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Abstract

Stochastic partial differential equations whose solutions are probability-measure-
valued processes are considered. Measure-valued processes of this type arise naturally
as de Finetti measures of infinite exchangeable systems of particles and as the solutions
for filtering problems. In both these cases, the solution is the conditional distribution
of the solution of a stochastic differential equation. The main result states that, under
mild nondegeneracy conditions on the coefficients of the stochastic differential equa-
tion, the conditional distribution of its solution charges any open set. Under stronger
conditions we show that it is absolutely continuous with respect to Lebesgue measure
and its density is positive almost everywhere. As applications we show the existence of
a solution of a system of interacting diffusions and study the properties of the solution
of the nonlinear filtering equation within a framework that allows for the signal noise
and the observation noise to be correlated. The work was motivated by a model of
asset price determination in which the price is given as a quantile of the valuations of
infinitely many individual investors.
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1 Introduction

Let (Ω,F , P ) be a probability space and (E, r) a complete separable metric space. Let B
and W be d and d′-dimensional standard Brownian motions, and let V be a cadlag E-valued
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process. We assume that B is independent of (W,V ) and that W is compatible with V in the
sense that for each t ≥ 0, Wt+·−Wt is independent of FW,Vt , where FW,Vt = σ(Ws, Vs, s ≤ t).
Let X be a d-dimensional stochastic process satisfying the equation

Xt = X0 +

∫ t

0

f (Xs, Vs) ds+

∫ t

0

σ (Xs, Vs) dWs +

∫ t

0

σ̄ (Xs, Vs) dBs. (1.1)

We assume that, given V0, X0 is conditionally independent of W , V and B, that is,

E[f(X0)|FW,V,B∞ ] = E[f(X0)|V0]. (1.2)

For reasons that we will make clear below, we are interested in the P(Rd)-valued process
π = {πt, t ≥ 0}, where πt is the conditional distribution of Xt given FW,Vt ,

πt (ϕ) = E
[
ϕ (Xt) |F

W,V
t

]
,

for any ϕ ∈ B(Rd), the bounded, Borel-measurable functions on Rd.
The first result of the paper states that, under very general nondegeneracy and regularity

conditions (Assumption A1 below), for t > 0, πt charges any open set A ⊂ Rd almost surely
(and the null set can be chosen independent of A). Further, under additional conditions on
the coefficients of (1.1), πt is absolutely continuous with respect to Lebesgue measure on
Rd and, with probability one, its density is strictly positive.

Our primary interest in these results is to treat infinite systems of stochastic differential
equations

X i
t = X i

0 +

∫ t

0

f
(
X i
s, Vs

)
ds+

∫ t

0

σ
(
X i
s, Vs

)
dWs +

∫ t

0

σ̄
(
X i
s, Vs

)
dBi

s, (1.3)

where the Bi are independent standard Brownian motions, {X i
0} is an exchangeable sequence

that is independent of W and {Bi}, and

Vt = lim
n→∞

1

n

n∑

i=1

δXi
t
. (1.4)

We require the solution {X i} to be exchangeable so that the limit in (1.4) exists by deFinetti’s
theorem. (See Theorem A.1.) In particular, if the solution of the system is weakly unique,
then {X i} must be exchangeable, so (1.4) must exist. Under a Lipschitz condition on the
first variable and a continuity condition on the second, weak existence of an exchangeable
solution can be shown for which the Bi are independent of W and V . By exchangeability,

πt(ϕ) = E[ϕ(X1
t )|FW,Vt ] =

1

n
E

[
n∑

i=1

ϕ(X i
t)|F

W,V
t

]
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and since Vt is measurable with respect to FW,Vt it follows that

Vt(ϕ) = E

[

lim
n→∞

1

n

n∑

i=1

ϕ(X i
t)|F

W,V
t

]

= lim
n→∞

E

[
1

n

n∑

i=1

ϕ(X i
t)|F

W,V
t

]

= πt(ϕ).

If strong uniqueness holds,

Vt(ϕ) = E
[
ϕ (Xt) |F

W
t ∨ σ(V0)

]
.

In (1.3), the process W is common to all diffusions, while the processes Bi, i ≥ 1 are
mutually independent Brownian motions. Systems of this type have been considered by
Kurtz and Protter [5] and Kurtz and Xiong [6, 7] under the assumption that the coefficients
are Lipschitz functions of V in the Wasserstein metric on P(Rd). This assumption excludes
a variety of interesting examples. In particular, for d = 1, we are interested in equations
whose coefficients are functions of quantiles of V ,

V α
t = inf

x∈R
{x ∈ R|Vt (−∞, x] ≥ α} ,

and the results on πt play a central role in proving existence of solutions of a system in which
the coefficients are continuous functions of the quantiles.

A second application of the support results is to the solution of stochastic filtering prob-
lems. Let (X,Y ) be the solution of

Xt = X0 +

∫ t

0

f (Xs, Ys) ds+

∫ t

0

σ (Xs, Ys) dWs +

∫ t

0

σ̄ (Xs, Ys) dBs

Yt =

∫ t

0

h (Xs, Ys) ds+

∫ t

0

k (Ys) dWs.

Here Y plays the role of V , so B is not independent of (W,Y ). Assuming that k(y) is
invertible and setting

W̃t = Wt +

∫ t

0

k(Ys)
−1h(Xs, Ys)ds,

we have

Xt = X0 +

∫ t

0

(
f(Xs, Ys) + σ(Xs, Ys)k(Ys)

−1h(Xs, Ys)
)
ds

+

∫ t

0

σ(Xs, Ys)dW̃s +

∫ t

0

σ̄ (Xs, Ys) dBs

Yt =

∫ t

0

k (Ys) dW̃s,

and under modest assumptions on h(x, y)/k(y), a Girsanov change of measure gives an

equivalent probability measure under which B is independent of (W̃ , Y ). In this framework
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we show that the conditional distribution of Xt given FYt charges any open set. Moreover,
under additional conditions, it is absolutely continuous with respect to Lebesgue measure
on Rd, and with probability one its density is strictly positive.

The main results are proved under the following conditions on the coefficients of (1.1).

A1 f : Rd × Rm → Rd, σ : Rd × Rm → Rd
′
× Rd, σ̄ : Rd × Rm → Rd × Rd are continuous

functions, uniformly Lipschitz in the first argument. That is, there exists a constant
c1 such that

|f (x1, y)− f (x1, y)| ≤ c1 |x1 − x2|

for all x1, x2 ∈ Rd and y ∈ Rm with a similar inequality holding for σ and σ̄.

σ̄ is positive definite, i.e.,
ξ>σ̄ (x, y) ξ > 0

for any y ∈ Rm and ξ, x ∈ Rd with ξ 6= 0.

For d > 1, almost surely, V has paths with finite left limits. In other words, for all
t > 0,

Vt−
def
= lim

s→t,s<t
Vt

exists and is finite.

A2 f, σ and σ̄ are continuously differentiable in the first component.

Theorem 1.1 Under assumption A1, there exists a set Ω̃ ∈ F of full measure such that for
every ω ∈ Ω̃, πωt charges every open set, i.e., πωt (A) > 0 for every nonempty, open set A.

Theorem 1.2 Under assumptions A1+A2, there exists a set Ω̃ ∈ F of full measure such
that for every ω ∈ Ω̃, πωt is absolutely continuous with respect to Lebesgue measure. Moreover
if y → ρωt (y) is the density of πωt with respect to Lebesgue measure, ρωt is strictly positive.

The additional condition in A1 required to treat the multi-dimensional case is not needed
when d = 1 because we are able to exploit the order structure of R. For d > 1, the integral
of a nonsingular, matrix-valued function may be singular, while for d = 1, the integral of a
non-zero real-valued function is always non-zero, provided it does not change sign.

Acknowledgements. This work was completed while the first two authors were visiting
the Isaac Newton Institute in Cambridge, UK. The hospitality and support provided by the
Institute is gratefully acknowledged. The research of the first author was partially supported
by the EPSRC grant EP/H000550/1. The research of the second author was supported in
part by NSF grant DMS 08-0579.
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2 Proof of the properties of the conditional distribu-

tions

Let z be a function z : [0,∞)× Rd → Rd with the following properties:

• For each z ∈ Rd, the function t→ z (t, z) is a measurable, locally-bounded function.

• For each t ∈ [0,∞), the function z → z (t, z) is differentiable. z′ (t, z) will denote the
matrix of partial derivatives

(z′ (t, z))ij = ∂jzi (t, z) .

• For each z ∈ Rd, the function t→ z′ (t, z) is a measurable, locally-bounded function.

