of V0 is isomorphic to k′.
(v) The hyperbolic curve X ⊗k k

′ over k′ extends to a hyperbolic
curve X0 over V0.

Now since the natural homomorphism π1(Spec k′) → π1(V0) (cf. (iv))
is surjective (cf. (ii)), and the pro-l outer monodromy representation

ρ
{l}
X⊗kk′/k′ factors through ρ

{l}
X0/V0

(cf. (v)), to verify Lemma 2.5, it suf-

fices to show that the image Im(ρ
{l}
X0/V0

) is topologically finitely gener-

ated. Moreover, by the existence of the exact sequence (cf. (ii))

1 −→ π1(V0 ⊗k0 k0) −→ π1(V0) −→ Gal(k0/k0) −→ 1

— where k0 is the algebraic closure of k0 determined by k — together
with the fact that π1(V0 ⊗k0 k0) is topologically finitely generated (cf.
[7], Exposé II, Théorème 2.3.1), to verify Lemma 2.5, it suffices to show
that the image of the composite

Gal(k0/k0) −→ π1(V0)
ρ
{l}
X0/V0−→ Out(∆{l}

g,r)

— where the first arrow is the homomorphism (which is determined up
to π1(V0 ⊗k0 k0)-inner automorphism) induced by v ∈ V0(k0) (cf. (iii))
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— is topologically finitely generated. On the other hand, since k0 is a
number field (cf. (i)), it follows from [11], Lemma 3.1, that the image of
the above composite is topologically finitely generated, as desired. This
completes the proof of Lemma 2.5. �

By Theorem 2.3, we obtain the following result.

Corollary 2.6 (Existence of many monodromically full hyper-
bolic curves). Let k be a finitely generated field of characteristic
zero (cf. the discussion entitled “Numbers” in §0), k an algebraic clo-

sure of k, (g, r) a pair of nonnegative integers such that 2g−2+ r > 0,
Mg,[r] the moduli stack of hyperbolic curves of type (g, r) over k (cf.
Definition 1.2, (ii)), Mg,[r] the coarse moduli space associated toMg,[r],

and Σ a nonempty finite set of prime numbers. Fix an inclusion

k ↪→ C. Then the subset of Mg,[r](C) of C-valued points s ∈ Mg,[r](C)
satisfying the following condition (∗)MF is dense with respect to the
complex topology of Mg,[r](C):

(∗)MF : There exists a subfield k′ ⊆ k (⊆ C) containing k
and a morphism sk′ : Spec k′ →Mg,[r] such that the hy-

perbolic curve corresponding to sk′ is a Σ-monodromically
full hyperbolic curve over k′ (cf. Definition 2.2, (i)),
and, moreover, s : Spec C → Mg,[r] factors through

the composite Spec k′
sk′→Mg,[r] →Mg,[r].

3. Relationship between monodromic fullness and certain
properties of hyperbolic curves

In the present §, we consider the relationship between monodromic
fullness and certain properties of hyperbolic curves (cf. Propositions
3.4, 3.6, 3.8 below). In the present §, let (g, r) be a pair of nonnegative
integers such that 2g − 2 + r > 0.

Definition 3.1. We shall write

Gg,r
def
=





{1} (if 2g − 2 + r ≥ 3)
Z/2Z (if (g, r) = (1, 1) , (1, 2) , or (2, 0))

Z/2Z× Z/2Z (if (g, r) = (0, 4))
S3 (if (g, r) = (0, 3)) .

It seems to the author that the following proposition is likely to be
well-known.

Proposition 3.2 (Automorphisms of general hyperbolic curves).
Suppose that k is algebraically closed. Then the following hold:

(i) If X = (C,D ⊆ C) is a hyperbolic curve of type (g, r) over k,
then Gg,r is isomorphic to a subgroup of the group Autk(X)
of automorphisms of X over k.
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(ii) There exists a hyperbolic curve X = (C,D ⊆ C) of type (g, r)
over k such that the group Autk(X) of automorphisms of X
over k is isomorphic to Gg,r.

Proof. First, we verify assertion (i). If 2g − 2 + r ≥ 3, then assertion
(i) is immediate. If (g, r) = (0, 3) or (0, 4), then assertion (i) may be
verified by the fact that Autk(C) — note that C is isomorphic to P1

k

over k — is isomorphic to PGL2(k), together with a straightforward
calculation. (Note that if (g, r) = (0, 4), i.e., X = (C,D ⊆ C) is
isomorphic to (P1

k, {0, 1,∞, x} ⊆ P1
k) for some x ∈ k \ {0, 1}, then the

following two automorphisms generate a subgroup of Autk(X) which
is isomorphic to G0,4 = Z/2Z× Z/2Z:

C ' P1
k

∼−→ P1
k ' C

t/s 7→ sx/t
;

C ' P1
k

∼−→ P1
k ' C

t/s 7→ x(t− s)/(t− sx) .)

Next, suppose that (g, r) = (1, 1) or (1, 2). If (g, r) = (1, 1) (respec-
tively, (1, 2)), then write {o} (respectively, {o, x}) ⊆ C(k) for the set
of the marked divisor “D” of the hyperbolic curve X = (C,D ⊆ C).
Then since g = 1, by regarding the marked k-rational point o of C as
an origin, one may regard C as an abelian group scheme over k whose
identity section is the section determined by the k-rational point o.
Thus, we have an automorphism

{
C 3 t 7→ −t ∈ C (if r = 1)
C 3 t 7→ x− t ∈ C (if r = 2)

over k of order 2 that preserves D = {o} (respectively, = {o, x}) ⊆ C;
in particular, Gg,r = Z/2Z is isomorphic to a subgroup of Autk(X).
Next, suppose that (g, r) = (2, 0). Then since the proper curve C is
hyperelliptic, we have an automorphism of C of order 2; in particular,
G2,0 = Z/2Z is isomorphic to a subgroup of Autk(X) = Autk(C). This
completes the proof of assertion (i).

Finally, we verify assertion (ii). If 2g− 2 + r ≥ 3, then assertion (ii)
follows immediately from [12], Theorem C. If (g, r) = (0, 3) or (0, 4),
then assertion (ii) may be verified by the fact that Autk(C) — note
that C is isomorphic to P1

k over k — is isomorphic to PGL2(k), together
with a straightforward calculation. Next, suppose that (g, r) = (1, 1)
or (1, 2). Then since g = 1, one may regard C as an abelian group

scheme over k. Moreover, as is well-known, there exists a hyperbolic
curve X = (C,D ⊆ C) of type (1, 1) (respectively, (1, 2)) over k such
that Autk(C) is isomorphic to C(k) o {±1} — where the action of
{±1} on C(k) is the natural action of {±1} on an abelian group C(k).
Now assertion (ii) in the case where (g, r) = (1, 1) or (1, 2) follows
from this fact that Autk(C) is isomorphic to C(k) o {±1}, together
with a straightforward calculation. Next, suppose that (g, r) = (2, 0).
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Then the assertion follows from, for example, [21], Theorem 1. This
completes the proof of assertion (ii). �

Definition 3.3. LetX be a hyperbolic curve of type (g, r) over k. Then
we shall say that X has no special symmetry if the group Autk(X⊗k k)
of automorphisms of X ⊗k k over k is isomorphic to Gg,r.

Proposition 3.4 (Quasi-monodromic fullness and automorphisms
of hyperbolic curves). Let X be a hyperbolic curve of type (g, r) over

k. Suppose that X is quasi-Σ-monodromically full for a nonempty

set of prime numbers Σ and that k is a generalized sub-l-adic field
(cf. the discussion entitled “Numbers” in §0) for some l ∈ Σ. Then X
has no special symmetry.

Proof. Let X0 be a hyperbolic curve of type (g, r) over a finite exten-
sion k0 ⊆ k of k such that Autk(X0 ⊗k0 k) ' Gg,r (cf. Lemma 3.2,
(ii)). Then since ∆Σ

g,r is center-free (cf. Remark 1.3.1), it follows from
[14], Theorem 4.12, together with [17], Corollary 1.5.7, that there exist
natural bijections

Autk(X ⊗k k)
∼−→ Z loc

Out(∆Σ
g,r)(Im(ρΣ

X/k)) ;

Gg,r
∼−→ Autk(X0 ⊗k k)

∼−→ Z loc
Out(∆Σ

g,r)(Im(ρΣ
X0/k0

)) .

On the other hand, since X is quasi-Σ-monodromically full, it follows
immediately from the definition of the term “quasi-Σ-monodromically
full” that

Z loc
Out(∆Σ

g,r)(Im(ρΣ
X/k)) = Z loc

Out(∆Σ
g,r)(Im(ρΣ

g,[r]))

(cf. the discussion entitled “Topological groups” in §0). Thus, since
Im(ρΣ

X0/k0
) ⊆ Im(ρΣ

g,[r]), we obtain that

Autk(X ⊗k k)
∼−→ Z loc

Out(∆Σ
g,r)(Im(ρΣ

X/k)) = Z loc
Out(∆Σ

g,r)(Im(ρΣ
g,[r]))

⊆ Z loc
Out(∆Σ

g,r)(Im(ρΣ
X0/k0

)) ' Gg,r

(cf. the discussion entitled “Topological groups” in §0); in particular,
it follows immediately from Lemma 3.2, (i), that X has no special

symmetry. This completes the proof of Proposition 3.4. �

Definition 3.5. LetX be a hyperbolic curve of type (g, r) over k and Σ
a nonempty set of prime numbers. Suppose that g 6= 0. Then we shall
say that X is of Σ-AIJ-type (where the “AIJ” stands for “absolutely
irreducible Jacobian”) if the following condition is satisfied: For any
prime number l ∈ Σ and finite extension k′ ⊆ k of k such that X(k′) 6=
∅, the l-adic Tate module of the Jacobian variety of the compactification
of the hyperbolic curve X ⊗k k

′ is irreducible as a Gk′-module.



