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Abstract

We deal with abstract systems of two coupled nonlinear stochastic

(infinite dimensional) equations subjected to additive white noise type

process. This kind of systems may describe various interaction phe-

nomena in a continuum random medium. Under suitable conditions

we prove the existence of an exponentially attracting random invari-

ant manifold for the coupled system and show that this system can be

reduced to a single equation with modified nonlinearity. This result

means that under some conditions we observe (nonlinear) synchro-

nization phenomena in the coupled system. Our applications include

stochastic systems consisting of (i) parabolic and hyperbolic equations,

(ii) two hyperbolic equations, and (iii) Klein-Gordon and Schrödinger

equations. We also show that the random manifold constructed con-

verges to its deterministic counterpart when the intensity of noise tends

to zero.

∗This work was partially supported by DFG17355596 and by SPD program at INI

Cambridge 2010.
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1 Introduction

Let X1 and X2 be (infinite dimensional separable) Hilbert spaces. The main

object of our work is the following system of differential equations

Ut +A1U = F1(U, V ) +B1Ṅ1(t, ω), t > 0, in X1, (1)

and

Vt +A2V = F2(U, V ) +B2Ṅ2(t, ω), t > 0, in X2, (2)

where A1 and A2 are generators of C0–semigroups, F1 and F2 are continuous

(nonlinear) mappings,

F1 : X1 ×X2 7→ X1, F2 : X1 ×X2 7→ X2.

Here above B1Ṅ1(t, ω) and B2Ṅ2(t, ω) are white noise processes in X1 and

X2 which will be specified later for a random parameter ω ∈ Ω.

Our main goal is to apply the theory of random invariant manifolds to study

synchronization phenomena of the stochastic problem (1), (2).

Recently the subject of synchronization of coupled (identical or not) systems

has received considerable attention. There are now several monographs

[30, 36, 38] in this field, which contain extensive lists of references. In the case

of infinite dimensional systems the synchronization problem has been studied

in [10, 33] for the case of coupled (deterministic) parabolic systems. The

synchronization of stochastic stationary solutions (i.e. single valued random

attractors) of finite dimensional stochastic systems has been considered in [9]

(see also [1, 24] for similar results in deterministic nonautonomous systems).

The synchronization of the dynamics of parabolic stochastic systems in two

thin layers at the level of global pullback attractors has been studied in [8].

From mathematical point of view the synchronization phenomena can be

treated as the existence of an invariant manifold of a special type in the

phase space of the coupled system. For instance, if the problems (1) and (2)

have the same phase space (X1 = X2), then the possibility of synchronized

regimes means that the set

M = {(U, V ) ∈ X1 ×X2 : U = V ∈ X1 = X2}

is invariant with respect to the flow generated by the coupled system. If

this invariant set is globally asymptotically stable, then given any solution

of the first equation and any solution of the second equation, the difference
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between two solutions becomes small as t → +∞. In this case we observe

full (asymptotic) synchronization of systems (1) and (2). From this point

of view it is natural (see [16, 17] for the deterministic case) to consider the

question on the existence of a random invariant manifold of a more general

form. In particular, we are looking for a random manifold given by

Mt(ω) = {(U, V ) ∈ X1 ×X2 : U = Φt(ω, V ) ∈ X1, V ∈ X2} , (3)

where Φt(ω, ·) : X2 7→ X1 is a random Lipschitz mapping, adopting the

following definition.

Definition 1.1 System (1) is said to be (asymptotically) synchronized with

system (2), if there exists a random Lipschitz mapping Φt : X2 7→ X1 such

that

lim
t→+∞

∥U(t, ω) − Φt(ω, V (t, ω))∥X1 = 0 for all ω ∈ Ω

for any solution (U(t, ω), V (t, ω)) to problem (1) and (2). In this case (2)

is called master system and (1) is slave system.

The theory of invariant and inertial manifolds for various classes of infi-

nite dimensional dynamical systems has been developed by many authors,

see, e.g., monographs [13, 19, 23, 37] for the deterministic case and papers

[5, 12, 22, 14, 18, 21, 27, 35] for the stochastic case and also the references

therein. There are two approaches to construction of invariant manifolds:

Hadamard graph transform method (see, e.g., [19] and also [4, 22, 21, 34])

and Lyapunov-Perron method. In this work we follow the idea of the

Lyapunov-Perron method in the form presented in [29] for the deterministic

case which was also used in [7] for the case of stochastic hyperbolic-parabolic

problem.

Our main objective is to establish possibility of synchronization and to prove

a reduction principle for the random dynamical system generated by the

problem (1) and (2) which allows us to rewrite our coupled system as a single

stochastic equation in X2 with a conveniently modified nonlinear term. To

be more precise, we prove that under some conditions the random dynamical

system generated by (1) and (2) has an invariant exponentially attracting

random manifold of the type (3) where Φt : Ω × X2 7→ X1 is a Lipschitz

mapping for each ω ∈ Ω and a stationary process with respect to t. The

existence of this manifold M makes it possible to prove that the long-time

behavior of the system (1) and (2) can be described by the reduced problem

Vt +A2V = F2(Φt(ω, V ), V ) +B2Ṅ2(t, ω), in X2.
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For a similar result in the deterministic framework we refer to [26, 16] for

parabolic/hyperbolic systems and to [17] for general case. The same result

in the deterministic case can be also derived from Theorem 1.1 and Corollary

1.4 in [25].

The paper is organized as follows. In the preliminary Section 2 we formulate

our main hypotheses and represent the problem as a first order stochastic

differential equation. For the reader’s convenience, we recall basic definitions

from the theory of random dynamical systems, and collect several results on

stochastic convolutions of a form adapted to our situation. Then we intro-

duce several kinds of noise processes which serve for the random excitation

of our system. In this section we also provide a result on the existence and

uniqueness of mild solutions to problem (1) and (2) and show that this prob-

lem generates a filtered random dynamical system (RDS). Section 3 contains

our main result which is a type of reduction principle (see Theorem 3.1).

We show the existence of a fixed point of the random Lyapunov–Perron

method. This fixed point provides us an invariant manifold. In addition,

we obtain the tracking property showing that the manifold is exponentially

attracting. In Section 4 we estimate the distance between M(ω) and its de-

terministic counterpart Mdet in terms of the covariance operators of N1 and

N2 (see Theorem 4.1). In particular, we prove that M(ω) converges to Mdet

when the intensity of the noise tends to zero which means the persistence of

synchronization in the zero noise limit (in contrast with phenomena which

takes place for some classes of parabolic systems; see, e.g., [8]). Then in

Section 5 we consider applications to coupled (i) parabolic and hyperbolic

equations, (ii) parabolic PDE and ODE, (iii) two hyperbolic equations, and

(iv) Klein-Gordon and Schrödinger equations.

2 Preliminaries

Our main goal in this section is to describe rigorously the model given by

the system of stochastic differential equations (1) and (2).

2.1 Assumptions on the nonlinear evolution equation

We assume that

(A1) Let X1 and X2 be two separable Hilbert spaces. Let A1 be the gener-

ator of a linear C0–semigroup S1(t) = e−A1t on X1 which satisfies the

4



estimate

∥S1(t)∥L(X1) ≤M1 exp{−γ1t}, t ≥ 0.1 (4)

for some positive constants M1, γ1. Similarly, let A2 be the generator

of a linear C0–group S2 on X2 satisfying the estimates

∥S2(t)∥L(X2) ≤M2 exp{−γ2t}, t ≤ 0, (5)

for some constant M2 ≥ 1, γ2 ≥ 0.

(A2) F1 and F2 are nonlinear mappings,

F1 : X1 ×X2 7→ X1, F2 : X1 ×X2 7→ X2,

and there exist constants L1 and L2 such that

∥F1(U1, V1) − F1(U2, V2)∥X1 ≤ L1

(
∥U1 − U2∥2X1

+ ∥V1 − V2∥2X2

)1/2
(6)

and

∥F2(U1, V1) − F2(U2, V2)∥X2 ≤ L2

(
∥U1 − U2∥2X1

+ ∥V1 − V2∥2X2

)1/2
.