Now consider a new probability measure P z, absolutely continuous with respect to P ,
defined by

dP z

dP

∣
∣
∣
∣
Ft

= exp

(

−
∫ t

0

z (s, z)> dBs −
1

2

∫ t

0

|z (s, z) |2ds

)

,

where z (s, z)> is the row vector (z (s, z)1 ,z (s, z)2 , ...,z (s, z)d). Then, by Girsanov’s
theorem, the process Bz = {Bz

t , t ≥ 0}

Bz
t = Bt +

∫ t

0

z (s, z) ds

is a Brownian motion under P z, independent of W and V . Since (Bz,W, V ) has the same
law under P z as (B,W, V ) has under P , it follows that X(z) given by

dXt(z) = f (Xt (z) , Vt) dt+ σ (Xt (z) , Vt) dWt + σ̄ (Xt (z) , Vt) dB
z
t (2.1)

= f (Xt (z) , Vt) dt+ σ (Xt (z) , Vt) dWt + σ̄ (Xt (z) , Vt) dBt

+σ̄ (Xt (z) , Vt)z (t, z) dt.

has the same law under P z as X has under P , and for ϕ ∈ B(Rd),

E
[
ϕ (Xt) |F

W,V
t

]
= Ez

[
ϕ (Xt (z))| FW,Vt

]

= E
[
ϕ (Xt (z))Mt (z) |FW,Vt

]

where Mt(z) is defined as

Mt (z) = exp

(

−
∫ t

0

z (s, z)> dBs −
1

2

∫ t

0

|z (s, z) |2ds

)

, t ≥ 0. (2.2)

5



In the following, we will use a Fubini argument for the function ι, where

(z, ω)
ι
→ ϕ (Xt (z))Mt (z)

e−
1
2
|z|2

(2π)
d
2

is defined on the product space Rd × Ω. Consequently, we need to know that ι is B(Rd) ×
FW,Vt -measurable. Measurability is not immediate as Xt (z) is initially defined for each
z individually. However, one can prove the existence of a process X̄t (z) such that for each
z, X̄ (z) and X (z) are indistinguishable and

(z, ω)
ῑ
→ X̄t (z)

is B(Rd)×FW,Vt -measurable. More precisely, we can assume that X̄ is optional, that is, the
mapping

(t, z, ω) ∈ [0,∞)× Rd × Ω→ X̄t(z)

is measurable with respect to the σ-algebra generated by processes of the form
∑

ξifi(z)1[ti,ti+1)(t),

where 0 = t0 < t1 < · · ·, fi ∈ C(Rd), and ξi is FW,Vti
-measurable. To avoid further measur-

ability complications, from now on, we will use this version of the solution of (2.1). Hence,
if ϕ : Rd × Ω → R is a non-negative, B(Rd) × FW,Vt -measurable function, the conditional
version of Fubini’s theorem (for nonnegative functions) gives

E
[
ϕ (Xt, ·) |F

W,V
t

]
=

∫

Rd
E
[
ϕ (Xt (z) , ·)Mt (z) |FW,Vt

] e−
1
2
z>z

(2π)
d
2

dz

= E

[∫

Rd
ϕ (Xt (z) , ·)Mt (z)

e−
1
2
z>z

(2π)
d
2

dz|FW,Vt

]

. (2.3)

We treat the one-dimensional and the multi-dimensional cases separately.

2.1 The one-dimensional case

For t0 > 0, let

z (t, z) =

{
z for t ∈ [0, t0]
0 otherwise

, (2.4)

where a > 0 is an arbitrary positive constant. In this case, (2.1) becomes

dXt(z) = f (Xt (z) , Vt) dt+ σ (Xt (z) , Vt) dWt + σ̄ (Xt (z) , Vt) dBt (2.5)

+σ̄ (Xt (z) , Vt) z1[0,t0](t)dt.

Since σ̄ is positive, with probability 1, the function z → Xt(z) is a strictly increasing,
continuous function and limz→−∞Xt(z) = −∞ and limz→∞Xt(z) = ∞. In particular, z →
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Xt(z) is a continuous bijection, so if (β, β) is a (non-empty) open interval, then X−1
t (β, β) is

a non-empty open interval. In particular, X−1
t (β, β) has positive Lebesgue measure. Hence,

if we choose ϕ in (2.3) to be the indicator function of an open interval (β, β), then

P
[
Xt ∈ (β, β)|FW,Vt

]
=

1
√

2π
E

[∫

X−1
t (β,β)

e−zBt−
z2(t+1)

2 dz|FW,Vt

]

.

Since z → e−zBt−
z2(t+1)

2 is positive on X−1
t (β, β), it follows that

∫
X−1
t (β,β)

e−zBt−
z2(t+1)

2 dz is

positive (with probability 1) as is its conditional expectation. This proves Theorem 1.1 in
the case d = 1.

Assuming that f, σ and σ̄ are differentiable, z → Xt(z) is differentiable with probability
1. Its (positive) derivative is given by

Jt (z)
def
=
dXt(z)

dz
=

∫ t

0

σ̄ (Xs (z) , Vs) exp
(
its (z)

)
ds, (2.6)

where

its (z) =

∫ t

s

(

f ′ (Xs (z) , Vs)−
1

2
(σ′ (Xs (z) , Vs))

2 −
1

2
(σ̄′ (Xs (z) , Vs))

2

)

ds

+

∫ t

s

σ′ (Xs (z) , Vs) dWs +

∫ t

s

σ̄′ (Xs (z) , Vs) dBs +

∫ t

s

σ̄′ (Xs (z) , Vs) azds.

Now, since z → Xt(z) is a bijection, it is invertible, and we can define

νt(y) =

exp

{

−X−1
t (y)Bt −

(X−1
t (y))

2
(t+1)

2

}

Jt
(
X−1
t (y)

) .

Taking ϕ = 1A, A ∈ B(R), in (2.3) and using the change of variable y = Xt(z),

P
[
Xt ∈ A|F

W,V
t

]
=

1
√

2π
E

[∫

A

νt(y)dy

∣
∣
∣
∣F

W,V
t

]

=
1
√

2π

∫

A

E
[
νt(y)| FW,Vt

]
dy.

Hence, the conditional distribution of Xt given FW,Vt is absolutely continuous with respect
to Lebesgue measure with density

ρt(y) =
1
√

2π
E
[
νt(y)| FW,Vt

]
.

Since νt(y) is strictly positive, by Lemma A.12, there exists a version of ρt(y) such that with
probability one, ρt(y) > 0 for all y ∈ R and t ≥ 0. This proves Theorem 1.2 in the case
d = 1.
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Corollary 2.1 Under assumptions A1+A2, there exists a random variable c(s, t, k) posi-
tive almost surely such that

inf
(r,y)∈[s,t]×[−k,k]

ρr(y) ≥ c(s, t, k). (2.7)

In particular, the set Ω̃ ∈ F of full measure appearing in the statement of Theorem 1.2 on
which πωt is absolutely continuous with respect to Lebesgue measure and the density of πωt
with respect to Lebesgue measure is strictly positive can be chosen independent of the time
variable t ∈ (0,∞).

Proof. Using the independence properties of X0, B, W , and V , we have

E[f(X0, B)|FW,V∞ ] = E[f(X0, B)|V0],

for any reasonable function f , hence there exists hf such that

E[f(X0, B,W·∧t, V·∧t)|F
W,V
∞ ] = hf (V0,W·∧t, V·∧t)).

Since νt(y) is a function of X0, B, W·∧t and V·∧t, this implies that

ρt(y) =
1
√

2π
E
[
νt(y)| FW,Vt

]
=

1
√

2π
E
[
νt(y)| FW,V∞

]
.

Choose m to be an arbitrary positive constant. Since the function (t, x)→ min(νt(x),m) is
bounded, positive and jointly continuous in (t, x) it follows that its conditional expectation

ρmt (y) =
1
√

2π
E
[
min(νt(x),m)| FW,V∞

]

has a version which is bounded, positive and jointly continuous in (t, x). Hence, (2.7) holds
true with c(s, t, k) = inf(r,y)∈[s,t]×[−k,k] ρ

m
r (y) > 0. �

Lemma 2.2 Under condition A1+A2, the density function y → ρt (y) is absolutely contin-
uous. Moreover, it is differentiable almost everywhere and

dρt

dy
(y) =

1
√

2π
E

[
dνt

dy
(y)

∣
∣
∣
∣F

W,V
t

]

. (2.8)

More generally, if f, σ and σ̄ are m-times continuously differentiable in the first component,
then the density function y → ρt (y) is (m−1)-times continuously differentiable and m-times
differentiable almost everywhere. A similar formula to (2.8) holds for higher derivative of ρt
as well.
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Proof. The function y → νt (y) is continuously differentiable under condition A1+A2 and

dνt(y)

dy
= ι1t (x)− ι2t (x), (2.9)

where

ι1t (x) =

exp

{

−X−1
t (y)Bt −

(X−1
t (y))

2
(t+1)

2

}

Jt
(
X−1
t (y)

)
Bt −X

−1
t (y) (t+ 1)

Jt
(
X−1
t (y)

)

ι2t (x) =

exp

{

−X−1
t (y)Bt −

(X−1
t (y))

2
(t+1)

2

}

Jt
(
X−1
t (y)

)
dJt
dx

(X−1
t (y))

Jt
(
X−1
t (y)

)2

We want to prove that

E

[∫

R

∣
∣
∣
∣
dνt(y)

dx

∣
∣
∣
∣ dy

]

<∞.