22 YUICHIRO HOSHI

Remark 3.5.1. It follows immediately from the definition of the term
“of AIJ-type” that if a hyperbolic curve X over k is of Σ-AIJ-type for
some nonempty set of prime numbers Σ, then the Jacobian variety of
the compactification of the hyperbolic curve X ⊗k k is simple.

Proposition 3.6 (Quasi-monodromic fullness and the absolute
irreducibility of Jacobian variety). Let X be a hyperbolic curve of

type (g, r) over k and Σ a nonempty set of prime numbers. Suppose

that k is finitely generated field of characteristic zero (cf. the

discussion entitled “Numbers” in §0), that g 6= 0, and that X is quasi-
Σ-monodromically full. Then X is of Σ-AIJ-type. In particular,

the Jacobian variety of the compactification of the hyperbolic curve X⊗k

k is simple (cf. Remark 3.5.1).

Proof. To prove Proposition 3.6, it follows from the definition of the
term “of AIJ-type” that we may assume without loss of generality
that Σ is of cardinality one. Write HΣ

g,r for the abelian quotient of

∆Σ
g,r by the normal closed subgroup generated by the cuspidal inertia

subgroups of ∆Σ
g,r and the closure of the commutator subgroup of ∆Σ

g,r.

(Thus, if g ≥ 2, then HΣ
g,r is naturally isomorphic to (∆Σ

g,0)
ab.) Now it

follows from a similar argument to the argument used in Remark 1.5.1,
(ii), that the pro-Σ outer representation ρΣ

g,[r] : π1(Mg,[r])→ Out(∆Σ
g,r)

induces a pro-Σ representation ρ : π1(Mg,[r]) → Aut(HΣ
g,r). Moreover,

as is well-known, the following holds (cf. also Remark 1.3.1):

Let k′ ⊆ k be a finite extension of k such that X(k′) 6= ∅.
Then there exists an isomorphism of HΣ

g,r with the Σ-
adic Tate module of the Jacobian variety of the com-
pactification of X ⊗k k

′ such that, under this isomor-
phism, the action of Gk′ on HΣ

g,r determined by ρ, sX/k

(cf. Definition 1.3, (iii)) and the natural action of Gk′

on the pro-Σ Tate module coincide.

Therefore, Proposition 3.6 follows from the definition of the term “quasi-
monodromically full”, together with the existence of a hyperbolic curve
of Σ-AIJ-type over a number field (cf. e.g., [4], the proof of Proposition
4, also [4], Remark 5, (iv), (v)). �

Definition 3.7. Let X be a hyperbolic curve of type (g, r) over k.
Suppose that g 6= 0. Then we shall say that X has a JCM-component

(where the “JCM” stands for “Jacobian complex multiplication”) if
there exist a nontrivial simple abelian variety A over k such that
Endk(A) ⊗Z Q is isomorphic to a number field of degree 2dim(A) and
a nontrivial morphism over k from A to the Jacobian variety of the
compactification of the hyperbolic curve X ⊗k k.

Remark 3.7.1. Let X be a hyperbolic curve of type (1, 1) over k. Then
it follows from the various definitions involved that X has a JCM-

component if and only if the elliptic curve determined by X admits
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complex multiplication over k — i.e., the ring of endomorphisms of the
elliptic curve determined by X over k is isomorphic to an order of an
imaginary quadratic field.

Proposition 3.8 (Quasi-monodromic fullness and complex mul-
tiplication). Let X be a hyperbolic curve of type (g, r) over k. Sup-

pose that k is finitely generated field of characteristic zero (cf.
the discussion entitled “Numbers” in §0), that g 6= 0, and that X is

quasi-Σ-monodromically full for a nonempty set of prime numbers

Σ. Then X does not have a JCM-component.

Proof. This follows immediately from Proposition 3.6, together with
[23], Corollary 2 to Theorem 5. �

4. Moduli stacks of hyperbolic curves of genus zero

In the present §, we consider the moduli stacks of hyperbolic curves
of genus zero. In the present §, let r ≥ 3 be an integer and l a prime
number.

Lemma 4.1 (Moduli stacks of hyperbolic curves of genus zero).

(i) The moduli stackM0,r is isomorphic to the (r − 3)-rd con-
figuration space of P1

k \ {0, 1,∞} over k, i.e., the open sub-

scheme of the fiber product over k of r−3 copies of P1
k\{0, 1,∞}

obtained as the complement of the various diagonal divisors.

(ii) The natural homomorphism Sr → Autk(M0,r) determined by

the Sr-covering M0,r → M0,[r] is surjective. In particular,

any automorphism φ of M0,r over k is an automorphism
over M0,[r], i.e., there exists a commutative diagram

M0,r
φ−−−→ M0,ry

y

M0,[r] M0,[r]

— where the vertical arrows are natural morphisms, and the

lower horizontal arrow is the identity automorphism of M0,[r].

Proof. Assertions (i), (ii) are well-known. (Concerning assertion (ii),
see [17], discussion following Theorem A in §0.) �

Lemma 4.2 (Universal geometric monodromy outer represen-
tations of genus zero).

(i) The quotient π1(M0,r ⊗k k) � Im(ρ
{l}-geom
0,r ) of π1(M0,r ⊗k k)

coincides with the maximal pro-l quotient of π1(M0,r ⊗k

k). In particular, there exists a natural homomorphism

AutGk
(π1(M0,r)) −→ Aut

Im(ρ
{l}
0,3 )

(Im(ρ
{l}
0,r))
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(cf. Lemma 1.6, (i)).

(ii) The abelianization of Im(ρ
{l}-geom
0,r ) is a free Zl-module of rank

(r − 2)(r + 1)/2.

Proof. Assertion (i) follows from [3], Remark following the proof of
Theorem 1, together with Lemma 4.1, (i). Assertion (ii) follows imme-
diately from [18], Corollary 2.5, together with Lemma 4.1, (i). (In-
deed, it follows [18], Corollary 2.5, together with Lemma 4.1, (i),

that rankZl
(Im(ρ

{l}-geom
0,r )ab) =

∑r
i=3 rankZl

((∆
{l}
0,i )

ab) =
∑r

i=3(i − 1) =
(r − 2)(r + 1)/2.) �

Lemma 4.3 (Universal monodromy outer representations of
genus zero). Suppose that k is a finitely generated field of char-
acteristic zero (cf. the discussion entitled “Numbers” in §0). Then

the following hold:

(i) The image Im(ρ
{l}-geom
0,r ) is pro-l and slim.

(ii) The image Im(ρ
{l}
0,r) is slim. If, moreover, k contains a primi-

tive l-th root of unity, then the image Im(ρ
{l}
0,r) is pro-l.

(iii) The composite of natural homomorphisms

Autk(M0,r) −→ AutGk
(π1(M0,r))/Inn(π1(M0,r ⊗k k))

−→ Aut
Im(ρ

{l}
0,3 )

(Im(ρ
{l}
0,r))/Inn(Im(ρ

{l}-geom
0,r ))

(cf. Lemma 4.2, (i)) is bijective (cf. Remark 4.3.1).
(iv) The composite of natural maps

M0,r(k) −→ HomGk
(Gk, π1(M0,r))/Inn(π1(M0,r ⊗k k))

−→ Hom
Im(ρ

{l}
0,3 )

(Gk, Im(ρ
{l}
0,r))/Inn(Im(ρ

{l}-geom
0,r ))

(cf. Lemma 4.2, (i)) is injective.
(v) The composite of natural maps

M0,[r](k) −→ HomGk
(Gk, π1(M0,[r]))/Inn(π1(M0,[r] ⊗k k))

−→ Hom
Im(ρ

{l}
0,3 )

(Gk, Im(ρ
{l}
0,[r]))/Inn(Im(ρ

{l}-geom
0,[r] ))

(cf. Lemma 4.2, (i)) is injective.

Proof. Assertion (i) follows from [16], Proposition 2.2, (ii), together
with Lemmas 4.1, (i); 4.2, (i).

Next, we verify assertion (ii). Since we have an exact sequence

1 −→ Im(ρ
{l}-geom
0,r ) −→ Im(ρ

{l}
0,r) −→ Im(ρ

{l}
0,3) −→ 1

(cf. Lemma 1.6, (i)), it follows from assertion (i) that to verify the

fact that Im(ρ
{l}
0,r) is slim (respectively, pro-l), it suffices to show that

Im(ρ
{l}
0,3) is slim (respectively, pro-l). Now we prove the fact that

Im(ρ
{l}
0,3) is slim. It follows from a similar argument to the argument
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used in the proof of Proposition 1.7, (ii), together with Lemma 4.1, (i),
that we obtain a natural bijection

Autk(Pk \ {0, 1,∞})
∼−→ Z loc

Out(∆
{l}
0,3 )

(Im(ρ
{l}
0,3)) .

