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Abstract: We prove Lp-uniqueness of Dirichlet operators for Gibbs measures on the path

space C(R, Rd) associated with exponential type interactions in infinite volume by extend-

ing an SPDE approach presented in previous work by the last two named authors. We also

give an SPDE characterization of the corresponding dynamics. In particular, we prove

existence and uniqueness of a strong solution for the SPDE, though the self-interaction

potential is not assumed to be differentiable, hence the drift is possibly discontinuous. As

examples, to which our results apply, we mention the stochastic quantization of P (φ)1-,

exp(φ)1-, and trigonometric quantum fields in infinite volume. In particular, our results

imply essential self-adjointness of the generator of the stochastic dynamics for these mod-

els. Finally, as an application of the strong uniqueness result for the SPDE, we prove
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some functional inequalities for diffusion semigroups generated by the above Dirichlet

operators. These inequalities are improvements of previous work by the second named

author.
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1 Introduction

In recent years, there has been a growing interest in the study of infinite dimensional

stochastic dynamics associated with models of Euclidean quantum field theory, hydrody-

namics, and statistical mechanics, see, e.g., Liskevich–Röckner [35], Da Prato–Tubaro [19]

and Albeverio–Liang–Zegarliński [8], resp. Albeverio–Flandoli–Sinai [2], resp. Albeverio–

Kondratiev–Kozitsky–Röckner [7]. Equilibrium states of such dynamics are described by

Gibbs measures. The stochastic dynamics corresponding to these states is given by a dif-

fusion semigroup, see, e.g., Albeverio [1]. On some minimal domain of smooth functions,

the infinitesimal generator of the semigroup coincides with the Dirichlet operator defined

through a classical Dirichlet form of gradient type with a Gibbs measure. From an analytic

point of view, it is very important to study Lp-uniqueness of the Dirichlet operator, that

is, the question whether or not the Dirichlet operator restricted to the minimal domain

has a unique closed extension in the Lp-space of the Gibbs measure under consideration,

which generates a C0-semigroup. As is well known, in the case of p = 2, this uniqueness is

equivalent to essential self-adjointness. We recall that essential self-adjointness is crucial

in applications to quantum mechanics to be sure that solutions of Schrödinger equations

are unique. This kind of uniqueness problem on infinite dimensional state spaces has

been studied intensively by many authors. In particular, we refer to the recent work [33]

by the last two named authors, where essential self-adjointness was proved in the case of

P (φ)1-quantum fields in infinite volume by using an SPDE approach based on Da Prato–

Röckner [17]. Besides, in [33] also the relationship between the corresponding dynamics

and the P (φ)1-time evolution, which had been constructed as the strong solution of a

parabolic SPDE (2.10) in Iwata [28], is discussed.

The first objective of the present paper is to prove Lp-uniqueness of the Dirichlet

operator for all p ≥ 1, under much weaker conditions on the growth rate of the potential

function of the Gibbs measure by a modification of the SPDE approach presented in [33].

Important new examples are exp(φ)1-quantum fields in infinite volume in the context

of Euclidean quantum field theory. These models were introduced (for the case where

R occurring in (1.1) below is replaced by a 2-dimensional Euclidean space-time R2 and

where d = 1) in Høegh-Krohn [26], Albeverio–Høegh-Krohn [6] and further studied e.g.,

in Simon [47], Fröhlich [22], Albeverio–Gallavotti–Høegh-Krohn [3] and Kusuoka [34].
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More precisely, we are concerned with Gibbs measures on an infinite volume path space

C(R, Rd) given by the following formal expression:

Z−1 exp
{
− 1

2

∫
R

(
(−∆x + m2)w(x), w(x)

)
Rddx

−
∫

R
dx

( ∫
Rd

e(w(x),ξ)Rdν(dξ)
)} ∏

x∈R

dw(x). (1.1)