In order to do that, we show that the property holds for both functions on the right hand
side of (2.9). We show how this is done for the first function. We have that

E

[∫

R
|ι1t (y)|dy

]

= E




∫

R

exp
{
−zBt −

z2(t+1)
2

}

Jt (z)
|Bt − z (t+ 1) |dz



 (2.10)

=

∫

R
e−

z2(t+1)
2 E

[
e−pzBt

] 1
p E
[
Jt (z)−q

] 1
q E [|Bt − z (t+ 1) |r]

1
r dz (2.11)

−
∫

R
e−

z2((t+1−pt)
2 Qr(|z|)

1
rE
[
Jt (z)−q

] 1
q dz, (2.12)

where p, q, r ∈ (1,∞) are chosen so that p < t+1
t

and 1
p

+ 1
q

+ 1
r

= 1 and Qr is a suitably

chosen polynomial so that E [|Bt − z (t+ 1) |r] ≤ Qr(|z|) for any z ∈ R. To get (2.10), we
used the change of variable z = X−1

t (y) that and applied Hölder’s inequality to obtain (2.11).
From (2.6) it follows that

Jt ≥ tacσ̄ exp

(

−tcf,σ,σ̄ − tc
′
σ̄|z| − 2 sup

s∈[0,t]

|Cs|

)

, (2.13)

where C is the martingale

Cs =

∫ s

0

σ′ (Xs (z) , Vs) dWs +

∫ s

0

σ̄′ (Xs (z) , Vs) dBs, s ∈ [0, t].

In (2.13) we used the fact that cσ̄
def
= infx,y σ̄(x, y) > 0 and that

cf,σ,σ̄
def
= sup

x,y
|f ′(x, y)−

1

2
σ′(x, y)2 −

1

2
σ̄′(x, y)2|

c′σ̄
def
= sup

x,y
|σ̄′(x, y)|

9



are finite quantities. This follows from conditions A1+A2. Hence, immediately,

E
[
Jt (z)−q

]
≤ keqtc

′
σ̄ |z|, (2.14)

where

k = (tacσ̄)−q exp (qtcf,σ,σ̄)E

[

exp

(

2q sup
s∈[0,t]

|Cs|

)]

.

Note that k is finite as the running maximum of the martingale C has exponential moments
of all orders. From (2.12) and (2.14) we deduce immediately the integrability of ι1t . The
integrability of ι2t follows in a similar manner as all the terms involved as similar to those
appearing in ι1t . The only term that is different dJt

dz
. Explicitly dJt

dz
is given by

dJt

dz
(z) =

∫ t

0

σ̄ (Xs (z) , Vs) exp
(
its (z)

)
(

σ̄′ (Xs (z), Vs) Js( z) +
dits
dz

(z))

)

ds,

and one proves in a similar manner that

E

[∣∣
∣
∣
dJt

dz

∣
∣
∣
∣

]

≤ k′ek
′′|z|, (2.15)

where k′ and k′′ are some suitably chosen constants. It follows that

ρt
(
y1
)
− ρt

(
y2
)

=
1
√

2π
E
[
νt
(
y1
)
− νt

(
y2
)∣∣FW,Vt

]

=
1
√

2π
E

[∫ y1

y2

dνt

dy
(y) dy

∣
∣
∣
∣
∣
FW,Vt

]

=

∫ y1

y2

1
√

2π
E

[
dνt

dy
(y)dy

∣
∣
∣
∣F

W,V
t

]

dy (2.16)

and we deduce from the above the absolute continuity of ρt and, therefore, its differentiability
almost everywhere. We note that the last identity follows by the (conditional) Fubini’s
theorem as we have proved the integrability of dνy

dy
over the product space Ω × R. The

methodology to show that ρt has higher derivatives is similar. Observe first that

dmνt(y)

dym
=

exp

{

−X−1
t (y)Bt −

(X−1
t (y))

2
(t+1)

2

}

Jt
(
X−1
t (y)

)

×T (t, Bt, X
−1
t (y) ,

dXt

dx

(
X−1
t (y)

)
, ...

dXm
t

dxm
(
X−1
t (y)

)
))

where T (t, Bt, X
−1
t (y) , dXt

dx

(
X−1
t (y)

)
, ...

dXm
t

dxm

(
X−1
t (y)

)
)) is a random variable which has mo-

ments of all order controlled by an upper bound of the type (2.15). One then shows the inte-

grability of dmνt(y)
dym

over the product space Ω×R which implies the m-times differentiability
of ρt. �
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2.2 The multidimensional case

For α ≥ n−1, n = 1, 2, . . ., define

zα,n (s, z) = 1[α− 1
n
,α](s)z. (2.17)

Let Xα,n (z) = {Xα,n
t (z) , t ≥ 0} be the solution of (2.1) with z replaced by zα,n, and let

Jα,nt (z) be its Jacobian
(Jα,nt (z))ij = ∂j (Xα,n

t )i (z) .

Then Jα,n (z) = {Jα,nt (z) , t ≥ 0} is zero for t ≤ α − n−1, and for t ≥ α − n−1, Jα,n satisfies
the following stochastic differential equation

Jα,nt (z) =

∫ t

α− 1
n

f ′ (Xα,n
s (z) , Vs) J

α,n
s (z) ds+

m∑

i=1

∫ t

α− 1
n

σ′i (X
α,n
s (z) , Vs) J

α,n
s (z) dW i

s

+
d∑

i=1

∫ t

α− 1
n

σ̄′i (X
α,n
s (z) , Vs) J

α,n
s (z) dBi

s

+
d∑

i=1

∫ t

α− 1
n

σ̄′i (X
α,n
s (z) , Vs) 1[α− 1

n
,α](s)z

iJα,ns (z) ds

+

∫ t

α− 1
n

σ̄ (Xα,n
s (z) , Vs) 1[α− 1

n
,α](s)ds, (2.18)

where f ′ : Rd × Rm → Rd×d is the matrix-valued function defined as

(f ′ (x, v))ij
def
=
∂jf (x, v)i

∂xj

and σ′i, i = 1, ..., d σ̄′i, i = 1, ...,m are functions defined in the same manner (σi, i = 1, ..., d
σ̄i, i = 1, ...,m are the column vectors of σ , respectively σ̄, σ = (σ1, σ2, ..., σd) , σ̄ =
(σ̄1, σ̄2, ..., σ̄m)). Let Φα,n (z) = {Φα,n

t (z) , t ≥ 0} and Υα,n (z) = {Υα,n
t (z) , t ≥ 0} be the

solutions of the following matrix stochastic differential equations

Φα,n
t (z) = I +

∫ t

(α− 1
n

)∧t
$ (z,Xα,n

s (z) , Vs) Φα,n
s (z) ds

+
m∑

i=1

∫ t

(α− 1
n

)∧t
σ′i (X

α,n
s (z) , Vs) Φα,n

s (z) dW i
s

+
d∑

i=1

∫ t

(α− 1
n

)∧t
σ̄′i (X

α,n
s (z) , Vs) Φα,n

s (z) dBi
s,

Υα,n
t (z) = I −

∫ t

(α− 1
n

)∧t
Υα,n
s (z)κ (z,Xα,n

s (z) , Vs) ds

11



−
m∑

i=1

∫ t

(α− 1
n

)∧t
Υα,n
s (z) σ′i (X

α,n
s (z) , Vs) dW

i
s

−
d∑

i=1

∫ t

(α− 1
n

)∧t
Υα,n
s (z) σ̄′i (X

α,n
s (z) , Vs) dB

i
s,

where

$ (z,Xα,n
s (z) , Vs) = f ′ (Xα,n

s (z) , Vs) +
d∑

i=1

σ̄′i (X
α,n
s (z) , Vs) 1[α− 1

n
,α](s)z

i

κ (z,Xα,n
s (z) , Vs) = $ (z,Xα,n

s (z) , Vs)−
m∑

i=1

σ′i (X
α,n
t (z) , Vt)

2 −
d∑

i=1

σ̄′i (X
α,n
t (z) , Vt)

2
.

It is easy to check that
d (Υα,n

t (z) Φα,n
t (z)) = 0,

and since Υα,n
0 (z) Φα,n

0 (z) = I, it follows that Υα,n
t (z) Φα,n

t (z) = I, for all t ≥ 0, i.e., Φα,n
t (z)

and Υα,n
t (z) are non-singular and inverse to each other. Then we can write the solution of

(2.18) explicitly as

Jα,nt (z) = Φα,n
t (z)

∫ α∧t

(α− 1
n

)∧t
Υα,n
s (z) σ̄ (Xα,n

s (z) , Vs) ds.