(7)

Below we consider the space X = X1 ×X2 equipped with the norm

∥Y ∥X =
(
∥U∥2X1

+ ∥V ∥2X2

)1/2
, Y = (U, V ),

and denote by Q and P the orthoprojectors on X onto the first and second

components, i.e.

Q(U, V ) = (U, 0) ≃ U ∈ X1 and P (U, V ) = (0, V ) ≃ V ∈ X2 (8)

for (U, V ) ∈ X.

Remark 2.1 If γ1 > γ2 then the properties (4) and (5) ensure the so-called

dichotomy estimates for the linear C0–semigroup S on X given by

S(t) =

(
S1(t) 0

0 S2(t)

)
, t ≥ 0, (9)

in the space X with respect to the pair of projectors Q and P given by (8);

see, e.g., [13, Chapter 6].

1Here and below we denote by ∥ · ∥L(X) the operator norm of linear operators on X.
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Since S2 is C0-(semi)group we can guarantee (see [31, p. 4]) the existence of

constants M̃2 ≥ 1 and γ̃2 ≥ 0 such that

∥S2(t)∥ ≤ M̃2 exp{γ̃2t}, t ≥ 0, (10)

These constants M̃2 and γ̃2 play some auxiliary rôle and do not enter in our

main results.

As we see below the assumption that γ2 ≥ 0 can be also relaxed. However,

it seems the case when γ2 < 0 has no substantial physical meaning, but the

corresponding analysis requires some special considerations. This is why we

assume that γ2 ≥ 0 from the very beginning.

With these assumptions (A1) and (A2) we can rewrite system (1) and (2)

as a single first order stochastic equation in the space X = X1 ×X2 on the

interval [s,∞)

Yt +AY = F (Y ) +BṄ(t), t > s, Y (s) = Y0 ∈ X, (11)

where s ∈ R, Y (t) = (U(t), V (t)). Ṅ = (Ṅ1, Ṅ2) is a noise vector on the

time set R over an appropriate probability space (Ω,F ,P) and B1, B2 are

linear operators which will be introduced below, and

A =

(
A1 0

0 A2

)
, F (Y ) =

(
F1(U, V )

F2(U, V )

)
, B =

(
B1 0

0 B2

)
.

Obviously, the operator A is the generator of the linear C0–semigroup (9)

on X.

2.2 Random dynamical systems and

Ornstein–Uhlenbeck processes

We first recall concepts from the theory of random dynamical systems, see

Arnold [3] for more details.

Definition 2.2 Let X be a topological space. A random dynamical system

(RDS) with time R+ and state space X is a pair (θ, ϕ) consisting of the

following two objects:

1. A metric dynamical system (MDS) θ ≡ (Ω,F ,P, {θt, t ∈ R}), i.e. a

probability space (Ω,F ,P) with a random flow θ : R× Ω → Ω:
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(a) θ0 = idΩ, θt ◦ θs = θt+s for all t, s ∈ R;

(b) the map (t, ω) 7→ θtω is measurable and θtP = P for all t ∈ R.

2. A cocycle ϕ over θ is a measurable mapping

ϕ : R+ × Ω ×X 7→ X, (t, ω, x) 7→ ϕ(t, ω)x

such that the cocycle property

ϕ(0, ω) = idX , ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω)

holds for all t, s ≥ 0 and ω ∈ Ω.

Over a metric dynamical system we introduce a special class of random

variables.

Definition 2.3 A nonnegative random variable R ≥ 0 is called tempered if

lim
t→±∞

1

|t|
log+R(θtω) = 0 almost surely. (12)

In the case that such a random variable is not tempered we have under the

additional assumption that the measure P is ergodic the only alternative:

lim sup
t→±∞

1

|t|
log+R(θtω) = +∞ almost surely. (13)

Hence if the growth of t 7→ R(θtω) is exponentially bounded almost surely

such that we can exclude (13) we just know that R is tempered. On the

other hand for a tempered random variable R we can find a modification of

the metric dynamical system such that (12) holds for every ω ∈ Ω.

We now introduce random fields which we will call Ornstein-Uhlenbeck pro-

cesses. These fields are introduced by the stochastic convolutions of our

semigroups S1, S2 and a noise vector N(t) = (N1(t), N2(t)) ∈ H0 × H0,

where H0 is some separable Hilbert space. Let Π = {(s, t) ∈ R2 : s ≤ t}.

Especially for (s, t) ∈ Π the Ornstein-Uhlenbeck processes η1(t, s), η2(t, s)

are versions the stochastic convolutions are defined by

η1(t, s) =

∫ t

s
S1(t− τ)B1dN1(τ), η2(t, s) =

∫ t

s
S2(t− τ)B2dN2(τ). (14)

Here Bi are linear bounded operators from H0 into Xi. Particular hypothe-

ses on these random fields will be formulated below. Later we will give
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three examples of noises generating Ornstein-Uhlenbeck processes satisfying

these hypotheses. We also note that η1 and η2 are solutions of particular

stochastic linear differential equations.

Since we do not assume that S2 is exponentially stable, it is convenient to

consider the group S2,a generated by A2 + a id on X2, S
2,a(t) ≡ S2(t)e−at.

Because S2 satisfies estimate (10) for a = γ̃2 + 1 we have the inequality

∥S2,a(t)∥ ≤ M̃2 exp{−t}, t ≥ 0.

Similar to the second equation of (14) we introduce by η2,a(t, s) as a version

of the stochastic convolution with respect to the group S2,a:

η2,a(t, s) =

∫ t

s
S2,a(t− τ)B2dN2(τ). (15)

Supposing that η2,a(t, s, ω) is defined for Π × Ω then η2, η2,a are connected

by the following equality

η2(t, s) = η2,a(t, s) + a

∫ t

s
S2(t− τ)η2,a(τ, s)dτ for (s, t) ∈ Π, ω ∈ Ω, (16)

which follows easily from the structure of η2, η2a.

We now formulate some assumptions about the random fields η1, η
a
2 .

(R1) There exist measurable mappings

η1 : Π × Ω 7→ X1 and η2,a : Π × Ω 7→ X2

such that the mappings

Π ∋ (s, t) 7→ η1(t, s, ω) ∈ X1, Π ∋ (s, t) 7→ η2,a(t, s, ω) ∈ X2

are cádlàg depending on the noise paths on [s,∞) for every s ∈ R,

ω ∈ Ω and on (−∞, t] for every t ∈ R, ω ∈ Ω. In case that the noise

is continuous we can assume that these mappings are continuous.

(R2) For every (s, t) ∈ Π the mapping

Ω ∋ ω 7→ η1(t, s, ω) ∈ X1 is F ,B(X1) − measurable

and the mapping

Ω ∋ ω 7→ η2,a(t, s, ω) ∈ X2 is F ,B(X2) − measurable.
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(R3) For every τ ∈ R, (s, t) ∈ Π and ω ∈ Ω we have

η1(t, s, ω) = η1(t+ τ, s+ τ, θ−τω),

η2,a(t, s, ω) = η2,a(t+ τ, s+ τ, θ−τω).

(R4) We have for −∞ ≤ τ < s ≤ t, ω ∈ Ω

η1(t, s, ω) = η1(t, τ, ω) − S1(t− s)η1(t, s, ω)

and similar for η2,a with respect to S2,a.

(R5) For ω ∈ Ω and t ∈ R the limits

lim
s→−∞

η1(t, s, ω) ≡ η1(t,−∞, ω), η1(ω) ≡ η1(0,−∞, ω)

exist. In addition, we have for t ∈ R, ω ∈ Ω

η1(t,−∞, ω) = η1(θtω)

and ∥η1(ω)∥X1 is a tempered random variable. The mapping R ∋ t 7→
η1(θtω) ∈ X1 is continuous or càdlàg depending if the noise is contin-

uous or càdlàg and η1 (which follows from the definition) is F ,B(X1)-

measurable.