Therefore, by comparing the natural actions of Autk(Pk \ {0, 1,∞})
and Im(ρ

{l}
0,3) on the set of the conjugacy classes of the cuspidal inertia

subgroups of ∆
{l}
0,3 (cf. Remark 1.3.1), it follows that the intersection

Z loc

Out(∆
{l}
0,3 )

(Im(ρ
{l}
0,3)) ∩ Im(ρ

{l}
0,3)

is trivial; in particular, the local center Z loc(Im(ρ
{l}
0,3)) of Im(ρ

{l}
0,3) is

trivial. This completes the proof of the fact that Im(ρ
{l}
0,3) is slim. On

the other hand, it follows immediately from [1], Theorems A, B, that

if k contains a primitive l-th root of unity, then Im(ρ
{l}
0,3) is pro-l. This

completes the proof of assertion (ii).
Next, we prove assertion (iii). By considering the action of Autk(M0,r)

on the set of the conjugacy classes of the cuspidal inertia subgroups of

Im(ρ
{l}-geom
0,r ), the injectivity of the composite in question follows imme-

diately from Lemmas 4.1, (i), (ii); 4.2, (i), together with Remark 1.3.1.
Now we verify the surjectivity of the composite in question by induc-

tion on r. If r = 3, 4, then the surjectivity of the composite in question
follows from [14], Theorem 4.12, together with Lemmas 4.1, (i); 4.2, (i).
Suppose that r ≥ 5 and that the composite of natural homomorphisms

Autk(M0,r−1) −→ AutGk
(π1(M0,r−1))/Inn(π1(M0,r−1 ⊗k k))

−→ Aut
Im(ρ

{l}
0,3 )

(Im(ρ
{l}
0,r−1))/Inn(Im(ρ

{l}-geom
0,r−1 ))

is bijective. Let α be an automorphism of Im(ρ
{l}
0,r) over Im(ρ

{l}
0,3). Then

it follows immediately from [17], Theorem 3.1.13 (note that [17], The-
orem 3.1.13, is valid for a finitely generated field of characteristic zero,
even though in [17], this result for a number field is only stated), that

— by compositing a suitable automorphism of Im(ρ
{l}
0,r) over Im(ρ

{l}
0,3)

arising from an element of Autk(M0,r) — we may assume without loss

of generality that α preserves the kernel ∆
{l}
0,r−1 ⊆ Im(ρ

{l}-geom
0,r ) of the

natural surjection Im(ρ
{l}
0,r) � Im(ρ

{l}
0,r−1) (cf. Lemmas 4.1, (i); 4.2, (i)).

Moreover, it follows immediately from the above induction hypothe-

sis that — again by compositing a suitable automorphism of Im(ρ
{l}
0,r)

over Im(ρ
{l}
0,3) arising from an element of Autk(M0,r) — we may as-

sume without loss of generality that the automorphism of Im(ρ
{l}
0,r−1)

induced by α is the identity automorphism of Im(ρ
{l}
0,r−1), i.e., we obtain
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a commutative diagram

1 −−−→ ∆
{l}
0,r−1 −−−→ Im(ρ

{l}
0,r) −−−→ Im(ρ

{l}
0,r−1) −−−→ 1y α

y
∥∥∥

1 −−−→ ∆
{l}
0,r−1 −−−→ Im(ρ

{l}
0,r) −−−→ Im(ρ

{l}
0,r−1) −−−→ 1

— where the horizontal sequences are exact, and the right-hand vertical
arrow is the identity automorphism. Therefore, it follows immediately
from [14], Theorem 4.12, together with Lemma 4.4, (ii), below, that α
arises from an automorphism ofM0,r over k. This completes the proof
of assertion (iii).

Assertion (iv) follows immediately from [13], Theorem C, together
with Lemmas 4.1, (i); 4.2, (i). Assertion (v) follows from [14], Remark
following Theorem 4.12 (cf. also the proof of [13], Theorem C). �

Remark 4.3.1. In [17], Theorem A, the bijectivity of the composite of
natural homomorphisms

Autk(M0,r) −→ AutGk
(π1(M0,r))/Inn(π1(M0,r ⊗k k))

−→ Aut
Im(ρ

{l}
0,3 )

(Im(ρ
{l}
0,r))/Inn(Im(ρ

{l}-geom
0,r ))

in the case where p is odd was proven.

Lemma 4.4. Let S be a connected normal scheme and ηS → S the

generic point of S. Then the following hold:

(i) Let T → S be a scheme that is finite over S. Then the natural

morphism HomS(S, T )→ HomS(ηS, T ) is bijective.
(ii) Let X1, X2 be hyperbolic curves over S. Then the natural mor-

phism

IsomS(X1, X2) −→ IsomηS
(X1 ×S ηS, X2 ×S ηS)

is bijective.

Proof. First, we consider assertion (i). The injectivity of the morphism
in question follows immediately from the fact that the natural mor-
phism ηS → S is scheme-theoretically dense. To verify the surjectivity

of the morphism in question, let φ : ηS → T be a morphism over S.
Write F ⊆ T for the scheme-theoretic image of φ. Then it follows im-
mediately from the various definitions involved that F is integral, and
the composite F ↪→ T → S is birational and finite. Thus, since S is
normal, it follows from Zariski’s main theorem (cf. [6], Corollaire 4.4.9)
that the composite F ↪→ T → S is an isomorphism; in particular, φ
extends to a morphism S → T over S.

Finally, we consider assertion (ii). It follows from, for example,
[5], Theorem 1.11, that the functor IsomS(X1, X2) is represented by
a scheme that is finite and unramified over S. Thus, assertion (ii)
follows from assertion (i). �
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5. A Grothendieck conjecture-type lemma for certain
images of the universal monodromy

In the present §, we prove a Grothendieck conjecture-type lemma for
certain images of the universal monodromy (cf. Lemma 5.2 below). In
the present §, let r ≥ 3 be an integer and l a prime number. Suppose,
moreover, that k is a finitely generated field of characteristic zero (cf.
the discussion entitled “Numbers” in §0). Let us fix an isomorphism

Im(ρ
{l}
0,[r])/Im(ρ

{l}
0,r)

∼→ Sr (cf. Lemma 1.6, (iii)).

For i = 1, 2, let

Hi ⊆ Im(ρ
{l}
0,[r])

be an open subgroup of Im(ρ
{l}
0,[r]) that contains the normal open sub-

group Im(ρ
{l}
0,r) ⊆ Im(ρ

{l}
0,[r]),

(Hi �)Qi

the image of the composite Hi ↪→ Im(ρ
{l}
0,[r]) � Im(ρ

{l}
0,[r])/Im(ρ

{l}
0,r) ' Sr,

and
Hgeom

i ⊆ Hi

the kernel of the composite Hi ↪→ Im(ρ
{l}
0,[r]) � Im(ρ

{l}
0,3), i.e., Hgeom

i
def
=

Hi∩ Im(ρ
{l}-geom
0,[r] ) (cf. Lemma 1.6, (ii)). Thus, Hi fits into the following

exact sequences:

1 −→ Hgeom
i −→ Hi −→ Im(ρ

{l}
0,3) −→ 1 ;

1 −→ Im(ρ
{l}
0,r) −→ Hi −→ Qi (⊆ Sr) −→ 1 .

(Here, the surjectivity of Hi → Im(ρ
{l}
0,3) follows from Lemma 1.6, (i).)

By the various definitions involved, this open subgroup Hi ⊆ Im(ρ
{l}
0,[r])

corresponds to the intermediate connected finite étale covering

[M0,r/Qi] −→M0,[r]

of the Sr-coveringM0,r → [M0,r/Sr] =M0,[r] — where “[M0,r/(−)]”
is the quotient of M0,r by “(−)” in the sense of stacks. Now we shall
write

AutQ1,Q2

k (M0,r)

for the set of automorphisms ofM0,r over k which is compatible with
the respective actions Q1 ↪→ Sr → Autk(M0,r) and Q2 ↪→ Sr →
Autk(M0,r) relative to an isomorphism Q1

∼→ Q2 of finite groups, i.e.,
the subset of Autk(M0,r) consisting of automorphisms φ ofM0,r over
k which fit into a commutative diagram

M0,r
φ−−−→ M0,ry

y

[M0,r/Q1] −−−→ [M0,r/Q2]
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— where the vertical arrows are natural morphisms, and the horizontal
arrows are isomorphisms over k. Then we define a map

Φ: AutQ1,Q2

k (M0,r) −→ IsomIm(ρ0,3)(H1, H2)/Inn(Hgeom
2 )

as follows: Let φ ∈ AutQ1,Q2

k (M0,r). Then it follows from the definition

of AutQ1,Q2

k (M0,r) that φ induces a diagram

π1(M0,r) −−−→ π1(M0,r)y
y

π1([M0,r/Q1]) −−−→ π1([M0,r/Q2])

— where the top horizontal arrow is the π1(M0,r⊗k k)-conjugacy class
of the automorphism of π1(M0,r) induced by φ, and this diagram com-

mutes up to π1([M0,r/Q2] ⊗k k)-inner automorphism. Thus, by con-
sidering the Hgeom

2 -conjugacy class of the isomorphism

H1 = π1([M0,r/Q1])/Ker(ρ
{l}
0,r)

∼−→ π1([M0,r/Q2])/Ker(ρ
{l}
0,r) = H2

induced by the lower horizontal arrow in the above diagram (note
that by Lemma 4.2, (i), the top horizontal arrow in the above dia-

gram preserves Ker(ρ
{l}
0,r) ⊆ π1(M0,r)), we obtain an element Φ(φ) of

Isom
Im(ρ

{l}
0,3 )

(H1, H2)/Inn(Hgeom
2 ), as desired.