Unlike the one-dimensional case, the Jacobian Jα,nt (z) may be singular. However, since
Φα,n
t (z) is non singular, Jα,nt (z) is nonsingular for t ≥ α if and only if

Γα,n(z) =

∫ α

(α− 1
n

)

Υα,n
s (z) σ̄ (Xα,n

s (z) , Vs) ds

is nonsingular.
Write

Γα,n (z) =
1

n
σ̄ (Xα,n

α (z) , Vα−) +

∫ α

α− 1
n

σ̄ (Xα,n
s (z) , Vs)− σ̄ (Xα,n

α (z) , Vα−) ds

+

∫ α

α− 1
n

(Υα,n
s (z)− I) σ̄ (Xα,n

s (z) , Vs) ds.

Since Xα,n
s (z) and Υα,n

s (z) are jointly continuous in s and z, (x, v)→ σ̄ (x, v) is continuous,
and lims→t Vs = Vt−, it follows that, for almost all ω ∈ Ω and each compact K ⊂ Rd,

lim
n→∞

sup
z∈K
|n
∫ α

α− 1
n

σ̄ (Xα,n
s (z) , Vs)− σ̄ (Xα,n

t (z) , Vt−) ds| = 0

lim
n→∞

sup
z∈K
|n
∫ α

α− 1
n

(Υα,n
s (z)− I) σ̄ (Xα,n

s (z) , Vs) ds| = 0.

12



Hence,

Ωlim =

{

ω ∈ Ω| lim
n→∞

sup
z∈K
|nJα,nt (z)− σ̄ (Xt, Vt−) | = 0 for each compact K

}

has probability 1. Let K1 ⊂ K2 ⊂ · · · be compact subsets of Rd with Rd = ∪kKk, and define

Ωk,n = {ω ∈ Ω| Jα,mt (z) is nonsingular for m ≥ n, z ∈ Kk} .

Lemma 2.3
Ωlim ⊂ ∩k ∪n Ωk,n

and, in particular, P (∩k ∪n Ωk,n) = 1.

Proof. It is enough to prove that Ωlim ⊂ ∪nΩk,n for each k. Let ω ∈ Ωlim but not in ∪nΩk,n. It
follows that there exist (ni, zi), ni → ∞ and zi ∈ Kk such that, for this particular ω, the
corresponding Jacobians Jnit (zi) = Jnit (zi) (ω) are singular. Hence there exist corresponding
λi ∈ Rd with |λi| = 1 and

Jnit (zi)λi = 0.

If λ is a limit point of {λi}, the uniformity over compacts in the definition of Ωlim implies

σ̄ (Xt, Vt−) · λ = 0.

Since σ̄ (Xt, Vt−) is nonsingular, we have a contradiction. �

From (2.3) we get that, for any set A and any k >
[

1
t

]

πt (A) = P
[
Xt ∈ A|F

W,V
t

]

= E

[∫

{z|Xn
t (z)∈A}

rn (z) dz|FW,Vt

]

≥ E

[

1Ωk,n

∫

{z∈Rd|Xn
t (z)∈A}

rn (z) dz|FW,Vt

]

,

where

rn (z)
def
= exp

(

−z>
(
Bt − Bt− 1

n

)
−
z>z (n+ 1)

2n

)

.

Now for ω ∈ Ωk,n the application z ∈ Kk → Xt (z) is a continuous bijection. It is
injective since its Jacobian is always non-singular. The surjectivity follows by means of
the Inverse Function Theorem: Since lim|z|→∞Xt(z) = ∞, the image of z → Xt (z) is a
closed set. However, the image of z → Xt (z) is an open set, too. That is because any
z ∈ Rd has the property that it has an open neighborhood Uz so that the function restricted
to Uz is a (continuous) bijection from Uz to VXt(z) where VXt(z) is an open neighborhood of

13



Xt (z) . Hence for any z ∈ Rd, the open set VXt(z) is in the image of z → Xt (z). Since Rd

has no proper subset which is both closed and open, we get the surjectivity of z → Xt (z).
So for any ω ∈ Ωk and A an open set, the set

{
z ∈ Rd|Xt (z) ∈ A

}
has positive Lebesgue

measure, thus

ω →
∫

{z∈Rd|Xnk′t (z)∈A}
rnk′ (z) dz

is positive on Ωk. Let now Ωp = {ω ∈ Ω|πt (A) > 0}. Then, for all k >
[

1
t

]
,

P (Ωp) ≥ P (Ωk) .

That is because P ((Ω\Ωp) ∩ Ωk) = 0. If not

0 = E
[
1Ω\Ωpπt (A)

]
≥ E

[

1(Ω\Ωp)∩Ωk

∫

{z∈Rd|Xnk′t (z)∈A}
rnk′ (z) dz|FW,Vt

]

> 0.

Hence from the previous lemma we deduce that πt charges any open set A. Moreover the
null set can be chosen to be independent of the set A, since the topology Rd has a countable
base.

Now if A is a set of Lebesgue measure 0, then

πt (A) = P
[
Xt ∈ A|F

W,V
t

]

= E

[

1Ωn

∫

{z∈Rd|Xnt (z)∈A}
rn (z) dz|FW,Vt

]

+E

[

1Ω\Ωn

∫

{z∈Rd|Xnt (z)∈A}
rn (z) dz|FW,Vt

]

. (2.19)

Since

ω →
∫

Rd
rn (z) dz

is uniformly integrable, it follows that the second term in (2.19) converges to 0. Hence

πt (A) = lim
n→∞

E

[

1Ωn

∫

{z∈Rd|Xnt (z)∈A}
rn (z) dz

∣
∣
∣
∣
∣
FW,Vt

]

= lim
n→∞

E

[

1Ωn

∫

A

rn
(
(Xn

t )−1 (y)
) 1

det
(
Jnt
(
(Xn

t )−1 (y)
))dy

∣
∣
∣
∣
∣
FW,Vt

]

Since ∫

A

rn
(
(Xn

t )−1 (y)
) 1

det
(
Jnt
(
(Xn

t )−1 (y)
))dy

14



is always 0 (an integral over a null set), it follows that the conditional distribution of Xt given
FW,Vt is absolutely continuous with respect to the Lebesgue measure. This proves the first
part Theorem 2

For the second part of Theorem 2 let (as in the one-dimensional case) A0 be the following
random set

A0 = {x ∈ R|ρt (y) = 0} .

Then, from (2.19) we have that

0 = P
[
Xt ∈ A0|F

W,V
t

]

≥ E

[

1Ωn

∫

{z∈Rd|Xnt (z)∈A}
rn (z) dz|FW,Vt

]

=

∫

R
1A0 (y)

1
√

2π
E

[

1Ωn (y) rn
(
(Xn

t )−1 (y)
) 1

det
(
Jnt
(
(Xn

t )−1 (y)
))

∣
∣
∣
∣
∣
FW,Vt

]

dy

≥ 0

Hence

∫

R
1A0 (y)

1
√

2π
E

[

1Ωn (y) rn
(
(Xn

t )−1 (y)
) 1

det
(
Jnt
(
(Xn

t )−1 (y)
))

∣
∣
∣
∣
∣
FW,Vt

]

dy = 0

and therefore for any ω ∈ Ω̂n, A0 is a set of Lebesgue measure 0 where
(

Ω̂n

)

n>[ 1
t ]

is the

following increasing sequence

Ω̂n =

{

ω ∈ Ω E

[

1Ωn (y) rn
(
(Xn

t )−1 (y)
) 1

det
(
Jnt
(
(Xn

t )−1 (y)
))

∣
∣
∣
∣
∣
FW,Vt

]∣∣
∣
∣
∣
> 0, y−a.e.

}

.

Since P
(

Ω̂n

)
≥ P (Ωn) and P (lim Ωn) = 1 it follows that A0 is a set of Lebesgue measure

0 with probability 1. This proves the second part of Theorem 2 for the multidimensional
case.

3 Weak existence for SPDEs with coefficients depend-

ing on quantiles

As described in the introduction, we now consider an infinite system of (one-dimensional)
interacting diffusions

X i
t = X i

0 +

∫ t

0

f
(
X i
s, V

α
s

)
ds+

∫ t

0

σ
(
X i
s, V

α
s

)
dWs +

∫ t

0

σ̄
(
X i
s, V

α
s

)
dBi

s, (3.1)
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where
V α
t = inf {x ∈ R|vt (−∞, x] ≥ α}

and

vt = lim
m→∞

1

m

m∑

i=1

δXi
t
. (3.2)

We assume that {X i
0} is exchangeable and require the solution {X i} to be exchangeable so

that the limit in (3.2) exists by deFinetti’s theorem. (See Theorem A.1.)
As in Kurtz and Xiong [6], vt will be a solution of the stochastic partial differential

equation

〈φ, v(t)〉 = 〈φ, v(0)〉+

∫ t

0

〈L(V α(s))φ , v(s)〉ds+

∫ t

0

〈σ(·, V α(s))φ′ , v(s)〉dWs, (3.3)

where 〈φ, v(t)〉 denotes

〈φ, v(t)〉 =

∫

R
φ(x)v(t, dx)

and

L(V α)φ =
1

2

[
σ(x, V α)2 + σ̄(x, V α)2

] d2φ

dx2
+ f(x, V α)

dφ

dx
.

