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Abstract

The boundary value problem for semilinear parabolic stochastic
equations of the form dX − ∆X dt + β(X)dt 3 √

QdWt, where Wt

is a Wiener process and β is a maximal monotone graph everywhere
defined, is well posed.

Key words: Wiener process, mild solution, random differential equa-
tion.
Riassunto. Il problema ai limiti per l’equazione stocastica semi-
lineare di forma dX −∆X dt + β(X)dt 3 √QdWt, dove Wt é un pro-
cesso Wiener e β é un grafico massimale monotono definito ovunque,
é ben posto.

1 Introduction

Consider the stochastic differential equation

(1)

dX −∆X dt + β(X)dt 3 √Q dWt in (0, T )×O = QT ,

X(0) = x in O,

X = 0 on (0, T )× ∂O = ΣT .

Here, O is an open and bounded subset of Rd with smooth boundary ∂O,
d ≥ 1, and Wt is a cylindrical Wiener process in L2(O) = H defined by

Wt =
∞∑

k=1

ek(ξ)βk(t), ξ ∈ O, t ≥ 0,

where {βk}k are mutually independent Brownian motions on a probability
space {Ω,F ,P} and {ek} is an orthonormal basis in H. The operator Q ∈
L(H, H) is self–adjoint, positive and of finite trace.

Finally, β : R → 2R is a maximal monotone graph (see [1]) everywhere
defined on R.

1Nella seduta del...
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The main result of this note is that, under suitable assumptions on Q (see
(H1) below), equation (1) has a unique strong(mild) solution (Theorem 2).
A similar result was proven in [2] for the stochastic porous media equation.

Compared with standard existence theory for equation (1) (see [3], [4]),
where the main assumption is that β is continuous, monotonically increasing,
here β might be multivalued and, therefore, discontinuous. Also, as seen later
on, β might be a time dependent function β = β(t, ·) measurable in t ∈ [0, T ].

Moreover, our existence results apply to multivalued graphs β everywhere
defined on R. Such a graph (multivalued) arises naturally when in equation
(1) the function β is monotonically increasing and discontinuous in {rj}∞j=1.
Then, one redefines β by

β̃(r) = β(r) for r 6= rj, β̃(rj) = [β(rj), β(rj+1 − 0)]

and get a maximal monotone graph β̃. So, one might say that the existence
result established here in Theorem 2 below applies as well to discontinuous
monotonically increasing besides continuous functions β.

We shall denote by CW ([0, T ]; H) the space of all adapted processes X ∈
C([0, T ]; L2(Ω,F ,P, H)), H = L2O) and by L2

W (0, T ; H1
0 (O)) the space of all

adapted processes X ∈ L2(0, T ; L2(Ω,F ,P, H1
0 (O)) (see [3]). Here, H1

0 (O) is
the standard Sobolev space.

We denote also by WA the stochastic convolution

WA(t) =

∫ t

0

e−A(t−s)
√

Q dWs, t ≥ 0,

where A = −∆, D(A) = H1
0 (O)∩H2(O). We recall that WA(t) is a Gaussian

process and E(|WA(t)|2] < ∞, ∀t ≥ 0 (see [3], p. 21).

2 The main result

The following hypotheses will be assumed.

(H1) WA(·, ·) is continuous on [0, T ]×O, P-a.s..

(H2) β : R → 2R is a maximal monotone graph such that D(β) = R.

Here, D(β) = {r ∈ R; β(r) 6= ∅}.
In particular, hypotheses (H2) holds if β is a monotonically nondecreasing

and continuous function.
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As regards hypotheses (H1), we refer to [3], Theorem 2.13, for sufficient
conditions on Q under which it holds.

Definition 1 By strong (or mild) solution to equation (1) we mean a process
X ∈ C([0, T ]; H) which satisfies

(2) X(t) = e−Atx−
∫ t

0

e−A(t−s)η(s)ds + WA(t), P-a.s., t ∈ [0, T ],

where η ∈ L1((0, T )×O × Ω) is a process such that

(3) η(t, ξ) ∈ β(X(t, ξ)), a.e. (t, ξ) ∈ QT , P-a.s.