(R6) We assume that the random function

τ 7→ Σ(s, τ, ω) ≡ (η1(τ), ω),−S2(τ − s)η2(s, τ, ω)), τ ≤ s

satisfies the following integrability condition∫ s

−∞
e2µ(τ−s)∥Σ(s, τ, ω)∥2Xdτ <∞

for every s ∈ R and ω ∈ Ω, where µ ∈ (γ2, γ1) will be chosen later.

Remark 2.4 (1) We note that using relation (16) we can also construct a

version of η2(t, s, ω) such that (R1)–(R4) hold for every (s, t) ∈ Π, ω ∈ Ω.

(2) Instead (R6) we can assume that hypotheses (R6s) holds:

r1(s, ω) = sup
t<s

{
e2µ(t−s)∥η1(θtω)∥2X1

}
r2(s, ω) = sup

t<s

{
e2µ(t−s)∥S2(t− s)η2(s, t, ω)∥2X2

}
are finite random variables for every s ∈ R and µ > γ2. We also note that

the finiteness of r1(s, ω) follows from the temperedness property in (R5).

We now formulate examples such that the hypotheses (R1)–(R6) are sat-

isfied.
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2.2.1 The Brownian Motion

Let pK = (Ω′,G,PK) be the probability space (C0(H0),B(C0(H0)),PK),

where C0(H0) is the set of continuous functions on R with values in H0

which are 0 at 0 equipped with the compact open topology, B(C0(H0)) is

the Borel-σ-algebra for this space and PK is the Wiener measure related

to the covariance operator K which means that K is a symmetric positive

operator of trace class. This probability space is called canonical twosided

Wiener process. For two covariance operators K1, K2 we define now the

product space pK1 × pK2 with Ω = Ω′ × Ω′, F = G ⊗ G and P = PK1 × PK2 .

The two factors of this product define two independent twosided Wiener

processes N1, N2 with covariance K1, K2. In addition, (Ω,F ,P, θ), where θ

is given by the flow called Wiener shift

θtω(·) = ω(· + t) − ω(t), for ω ∈ Ω, t ∈ R,

defines a metric dynamical system. For details see Arnold, [3, Appendix].

Let F̄ be the completion of F with respect to P. Then let (Fs,t)t∈R con-

taining the zero measure sets of F̄ which is assumed to be right continuous.

We can suppose that N1, N2 are also independent Wiener processes with

respect to the filtered probability space (Ω, F̄ , (Fs,t)s<t, P̄).

We then suppose that Bi, i = 1, 2 are linear bounded operators from H0 to

Xi. Let us assume that for (s, t) ∈ Π

∥Bi∥2L(H0,Xi)
trKi

∫ t

s
∥Si(t− τ)∥2L(Xi,Xi)

dτ <∞, (17)

where ∥ · ∥L(X,Y ) denotes the operator norm for operators from X into

Y . Then we know that the random convolutions (14) are well defined, see

DaPrato and Zabczyk [20], Chapter 4. In particular, these random variables

are (Fs,t)t≥s-measurable for every s ∈ R and continuous, almost surely. One

can also prove (see, e.g., [20]) that

E∥ηi(t, s)∥2Xi
≤ ∥Bi∥2L(H0,Xi)

trKi

∫ t

s
∥Si(t− τ)∥2L(Xi,Xi)

dτ.

We now have

Lemma 2.5 Under the assumptions (17) there are versions to the random

fields introduced in (14) and (15) such that (R1)–(R5) and (R6s) are

satisfied. In particular, for these versions (16) is satisfied.

For the proof we refer to Chueshov and Scheutzow [18, Proposition 3.1].
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2.2.2 The fractional Brownian motion

Now we consider N1, N2 to be two independent infinite dimensional twosided

fractional Brownian motions. A one dimensional twosided fractional Brow-

nian motion with Hurst parameter H ∈ (0, 1) is a Gaussian process β with

mean zero and covariance

R(s, t) =
1

2
(|t|2H + |s|2H − |t− s|2H) for t, s ∈ R.

Note that such a process is neither a semimartingale nor a Markov process

for H ̸= 1/2. But on the other hand, a fractional Brownian motion has

stationary increments.

We now introduce an infinite dimensional fractional motion. Let K be a

linear bounded symmetric positive operator on H0 of trace class. The spec-

trum and the associated eigenelements of K are denoted by {µi, ei : i ∈ N}.

{ei : i ∈ N} forms an complete orthonormal system in H0.

Definition 2.6 Let {βi : i ∈ N} be a sequence of independent one dimen-

sional twosided fractional Brownian motions. Then a H0-valued continuous

process with covariance K defined by

N(t) =
∞∑
i=1

√
µiβi(t)ei, t ∈ R

is called an infinite dimensional twosised fractional Brownian motion on H0.

Note that for the fractional Brownian motion one can construct in the same

way as for the Brownian motion a metric dynamical system (Ω,F ,P, θ)
which is ergodic with P = PK1 × PK2 , where K1, K2 are the corresponding

covariances. In particular, there exist two independent twosided fractional

Brownian motions on H0.

We now construct random convolutions η1, η2,a and η2 in H0 and B1 = B2 =

id. For the applications we have in mind this setting is sufficient. We can

conclude from Schmalfuß and Maslowski [28]:

Lemma 2.7 (1) For every x ∈ H0 there exists a continuous version of

S1(t)x+

∫ t

0
S1(t− τ)dN1(τ), S2,a(t)x+

∫ t

0
S2,a(t− τ)dN2(τ).

This version is denoted by ψ1(t, ω)x, ψ2(t, ω)x.
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(2) There exist random variables η1, η2,a with values in H0 such that for

t ≥ 0

ψ1(t, ω)η1(ω) = η1(θtω), ψ2(t, ω)η2,a(ω) = η2,a(θtω).

From these facts we can derive

Lemma 2.8 Suppose that N1, N2 are two independent infinite dimensional

twosided fractional Brownian motions such that the above properties are sat-

isfied. Then the hypotheses (R1)–(R5) and (R6s) hold.

Proof. η1 from (R5) is just given in Lemma 2.7. In particular, from

Lemma 2.7, 2.8 follows directly that

t→ η1(θtω) = η1(−∞, t, ω)

is continuous. Then the continuity and measurability properties or (R1),

(R2) and (R3) follows directly from

η1(s, t) ≡ η1(θtω) − S1(t− s)η1(θsω) (18)

and similarly for η2,a. In a similar way we can proof (R4). The tem-

peredness conclusion follows from the proof Maslowski and Schmalfuß [28],

Theorem 3.2, where it has been used that with respect to some Hölder space

Cα with appropriate Hölder exponent α,

∥Ni(·, θjω)∥Cα([0,1];H0)

has a subexponential growth for j → ±∞. �

2.2.3 α–stable Lèvy processes

Let (λji )i=1,··· ,nj , j = 1, 2 be two finite sequences of α-stable one dimensional

twosided Lèvy processes which are mutually independent. We can assume

that these processes are càdlàg. For definition we refer to Applebaum [2].

Then if (e1i )i=1,··· ,n1 , (e2i )i=1,··· ,n2 be two finite subsets of an orthonormal

base of H0. Set

N1(t) =

n1∑
i=1

λ1i (t)e
1
i , N2(t) =

n2∑
i=1

λ2i (t)e
2
i .
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Since N1, N2 are càdlàg processes with independent increments we can de-

scribe these processes by a metric dynamical system (Ω,F ,P, θ). For details

we refer to Arnold [3, Appendix A].