The purpose of the present § is to prove the surjectivity of this map
Φ under the assumption that

(∗)prime: l is prime to the orders of Q1 and Q2.

In the rest of the present §, suppose that the above condition (∗)prime

is satisfies.

Lemma 5.1 (Preserving the M0,r-parts). Let φ : H1
∼→ H2 be an

isomorphism over Im(ρ
{l}
0,3). Then φ(Im(ρ

{l}-geom
0,r )) = Im(ρ

{l}-geom
0,r ). If,

moreover, k contains a primitive l-th root of unity, then φ(Im(ρ
{l}
0,r)) =

Im(ρ
{l}
0,r).

Proof. It follows immediately from Lemma 4.3, (i), together with the
assumption that the condition (∗)prime is satisfied (cf. the discussion

preceding Lemma 5.1), that Im(ρ
{l}-geom
0,r ) ⊆ Hgeom

i is the maximal pro-l

closed subgroup of Hgeom
i ; therefore, it follows that φ(Im(ρ

{l}-geom
0,r )) =

Im(ρ
{l}-geom
0,r ). If, moreover, k contains a primitive l-th root of unity,

then it follows from Lemma 4.3, (ii), together with the assumption
that the condition (∗)prime is satisfied (cf. the discussion preceding
Lemma 5.1), that Im(ρ0,r)

{l} ⊆ Hi is the maximal pro-l closed subgroup

of Hi; therefore, it follows that φ(Im(ρ
{l}
0,r)) = Im(ρ

{l}
0,r). �

Next, we shall write

Φ̃ : AutQ1,Q2

k (M0,r) −→ Isom
Im(ρ

{l}
0,3 )

(H1, H2)/Inn(Im(ρ
{l}-geom
0,r ))
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for the map defined as follows: Let φ ∈ AutQ1,Q2

k (M0,r). Then φ deter-

mines an Im(ρ
{l}-geom
0,r )-conjugacy class of an automorphism of Im(ρ

{l}
0,r)

over Im(ρ
{l}
0,3). Moreover, by the definition of AutQ1,Q2

k (M0,r), this

Im(ρ
{l}-geom
0,r )-conjugacy class is compatible with the respective outer

actions of Q1 and Q2 on Im(ρ
{l}
0,r) relative to an isomorphism Q1

∼→ Q2.

Therefore, since Im(ρ
{l}
0,r) is center-free (cf. Lemma 4.3, (ii)), we obtain

an Im(ρ
{l}-geom
0,r )-conjugacy class ΦQ1,Q2(φ) of an isomorphism

H1 ' Im(ρ
{l}
0,r)

out
o Q1

∼−→ Im(ρ
{l}
0,r)

out
o Q2 ' H2

(cf. the discussion entitled “Topological groups” in §0) over Im(ρ
{l}
0,3).

Note that by the various definitions involved, the diagram

AutQ1,Q2

k (M0,r)
eΦ−−−→ Isom

Im(ρ
{l}
0,3 )

(H1, H2)/Inn(Im(ρ
{l}-geom
0,r ))

∥∥∥
y

AutQ1,Q2

k (M0,r) −−−→
Φ

Isom
Im(ρ

{l}
0,3 )

(H1, H2)/Inn(Hgeom
2 )

— where the right-hand vertical arrow is the natural surjection —
commutes.

Lemma 5.2 (A Grothendieck conjecture-type lemma for cer-
tain images of the universal monodromy). In the above diagram,

the following hold:

(i) Φ̃ is injective.

(ii) Φ̃ is surjective.

(iii) Φ is surjective. Moreover, for φ, φ′ ∈ AutQ1,Q2

k (M0,r), it holds

that Φ(φ) = Φ(φ′) if and only if φ′ ◦ φ−1 ∈ Autk(M0,r) is an

element of the image of the composite Q2 ↪→ Sr → Aut(M0,r).

Proof. First, we consider assertion (i). To prove the injectivity of Φ̃ —
by replacing k by a finite extension of k — we may assume without
loss of generality that k contains a primitive l-th root of unity (cf.
Remark 5.2.1 below). Now we have a commutative diagram

AutQ1,Q2

k (M0,r)
eΦ−−−→ Isom

Im(ρ
{l}
0,3 )

(H1, H2)/Inn(Im(ρ
{l}-geom
0,r ))

y
y

Autk(M0,r) −−−→ Aut
Im(ρ

{l}
0,3 )

(Im(ρ
{l}
0,r))/Inn(Im(ρ

{l}-geom
0,r ))

— where the left-hand vertical arrow is the natural inclusion, the right-
hand vertical arrow is the map obtained by restricting elements of

Isom
Im(ρ

{l}
0,3 )

(H1, H2)/Inn(Im(ρ
{l}-geom
0,r )) to Im(ρ

{l}
0,r) ⊆ Hi (cf. Lemma 5.1),

and the lower horizontal arrow is the homomorphism obtained in Lemma 4.2,
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(i). Thus, since the lower horizontal arrow is injective (cf. Lemma 4.3,

(iii)), it follows that Φ̃ is injective. This completes the proof of assertion
(i).

Next, we consider assertion (ii). To prove the surjectivity of Φ̃, it
follows from assertion (i), together with Galois descent, by replacing
k by a finite extension of k, we may assume without loss of generality
that k contains a primitive l-th root of unity (cf. Remark 5.2.1 below).

Let φ : H1
∼→ H2 be an isomorphism over Im(ρ

{l}
0,3). Then it follows

from Lemma 5.1 that we obtain a commutative diagram

1 −−−→ Im(ρ
{l}
0,r) −−−→ H1 −−−→ Q1 −−−→ 1

φ

yo φ

yo o

yφ

1 −−−→ Im(ρ
{l}
0,r) −−−→ H2 −−−→ Q2 −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows
are isomorphisms. Now it follows from Lemma 4.3, (iii), that the

Im(ρ
{l}-geom
0,r )-conjugacy class of the left-hand vertical arrow arises from

an automorphism φ̃ ofM0,r over k; moreover, since the above diagram

commutes, it follows from assertion (i) that this automorphism φ̃ is
compatible with the respective actions Q1 ↪→ Sr → Autk(M0,r) and

Q2 ↪→ Sr → Autk(M0,r) relative to the isomorphism φ : Q1
∼→ Q2,

i.e., φ̃ is an element of AutQ1,Q2

k (M0,r). This completes the proof of
assertion (ii). Assertion (iii) follows immediately from assertions (i),
(ii), together with the various definitions involved. �

Remark 5.2.1. Let ζl ∈ k be a primitive l-th root of unity. Then it

follows from [1], Theorems A, B, that Ker(Gk � Im(ρ
{l}
0,3)) ⊆ Gk(ζl).

Therefore, if we write

(Hi)k(ζl) = Hi ∩ ρ{l}0,[r](π1(M0,[r] ⊗k k(ζl))) ⊆ Im(ρ
{l}
0,[r])

and

(Hi)
geom
k(ζl)

def
= (Hi)k(ζl) ∩Hgeom

i ,

then (Hi)
geom
k(ζl)

= Hgeom
i ; in particular, (Hi)k(ζl) fits into similar exact

sequences

1 −→ (Hi)
geom
k(ζl)

(= Hgeom
i ) −→ (Hi)k(ζl) −→ ρ

{l}
0,3(π1(M0,3⊗kk(ζl))) −→ 1 ;

1 −→ ρ
{l}
0,r(π1(M0,r ⊗k k(ζl))) −→ (Hi)k(ζl) −→ Qi (⊆ Sr) −→ 1

to the exact sequences

1 −→ Hgeom
i −→ Hi −→ Im(ρ

{l}
0,3) −→ 1 ;

1 −→ Im(ρ
{l}
0,r) −→ Hi −→ Qi (⊆ Sr) −→ 1 .
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6. Proof of the main result

In the present §, we prove that the isomorphism class of an l-monodro-

mically full hyperbolic curve of genus zero over a finitely generated field
of characteristic zero is completely determined by the kernel of the as-
sociated pro-l outer Galois representation (cf. Theorem 6.1 below).

Theorem 6.1 (Galois-theoretic characterization of isomorphism
classes of monodromically full hyperbolic curves of genus zero).
Let l be a prime number; k a finitely generated field of character-
istic zero (cf. the discussion entitled “Numbers” in §0); k an algebraic

closure of k; Gk
def
= Gal(k/k); X1 = (C1, D1 ⊆ C1), X2 = (C2, D2 ⊆

C2) hyperbolic curves (cf. Definition 1.1, (ii)) of genus zero over k
which are l-monodromically full (cf. Definition 2.2, (i)). Suppose

that the following condition (†)prime is satisfied:

(†)prime : There exists a finite Galois extension k′ ⊆ k of

k of extension degree is prime to l such that X1 ⊗k k
′

and X2 ⊗k k
′ are split (cf. Definition 1.5, (i)).