Theorem 2 Under hypotheses (H1), (H2), for each x ∈ H = L2(O) there is
a unique strong solution X to equation (1), such that

X ∈ L2
W ([0, T ]; H1

0 (O)),(4)

j(X), j∗(η) ∈ L1((Q, T )×O × Ω).(5)

Here, j is the subpotential associated with β, i.e., ∂j = β and j∗ is the
conjugate of j. (See the notation below.)

3 Proof of Theorem 2

Existence. By using a standard device, we shall reduce equation (1) to the
random differential equation

(6)

yt −∆y + β(y + WA) 3 0, (t, ξ) ∈ QT = (0, T )×O,

y(0, ξ) = x(ξ), ξ ∈ O,

y = 0 on (0, T )× ∂O = ΣT ,

where y = X −WA.
We fix ω ∈ Ω and approximate (6) by

(7)

(yε)t −∆yε + βε(yε + WA) 3 0, (t, ξ) ∈ QT ,

yε(0, ξ) = x(ξ), in O,

y = 0 on ΣT ,
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where βε =
1

ε
(1 − (1 + εβ)−1) is the Yosida approximation of β (see, e.g.,

[1]). Since βε is Lipschitzian, equation (7) has a unique solution

yε ∈ C([0, T ]; L2(O)) ∩ L2(0, T ; H1
0 (O))

√
t(yε)t ∈ L2(0, T ; L2(O)),

√
t yε ∈ L2(0, T ); H2(O)).

Denote by j : R → R the subpotential function corresponding to β, that is
∂j = β, where ∂j is subdifferential of β (see, e.g., [1], p. 53). Let j∗ be the
conjugate of j, that is,

j∗(p) = sup{p · r − j(r); r ∈ R}

and recall that p ∈ ∂β(r) if and only if

(8) j(r) + j∗(p) = rp.

We have also βε = ∇jε, where

(9)
jε(r) = inf

{ |r − s|2
2ε

+ j(s); s ∈ R

}

=
1

2ε
|(1 + εβ)−1r − r|2 + j((1 + εβ)−1r), ∀r ∈ R.

Multiplying (7) by yε and integrating on (0, T )×O, we obtain that

(10)

1

2
‖yε(t)‖2

L2(O) +

∫ t

0

‖yε(s)‖2
H1

0 (O)ds +

∫ t

0

∫

O
jε(yε + WA)ds dξ

≤ 1

2
‖x‖2

L2(O) +

∫ t

0

∫

O
jε(WA)ds dξ ≤ C,

∀t ∈ [0, T ].

Hence, on a subsequence ε → 0, we have

(11) yε → y∗ weakly in L2(0, T ; H1
0 (O)) and weak-star in L∞(0, T ; L2(O)).

Also, by (9)∼(10), we see that, for ε → 0,

(12) (1 + εβ)−1(yε + WA) → y∗ + WA weak-star in L∞(0, T ; L2(O)).
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By (8), we have

j∗(βε(yε + WA)) + j((1 + εβ)−1(yε + WA))

= (βε(yε + WA))(1 + εβ)−1(yε + WA) ≤ βε(yε + WA)(yε + WA).

This yields

(13)

∫

QT

j∗(βε(yε + WA))dξ dt ≤
∫

QT

βε(yε + WA)yεdξ dt

−
∫

QT

βε(yε + WA)WAdξ dt = −1

2
‖yε(T )‖2

L2(O) +
1

2
‖x‖2

L2(O)

−‖yε‖2
L2(0,T ;H1

0 (O))
−

∫ ∫

QT

βε(yε + WA)WAdξ dt.

Since D(β) = R, we have that

(14) lim
|r|→∞

j∗(r)
|r| = +∞.

Then, by (14) we obtain that for each n there is Cn > 0 such that

(15)
j∗(βε(yε + WA)) ≥ n|βε(yε + WA)|

a.e. on {(ξ, t); |βε(yε + WA)(ξ, t)| ≥ Cn}.