We choose versions η1, η2,a of

η1(ω) =

∫ t

s
S1(t− τ)B1dN1(τ), η2,a(ω) =

∫ t

s
S2,a(t− τ)B2dN2(τ)

such that (R1)–(R4) hold. Since N1, N2 are semimartingals by the inte-

gration by parts formula we can choose versions for the integrals in the last

formula as

A1

∫ 0

−∞
S1(τ)B1N1(τ)dτ

which then allows to conclude that R ∋ t → η1(θtω) is càdlàg a such that

(R5) follows. (R1)–(R4) then follows similar to (18). In particular, the

random fields η1, η2, η2,a depend càdlàg on s and on t. To prove (R6) we

refer to Pruitt [32], where the limit behavior of the α–stable Lèvy processes

λji
lim
t→∞

|t|−η sup
τ∈[0,t]

|λji (τ)| = 0, lim
t→∞

|t|−η sup
τ∈[−t,0]

|λji (τ)| = 0

for η > α has been established (which implies the temperedness of ∥η1∥ and

∥η2,a∥) and to [2] for the existence of the corresponding stationary processes.

Recently the same observation was used in Liu et al. [39].

2.3 Mild solutions and generation of an RDS

We denote by D([a, b];X) the space of strongly càdlàg functions on the inter-

val [a, b] with values in X equipped with the norm of uniform convergence.

Later when we consider random problems driven by a Brownian or frac-

tional Brownian motion we can replace D([a, b];X) by the space C([a, b];X)

of continuous functions on [a, b] with values in X.

Below we assume that (A1), (A2), (R1)–(R6) hold true.

Definition 2.9 Let s ∈ R, T > s, Y0 ∈ X. A process Y (t) ≡ Y (t, s, ω, V0)

which, for each ω ∈ Ω, belongs to the space D([s, T ];X) (or C([0, T ];X)))

is said to be a mild solution to problem (11) on the interval [s, T ] if Y (s) =

Y0 ∈ X and

Y (t) = E [Y ](t) ≡ S(t− s)Y0 +

∫ t

s
S(t− τ)F (Y (τ))dτ + η(t, s) (19)

for all t ∈ [s, T ] and ω ∈ Ω, where η(t, s) = (η1(t, s), η2(t, s)).
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We have the following result about existence and uniqueness of mild solu-

tions to (11).

Theorem 2.10 For every Y0 ∈ X and T > s problem (11) has a unique

mild solution Y (t) on the interval [s, T ]. Furthermore, the process t 7→
Y (t, s, Y0) is adapted to the corresponding filtration {Fs,t}t≥s.

Define the map ϕ : R+×Ω×X 7→ X by the formula ϕ(t, ω)Y0 ≡ Y (t, 0, ω, Y0).

Then

(i) ϕ is a cocycle of a random dynamical system on X, and

(ii) Y (t, s, ω, Y0) = ϕ(t− s, θsω)Y0 solves (19) for every s ∈ R, every t > s,

and every ω ∈ Ω.

Proof. By the standard fix point argument one can prove the existence

of a unique mild solution on any interval [s, T ]. We note this argument is

applied in the space D([s, T ];X) because the uniform limit of a sequence

càdlàg functions is itself a càdlàg function. The same remains true if we

replace càdlàg functions by continuous functions.

Now using by the relations (R3) and (16) we deduce from the uniqueness

of the mild solutions that

Y (t, s, ω, Y0) = Y (t+ τ, s+ τ, θ−τω, Y0), s ≤ t, τ ∈ R, (20)

for all Y0 ∈ X, ω ∈ Ω, as well as

Y (t, 0, ω, Y0) = Y (t, s, ω, Y (s, 0, ω, Y0)), 0 ≤ s ≤ t, Y0 ∈ X, ω ∈ Ω.

Therefore

ϕ(t+ s, ω)Y0 = Y (t+ s, 0, ω, Y0) = Y (t+ s, s, ω;Y (s, 0, ω, Y0))

= Y (t, 0, θsω, Y (s, 0, ω, Y0)) = ϕ(t, θsω)ϕ(s, ω)Y0,

for t, s ≥ 0, i.e. ϕ satisfies the cocycle property. The càdlàg/continuity and

measurability properties of ϕ follow from those of Y . It also follows from

(20) that

ϕ(t− s, θsω)Y0 = Y (t− s, 0, θsω, Y0) = Y (t, s, ω, Y0),

which completes the proof. �
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3 Existence of an invariant manifold

Now we can prove the main result of this paper.

Theorem 3.1 Assume that (A1)–(A2), (R1)–(R6) hold and

γ1 − γ2 >
(√

M2L2 +
√
M1L1

)2
. (21)

Then, there exists a random mapping Φ(·, ·) : Ω ×X2 7→ X1 such that

∥Φ(ω, V1) − Φ(ω, V2)∥X1 ≤ C∥V1 − V2∥X2 , (22)

for all V1, V2 ∈ X2, ω ∈ Ω, where C is a constant independent of the argu-

ments. Moreover, the random manifold

M(ω) = {(Φ(ω, V ), V ) : V ∈ X2} ⊂ X,

is strictly invariant with respect to the cocycle ϕ: ϕ(t, ω)M(ω) = M(θtω).

This manifold M is exponentially attracting in the following sense. Let

µ =

√
M2L2γ1 +

√
M1L1γ2√

M2L2 +
√
M1L1

. (23)

Then there exist a random variable R1 > 0 and a constant C1 > 0 such that

for any Y0 ∈ X to (11) there exists Y ∗ ∈ M(ω):

[∫ ∞

0
e2µt ∥ϕ(t, ω)Y0 − ϕ(t, ω)Y ∗∥2X dt

]1/2
≤ R1(ω) + C1∥Y0∥X . (24)

If we assume that the stronger requirement of (R6s) holds, then we have a

random variable R2 and a constant C2 such that

∥ϕ(t, ω)Y0 − ϕ(t, ω)Y ∗∥X ≤ e−µt (R2(ω) + C2∥Y0∥X) , t > 0. (25)

Remark 3.2 It follows from (25) and from the invariance property of M(ω)

with respect to the cocycle ϕ that for every bounded set B there exists a

CB > 0

sup {distX (ϕ(t, ω)Y0,M(θtω)) : Y0 ∈ B} ≤ CB(ω)e−µt, ω ∈ Ω.

If R2(ω) is tempered, then relation (25) also implies that

lim
t→∞

sup
{
eµ̃tdistX (ϕ(t, θ−tω)Y0,M(ω)) : Y0 ∈ B

}
= 0, ω ∈ Ω,
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for any µ̃ < µ. Thus, in the case of tempered R2(ω) the manifold M(ω) is

uniformly exponentially attracting in the both forward and pullback sense.

By the Lipschitz continuity of Φ(ω, ·) we obtain that M is a random closed

set, i.e.

ω 7→ distX(y,M(ω))

is measurable for any y ∈ X

In the following we prove Theorem 3.1. We proceed in several steps.

3.1 Construction of the inertial manifold

We apply the Lyapunov-Perron procedure (see, e.g., [11, 13, 29]) but modi-

fied for stochastic systems (see [12, 14, 18, 15]).

Following [29] for each fixed s ∈ R, we consider the spaces

Xs =
{
Y (·) : eµ(·−s)Y (·) ∈ L2(−∞, s,X)

}
,

where µ ∈ (γ2, γ1) is given by (23). On this space we introduce the norm

|Y |Xs ≡
(∫ s

−∞
e2µ(t−s)∥Y (t)∥2Xdt

)1/2

.

In order to construct an invariant manifold we should first solve the integral

equation

Y = TV0 [Y, ω](·, s) on Xs (26)

for every s ∈ R, where V0 ∈ PX and TV0 [Y, ω] ≡ LV0 [F (Y ), ω]. Here

LV0 [Y, ω] is defined on Xs by

LV0 [Y, ω](σ, s) = S2(σ − s)V0 −
∫ s

σ
S2(σ − τ)PY (τ, s)dτ

+

∫ σ

−∞
S1(σ − τ)QY (τ, s)dτ + Σ(s, σ, ω)

(27)

with

Σ(s, σ, ω) ≡ (η1(θσω),−S2(σ − s)η2(s, σ, ω)) (28)

for every σ ∈ (−∞, s]. A solutions of (26) is denoted by Y = YV0(·, s, ω).