In (3.1), the process W is common to all diffusions, while the processes Bi, i ≥ 1 are
mutually independent Brownian motions. We will assume the following on the coefficients
of the equations.

Q f : R × R → R, σ : R × R → R, σ̄ : R × R → R are bounded, continuous func-
tions, uniformly Lipschitz in both arguments and continuously differentiable in the
first component and σ̄ is positive definite.

Then we have the following:

Theorem 3.1 There exists a weak solution for the system (3.1)+(3.2) and, hence, for the
stochastic partial differential equation (3.3).

Proof. Consider the Euler-type approximation of (3.1)+(3.2) defined as follows:

X i,n
t = X i,n

0 +

∫ t

0

f
(
X i,n
s , V α,n

s

)
ds+

∫ t

0

σ
(
X i,n
s , V α,n

s

)
dWs +

∫ t

0

σ̄
(
X i,n
s , V α

s

)
dBi

s, (3.4)

where
V α,n
t = inf

{
x ∈ R|vn[tn]

n

((−∞, x]) ≤ α
}

and vn is defined as in (3.2). The system (3.4) has a unique strong solution. The existence
and uniqueness of the solution is obtained progressively on intervals

[
k
n
, k+1

n

]
. We note that,

on each such interval, the process V α,n is constant and equal to the quantile of the empirical
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measure of the system at the beginning of the interval. Existence and uniqueness of the
solution follows from the assumption that f , σ, and σ̄ are Lipschitz in the first component.

We also have

vn (ϕ) = E
[
ϕ
(
X i,n
t

)
|FWt

]
= E

[∫

R
ϕ
(
X i,n
t (z)

)
M i,n

t (z)
e−

1
2
z>z

(2π)
d
2

dz

∣
∣
∣
∣
∣
FWt

]

, (3.5)

where Xn (z) is defined as in (2.1), and it follows that vnt charges every open set and, hence,
that

V α,n
t = inf {x ∈ R|vnt (−∞, x] ≥ α} = sup {x ∈ R|vnt (−∞, x)] < α} .

For each i, the boundedness of the coefficients implies the sequence {X i,n}n>0 is rela-
tively compact (in distribution) in DR([0,∞). This relative compactness together with the
continuity of the processes ensures relative compactness of {Xn}n>0 in DR∞([0,∞). Taking
a subsequence, if necessary, we can assume that {Xn}n>0 converges in distribution to a con-
tinuous process X = (X i)i≥0. By Lemma A.3 in the Appendix vn converges in distribution
to v defined by

vt = lim
n→∞

1

n

n∑

i=1

δXi
t
.

To complete the proof, we need the following two lemmas. In the first one, we drop the
assumption that V n be a quantile, allowing it to take values in a complete, separable metric
space E, and only require that the coefficients be bounded, Lipschitz continuous in the first
variable, and continuous in the second.

Lemma 3.2 Suppose {V n} are E-valued processes and Xn(z) satisfies

dXn
t (z) = f (Xn

t (z) , V n
t ) dt+ σ (Xn

t (z) , V n
t ) dWt + σ̄ (Xn

t (z) , V n
t ) dBt + σ̄ (Xt (z) , V n

t ) zdt.

Define

Γn(C × [0, t]) =

∫ t

0

1C(V n(s))ds, C ∈ B(E),

Mn
B(ϕ, t) =

∫ t

0

ϕ(V n(s))dBs, ϕ ∈ Cb(E),

and

Mn
W (ϕ, t) =

∫ t

0

ϕ(V n(s))dWs, Cb(E).

Suppose that Γn ⇒ Γ, in Lm(E). (See Appendix A.3.) Then for ϕB1 , . . . , ϕ
B
k , ϕ

W
1 , . . . , ϕ

W
l ∈

Cb(E), {(Γn,Mn
B(ϕB1 ), . . . ,Mn

B(ϕBk ),Mn
W (ϕW1 ), . . . ,Mn

W (ϕWl )} is relatively compact in Lm(E)×
DRk+l [0,∞), and a subsequence can be selected along which convergence holds for all choices
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of ϕB1 , . . . , ϕ
B
k , ϕ

W
1 , . . . , ϕ

W
l ∈ Cb(E). For any limit point, MB and MW are orthogonal mar-

tingale random measures satisfying

[MB(ϕ1),MB(ϕ2)]t =

∫

E

ϕ1(y)ϕ2(y)Γ(dy × [0, t])

[MW (ϕ1),MW (ϕ2)]t =

∫

E

ϕ1(y)ϕ2(y)Γ(dy × [0, t])

[MB(ϕ1),MW (ϕ2)]t = 0,

and Xn(z)⇒ X(z) satisfying

Xt(z) = X0(z) +

∫

E×[0,t]

f (Xs (z) , v) Γ(dv × ds) +

∫

E×[0,t]

σ (Xs (z) , v)MW (dv × ds)

+

∫

E×[0,t]

σ̄ (Xs (z) , v)MB(dv × ds) +

∫

E×[0,t]

σ̄ (Xt (z) , v) zΓ(dv × ds), (3.6)

where the stochastic integrals are defined as in [5].

Proof. Relative compactness follows from the fact that

E[(Mn
B(ϕ, t+ h)−Mn

B(ϕ, t))2|Fnt ] = E[

∫

E

ϕ(y)2Γn(dy × (t, t+ h])|Fnt ] ≤ ‖ϕ‖2h

for each ϕ ∈ Cb(E) and similarly for {Mn
W}. Along any convergent subsequence, {Γn,Mn

B,M
n
W}

satisfies the convergence conditions in Theorem 4.2 of Kurtz and Protter [5]. (See Example
12.1 of [5].) Under the boundedness and Lipschitz conditions on f , σ, and σ̄, Xn(z) con-
verges to the solution of (3.6) by Theorem 7.4 of Kurtz and Protter [5]. �

Lemma 3.3 Let {Xn}be a sequence of uniformly integrable random variables converging
in distribution to a random variable X and {Dn} be a sequence of σ-fields defined on the
probability spaces where {Xn} reside. Let {Yn} be a sequence of S-valued random variables
such that

E [Xn|Dn] = G(Yn),

where G : S → R is continuous. Suppose (Xn, Yn)⇒ (X,Y ). Then E [X|Y ] = G(Y ).

Proof. Since {Xn} is uniformly integrable, it follows by Jensen’s inequality that {G(Yn)}
is uniformly integrable. Then, employing the convergence in distribution and the uniform
integrability,

E [G(Y )g(Y )] = lim
n→∞

E [G(Yn)g(Yn)] = lim
n→∞

E [Xng(Yn)] = E [Xg(Y )] ,

for every g ∈ Cb(S), and the lemma follows. �
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We return now to the proof of Theorem 3.1. Let

ρnt (ϕ) =

∫

R
ϕ
(
X i,n
t (z)

)
M i,n

t (z)
e−

1
2
z>z

(2π)
d
2

dz.

From (3.5) and the definition of Γn and Mn
W , for any test function ϕ

E
[
ρnt (ϕ) |FWt

]
= E

[
ρnt (ϕ) |F

Γn,Mn
W

t

]
= vnt (ϕ) .

Hence, letting Γn,t, Γt and W t denote the restrictions of Γn, Γ, and W to the time interval
[0,t], (ρnt , v

n
t ,Γ

n,t,W t)⇒ (ρt, vt,Γ
t,W t), where

ρt (ϕ) =

∫

Rd
ϕ
(
X i
t (z)

)
M i

t (z)
e−

1
2
z>z

(2π)
d
2

dz.

By Lemma 3.3

E
[
ρt (ϕ) |FΓ,MW

t

]
= vt (ϕ) .

As in the proof of Theorem 1.1, vt charges any open set, and by Lemma A.8, V α,n converges
in distribution to V α, where

V α
t = inf {x ∈ R|vt((−∞, x]) ≥ α} .

In turn, it follows that MW and MB satisfy

MB(ϕ, t) =

∫ t

0

ϕ(V α(s))dBs, ϕ ∈ Cb(E),

and

Mα
W (ϕ, t) =

∫ t

0

ϕ(V α(s))dWs, Cb(E).

Applying Theorem 7.4 of Kurtz and Protter [5], it follows that (Xn, V α,n, vn) converges in
distribution to (X,V α, v) which is a weak solution of (3.1). �

4 Quantile Process

Next, we find an equation for the quantile process

V α
t = inf{x ∈ R , vt((−∞, x]) ≥ α} .