(For example, if one of the following conditions is satisfied, then the

above condition (†)prime is satisfied:

• X1 and X2 are split.
• If we write ri for the number of the cusps of Xi — i.e., if Xi is of

type (0, ri) — then l is prime to r1! and r2! — or, equivalently,

r1, r2 < l.)

Then the following conditions are equivalent:

(i) X1 is isomorphic to X2 over k.
(ii) For i = 1, 2, write

ρ
{l}
Xi/k : Gk −→ Out

(
π1((Ci \Di)⊗k k)

(l)
)

for the pro-l outer Galois representation associated to Xi. Then

Ker(ρ
{l}
X1/k) = Ker(ρ

{l}
X2/k).

Proof. The implication
(i) =⇒ (ii)

is immediate; thus, to verify Theorem 6.1, it suffices to show the im-

plication

(ii) =⇒ (i) .

Suppose that condition (ii) is satisfied. Let us write N
def
= Ker(ρ

{l}
X1/k) =

Ker(ρ
{l}
X2/k) ⊆ Gk (cf. condition (ii)) and ri for the number of the cusps

of the hyperbolic curve Xi, i.e., Xi is a hyperbolic curve of type (0, ri).

Now it follows immediately that the bijection of sets φ : Im(ρ
{l}
X1/k)→

Im(ρ
{l}
X2/k) obtained as the composite

Im(ρ
{l}
X1/k)

∼←− Gk/N
∼−→ Im(ρ

{l}
X2/k)
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— where the “
∼←” and “

∼→” are natural isomorphisms — is an isomor-

phism of profinite groups; moreover, it follows from Lemma 1.6, (ii),

that this isomorphism φ is an isomorphism over Im(ρ
{l}
0,3). Thus, since

X1 and X2 are l-monodromically full, and the condition (†)prime is sat-

isfied, it follows from a similar argument to the argument used in the
proof of Lemma 5.1 (cf. the condition (∗)prime in the discussion preced-

ing Lemma 5.1) that φ maps Im(ρ
{l}-geom
0,r1

) ⊆ Im(ρ
{l}
X1/k) bijectively onto

Im(ρ
{l}-geom
0,r2

) ⊆ Im(ρ
{l}
X2/k). In particular, it follows immediately from

Lemma 4.2, (ii), that r1 = r2.

Write r
def
= r1 = r2, Qi for the image of the composite Im(ρ

{l}
Xi/k) ↪→

Im(ρ
{l}
0,[r]) � Im(ρ

{l}
0,[r])/Im(ρ

{l}
0,r) (' Sr — cf. Lemma 1.6, (iii)), and

[M0,r/Qi]→M0,[r] for the intermediate connected finite étale covering
of the Sr-covering M0,r → [M0,r/Sr] = M0,[r] corresponding to the

image Im(ρ
{l}
Xi/k) ⊆ Im(ρ

{l}
0,[r]). Then it follows from Lemma 5.2, (iii),

together with the assumption that the condition (†)prime is satisfied (cf.
the condition (∗)prime in the discussion preceding Lemma 5.1), that the
isomorphism obtained as the composite

π1([M0,r/Q1])/Ker(ρ
{l}
0,r) = Im(ρ

{l}
X1/k)

φ
∼−→ Im(ρ

{l}
X2/k) = π1([M0,r/Q2])/Ker(ρ

{l}
0,r)

arises from the lower horizontal arrow in a commutative diagram

M0,r −−−→ M0,ry
y

[M0,r/Q1] −−−→ [M0,r/Q2]

— where the vertical arrows are natural morphisms, and the horizontal
arrows are isomorphisms over k. Therefore, it follows from Lemma 4.1,
(ii), together with the various definitions involved, that if we write
s̃Xi
∈ M0,[r](k) for the classifying morphism of Xi, then the elements

of
Hom

Im(ρ
{l}
0,3)

(Gk, Im(ρ
{l}
0,[r]))/Inn(Im(ρ

{l}-geom
0,[r] ))

determined by s̃X1 and s̃X2 , respectively, coincide. Thus, it follows from
Lemma 4.3, (v), that X1 is isomorphic to X2 over k, as desired. This
completes the proof of the above implication. �

7. Example I: Hyperbolic curves of type (0,4) over
number fields

In the present §, we consider the monodromic fullness of hyperbolic

curves of type (0, 4) over number fields. In particular, we obtain suffi-
cient conditions for such a hyperbolic curve to be monodromically full
(cf. Theorem 7.8 and Corollaries 7.10, 7.11 below). Moreover, as an
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application of these sufficient conditions, we obtain a Galois-theoretic
characterization of the isomorphism classes of certain hyperbolic curves
of type (0, 4) over number fields (cf. Corollary 7.12 below). In the
present §, suppose that k is a number field (cf. the discussion entitled
“Numbers” in §0), and let ok ⊆ k be the ring of integers of k and
λ ∈ k \ {0, 1} an element of k \ {0, 1}. Moreover, in the present §,
if k′ ⊆ k is a finite extension of k, and p is a prime number, then
write P(k′; p) for the set of nonarchimedean primes of k′ whose residue
characteristic are p.

Definition 7.1. Let l be an odd prime number and ζl ∈ k a primitive
l-th root of unity.

(i) We shall write kl ⊆ k for the finite Galois extension of k(ζl)
corresponding to the quotient

Gk(ζl) � ρ
{l}
0,3(Gk(ζl)) � ρ

{l}
0,3(Gk(ζl))

ab ⊗Zl
Fl

(cf. Lemma 7.2, (i), below).
(ii) We shall write π1(P

1
k(ζl)
\ {0, 1,∞}) � Ql for the quotient of

π1(P
1
k(ζl)
\ {0, 1,∞}) obtained as the composite

π1(P
1
k(ζl)
\ {0, 1,∞}) ' π1(M0,4 ⊗k k(ζl)) � ρ

{l}
0,4(π1(M0,4 ⊗k k(ζl)))

� ρ
{l}
0,4(π1(M0,4 ⊗k k(ζl)))

ab ⊗Zl
Fl

— where the first arrow is the isomorphism obtained by an
isomorphism P1

k \ {0, 1,∞} 'M0,4 over k (cf. Lemma 4.1, (i)).
(iii) We shall write Xl → P1

k \{0, 1,∞} for the connected finite étale
covering of P1

k \ {0, 1,∞} corresponding to the open subgroup
(cf. Lemma 7.2, (ii), below) obtained as the kernel of π1(P

1
k(ζl)
\

{0, 1,∞}) � Ql.
(iv) We shall write

Yl
def
= Spec kl[s

±1, t±1]/(sl + tl − 1)

→ Spec k[u±1, 1/(u− 1)] = P1
k \ {0, 1,∞}

— where s, t, and u are indeterminates — for the connected
finite étale covering of P1

k \ {0, 1,∞} determined by the homo-
morphism of algebras over k

k[u±1, 1/(u− 1)] −→ kl[s
±1, t±1]/(sl + tl − 1)

u 7→ sl .

Lemma 7.2 (Properties of certain extensions and étale cover-
ings). Let l be an odd prime number and ζl ∈ k a primitive l-th root

of unity. Then the following hold:

(i) kl is a finite abelian extension of k(ζl) of degree a power of l;
moreover, the extension kl of k is unramified outside P(k; l).
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(ii) The closed subgroup of π1(P
1
k \ {0, 1,∞}) obtained as the kernel

of the surjection π1(P
1
k(ζl)
\ {0, 1,∞}) � Ql is open.

(iii) The finite étale covering Yl → P1
k \ {0, 1,∞} factors through

the finite étale covering Xl → P1
k \ {0, 1,∞}, i.e., we have a

sequence Yl → Xl → P1
k \ {0, 1,∞}.

Proof. First, we verify assertion (i). It follows from Lemma 2.5 (re-
spectively, Lemma 4.3, (ii)) that the quotient

Gk(ζl) � ρ
{l}
0,3(Gk(ζl))

is topologically finitely generated (respectively, pro-l). Moreover, it fol-
lows from [1], Theorems A, B, that the algebraic extension of k(ζl)
corresponding to the above quotient is unramified outside P(k(ζl); l).
Therefore, assertion (i) follows immediately from the fact that the ex-
tension k(ζl) of k is unramified outside P(k; l). This completes the
proof of assertion (i).

Next, we verify assertion (ii). It follows from Lemma 2.5 that the
quotient

π1(P
1
k(ζl)
\ {0, 1,∞}) ' π1(M0,4 ⊗k k(ζl)) � ρ

{l}
0,4(π1(M0,4 ⊗k k(ζl)))

— where the first arrow is the isomorphism obtained by an isomorphism
P1

k \ {0, 1,∞} ' M0,4 over k (cf. Lemma 4.1, (i)) — is topologically

finitely generated. Therefore, the quotient Ql is finite. This completes
the proof of assertion (ii).

Finally, we verify assertion (iii). It follows immediately from the
definition of the connected finite étale covering Yl → P1

k(ζl)
\ {0, 1,∞},

together with Lemma 4.2, (i), that this covering is Galois, and the
quotient by the normal open subgroup π1(Yl) ⊆ π1(P

1
k(ζl)
\ {0, 1,∞})

fits into an exact sequence

1 −→ Im(ρ
{l}-geom
0,4 )ab ⊗Zl

Fl −→ π1(P
1
k(ζl)
\ {0, 1,∞})/π1(Yl)

−→ ρ
{l}
0,3(Gal(k/k(ζl)))

ab ⊗Zl
Fl (= Gal(kl/k(ζl))) −→ 1 .