We shall use this to prove that {βε(yε+WA)}ε>0 is weakly compact in L1(QT ).
To this purpose, it suffices to show that

(16)

∫

QT

|βε(tε + WA)|dξ dt ≤ C, ∀ε > 0,

and that, for each δ > 0, there is C(δ) such that for any measurable subset
Q∗ ⊂ QT with the Lebesgue measure m(Q∗) ≤ Cδ, we have

(17)

∫

Q∗
|βε(yε + WA)|dξ dt ≤ δ, ∀ε > 0,

(Cδ independent of ε).
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Estimate (16) follows by (13) and (15). As regards (17), we start from
the inequality

∫

Q∗
|βε(yε + WA)|dξ dt ≤

∫

Q∗∩[|βε(yε+WA)|≥n]

|βε(yε + WA)|dξ dt

+nm(Q∗) ≤ 1

n

∫

Q∗
j∗ε (βε(yε + WA))dξ dt + nm(Q∗)

≤ 1

n
‖WA‖L∞(QT )‖βε(yε + WA)‖L1(QT ) ≤ C

n
+ nm(Q∗).

(Here, we have used (13), (15), (16) and (H1).)

Hence, for n ≥ δ

2C
and m(Q∗) ≤ δ

2n
, we obtain (17), as claimed.

Then, by the Pettis theorem, {βε(yε + WA)}ε>0 is weakly compact in
L1(QT ) and so, on a subsequence, again denoted ε, we have

(18) βε(yε + WA) → η weakly in L1(QT ).

Inasmuch as {βε(yε +WA)} is bounded in L1(QT ), it follows by (7) that {yε}
is compact in C([0, T ]; L1(O)) and, therefore, for ε → 0,

(19) yε → y∗ strongly in C([0, T ]; L1(O))

and

(20)
y∗t −∆y∗ + η = 0 in QT ,

y∗(0) = x, y∗(t) ∈ H1
0 (O), a.e. t ∈ [0, T ].

In order to conclude the proof of existence for equation (6), it remains to
be proven that

(21) η(t, ξ) ∈ β(y∗(t, ξ)) + WA(t, ξ)), a.e. (t, ξ) ∈ QT .

To this end, we start from the inequality

(22)

∫

Q0

βε(yε + WA)(yε + WA − z)dξ dt

≥
∫

Q0

jε(yε + WA)dξ dt−
∫

Q0

jε(z)dξ dt, ∀z ∈ L∞(Q0),

for any measurable subset Q0 ⊂ QT .
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On the other hand, by (19), by Egorov Theorem, it follows that for each
δ > 0 there is Qδ ⊂ QT such that m(QT \Qδ) ≤ δ and yε → y∗ uniformly on
Qδ as ε → 0. Taking Q0 = QT in (22), we obtain

∫

Qδ

η(y∗ + WA − z)dξ dt ≥
∫

Qδ

(j(y∗ + WA)− j(z))dξ dt, ∀z ∈ L∞(Qδ).

The latter implies by a standard device the pointwise inequality

η(y∗ + WA − z) ≥ j(y∗ + WA)− j(z), a.e. in Qδ, ∀z ∈ R,

and, therefore, η ∈ ∂j(y∗ + WA) = β(y∗ + WA), a.e. in Qδ, and since δ is
arbitrary, we obtain (21), as claimed.

Now, it is clearly seen that X(t) = y(t) + WA is a solution to (1) in the
sense precised in Definition 1. (The fact that the process X(t) = lim

ε→0
yε(t) +

WA(t) is adapted is obvious because so is Xε(t) = yε(t) + WA(t).)
By (10) and (13), it is also easily seen that j(X), j∗(η ∈ L1((0, T )×O×Ω).

This completes the proof of the existence.

Uniqueness. It is immediate, because if Xi, i = 1, 2, are solutions to (1) in
the above sense, then yi = Xi−WA, i = 1, 2, are P-a.s. solutions to equation
(6), which clearly has a unique solution by monotonicity of β.

Remark 3 Theorem 2 remains true for time dependent maximal monotone
graphs β = β(t, ·) which satisfy the following assumptions.

(H2)′ For almost all t ∈ (0, T ), β(t, ·) : R → 2R is maximal monotone,
measurable in t and for each M > 0 there is CM independent of t such
that

(23) |β(t, r)| ≤ CM a.e. t ∈ (0, T ), ∀r ∈ [−M,M ].

If β is independent of t, (H2)′ is implied by (H2). The proof is exactly the
same as that of Theorem 2.
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