Recall that we considered an infinite system of (one-dimensional) interacting diffusions

X i
t = X i

0 +

∫ t

0

f
(
X i
s, V

α
s

)
ds+

∫ t

0

σ
(
X i
s, V

α
s

)
dWs +

∫ t

0

σ̄
(
X i
s, V

α
s

)
dBi

s, (4.1)
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where
V α
t = inf {x ∈ R|vt (−∞, x] ≥ α}

and

vt = lim
n→∞

vnt where vnt =
1

n

n∑

i=1

δXi
t
. (4.2)

To prove the following result we choose a bounded, smooth, strictly positive function
q : R→ R with bounded first and second derivative such that

∫
R q (x) dx = 1 and

sup
x∈R

q′(x)

q(x)
<∞1. (4.3)

Define the functions, vn,εt , vεt , F
n,ε
t , F ε

t : R→ R as follows

vn,εt (x) = 1
n

∑n
i=1 qε (x−X i

t) F n,ε
t (x) =

∫ x
−∞ v

n,ε
t (y) dy

vεt (x) =
∫
R qε (x− y) vt (dy) F ε

t (x) =
∫ x
−∞ v

ε
t (y) dy

,

where qε : R→ R, qε (x) = 1
ε
q
(
x
ε

)
, x ∈ R. Then, the functions vn,εt are uniformly bounded

smooth functions and, since limn→∞ v
n
t = vt, it follows that vn,εt converges pointwise to vεt .

Hence the quantiles V α,n,ε
t of the probability measures with densities vn,εt with respect to the

Lebesgue measure uniquely defined by the formula

F n,ε (t, V α,n,ε
t ) = α

converge to the quantiles V α,ε
t of the measure with density vεt with respect to the Lebesgue

measure, limn→∞ V
α,n,ε
t = V α,ε

t . Moreover, since also the derivatives of the functions vn,εt
converge to the derivatives of the functions vεt and are uniformly bounded, it follows that vn,εt
converges to vεt uniformly on compacts. In particular this implies that limn→∞ v

n,ε
t (V α,n,ε

t ) =

vεt(V
α,ε
t ). Similarly, limn→∞

dv
n,ε
t (x)

dx
|x=V α,n,εt

=
dvεt (x)

dx
|x=V α,εt

This two facts will be used in the
following proposition.

Proposition 4.1 Assuming that A1+A2 hold true and that f, σ and σ̄ are twice continu-
ously differentiable in the first component, then the quantiles V α

t satisfy the following evolu-
tion equation

V α
t = V α

s +

∫ t

s

f(V α
r , V

α
r )dr +

∫ t

s

σ(V α
r , V

α
r )dWr

−
∫ t

s

1

2v(r, V α
r )

∂

∂x
[σ(x, V α

r )vr(x)]

∣
∣
∣
∣
x=V αt

dt. (4.4)

for any t > s > 0.

1It suffices to choose q such that q(x) = cq exp(−|x|) for |x| ≥ 1, where cq is the normalization constant.
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Proof. First, note that, by the definition of the quantiles,

Υα,n,ε
(
V α,n,ε
t , X1

t , ..., X
n
t

)
= 0,

where Υα,n,ε : Rn+1 → R is the smooth function

Υα,n,ε (v, x1, ..., xn) =
1

n

n∑

i=1

∫ v

−∞
qε (y − xi) dy − α.

Since ∂Υα,n,ε

∂v
(v, x1, ..., xn) = 1

n

∑n
i=1 qε (v − xi) > 0, by the implicit function theorem there

exists a countable set of balls B (xj, rj) ∈ Rn j ≥ 1 such that
⋃
n≥1 B (xj, rj) = Rn and a

countable set of smooth functions Qα,n,ε,j : B (xj, rj)→ R such that

V α,n,ε
t = Qα,n,ε,j

(
X1
t , ..., X

n
t

)
, if

(
X1
t , ..., X

n
t

)
∈ B (xj, rj) .

In particular it follows that V α,n,ε
t is a semi-martingale. This fact allows us to deduce the

evolution equation for the semimartingales V α,n,ε
t . By applying the generalized Itô formula

(see, for example, Kunita [3]) we have

0 = dΥα,n,ε
(
V α,n,ε
t , X1

t , ..., X
n
t

)

=
∂Υα,n,ε

∂v

(
V α,n,ε
t , X1

t , ..., X
n
t

)
dV α,n,ε

t +
n∑

j=1

∂Υα,n,ε

∂xj

(
V α,n,ε
t , X1

t , ..., X
n
t

)
dXj

t

+
1

2

∂2Υα,n,ε

∂v2

(
V α,n,ε
t , X1

t , ..., X
n
t

)
d〈V α,n,ε〉t +

1

2

n∑

j=1

∂2Υα,n,ε

∂x2
j

(
V α,n,ε
t , X1

t , ..., X
n
t

)
d〈Xj〉t

+
n∑

j=1

∂Υα,n,ε

∂xj∂v

(
V α,n,ε
t , X1

t , ..., X
n
t

)
d
〈
V α,n,ε, Xj

〉
t
.

which implies that

0 = vn,εt (V α,n,ε
t ) dV α,n,ε

t −
1

n

n∑

j=1

f
(
Xj
t , V

α
t

)
qε
(
V α,n,ε
t −Xj

t

)
dt

−
1

n

n∑

j=1

σ
(
Xj
t , V

α
t

)
qε
(
V α,n,ε
t −Xj

t

)
dWt −

1

n

n∑

j=1

σ̄
(
Xj
t , V

α
t

)
qε
(
V α,n,ε
t −Xj

t

)
dBj

t

+
1

2n

n∑

j=1

σ̄2
(
Xj
t , V

α
t

)
q′ε
(
V α,n,ε
t −Xj

t

)
dt+

1

2n

n∑

j=1

σ2
(
Xj
t , V

α
t

)
q′ε
(
V α,n,ε
t −Xj

t

)
dt

+
1

2n

n∑

j=1

q′ε
(
V α,n,ε
t −Xj

t

)
d〈V α,n,ε〉t −

1

n

n∑

j=1

q′ε
(
V α,n,ε
t −Xj

t

)
σ
(
X i
s, V

α
s

)
d〈W,V α,n,ε〉t

−
1

n

n∑

j=1

q′ε
(
V α,n,ε
t −Xj

t

)
σ̄
(
X i
s, V

α
s

)
d
〈
Bj, V α,n,ε

〉
t
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From this identity it follows that

〈V α,n,ε〉t =

∫ t

0

1

vn,εs (V α,n,ε
s )2

(
1

n

n∑

j=1

σ
(
Xj
s , V

α
s

)
qε
(
V α,n,ε
s −Xj

s

)
)2

ds

+

∫ t

0

1

vn,εs (V α,n,ε
s )2

(
1

n2

n∑

j=1

σ̄
(
Xj
s , V

α
s

)2
qε
(
V α,n,ε
s −Xj

s

)2

)

ds

〈W,V α,n,ε〉t =

∫ t

0

1

vn,εs (V α,n,ε
s )

(
1

n

n∑

j=1

σ
(
Xj
s , V

α
s

)
qε
(
V α,n,ε
s −Xj

s

)
)

ds

〈
Bi, V α,n,ε

〉
t

=

∫ t

0

1

vn,εs (V α,n,ε
s )

1

n
σ̄
(
Xj
s , V

α
s

)
qε
(
V α,n,ε
s −Xj

s

)
ds

Therefore

dV α,n,ε
t =

1

nvn,εt (V α,n,ε
t )

n∑

j=1

f
(
Xj
t , V

α
t

)
qε
(
V α,n,ε
t −Xj

t

)
dt

+
1

nvn,εt (V α,n,ε
t )

n∑

j=1

σ
(
Xj
t , V

α
t

)
qε
(
V α,n,ε
t −Xj

t

)
dWt

+
1

nvn,εt (V α,n,ε
t )

n∑

j=1

σ̄
(
Xj
t , V

α
t

)
qε
(
V α,n,ε
t −Xj

t

)
dBj

t

−
1

2nvn,εt (V α,n,ε
t )

n∑

j=1

(σ̄2
(
Xj
t , V

α
t

)
+ σ2

(
Xj
t , V

α
t

)
)q′ε
(
V α,n,ε
t −Xj

t

)
dt

−
1

2nvn,εt (V α,n,ε
t )

n∑

j=1

q′ε
(
V α,n,ε
t −Xj

t

)
d〈V α,n,ε〉t

+
1

nvn,εt (V α,n,ε
t )

n∑

j=1

q′ε
(
V α,n,ε
t −Xj

t

)
σ
(
X i
s, V

α
s

)
d〈W,V α,n,ε〉t

+
1

n

n∑

j=1

q′ε
(
V α,n,ε
t −Xj

t

)
σ̄
(
X i
s, V

α
s

)
d
〈
Bj, V α,n,ε

〉
t

(4.5)

Observe that the term 1

nv
n,ε
t (V α,n,εt )