Therefore, it follows immediately from the definition of the connected
finite étale covering Xl → P1

k(ζl)
\ {0, 1,∞} that the natural surjec-

tion π1(P
1
k(ζl)
\ {0, 1,∞}) � Ql factors through π1(P

1
k(ζl)
\ {0, 1,∞}) �

π1(P
1
k(ζl)
\ {0, 1,∞})/π1(Yl). This completes the proof of assertion

(iii). �

Lemma 7.3 (Fibers and monodromic fullness). Let l be an odd

prime number and ζl ∈ k a primitive l-th root of unity. Consider the

following four conditions:

(i) The fiber of Xl → P1
k \{0, 1,∞} at the (image of the) k-rational

point of P1
k\{0, 1,∞} corresponding to the element λ ∈ k\{0, 1}

is connected.
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(ii) The composite

Gal(k/k(ζl)) −→ π1(P
1
k(ζl)
\ {0, 1,∞}) −→ Ql

— where the first arrow is the homomorphism (which is deter-

mined up to π1(P
1
k
\{0, 1,∞})-inner automorphism) induced by

the k(ζl)-rational point of P1
k(ζl)
\ {0, 1,∞} corresponding to the

element λ ∈ k \ {0, 1} ⊆ k(ζl) \ {0, 1} — is surjective.
(iii) The composite

Gk −→ π1(P
1
k \ {0, 1,∞})

∼−→ π1(M0,4) −→ Im(ρ
{l}
0,4)

— where the first arrow is the homomorphism (which is deter-

mined up to π1(P
1
k
\{0, 1,∞})-inner automorphism) induced by

the k-rational point of P1
k \ {0, 1,∞} corresponding to the ele-

ment λ ∈ k \ {0, 1}, and the second arrow is the isomorphism

over Gk obtained by an isomorphism P1
k \ {0, 1,∞}) ' M0,4

over k (cf. Lemma 4.1, (i)) — is surjective.
(iv) The hyperbolic curve (P1

k, {0, 1, λ,∞} ⊆ P1
k) of type (0, 4) over

k is l-monodromically full.

Then the following implication and equivalences hold:

(i)⇐⇒ (ii) =⇒ (iii)⇐⇒ (iv)

Proof. The equivalences

(i)⇐⇒ (ii) ; (iii)⇐⇒ (iv)

follow immediately from the various definitions involved. Thus, to
verify Lemma 7.3, it suffices to show the implication

(ii) =⇒ (iii) .

Suppose that condition (ii) is satisfied. It follows from the fact that

Ker(ρ
{l}
0,3) ⊆ Gk(ζl) (cf. Remark 5.2.1) that to verify condition (iii) —

by replacing k by k(ζl) — we may assume without loss of generality
that ζl ∈ k. Then it follows from Lemma 2.5 (respectively, Lemma 4.3,

(ii)) that Im(ρ
{l}
0,4) is topologically finitely generated (respectively, pro-l).

Therefore, it follows from [22], Lemma 2.8.7, (c); [22], Corollary 2.8.5,
together with the definition of the quotient Ql, that condition (iii) is
satisfied. This completes the proof of the above implication. �

Definition 7.4.

(i) If p is a nonarchimedean prime of k, then we shall write vp : k →
Z for the p-adic valuation such that if p is the residue charac-
teristic of p, then vp(p) coincides with the absolute ramification
index of the completion of k at p.

(ii) If a is an element of k∗, then we shall write [a]± (respectively,
[a]+; [a]−) for the (necessarily finite) set of nonarchimedean
primes p of k such that vp(a) 6= 0 (respectively, vp(a) > 0;
vp(a) < 0).
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Lemma 7.5 (Zeros and poles of certain divisors).

(i) [λ]+ ∩ [λ]− is empty.

(ii) [λ]− = [1− λ]−.

(iii) [λ]+ ∩ [1− λ]+ is empty.

(iv) [λ]+ 6= ∅, [1− λ]+ 6= ∅ if and only if [λ]± 6⊆ [1− λ]±, [1− λ]± 6⊆
[λ]±.

(v) Suppose that
{
λ, 1− λ, λ/(λ− 1)

}
∩ o∗k = ∅ .

Then there exists an element λ′ of
{
λ, 1/λ, 1− λ, 1/(1− λ), λ/(λ− 1), (λ− 1)/λ

}

such that [λ′]± 6⊆ [1− λ′]± and [1− λ′]± 6⊆ [λ′]±.

Proof. Assertion (i) follows from the definitions of “[−]+” and “[−]−”.
Assertions (ii) and (iii) follow immediately from a straightforward cal-
culation. Assertion (iv) follows immediately from assertions (i), (ii),
and (iii). Finally, we verify assertion (v). Suppose that any element of

mλ
def
= {λ, 1/λ, 1− λ, 1/(1 − λ), λ/(λ − 1), (λ − 1)/λ} does not satisfy

the desired condition. Now since mλ ∩ o∗k = ∅, any element λ′ ∈ mλ

satisfies either [λ′]+ 6= ∅ or [1/λ′]+ 6= ∅; thus, it follows from assertion
(iv) that — by replacing λ by an element of mλ — we may assume
without loss of generality that

[λ]+ = ∅ ; [1/λ]+ 6= ∅ ; [(λ− 1)/λ]+ = ∅ ;

[λ/(λ− 1)]+ 6= ∅ ; [1/(1− λ)]+ = ∅ ; [1− λ]+ 6= ∅ .
Therefore, it follows that 1/λ, λ/(λ− 1), 1− λ ∈ ok; in particular, we
obtain that λ/(λ− 1) ∈ o∗k — in contradiction to the assumption that
mλ ∩ o∗k = ∅. This completes the proof of assertion (v). �

Definition 7.6. Let l be an odd prime number. Then we shall say that
l satisfies the condition (†λ∈k) if there exist nonarchimedean primes p0

and q0 of k satisfying the following conditions:

(i) p0 6∈ P(k; l), p0 ∈ [λ]±, p0 6∈ [1− λ]±, and l is prime to vp0(λ).
(ii) q0 6∈ P(k; l), q0 6∈ [λ]±, q0 ∈ [1−λ]±, and l is prime to vq0(1−λ).

Remark 7.6.1. It is easily verified that if [λ]± 6⊆ [1−λ]± and [1−λ]± 6⊆
[λ]±, then there exists a cofinite set Σ of prime numbers — i.e., a
(necessarily infinite) set of prime numbers obtained as the complement

of a finite set of prime numbers in the set of all prime numbers — such
that if l ∈ Σ, then l satisfies the condition (†λ∈k).

Lemma 7.7 (Connectedness of a fiber). Let l be an odd prime

number, ζl ∈ k a primitive l-th root of unity, and αl ∈ k (respectively,
βl ∈ k) a solution of tl − λ (respectively, tl − (1− λ)) — where t is an

indeterminate. Suppose that the prime number l satisfies the condition

(†λ∈k). Then the following hold:
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(i) The finite extension k(ζl, αl) (respectively, k(ζl, βl)) of k is ram-
ified at p0 (respectively, q0) — cf. Definition 7.6 — and un-
ramified at q0 (respectively, p0).

(ii) The extension kl(αl, βl) of kl is of degree l2.
(iii) The fiber of Yl → P1

k \ {0, 1,∞} at the (image of the) k-rational

point of P1
k\{0, 1,∞} corresponding to the element λ ∈ k\{0, 1}

is connected. In particular, condition (i) of Lemma 7.3 is

satisfied.

Proof. Assertion (i) follows from the definition of the condition (†λ∈k),
together with, for example, [19], Chapter V, Lemma 3.3. Assertion
(ii) follows immediately from Lemma 7.2, (i), together with assertion
(i). Assertion (iii) follows from assertion (ii), together with Lemma 7.2,
(iii). �

Theorem 7.8 (Monodromic fullness of certain split hyperbolic
curves of type (0, 4) over number fields). Let l be an odd prime

number, k a number field (cf. the discussion entitled “Numbers” in

§0), and λ ∈ k \ {0, 1}. Suppose that l satisfies the condition (†λ∈k)
(cf. Definition 7.6). Then the hyperbolic curve (P1

k, {0, 1, λ,∞} ⊆ P1
k)

of type (0, 4) over k is l-monodromically full (cf. Definition 2.2,

(i)).

Proof. This follows from Lemma 7.3, together with Lemma 7.7, (iii).
�

Definition 7.9. LetX be a hyperbolic curve of type (0, 4) over k. Then
it follows immediately that there exists an element λX ∈ k \{0, 1} such
that the hyperbolic curve X⊗kk is isomorphic over k to the hyperbolic
curve

(Pk, {0, 1, λX,∞} ⊆ Pk)

of type (0, 4) over k. Now we shall write

mX
def
= {λX , 1/λX, 1−λX, 1/(1−λX), λX/(λX − 1), (λX − 1)/λX} ⊆ k .

Note that, as is well-known, mX depends only on (and completely de-

termines!) the isomorphism class of the hyperbolic curve X ⊗k k over
k.