We first point out some properties of the stochastic term in (27), which is

useful for our considerations. It is easy to see from (R3) that

Σ(s, σ + s, ω) = Σ(0, σ, θsω) for all σ ≤ 0, s ∈ R, ω ∈ Ω.
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Therefore a simple calculation gives us the following relation between the

solutions to the problem (26) for different values of s:

YV0(τ + s, s, ω) = YV0(τ, 0, θsω) for all τ ≤ 0, s ∈ R, ω ∈ Ω. (29)

Similar to the deterministic case considered in [16] we can prove:

Proposition 3.3 Let s ∈ R and γ2 < µ < γ1. Then, for every V0 ∈ PX

and ω ∈ Ω the operator TV0 [·, ω] is from Xs into itself and

|TV01 [Y1, ω] − TV02 [Y2, ω]|Xs ≤ ∥V01 − V02∥X1 + κ(µ) · |Y1 − Y2|Xs , ω ∈ Ω,

for every V01, V02 ∈ X2 and Y1, Y2 ∈ Xs, where

κ(µ) =
M2L2

µ− γ2
+
M1L1

γ1 − µ
. (30)

We need for this Lemma 3.4 and Proposition 3.5.

Lemma 3.4 Let f ∈ L2(R) and δ > 0. Then

I1(f)(t) =

∫ ∞

t
eδ(t−τ)f(τ)dτ ∈ L2(R),

I2(f)(t) =

∫ t

−∞
e−δ(t−τ)f(τ)dτ ∈ L2(R),

and ∫
R
|Ii(f)(t)|2 dt ≤ 1

δ2

∫
R
|f(t)|2 dt, i = 1, 2. (31)

Proof. On can see that I2(f)(t) = I1(f−)(−t), where f−(t) = f(−t).
Therefore it is sufficient to deal with I1 only. After the Fourier transform

relation (31) easily follows from the Plancherel formula. Details can be found

in [16]. �

Proposition 3.5 For every V0 ∈ X1 the operator Ldet
V0

given by

Ldet
V0

[Y ](σ, s) = S2(σ − s)V0 −
∫ s

σ
S2(σ − τ)PY (τ, s)dτ

+

∫ σ

−∞
S1(σ − τ)QY (τ, s)dτ

(32)

is a continuous mapping from Xs into itself and for any Y1, Y2 ∈ Xs we have

that

|Ldet
V0

[PY1] − Ldet
V0

[PY2]|Xs ≤
M2

µ− γ2
· |PY1 − PY2|Xs (33)

and

|Ldet
V0

[QY1] − Ldet
V0

[QY2]|Xs ≤
M1

γ1 − µ
· |QY1 −QY2|Xs . (34)
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Proof. Since Ldet
V0

[Y1]−Ldet
V0

[Y2] = Ldet
0 [Y1−Y2], to obtain (33) and (34) we

need only to estimate |Ldet
0 [PY ]|Xs and |Ldet

0 [QY ]|Xs for any Y ∈ Xs. One

can see that

eµ(σ−s)∥Ldet
0 [PY ](σ)∥X ≤M2

∫ s

σ
e(µ−γ2)(σ−τ) · eµ(τ−s)∥PY (τ)∥X1dτ, σ ≤ s.

Therefore, applying this estimate given for I1 in Lemma 3.4 with δ = µ−γ2
and f(t) defined by the relation: f(t) = eµ(t−s)∥Y (t)∥X for t ≤ s and

f(t) = 0 for t > s, we obtain that

|Ldet
0 [PY ]|Xs ≤

M2

µ− γ2
· |PY |Xs for any Y ∈ Xs. (35)

In a similar way, Lemma 3.4 for I2 yields that

|Ldet
0 [QY ]|Xs ≤

M1

γ1 − µ
· |QY |Xs for any Y ∈ Xs. (36)

Relations (35) and (36) imply (33) and (34). The continuity of the mapping

Ldet
V0

follows from (33) and (34) and from the relation

|Ldet
V0

[Y1]−Ldet
V0

[Y2]|2Xs
= |Ldet

V0
[PY1]−Ldet

V0
[PY2]|2Xs

+|Ldet
V0

[QY1]−Ldet
V0

[QY2]|2Xs
.

�

Let µ be given by (23) which minimizes (30). In this case

κ(µ) =

(√
M2L2 +

√
M1L1

)2
γ1 − γ2

and we have that κ(µ) < 1 under condition (21). Thus TV0 [·, ω] is a con-

traction in Xs and hence (26) has a unique solution Y (·, s) ≡ YV0(·, s, ω) in

the space Xs for each ω ∈ Ω. Using the same (standard) argument as in the

deterministic case (see [16]) one can show that this solution Y (·, s) possesses

the properties

Y (·) ≡ Y (·, s) ∈ D((−∞, s], X),

and

sup
t≤s

{
eµ(t−s)∥YV01

(t, s, ω) − YV02
(t, s, ω)∥X

}
≤ C∥V01 − V02∥X (37)

for any V01, V02 ∈ PX and ω ∈ Ω, where C is a positive constant.
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For every s ∈ R we define Φs : Ω ×X2 → X1 as

Φs(ω, V0) ≡
∫ s

−∞
S1(s− τ)F1(YV0(τ, s, ω))dτ + η1(θsω) = QTV0 [Y, ω](s, s).

(38)

Now we prove that M is forward invariant, i.e. ϕ(t, ω)M(ω) ⊆ M(ω). To see

this we note that if s < t, then

Ỹ (σ, t, ω) ≡

{
YV0(σ, s, ω) : σ ≤ s

Y (σ, s, ω, V0 + Φs(ω, V0)) : σ ∈ [s, t]

satisfies

Ỹ (σ, t, ω) = S2(σ − t)PY (t, s, ω, YV0(s, s, ω))

+

∫ σ

t
S2(σ − τ)F2(Ỹ (τ, t, ω))dτ

+

∫ σ

−∞
S1(σ − τ)F1(Ỹ (τ, t, ω))dτ

− S2(σ − t)η2(t, σ, ω) + η1(θσ, ω)

for both σ ≤ s and σ ∈ (s, t]. Hence Ỹ is a fixed point of

TPY (t,s,ω,V0+Φs(ω,V0))[·, ω](·, t)

and

Φt(ω, PY (t, s, ω, V0 + Φs(ω, V0))) = QY (t, s, ω, V0 + Φs(ω, V0)))

which means forward invariance of M. The strict invariance will be proved

later, in Section 3.3.

It is easy to see from (29) that Φs(ω, V0) = Φ0(θsω, V0) ≡ Φ(θsω, V0), i.e.

s 7→ Φs(ω, V0) is a stationary process. Moreover, the relation (37) implies

the Lipschitz property (22).

3.2 Tracking properties

We will use the method developed in [29] for the proof of the tracking prop-

erty for inertial manifolds in the deterministic case.

Let Y0 = (U0, V0) ∈ X. We consider the following space

Z =

{
Z(·) : R → X : |Z|2Z ≡

∫ ∞

−∞
e2µt∥Z(t)∥2Xdt <∞

}
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for µ given in (23) and define the random function

Z0(t, ω) =


−Y0 + TPY0 [Y, ω](t, 0), for t ≤ 0;

S(t) [−Y0 + TPY0 [Y, ω](0, 0)] , for t > 0,

where TPY0 is defined in (26). Below we need the following properties of the

random function Z0(t, ω).

Lemma 3.6 For every ω ∈ Ω the random function Z0(t, ω) belongs to Z.