∑n
j=1 f

(
Xj
t , V

α
t

)
qε
(
V α,n,ε
t −Xj

t

)
is bounded by ‖f‖∞, the

supremum norm of f , with similar bounds holding for the second and the third term in (4.5)
and for the terms appearing in the expression for 〈V α,n,ε〉t, 〈W,V α,n,ε〉t, 〈Bi, V α,n,ε〉t. The
term

x→
1

2nvn,εt (x)

n∑

j=1

(σ̄2 (x, V α
t ) + σ2 (x, V α

t ))q′ε
(
x−Xj

t

)

is uniformly bounded by 1
ε
(‖σ̄‖2 +‖σ‖2) following property (4.3) of the function q. A similar

bound can be proved for all the remaining terms in (4.5) are uniformly bounded on compacts
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as infn infr∈[s,t] v
n,ε
s (x) is strictly positive on compacts (using the tightness of the sequence

vn ) and σ̄, σ, and q′ε are bounded. Using these bounds, we take the limit in (4.5) as n tends
to infinity to obtain that

dV α,ε
t =

1

vεt (V α,ε
t )

(∫

R
f (x, V α

t ) qε (V α,ε
t − x) vt (dx)

)

dt

+
1

vεt (V α,ε
t )

(∫

R
σ (x, V α

t ) qε (V α,ε
t − x) vt (dx)

)

dWt

−
1

2vεt (V α,ε
t )

(∫

R
(σ̄2 (x, V α

t ) + σ2 (x, V α
t ))q′ε (V α,ε

t − x) vt (dx)

)

dt

−
1

2vεt (V α,ε
t )

(∫

R
q′ε (V α,ε

t − x) vt (dx)

)

×
1

vεt (V α,ε
t )2

(∫

R
σ (x, V α

t ) qε (V α,ε
t − x) vt (dx)

)2

dt

+
1

vεt (V α,ε
t )

(∫

R
q′ε (V α,ε

t − x) σ (x, V α
s ) vt (dx)

)

×
1

vεt (V α,ε
t )

(∫

R
σ (x, V α

t ) qε (V α,ε
t − x) vt (dx)

)

dt (4.6)

Next since vt(x) = limε→0 v
ε
t (x) as ε tends to 0, it follows that V α

t = limε→0 V
α,ε
t . Following

from Corollary 2.1 and the boundedness of both vr(x) and ∂
∂x

[vr(x)] on sets of the form
[s, t]× [−k, k] , we can take the limit in (4.6) as ε tends to 0 to obtain that

dV α
t = f(V α

t , V
α
t )dt+ σ(V α

t , V
α
t )dWt −

1

2v(t, V α
t )

∂

∂x

[
(σ̄2(x, V α

t ) + σ2(x, V α
t ))vt(x)

]
∣
∣
∣
∣
x=V αt

dt

−
1

2v(t, V α
t )
σ2(V α

t , V
α
t )

∂

∂x
[vt(x)]

∣
∣
∣
∣
x=V αt

dt+
σ(V α

t , V
α
t )

v(t, V α
t )

∂

∂x
[σ(x, V α

t )vt(x)]

∣
∣
∣
∣
x=V αt

dt

which gives (4.4). �

Remark 4.2 See also [8] for the equation (4.4).

Remark 4.3 Under additional assumptions on the initial distribution of X (for example if
the distribution of X0 is absolutely continuous with respect to the Lebesgue measure and its
density is twice continuously differentiable) one can show that (4.4) holds true also for s = 0.

5 Application to nonlinear filtering

Let (Ω,F , P ) be a probability space on which we have defined two independent d-dimensional,

respectively m -dimensional standard Brownian motions B = {(Bi
t)
d

i=1 , t ≥ 0} and W =
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{(W i
t )
m

i=1 , t ≥ 0} Let (X,Y ) be the solution of the following stochastic system

Xt = X0 +

∫ t

0

f (Xs, Ys) ds+

∫ t

0

σ̄ (Xs, Ys) dWs +

∫ t

0

σ̄ (Xs, Ys) dBs

Yt =

∫ t

0

h (Xs, Ys) ds+

∫ t

0

k (Ys) dWs.

Let FYt be σ-field generated by the process Y and πt be the conditional distribution of
Xt given the σ-field generated by the process Y . We show that πt charges any open set.
Moreover, under additional conditions, we show that it is absolutely continuous with respect
to the Lebesgue measure on Rd and has a positive density. Here are the required conditions:

F1 f : Rd ×Rm → Rd, h : Rd ×Rm → Rm, σ : Rd ×Rm → Rm ×Rd, and σ̄ : Rd ×Rm →
Rd×Rd are continuous functions, uniformly Lipschitz in the first argument. We assume
that σ̄ is positive definite, k : Rm → Rm × Rm is invertible, k−1 is bounded and
σk−1h : Rd × Rm → Rd is a continuous functions, uniformly Lipschitz in the first
argument. The random variable X0 has finite second moment.

F2 f, σk−1h, σ and σ̄ are continuously differentiable in the first component.

We have the following

Corollary 5.1 Under assumption F1, there exists a set Ω̃ ∈ F of full measure such that for
every ω ∈ Ω̃, πωt charges any open set. Moreover under assumptions A1+A2, there exists

a set Ω̃ ∈ F of full measure such that for every ω ∈ Ω̃, πωt is absolutely continuous with
respect to the Lebesgue measure and the density of πωt with respect to the Lebesgue measure
is positive almost everywhere.

Proof. Let Z = {Zt, t ≥ 0} be defined as

Zt = exp

(

−
∫ t

0

(
k−1 (Ys)h (Xs, Ys)

)>
dWs

−
1

2

∫ t

0

(
k−1 (Ys)h (Xs, Ys)

)> (
k−1 (Ys)h (Xs, Ys)

)
ds

)

.

Under condition F1, Z is a martingale. Consider the probability measure P̃ absolutely
continuous with respect to P defined as

dP̃

dP

∣
∣
∣
∣
∣
Ft

= Zt.

Then, by Girsanov’s theorem, the process W̃ =
{
W̃t, t ≥ 0

}
defined by

W̃t = Wt −
∫ t

0

k−1 (Ys)h (Xs, Ys) ds
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for t ≥ 0 is a Brownian motion under P̃ independent of B and, by Kallianpur-Striebel’s
formula,

E
[
ϕ (Xt) |F

Y
t

]
= Ẽ

[
ϕ (Xt) ζt| F

Y
t

]
, (5.1)

where ζt =
Z−1
t

Ẽ[Z−1
t |FYt ]

and

Xt = X0 +

∫ t

0

(
f + σk−1h

)
(Xs, Ys) ds+

∫ t

0

σ (Xs, Ys) dW̃s +

∫ t

0

σ̄ (Xs, Ys) dBs.

We note that, under P̃ , Y satisfies the SDE

Yt =

∫ t

0

k (Ys) dW̃s,

hence

W̃t =

∫ t

0

k−1 (Ys) dYs

and in particular FYt = FW̃ ,Y
t for all t ≥ 0. From (5.1) we obtain that as in (2.3) that

πt (ϕ) =

∫

Rd
E

[

ϕ (Xt (z))Mt (z) ζt
e−

1
2
z>z

(2π)
d
2

|FYt

]

dz

where Mt(z) is the martingale defined in (2.2). The analysis then proceeds in an identical
fashion to that in the proofs of Theorems 1.1 and 1.2. �

Remark 5.2 Note that we cannot apply the results of the Theorems 1.1 and 1.2 under the
original measure P as the Brownian motion B is not independent of Y under P .

25



A Appendix

A.1 Convergence of sequences of exchangeable families.

Let S be a complete, separable metric space. A family of S-valued random variables
{ξ1, . . . , ξm} is exchangeable if for every permutaion (σ1, . . . , σm) of (1, . . . ,m), {ξσ1 , . . . , ξσm}
has the same distribution as {ξ1, . . . , ξm}. A sequence ξ1, ξ2, . . . is exchangeable if every finite
subfamily ξ1, . . . , ξm is exchangeable.

Theorem A.1 (deFinetti) Let ξ1, ξ2, . . . be an exchangeable sequence of S-valued random
variables. Then there is a P(S)-valued random variable Ξ such that

Ξ = lim
m→∞

1

m

m∑

i=1

δξi

and, conditioned on Ξ, ξ1, ξ2, . . . are iid with distribution Z, that is, for each f ∈ B(Sm),
m = 1, 2, . . .,

E[f(ξ1, . . . , ξm)|Ξ] = 〈f,Ξm〉.

We will refer to Ξ as the deFinetti measure for ξ1, ξ2, . . ..
Proofs of the following lemmas can be found in the Appendix of [2].

Lemma A.2 For n = 1, 2, . . ., let {ξn1 , . . . , ξ
n
Nn
} be exchangeable, S-valued random variables.

(We allow Nn =∞.) Let Ξn be the corresponding empirical measure,

Ξn =
1

Nn

Nn∑

i=1

δξni ,

where if Nn =∞, we mean

Ξn = lim
m→∞

1

m

m∑

i=1

δξni .