Corollary 7.10 (Monodromic fullness of certain hyperbolic curves
of type (0, 4) over number fields). Let k be a number field (cf.
the discussion entitled “Numbers” in §0), k an algebraic closure of k, ok

the ring of integers of k, and X a hyperbolic curve (cf. Definition 1.1,

(ii)) of type (0, 4) over k. If mX ∩ o∗
k

= ∅ (cf. Definition 7.9), then

there exists a cofinite set Σ of prime numbers — i.e., a (necessarily
infinite) set of prime numbers obtained as the complement of a finite

set of prime numbers in the set of all prime numbers — such that the
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hyperbolic curve X over k is Σ-monodromically full (cf. Defini-

tion 2.2, (i)).
In particular, if ok ⊆ k is the ring of integers of k, and λ ∈ k \{0, 1}

is an element of k \ {0, 1} such that
{
λ, 1− λ, λ/(λ− 1)

}
∩ o∗k = ∅ ,

then there exists a cofinite set Σ of prime numbers such that the

hyperbolic curve (P1
k, {0, 1, λ,∞} ⊆ P1

k) of type (0, 4) over k is Σ-
monodromically full.

Proof. This follows from Theorem 7.8 together with Lemma 7.5, (v);
Remark 7.6.1. �

Corollary 7.11 (Monodromic fullness of split hyperbolic curves
of type (0, 4) over the field of rational numbers or certain
imaginary quadratic fields). Let d be a square-free positive integer

such that d 6= 1, 3. Write k for the field of rational numbers Q or

the imaginary quadratic field Q(
√
−d). If λ ∈ k, then the following

conditions are equivalent:

(i) The hyperbolic curve (P1
k, {0, 1, λ,∞} ⊆ P1

k) — of type (0, 3)
or (0, 4) — over k is not isomorphic to the hyperbolic curve

(P1
k, {0, 1,−1,∞} ⊆ P1

k) of type (0, 4) over k.
(ii) λ is not equal to −1, 2, 1/2.
(iii) There exists a cofinite set Σ of prime numbers — i.e., a (nece-

ssarily infinite) set of prime numbers obtained as the comple-

ment of a finite set of prime numbers in the set of all prime

numbers — such that the hyperbolic curve (P1
k, {0, 1, λ,∞} ⊆

P1
k) — of type (0, 3) or (0, 4) — over k is Σ-monodromically

full (cf. Definition 2.2, (i)).
(iv) There exists a prime number l such that the hyperbolic curve

(P1
k, {0, 1, λ,∞} ⊆ P1

k) — of type (0, 3) or (0, 4) — over k is

l-monodromically full.

Proof. The implication

(i) =⇒ (ii)

is immediate. The implication

(ii) =⇒ (iii)

follows from Theorem 7.10, together with the fact that o∗
k = {±1}.

The implication

(iii) =⇒ (iv)

is immediate. Finally, we verify the implication

(iv) =⇒ (i) .
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It is easily verified that P1
Q \ {0, 1,−1,∞} has some special symmetry

— i.e., AutQ(P1
Q
\ {0, 1,−1,∞}) is not isomorphic to G0,4 (cf. Def-

inition 3.1). Therefore, the above implication follows from Proposi-
tion 3.4. �

Corollary 7.12 (Galois-theoretic characterization of isomor-
phism classes of certain hyperbolic curves of type (0, 4) over
number fields). Let k be a number field (cf. the discussion entitled

“Numbers” in §0); k an algebraic closure of k; ok the ring of integers

of k; Gk
def
= Gal(k/k); X1 = (C1, D1 ⊆ C1), X2 = (C2, D2 ⊆ C2) hyper-

bolic curves (cf. Definition 1.1, (ii)) of type (0, 4) over k. Suppose

that mX1 ∩ o∗
k

= mX2 ∩ o∗
k

= ∅ (cf. Definition 7.9). Then the following

conditions are equivalent:

(i) X1 is isomorphic to X2 over k.
(ii) There exists an infinite set Σ of prime numbers such that, for

any l ∈ Σ, if we write

ρ
{l}
Xi/k : Gk −→ Out

(
π1((Ci \Di)⊗k k)

(l)
)

for the pro-l outer Galois representation associated to Xi, then

Ker(ρ
{l}
X1/k) = Ker(ρ

{l}
X2/k).

Proof. The implication
(i) =⇒ (ii)

is immediate; on the other hand, the implication

(ii) =⇒ (i)

follows immediately from Theorem 6.1, together with Corollary 7.10.
�

8. Example II: Nonisotrivial hyperbolic curves of type
(0,4)

In the present §, we consider the monodromic fullness of nonisotrivial

hyperbolic curves of type (0, 4).

Definition 8.1. Let X be a hyperbolic curve over k. Then we shall say
that X is NF-isotrivial (where the “NF” stands for “number field”) if
there exist a finite extension k′ ⊆ k of k, a number field k0 ⊆ k′ (cf. the
discussion entitled “Numbers” in §0) contained in k′, and a hyperbolic
curve X0 over k0 such that X ⊗k k

′ is isomorphic to X0 ⊗k0 k
′ over k′.

(cf. [26], Proposition 1.2, (i)).

Corollary 8.2 (Monodromic fullness of nonisotrivial hyperbolic
curves of type (0, 4)). Let k be a finitely generated field of char-
acteristic zero (cf. the discussion entitled “Numbers” in §0) and X a

hyperbolic curve (cf. Definition 1.1, (ii)) of type (0, 4) over k which is

not NF-isotrivial (cf. Definition 8.1). Then there exists a cofinite
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set Σ of prime numbers — i.e., a (necessarily infinite) set of prime

numbers obtained as the complement of a finite set of prime numbers

in the set of all prime numbers — such that the hyperbolic curve X
over k is Σ-monodromically full (cf. Definition 2.2, (i)).

Proof. It is immediate that to verify Corollary 8.2 — by replacing k
by a suitable finite extension of k — we may assume without loss of
generality that X is split. Now since k is finitely generated field of

characteristic zero, there exist a subfield k0 ⊆ k of k and a scheme V0

over k0 satisfying the following conditions:

(i) k0 is a number field (cf. the discussion entitled “Numbers” in
§0).

(ii) V0 is regular, separated, geometrically connected, and of finite
type over k0.

(iii) The function field of V0 is isomorphic to k.
(iv) The split hyperbolic curve X over k extends to a split hyperbolic

curve X0 over V0.

Now since the natural homomorphism π1(Spec k) → π1(V0) (cf. (iii))
is surjective (cf. (ii)), and the pro-Σ outer monodromy representation
ρΣ

X/k factors through ρΣ
X0/V0

(cf. (iv)), it follows from the definition of
the term “monodromically full” that, to verify Corollary 8.2, it suffices
to show that there exists a closed point v ∈ V0 of V0 such that the
hyperbolic curve (X0)v over the residue field at v ∈ V0 obtained as the
fiber of the hyperbolic curve X0 over V0 at v ∈ V0 is Σ-monodromically

full for some cofinite set Σ of prime numbers.
Write s̃X0/V0 : V0 → P1

k0
\{0, 1,∞} for the classifying morphism of the

split hyperbolic curve X0 over V0 (cf. (iv), together with Lemma 4.1,
(i)). Then since X is not NF-isotrivial, and P1

k0
\ {0, 1,∞} is of di-

mension one, it follows that the image of the morphism s̃X0/V0
is

open; in particular, there exists a closed point v of P1
k0
\ {0, 1,∞}

contained in the image of s̃X0/V0
such that if λ ∈ k0 \ {0, 1} is an ele-

ment of k0 \ {0, 1} naturally corresponding to v ∈ P1
k0
\ {0, 1,∞}, then

{λ, 1 − λ, λ/(λ − 1)} ∩ o∗
k0

= ∅ — where k0 is an algebraic closure of

k0 and ok0
is the ring of integers of k0 (cf. (i)). Let v ∈ V0 be a closed

point of V0 whose image via s̃X0/V0 is v. Then it follows immediately
from Corollary 7.10 that the hyperbolic curve (X0)v over the residue
field at v ∈ V0 obtained as the fiber of the hyperbolic curve X0 over
V0 at v ∈ V0 is Σ-monodromically full for some cofinite set Σ of prime
numbers. This completes the proof of Corollary 8.2. �

Remark 8.2.1. It is immediate that Corollary 8.2 implies the following
assertion:

Let k be a finitely generated field of characteristic
zero (cf. the discussion entitled “Numbers” in §0) and

X a hyperbolic curve (cf. Definition 1.1, (ii)) of type
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(0, 4) over k. Suppose that there exists an infinite set

Σ of prime numbers such that if l ∈ Σ, then X is not
l-monodromically full (cf. Definition 2.2, (i)). Then

X is NF-isotrivial (cf. Definition 8.1).

On the other hand, if, in the above assertion, one replaces “(0, 4)”
by “(0, r)” for some r ≥ 5, then the conclusion no longer holds in
general. A counter-example is as follows: Let k0 be a number field,

S
def
= P1

k0
\ {0, 1,−1,∞}, and k the function field of S. Then the

natural open immersion

S ↪→ P1
k0
\ {0, 1,∞}

and the composite

S → Spec k0 ↪→ P1
k0
\ {0, 1,∞}

— where the first arrow is the structure morphism of S, and the second
arrow is the k0-rational point corresponding to −1 ∈ k0 \ {0, 1} — de-
termine a morphism over k from S to the second configuration space of
P1

k0
\ {0, 1,∞}; in particular, it follows immediately from Lemma 4.1,

(i), that we obtain a split hyperbolic curve X over k of type (0, 5). Now
since X may be embedded as an open subscheme of P1

k \ {0, 1,−1,∞},
it follows immediately from Proposition 3.4 (cf. also the argument
used in the proof of the implication (iv) ⇒ (i) in the proof of Corol-
lary 7.11), together with Remark 2.2.5, that, for any prime number l,
the hyperbolic curve X over k is not l-monodromically full. On the
other hand, it follows immediately from the definition of X that X is
not NF-isotrivial.