Moreover, there exist a deterministic constant C1 and a scalar random vari-

able R̄1(ω) such that

|Z0|Z ≤ R̄1(ω) + C1∥Y0∥X (39)

If we assume in addition (R6s), then there also exist a C2 > 0 and a scalar

random variable R̄2(ω) such that

sup
t∈R

{
eµt∥Z0(t)∥X

}
≤ R̄2(ω) + C∥Y0∥X . (40)

Proof. We split Z0(t, ω) into a deterministic and a stochastic part,

Z0(t, ω) = Zdet
0 (t) + Zst

0 (t, ω),

where

Zdet
0 (t) =


−Y0 + Ldet

PY0
[F (Y )](t, 0), for t ≤ 0;

S(t)
[
−Y0 + Ldet

PY0
[F (Y )](0, 0)

]
, for t > 0,

and

Zst
0 (t, ω) =


Σ(0, t, ω), for t ≤ 0;

(
S1(t)η1(ω), 0

)
, for t > 0,

Since

R∗
1(ω) ≡|Zst

0 (ω)|2Z ≤
∫ 0

−∞
e2µt

[
∥S2(t)η2(0, t, ω)∥2X2

+ ∥η1(θtω)∥2X1

]
dt

+
M1

γ1
∥η1(ω)∥2X1

<∞
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and if (R6s) holds

R∗
2(ω) ≡ sup

t∈R

{
eµt∥Zst

0 (t, ω)∥X
}

≤ c0 sup
t∈R−

{
eµt
[
∥S2(t)η2(0, t, ω)∥X2 + ∥η1(θtω)∥X1

]}
<∞,

it follows from hypotheses imposed that R∗
1(ω) and R∗

2(ω) are finite for every

ω. Therefore, estimating the deterministic part Zdet
0 (t) by the standard

method we obtain the estimates (39) and (40) with R̄i(ω) = D1 +D2R
∗
i (ω),

where D1 and D2 are constants, independent of ω. �

Let now Y (t) = Y (t, 0, ω, Y0), t ∈ R, be the solution to (11) for t ≥ 0 and

Y0 ∈ X for t ≤ 0. We define an integral operator R : Z 7→ Z by the formula

R[Z](t) = Z0(t) +

∫ t

−∞
S1(t− τ)Q [F (Z(τ) + Y (τ)) − F (Y (τ))] dτ

−
∫ ∞

t
S2(t− τ)P [F (Z(τ) + Y (τ)) − F (Y (τ))] dτ.

Let us prove that R is a contraction in Z.

By (7) and (5) we have that

eµt∥P (R[Z1](t) −R[Z2](t)) ∥X

≤ M2L2

∫ ∞

t
e(µ−γ2)(t−τ)eµτ ∥Z1(τ) − Z2(τ)∥X dτ (41)

By Lemma 3.4 with δ = µ − γ2 and f(t) = M2L2e
µt ∥Z1(t) − Z2(t)∥X we

obtain that

∥P (R[Z1] −R[Z2]) ∥Z ≤ M2L2

µ− γ2
· ∥Z1 − Z2∥Z .

Similarly, (6) and (4) yields

eµt∥Q (R[Z1](t) −R[Z2](t)) ∥X

≤ M1L1

∫ t

−∞
e(µ−γ1)(t−τ)eµτ ∥Z1(τ) − Z2(τ)∥X dτ

and thus applying Lemma 3.4 again we have that

∥Q (R[Z1] −R[Z2]) ∥Z ≤ M1L1

γ1 − µ
· ∥Z1 − Z2∥Z .

If µ is given by (23), we can write

∥R[Z1] −R[Z2]∥Z ≤ κ(µ) · ∥Z1 − Z2∥Z for every Z1, Z2 ∈ Z (42)
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where κ(µ) < 1. Thus by the contraction principle there exists a unique

solution Z ∈ Z to the equation Z = R[Z] in Z.

Now using the same calculation as in [16] and [29] we can conclude that the

function Ỹ (t) = Z(t) + Y (t), where Z ∈ Z solves the equation Z = R[Z],

satisfies the relation

Ỹ (t) =


T
PỸ (0)

[Ỹ , ω](t, 0), if t ≤ 0;

ϕ(t, ω)Ỹ (0), if t > 0.

In particular, Ỹ (0) = T
P Ỹ (0)

[Ỹ , ω](0, 0) and, therefore, by the definition of

the operator T
PỸ (0)

we obtain that

Ỹ (0) = PỸ (0) +

∫ 0

−∞
S(−τ)QF (Ỹ (τ))dτ +Qη(0,−∞).

By (38) this implies that Ỹ (0) =
(

Φ(ω, P Ỹ (0)), P Ỹ (0)
)

. Therefore Ỹ (t) =

ϕ(t, ω)Ỹ (0) ∈ M(θtω) for t ≥ 0. Thus to complete the proof of the tracking

property in (24) and (25) we only need to establish appropriate estimates

for Z(t).

Since

Z(t) = R[Z](t) = Z0(t) + R[Z](t) −R[0](t), (43)

from (39) and (42) we obtain the relation

|Z|Z ≤ (1 − κ(µ))−1 · |Z0|Z ≤ (1 − κ(µ))−1 ·
(
R̄1(ω) + C∥Y0∥X

)
, (44)

which implies (24).

Now we prove (25). From (41) we have that for t ∈ R

eµt∥P (R[Z](t) −R[0](t)) ∥X ≤M2L2

∫ ∞

t
e(µ−γ2)(t−τ) · eµτ ∥Z(τ)∥X dτ

≤M2L2

[∫ ∞

t
e2(µ−γ2)(t−τ)dτ

]1/2
· |Z|Z =

M2L2√
2(µ− γ2)

· |Z|Z .

Thus

sup
t∈R

{
eµt∥P (R[Z](t) −R[0](t)) ∥X

}
≤ M2L2√

2(µ− γ2)
· |Z|Z . (45)

Similarly, we have that

eµt∥Q (R[Z](t) −R[0](t)) ∥X

≤M1L1

∫ t

−∞
e−γ1(t−τ)eµτ∥Z(τ)∥Xdτ ≤ M1L1√

2(γ1 − µ)
· |Z|Z .

(46)
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Consequently, using relations (43), (45) and (40) we obtain that for appro-

priate c1 > 0, c2 > 0

sup
t∈R

{
eµt∥Z(t)∥X

}
≤ c1R̄2(ω) + c2 |Z|Z .

Thus by (44) we have

sup
t∈R

{
eµt∥Z(t)∥X

}
≤ c3(R̄1(ω) + R̄2(ω)) + c4∥Y0∥X .

for appropriate (deterministic) constants c3 and c4. This implies (25) and

completes the proof of Theorem 3.1.

3.3 The reduced system and the strict invariance

Assume the hypotheses of Theorem 3.1 hold and let Φ ≡ Φ0 be given by

(38) with s = 0. Consider the problem

Vt +A2V = F2(Φ(θtω, V ), V ) +B2Ṅ2, t > s, in X2,

V (s) = V0,
(47)

and define its mild solution on the interval [s, T ] as a random function

V (t) ≡ V (t, s, ω, V0) ∈ D([s, T ], X2)

such that

V (t) = S2(t− s)V0 +

∫ t

s
S2(t− τ)F2(Φ(θtω, V (τ)), V (τ))dτ + η2(t, s) (48)

for almost all t ∈ [s, T ] and ω ∈ Ω.

Proposition 3.7 Let V0 ∈ X2. Then under the conditions of Theorem 3.1

problem (47) has a mild solution on any interval [s, T ]. This solution is

unique and any mild solution V to problem (47) generates a mild solution

to problem (1) and (2) with initial condition (Φ(θsω, V0), V0) by the formula

Y (t) = (U(t), V (t)) = (Φ(θtω, V (t)), V (t)). (49)

Moreover, in this case the manifold M is strictly invariant with respect to

the cocycle ϕ generated by (1) and (2).