Assume that Nn → ∞ and that for each m = 1, 2, . . ., {ξn1 , . . . , ξ
n
m} ⇒ {ξ1, . . . , ξm} in

Sm. Then {ξi} is exchangeable and setting ξni = s0 ∈ S for i > Nn, {Ξn, ξn1 , ξ
n
2 . . .} ⇒

{Ξ, ξ1, ξ2, . . .} in P(S) × S∞, where Ξ is the deFinetti measure for {ξi}. If for each m,
{ξn1 , . . . , ξ

n
m} → {ξ1, . . . , ξm} in probability in Sm, then Ξn → Ξ in probability in P(S).

The converse also holds in the sense that Ξn ⇒ Ξ implies {ξn1 , . . . , ξ
n
m} ⇒ {ξ1, . . . , ξm}.

We are interested in applying the above lemma in the case S = DE[0,∞). In that
setting, in addition to the P(DE[0,∞))-valued random variables Ξn, it is natural to consider
the P(E)-valued processes

Zn(t) =
1

Nn

Nn∑

i=1

δXn
i (t),

(where Nn may be infinite) which will have sample paths in DP(E)[0,∞). Unlike Ξn, conver-
gence of Zn is not always assured.
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Lemma A.3 For n = 1, 2, . . ., let Xn = (Xn
1 , . . . , X

n
Nn

) be exchangeable families of DE[0,∞)-
valued random variables such that Nn ⇒ ∞ and Xn ⇒ X in DE[0,∞)∞. Define Ξn =

1
Nn

∑Nn
i=1 δXn

i
∈ P(DE[0,∞)), Ξ = limm→∞

1
m

∑m
i= δXi, Zn(t) = 1

Nn

∑Nn
i=1 δXn

i (t) ∈ P(E), and

Z(t) = limm→∞
1
m

∑m
i=1 δXi(t).

a) Let DΞ = {t : E[Ξ{x : x(t) 6= x(t−)}] > 0}. Then for t1, . . . , tl /∈ DΞ,

(Ξn, Zn(t1), . . . , Zn(tl))⇒ (Ξ, Z(t1), . . . , Z(tl)).

b) If Xn ⇒ X in DE∞ [0,∞), then (Xn, Zn)⇒ (X,Z) in DE∞×P(E)[0,∞). If Xn → X in
probability in DE∞ [0,∞), then (Xn, Zn)→ (X,Z) in probability in DE∞×P(E)[0,∞).

Remark A.4 a) The set DΞ is at most countable.
b) If for i 6= j, with probability one, Xi and Xj have no simultaneous discontinuities,

then DΞ = ∅ and convergence of Xn to X in DE[0,∞)∞ implies convergence in DE∞ [0,∞).
In particular, this conclusion holds if the Xi are continuous.

c) If {Xn} is relatively compact in DE∞ [0,∞), then {(Xn, Zn)} is relatively compact in
DE∞×P(E)[0,∞).

Lemma A.5 If X = (X1, X2, . . .) is an exchangeable sequence in DE[0,∞), then Z is con-
tinuous if and only if for i 6= j, with probability one Xi and Xj have no simultaneous
discontinuity.

A.2 Convergence of quantiles

For 0 < α < 1, and for µ ∈ P(R), define qα(µ) = inf{x : µ(−∞, x] ≥ α}. Note that µ is a
point of continuity for qα if and only if µ(qα(µ), qα(µ) + ε) > 0 and µ(qα(µ)− ε), qα(µ)) > 0
for every ε > 0.

Lemma A.6 Let {Yn} be a sequence of P(R)-valued random variables such that Yn ⇒ Y .
Suppose that with probability 1, the measure Y charges every open set. Then qα(Yn)⇒ qα(Y )
for each 0 < α < 1.

Proof. The lemma follows by the continuous mapping theorem. �

Lemma A.7 Suppose z ∈ DP(R)[0,∞) and for each t ≥ 0, z(t) and z(t−) charge every open
set. Then if 0 < α < 1 and zn → z in DP(R)[0,∞), qα(zn)→ qα(z) in DR[0,∞).

Proof. The lemma follows by Proposition 3.6.5 of Ethier and Kurtz [1] and the continuity
properties of qα. �

The continuous mapping theorem gives the following.

Lemma A.8 Suppose {Zn} is a sequence of processes in DP(R)[0,∞) such that Zn ⇒ Z.
If, with probability 1, Z(t) and Z(t−) charge every open set for all t, then for 0 < α < 1,
qα(Zn)⇒ qα(Z).
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A.3 Convergence of random measures

The following results are from Kurtz [4]. Let L(S) be the space of measures µ on [0,∞)×S
such that µ([0, t]× S) <∞ for each t > 0, and let Lm(S) ⊂ L(S) be the subspace on which
µ([0, t]× S) = t. For µ ∈ L(S), let µt denote the restriction of µ to [0, t]× S. Let ρt denote
the Prohorov metric on M([0, t]× S), and define ρ̂ on L(S) by

ρ̂(µ, ν) =

∫ ∞

0

e−t1 ∧ ρt(µ
t, νt)dt,

that is, {µn} converges in ρ̂ if and only if {µtn} converges weakly for almost every t.

Lemma A.9 A sequence of (Lm(S), ρ̂)-valued random variables {Γn} is relatively compact
if and only if for each ε > 0 and each t > 0, there exists a compact K ⊂ S such that
infnE[Γn([0, t]×K)] ≥ (1− ε)t.

Lemma A.10 Let {(xn, µn)} ⊂ DE[0,∞)×L(S), and (xn, µn)→ (x, µ). Let h ∈ C̄(E×S).
Define

un(t) =

∫

[0,t]×S
h(xn(s), y)µn(ds× dy), u(t) =

∫

[0,t]×S
h(x(s), y)µ(ds× dy)

zn(t) = µn([0, t]× S), and z(t) = µ([0, t]× S).

a) If x is continuous on [0, t] and limn→∞ zn(t) = z(t), then limn→∞ un(t) = u(t).

b) If (xn, zn, µn) → (x, z, µ) in DE×R[0,∞) × L(S), then (xn, zn, un, µn) → (x, z, u, µ) in
DE×R×R[0,∞)×L(S). In particular, limn→∞ un(t) = u(t) at all points of continuity of
z.

c) The continuity assumption on h can be replaced by the assumption that h is continuous
a.e. νt for each t, where νt ∈ M(E × S) is the measure determined by νt(A × B) =
µ{(s, y) : x(s) ∈ A, s ≤ t, y ∈ B}.

d) In both (a) and (b), the boundedness assumption on h can be replaced by the assumption
that there exists a nonnegative convex function ψ on [0,∞) satisfying limr→∞ ψ(r)/r =
∞ such that

sup
n

∫

[0,t]×S
ψ(|h(xn(s), y)|)µn(ds× dy) <∞ (A.1)

for each t > 0.
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A.4 Measurability and positivity of random functions given by
conditional expectations

Lemma A.11 Let (Ω,F , P ) be a complete probability space, E a complete, separable metric
space, and {Fx, x ∈ E} a collection of complete sub-σ-algebras of F . Suppose that for each
A ∈ F , there exists a B(E)×F measurable process XA indexed by E such that for each x,

P (A|Fx) = XA(x) a.s.

Then for each bounded, B(E) × F-measurable process Y there exists another B(E) × F-

measurable process Ŷ such that

E[Y (x)|Fx] = Ŷ (x) a.s.

Proof. If Y (x) = 1B(x)1A for B ∈ B(E) and A ∈ F , then Ŷ (x) = 1B(x)XA(x) satisfies the
requirements of the lemma. Since {B × A : B ∈ B(E), A ∈ F} is closed under intersections
and generates B(E)×F and the collection of Y for which the conclusion of the lemma holds
is closed under bounded monotone increasing limits, the lemma follows by the monotone
class theorem for functions. (See Theorem 4.3 in the Appendix of Ethier and Kurtz [1].) �

Lemma A.12 Suppose that the conclusion of Lemma A.11 holds and that Y is B(E)× F-

measurable and strictly positive. Then Ŷ can be taken to be strictly positive.

Proof. Let A0 = {(x, ω) : Y (x, ω) ≥ 1} and An = {(x, ω) : 2−n ≤ Y (x, ω) < 2−(n−1)},
n = 1, 2, . . .. Then ∪∞n=0An = E × Ω, and we can assume that E[1An |Fx] ≥ 0 for all (x, ω).
Note that

1 = lim
n→∞

n∑

k=0

E[1Ak |Fx] a.s.

for all x. If necessary, we can replace E[1An |Fx] by

1 ∧
n∑

k=0

E[1Ak |Fx]− 1 ∧
n−1∑

k=0

E[1Ak |Fx]

to ensure
∑∞

k=0 E[1Ak |Fx] ≤ 1 and then replace E[1A0 |Fx] by

1−
∞∑

k=1

E[1Ak |Fx]

to ensure
∑∞

k=0 E[1Ak |Fx] = 1 for all (x, ω). Then

∞∑

n=0

2−nE[1An |Fx] ≤ Ŷ (x) a.s.

and we can replace Ŷ (x) by Ŷ (x) ∨
∑∞

n=0 2−nE[1An |Fx] to be assured that Ŷ (x) > 0 for all
(x, ω). �
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