Corollary 8.3 (Galois-theoretic characterization of isomorphism
classes of nonisotrivial hyperbolic curves of type (0, 4)). Let k
be a finitely generated field of characteristic zero (cf. the dis-

cussion entitled “Numbers” in §0); k an algebraic closure of k; Gk
def
=

Gal(k/k); X1 = (C1, D1 ⊆ C1), X2 = (C2, D2 ⊆ C2) hyperbolic curves

(cf. Definition 1.1, (ii)) of type (0, 4) over k which are not NF-
isotrivial (cf. Definition 8.1). Then the following conditions are

equivalent:

(i) X1 is isomorphic to X2 over k.
(ii) There exists an infinite set Σ of prime numbers such that, for

any l ∈ Σ, if we write

ρ
{l}
Xi/k : Gk −→ Out

(
π1((Ci \Di)⊗k k)

(l)
)

for the pro-l outer Galois representation associated to Xi, then

Ker(ρ
{l}
X1/k) = Ker(ρ

{l}
X2/k).

Proof. The implication

(i) =⇒ (ii)
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is immediate; on the other hand, the implication

(ii) =⇒ (i)

follows immediately from Theorem 6.1, together with Corollary 8.2. �

Appendix. Ramification of outer Galois representations
and isomorphism classes of hyperbolic curves

In the present §, we prove finiteness results, which are related to
the main result of the present paper (cf. Theorem A.3, Corollary A.4
below). It seems to the author that the results appearing in the present
§ are likely to be well-known; since, however, the results could not be
found in the literature, the author decided to give proofs of the results
in the present §. In the present §, let l be a prime number, k a number

field (cf. the discussion entitled “Numbers” in §0), and (g, r) a pair of
nonnegative integers such that 2g − 2 + r > 0.

Definition A.1. Let N ⊆ Gk be a normal closed subgroup of Gk and
P a set of primes of k. Then we shall write

IGal(l, k, g, r, N) (respectively, Iunr(l, k, g, r,P))

for the set of the isomorphism classes over k of hyperbolic curves X =
(C,D ⊆ C) of type (g, r) over k satisfying the following condition: If
we write

ρ
{l}
X/k : Gk −→ Out

(
π1((C \D)⊗k k)

(l)
)

for the pro-l outer Galois representation associated to X, then the ker-

nel of ρ
{l}
X/k coincides with N ⊆ Gk (respectively, then ρ

{l}
X/k is unramified

outside P).

Remark A.2. If N ⊆ Gk is a normal closed subgroup of Gk obtained

as the kernel of the pro-l outer Galois representation associated to a

hyperbolic curve over k, then it is easily verified that there exists a finite

set P of primes of k such that IGal(l, k, g, r, N) ⊆ Iunr(l, k, g, r,P).

The main purpose of the present § is to prove the following fact.

Theorem A.3. Let l be a prime number, k a number field (cf. the

discussion entitled “Numbers” in §0), k an algebraic closure of k, Gk
def
=

Gal(k/k), (g, r) a pair of nonnegative integers such that 2g−2+r > 0,
and P a finite set of primes of k. Then the set Iunr(l, k, g, r,P) (cf.
Definition A.1) is finite.

By Theorem A.3, together with Remark A.2, we obtain the following
corollary.

Corollary A. 4. Let l be a prime number, k a number field (cf.
the discussion entitled “Numbers” in §0), k an algebraic closure of k,

Gk
def
= Gal(k/k), (g, r) a pair of nonnegative integers such that 2g −
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2 + r > 0, and N ⊆ Gk a normal closed subgroup of Gk. Then the set

IGal(l, k, g, r, N) (cf. Definition A.1) is finite.

The rest of the present § is devoted to prove Theorem A.3.

Lemma A.5. Let P be a finite set of primes of k and X = (C,D ⊆
C) a hyperbolic curve over k whose isomorphism class over k is in

Iunr(l, k, g, r,P). Then there exists a finite extension k(l, k, r,P) ⊆ k
of k that depends only on l, k, r, and P such that the hyperbolic

curve X ⊗k k(l, k, r,P) over k(l, k, r,P) is split (cf. Definition 1.5,

(i)).

Proof. To prove Lemma A.5 — by replacing P by a finite set of primes
of k containing P and the set of the primes of k whose residue char-
acteristic are l — we may assume without loss of generality that the
set of primes of k whose residue characteristic are l is contained in P.
Then it follows immediately from the criterion of Oda-Tamagawa for
good reduction of hyperbolic curves (cf. [25], Theorem 0.8) that any
irreducible component of D is isomorphic to the spectrum of a finite
extension of k which is unramified outside P. On the other hand, it
follows immediately from a well-known theorem of Hermite-Minkowski

that there are only finitely many isomorphism classes of finite exten-
sions of k of extension degree ≤ r which are unramified outside P.
Therefore, if we write k(l, k, r,P) for the composite field of all exten-
sion fields (in k) of extension degree ≤ r which are unramified outside
P, then k(l, k, r,P) satisfies the desired condition. This completes the
proof of Lemma A.5. �

Lemma A. 6. Let k′ be a finite extension of k and Y a hyperbolic

curve over k′. Then there are only finitely many isomorphism classes

over k of hyperbolic curves X over k satisfying the following condition:

X ⊗k k
′ is isomorphic to Y over k′.

Proof. To verify Lemma A.6 — by replacing k′ by a finite extension of k′

— we may assume without loss of generality that the extension k′ of k is
Galois. Write D for the set of the isomorphism classes [X, φ : X⊗kk

′ ∼→
Y ] of pairs (X, φ : X ⊗k k

′ ∼→ Y ) of hyperbolic curves X over k and

isomorphisms φ : X⊗k k
′ ∼→ Y over k′ — where we shall say that a pair

(X1, φ1 : X1⊗kk
′ ∼→ Y ) is isomorphic to a pair (X2, φ2 : X2⊗kk

′ ∼→ Y ) if

there exists an isomorphism ψ : X1
∼→ X2 over k such that φ2 ◦ψ = φ1.

To verify Lemma A.6, it is immediate that it suffices to show that this
set D is finite. Moreover, to verify the finiteness of D, it is immediate
that we may assume without loss of generality that D is nonempty. Let
us fix an element [X0, φ0 : X0 ⊗k k

′ ∼→ Y ] ∈ D of D. Then we obtain a
map

D −→ Z1(Gal(k′/k),Autk′(Y ))

[X, φ : X ⊗k k
′ ∼→ Y ] 7→ (g 7→ φ ◦ g−1 ◦ φ−1 ◦ φ0 ◦ g ◦ φ−1

0 )
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— where the action of Gal(k′/k) on Autk′(Y ) is given by

Gal(k′/k) −→ Aut
(
Autk′(Y )

)

g 7→ (f 7→ φ0 ◦ g−1 ◦ φ−1
0 ◦ f ◦ φ0 ◦ g ◦ φ−1

0 ) .

Moreover, by Galois descent, this map is injective. Therefore, the finite-

ness of D follows from the finiteness of Gal(k′/k) and Autk′(Y ). �

Proof of Theorem A.3. To prove Theorem A.3 — by replacing P by a
finite set of primes of k containing P and the set of the primes of k
whose residue characteristic are l — we may assume without loss of
generality that the set of primes of k whose residue characteristic are l
is contained in P. Moreover, it follows from Lemma A.6 that to prove
Theorem A.3, it suffices to verify that if we write I1 ⊆ Iunr(l, k, g, r,P)
for

the subset of Iunr(l, k, g, r,P) consisting of the isomor-
phism classes over k of hyperbolic curves which are split,

then I1 is finite. Now if X = (C,D ⊆ C) is a hyperbolic curve over
k whose isomorphism class over k is in I1, then it follows from the
criterion of Oda-Tamagawa for good reduction of hyperbolic curves (cf.
[25], Theorem 0.8) that the proper curve C admits good reduction at all

primes outside P. Therefore, if g ≥ 1 (respectively, if g = 0), then it
follows from a well-known theorem of Faltings-Shafarevich (respectively,
the fact that X is split) that

the set consisting of the isomorphism classes over k of
the proper curves “C” appearing in the elements of I1

is finite. Thus, to prove Theorem A.3, it suffices to verify that for a
hyperbolic curve X0 = (C0, D0 ⊆ C0) over k whose isomorphism class
over k is in I1, if we write I2 ⊆ I1 for

the subset of I1 consisting of the isomorphism classes
over k of hyperbolic curves X = (C,D ⊆ C) over k
whose isomorphism classes over k are in I1 such that
the proper curves C are isomorphic to the proper curve
C0 over k,

then I2 is finite. On the other hand, this follows immediately from two
well-known theorems of Mahler-Siegel and Faltings-Mordell, together
with the criterion of Oda-Tamagawa for good reduction of hyperbolic
curves (cf. [25], Theorem 0.8). This completes the proof of Theorem
A.3. �
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