Proof. The existence of a solution to (47) follows by the Lipschitz conti-

nuity of Φ. Since S2 is a group we can solve (48) backwards in time and,

hence, one can prove that M is strictly invariant with respect to the cocycle

ϕ(t, ω). �
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Observe now that Theorem 3.1 implies that for any mild solution Y to

problem (1) and (2) with initial data Y0 ∈ X, there exists a mild solution

V (t) to reduced problem (47) such that

∥V (t) −QY (t)∥2X2
+ ∥Φ(ω, V (t)) − PY (t)∥2X1

→ 0 ast→ ∞

exponentially fast (in the sense of (24) and (25)). Thus under the conditions

of Theorem 3.1, the long-time behaviour of solutions to (1) and (2) can

be described completely by solutions to problem (47). Moreover, due to

relation (49), every limiting regime of the reduced system (47) is realized in

the coupled system (1) and (2).

4 Distance between random and

deterministic manifolds

Theorem 3.1 can be also applied to the deterministic version of problem (1)

and (2):

Ut +A1U = F1(U, V ), t > 0, in X1,

Vt +A2V = F2(U, V ), t > 0, in X2. (50)

In this case Theorem 3.1 gives us the existence of (deterministic) invariant

exponentially attracting manifold Mdet of the form

Mdet =
{

(Φdet(V ), V ) : V ∈ X2

}
⊂ X,

where Φdet : X2 7→ X1 is a globally Lipschitz mapping.

Our goal in this section is to estimate the mean value distance between the

deterministic (Mdet) and random (M(ω)) manifolds.

Theorem 4.1 The following estimate holds,

∥Φ(ω, V0) − Φdet(V0)∥2X1
≤ 2∥η1(0,−∞, ω)∥2X1

+ b1|Σ(0, ·, ω)|2X0
, (51)

where b1 > 0 is a constant. In particular, in the case of white noises (see

Section 2.2.1) there exist a positive constant C such that

E
{

sup
V0∈X2

∥Φ(·, V0) − Φdet(V0)∥2X1

}
≤ C (trK1 + trK2) . (52)

Thus, in the latter case the random manifold M(ω) is close to its determin-

istic counterpart when trK1 + trK2 becomes small.
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Proof. It follows from the definition (see (38)) of the functions Φ and Φdet

that

Φ(ω, V0) − Φdet(V0)

=

∫ 0

−∞
S1(τ)

[
F1(Y

st(τ)) − F1(Y
det(τ))

]
dτ + η1(0,−∞),

where Y st(t) and Y det(t) are defined on the semi-axis (−∞, 0] and solve the

equations

Y st(t) = LV0 [F (Y st), ω](t, 0) and Y det(t) = Ldet
V0

[F (Y det)](t, 0), (53)

where LV0 and Ldet
V0

are defined as in (27) and (32).

Using the same method as in the proof of relation (46) we can conclude that

∥Φ(·, V0) − Φdet(V0)∥X1 ≤ ∥η1(0,−∞)∥X1 + a1|Y st − Y det|X0 (54)

where a1 is a deterministic constant. By (53) we have that

|Y st − Y det|X0 ≤ |TV0 [Y st, ω](·, 0) − TV0 [Y det, ω](·, 0)|X0 + |Σ(0, ·)|X0 ,

where TV0 [V, ω](t, 0) is the same as in (26) and Σ(s, t) is given by (28). Thus

by Proposition 3.3 we have that

|Y st − Y det|X0 ≤ (1 − q)−1|Σ(0, ·)|X0 ,

where q < 1. Therefore, using (54) we obtain the estimate (51).

It easily follows from the definition of Σ(s, t) (see (28)) in the white noise

case that

E∥η1(0,−∞)∥2X1
≤ C1 · trK1 and E|Σ(0, ·)|2X0

≤ C2 (trK1 + trK2) .

(55)

Therefore (52) follows from (51) and (55). �

Remark 4.2 If we consider the scaled noises εN1 and εN2 instead of N1

and N2, then (51) implies that

lim
ε→0

∥Φε(ω, V0) − Φdet(V0)∥X1 = 0 for every ω ∈ Ω.

5 Applications

In this section we consider several applications of the Theorem 3.1.
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5.1 Coupled parabolic-hyperbolic system

Let D be a bounded domain in Rd, Γ ≡ ∂D a C1-manifold. Let {aij}di,j=1

and {bij}di,j=1 be symmetric matrices of measurable functions such that

c0|ξ|2 ≤
d∑

i,j=1

aij(x)ξjξi ≤ c1|ξ|2

c0|ξ|2 ≤
d∑

i,j=1

bij(x)ξjξi ≤ c1|ξ|2, ξ = (ξ1, . . . , ξd) ∈ Rd,

for some positive constants c0, c1 and x ∈ D. Let Γ = Γ0 ∪ Γ1, where Γ0

and Γ1 are (relatively) open subsets of Γ such that Γ0 ∩ Γ1 = ∅. (Γ0 = ∅
or Γ0 = Γ are allowed). Let a0, b0 be nonnegative parameters and aΓ0 is

a positive function in L∞(Γ1). We consider the following coupled system

consisting of the parabolic-hyperbolic problem

ut−
d∑

i,j=1

∂i [aij(x)∂ju] + a0u = f1(u, v, vt) + Ṅ1, (56)

u = 0 on Γ0,
d∑

i,j=1

niaij∂ju+ aΓ0 (x)u = 0 on Γ1 (57)

vtt−
d∑

i,j=1

∂j [bij(x)∂jv] + b0v = f2(u, v, vt) + Ṅ2, (58)

v = 0 on Γ. (59)

where n = (n1, . . . , nd) is the outer normal vector of Γ.

The functions

f1 : R3 7→ R and f2 : R3 7→ R

possess the properties:

|f1(w) − f1(w
∗)| ≤ l1|w − w∗|R3 . (60)

and

|f2(w) − f2(w
∗)| ≤ l2|w − w∗|R3 . (61)

for all w,w∗ ∈ R3.
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Let A1 be a positive self-adjoint operator on X1 = L2(D) generated by the

bilinear form

(A1u, u
∗) =

d∑
i,j=1

∫
Ω
aij∂ju∂iu

∗dx+ a0

∫
Ω
uu∗dx+

∫
Γ1

aΓ0uu
∗dΓ

This operator has a compact inverse and generates a C0–semigroup S1(t) =

e−tA1 . We have that ∥S1(t)∥X1 ≤ e−λA1
t for t ≥ 0, where λA1 ≡ inf spec(A1).

We note that λA1 > 0 provided either Γ0 ̸= ∅, or a0 > 0, or aΓ0 > 0.

Let us write (58) as a system(
v0t

v1t

)
+

(
0 −I
B 0

)(
v0

v1

)
+

(
0

f2(u, v0, v1)

)
=

(
0

Ṅ2

)
, (62)

where B is a positive self-adjoint operator defined by

Bv = −
d∑

i,j=1

∂j [bij(x)∂jv] + b0v, v ∈ D(B) ≡ H2(D) ∩H1
0 (D).

We set λB ≡ inf specB > 0. We denote by A2 the generator of a unitary C0–

(semi)group corresponded to the linear part of (62) on X2 = H1
0 (D)×L2(D).

We equip the space X2 with the energy type norm

∥(w,w1)∥2X2
=

∫
D

(
|B1/2w0|2 + |w1|2

)
dx, V = (v0, v1). (63)

We have ∥S2(t)∥X2 ≤ eγ2t for t ∈ R with γ2 ≡ 0. We also can define

F1(U, V )[x] = f1(u(x), v(x), vt(x)), U = u(·), V = (v(·), vt(·)),

and

F2(U, V )[x] = (0, f2(u(x), v(x), vt(x))), U = u(·), V = (v(·), vt(·)),

for x ∈ D giving us Lipschitz continuous operators fromX = X1×X2 intoXi

for i = 1, 2 resp. By the particular form of the noise in (62) it is appropriate

to consider η2 ∈ L2(D) = X1 such that with respect to Subsection 2.2.2 we

can set X1 = H0.

Under all these assumption we have (A1), (A2), (R1)– (R6). Thus we

obtain that the mild solution of (56)–(59) generates a random dynamical

system. In addition, we have

M1 = M2 = 1, γ1 = λA1 ≥ a0, γ2 = 0
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and also for the Lipschitz constants of F1, F2:

L1 = l1 max

{
1,

1√
λB

}
, L2 = l2 max

{
1,

1√
λB

}
.

Thus under the condition

λA1 >
(√

l1 +
√
l2

)2
max

{
1,

1√
λB

}
(58) synchronizes (56) by Theorem 3.1.

Remark 5.1 (i) We note that it is not important that D is a bounded do-

main and Dirichlet boundary conditions for v hold. The only facts which we

use in the proof are (i) B is a self adjoint operator with inf spec (B) > 0, and

(ii) A1 generates exponentially stable C0–semigroup. Thus we can consider

unbounded domains and equip the corresponding differential operation with

other (self-adjoint) boundary conditions. We will use this observation in our

subsequent applications.

(ii) Coupled models like (56) and (58) arises in the study of wave phenomena

which are heat generating or temperature related (see, e.g., [16, 26] for the

deterministic case and [7] for a stochastic thermoelastic problem and the

references therein).

5.2 Coupled parabolic PDE and ODE systems

Let fi : R1+m 7→ R, i = 1, 2, be a globally Lipschitz functions:

|fi(w) − fi(w
∗)| ≤ li|w − w∗|R1+m for all w,w∗ ∈ R1+m.

In a bounded domain D ⊂ Rd we consider the following parabolic equation

ut − ∆u+ f1(u, v) = Ṅ1, u|∂D = 0, (64)

coupled with the ordinary differential equation in Rm:

vt + f2(u, v) = Ṅ2. (65)

In (65) t 7→ v(t, ·) is a function with values in [L2(D)]m which satisfies ODE

with respect to t (the variable x is present as a parameter). So for the fixed

u ∈ L2(D) (and x ∈ D) we can solve (65) as an equation in [L2(D)]m. This

kind of coupled problems arises in biology. For instance, the well-known
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Hodgkin–Huxley system belongs to this class (see, e.g., [13, 23] and the

references therein).

The problem (64) and (65) can be embedded in our framework with the

spaces X1 = [L2(D)]m and X2 = [L2(D)]m and operators A1 = −∆ in

X1 with the domain (H2 ∩ H1
0 )(D) and A2 ≡ 0 in X2. The semigroup S1

generated by A1 is the same as in the previous example and S2 ≡ id. It is

clear that the dichotomy properties holds with γ1 = λA1 ≡ inf spec(A1) > 0

and γ2 = 0. We also have that M1 = M2 = 1. Thus under the condition

λA1 >
(√

l1 +
√
l2

)2
we observe the master-slave synchronization phenomenon.

5.3 Two coupled hyperbolic systems

In a smooth domain D ⊆ Rd we consider two coupled wave equations for

scalar functions u and v:

utt + νut −
d∑

i,j=1

∂i [aij(x)∂ju] + a0u+ f1(u, v, vt) = Ṅ1,

u = 0 on Γ

vtt −
d∑

i,j=1

∂j [bij(x)∂jv] + b0v + f2(u, v, vt) = Ṅ2,

v = 0 on Γ

(66)

In the same way as in Subsection 5.1 the linear part of the second equation

generates a unitary C0–group S2 on X2 = H1
0 (D) × L2(D) with norm (63).

Let us rewrite the first equation of (66) as

(
u0t

u1t

)
+

(
0 −I
A ν

)(
u0

u1

)
+

(
0

f1(u0, v0, v1)

)
=

(
0

Ṅ1

)
, (67)

where A is a positive self-adjoint operator defined by

Av = −
d∑

i,j=1

∂j [aij(x)∂jv] + a0v, v ∈ D(A) ≡ H2(D) ∩H1
0 (D).

Then the linear part of equation (67) generates a C0–semigroup S1 on the

phase space

X1 = D(A1/2) × L2(D), ∥U∥2X1
= ∥A1/2u0∥2 + ∥u1 + 2γu0∥2 , (68)
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where U = (u0, u1) and ∥ · ∥ is the norm of L2(D). The parameter γ > 0

will be chosen below. This choice of the norm is motivated by the following

assertion.

Lemma 5.2 Let U(t) = (u(t), ut(t)) be a solution to

utt + νut +Au = 0, u = 0 on Γ.

If we choose γ ≡ min
{

ν
8 ,

λA
4ν

}
in definition (68) of the norm in X1, then

∥U(t)∥X1 ≤ e−γt∥U(0))∥X1 for every t > 0. (69)

Proof. We refer to Proposition 1.2 in [37, Chap.IV]. �

Let the Lipschitz continuous mappings F1, F2 on X1 × X2 be defined by

mappings f1, f2 given by (60), (61) with Lipschitz constants l1, l2.

Obviously we have that

M1, M2 ≡ 1, γ2 ≡ 0, γ1 ≡ γ.

Simple calculations shows that

L1 = l1 max

{
1,

1√
λA

,
1√
λB

}
, L2 = l2 max

{
1,

1√
λA

,
1√
λB

}
.

Thus under the condition

min

{
ν

8
,
λA
4ν

}
>
(√

l1 +
√
l2

)2
max

{
1,

1√
λA

,
1√
λB

}
there exists an exponentially attracting invariant manifold. In particular,

by Theorem 3.1 the equation (67) synchronizes the dynamics governed by

the first equation in (66).

We note that we can also include in fi dependence on ut and obtain condi-

tions for synchronization. However in this case, due to the structure of the

norm (68) the calculation of L1 and L2 is not so direct and this Lipschitz

constants may depend on γ. We do not give these calculations here.

5.4 Coupled Klein-Gordon-Schrödinger system

The following coupled model arises in quantum physics (see, e.g., [6] and

the references therein):

utt + νut − ∆u+m2u+ f1(u, v) = Ṅ1 in Rd, (70a)

ivt + ∆v + f2(u, v) = Ṅ2 in Rd, (70b)
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where ν,m > 0. Here u is real and v is complex functions. In contrast

with previous examples here we concentrate on the case when D = Rd. In

the case when D is a domain in Rd we need to impose some (self-adjoint)

boundary conditions.

We assume that the functions

f1 : R× C 7→ R, and f2 : R× C 7→ C

are globally Lipschitz, i.e.,

|f1(w) − f1(w
∗)| ≤ l1|w − w∗|R×C,

|f2(w) − f2(w
∗)| ≤ l2|w − w∗|R×C, w, w

∗ ∈ R× C.

To apply Theorem 3.1 we rewrite (70) as (1) and (2) with U = (u(·), ut(·))
and V = v(·), The corresponding phase spaces

X1 = H1(Rd) × L2(Rd), X2 = LC
2 (Rd),

where LC
2 (Rd) is the space of square integrable complex functions.

We consider in L2(Rd) the operator A = −∆ +m2 with the domain D(A) =

H2(Rd). It is clear from the Fourier analysis that A is a positive self-adjoint

operator with λA ≡ inf spec(A) = m2. We equip X1 with the norm given

in (68) with this operator A. Thus by Lemma 5.2 the linear part of (70a)

generates C0-semigroup S1 for which we have M1 = 1 and γ = min
{

ν
8 ,

m2

4ν

}
.

Since the linear part of (70b) generates the unitary group (this follows from

the Fourier analysis again), we also have that M2 = 1 and γ2 = 0. A

calculation as in the previous examples gives us that

L1 = l1 max

{
1,

1

m

}
, L2 = l2 max

{
1,

1

m

}
.

Thus under the condition

min

{
ν

2
,
m2

ν

}
≥ 4

(√
l1 +

√
l2

)2
max

{
1,m−1

}
system (70b) synchronizes (70a).

Remark 5.3 In conclusion we note that we are not able to apply our main

result (Theorem 3.1) in the case of two coupled parabolic equation. The

main reason is that the backward time estimate in (4) cannot be obtained in

the case when the master equation is parabolic. In the purely parabolic case

the approach to synchronization relies on the construction of appropriate

Lyapunov type functions [10, 33]. Our approach is alternative in some sense

and covers another, in comparison with [10, 33], kind of problems.
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