Here Z is a normalizing constant, m > 0 denotes mass, ∆x := d2/dx2, ν is a bounded

positive measure on Rd with compact support, and
∏

x∈R dw(x) stands for a (heuris-

tic) volume measure on the space of maps from R into Rd. This has the interpretation

of a quantized d-dimensional vector field with an interaction of exponential type in the

1-dimensional space-time R, a model which is known as stochastic quantization of the

exp(φ)1-quantum field model (with weight measure ν). We should mention that essential

self-adjointness of the Dirichlet operators for such exp(φ)1-quantum fields was not known

yet, although the corresponding stochastic dynamics was constructed by using the Dirich-

let form theory in Albeverio–Röckner [12] (see also Hida–Kuo–Potthoff–Streit [25] for an

approach based on white noise calculus). Another important new example we handle is

the model of trigonometric interactions, defined analogously to (1.1), but with e(w(x),ξ)Rd

replaced by cos{(w(x), ξ)Rd + α}, α ∈ R. Such a model was studied (with R replaced by

a 2-dimensional space-time R2 and assuming d = 1) e.g., in Albeverio–Høegh-Krohn [5],

Fröhlich [22] and Albeverio–Haba–Russo [4]. In the present paper, we, in particular, prove

essential self-adjointness of the corresponding Dirichlet operator for all these models. As

a consequence, the Dirichlet operator associated with the superposition of polynomial,

exponential and trigonometric interactions, is also essentially self-adjoint.

The second objective of the present paper is to discuss a characterization of the stochas-

tic dynamics corresponding to the above Dirichlet operator. Due to general theory, the

stochastic dynamics constructed through the Dirichlet form approach solves the parabolic

SPDE (2.10) weakly. However, we prove something much better, namely existence and

uniqueness of a strong solution. We achieve this by first proving pathwise uniqueness

for SPDE (2.10) and then applying the recent work of Ondreját [38] on the Yamada–

Watanabe theorem for mild solutions of SPDE. As a consequence, we have the existence

of a unique strong solution to SPDE (2.10) by using simple and straightforward argu-

ments which do not rely on any finite volume approximations discussed in [28] in case of

polynomial (i.e., smooth) self-interaction.

Here we would like to emphasize that neither of the two uniqueness statements in

Theorems 2.7 and 2.8 respectively implies the other (cf. Remark 2.9 below).

The organization of this paper is as follows: In Section 2, we present the framework

and state our results. There, we construct Gibbs measures as (1.1) rigorously by us-

ing d-dimensional Brownian motion and the ground states of Schrödinger operators on

L2(Rd, R). After introducing our Dirichlet form and the corresponding Dirichlet opera-
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tor, we state our main results (Theorems 2.7 and 2.8). Section 3 contains the proofs,

in which, we prove our main theorems. In our proof, we regard the Dirichlet operator

as a perturbation of the infinite dimensional Ornstein–Uhlenbeck operator by a possibly

discontinuous and unbounded drift term. Then we implement a modification of a tech-

nique developed in [33] which in turn is based on beautiful results of Da Prato, Tubaro

and Priola in [16, 18, 39] for Lipschitz perturbations of the Ornstein–Uhlenbeck opera-

tors. (For other works on perturbed infinite dimensional Ornstein–Uhlenbeck operators,

see also, e.g., Albeverio–Röckle–Steblovskaya [9] and references therein.) To handle our

quite singular drift term, the first thing to do is to check its Lp-integrability. For this

purpose, we make use of the asymptotic behavior for the ground state of the Schrödinger

operator at infinity which, through the Feynman–Kac formula, has a close connection

with the growth rate of the potential function. We introduce an approximation scheme

for the potential function by combining the Moreau–Yosida approximation (3.14) with

a further regularization (3.18) inspired by [17, 33], and this scheme works efficiently in

our proof. To show existence and uniqueness of a strong solution to SPDE (2.10), we

firstly identify our diffusion process as a weak solution to an infinite system of SDEs.

Secondly, we translate the infinite dimensional SDE into the weak form of SPDE (2.10),

and show pathwise uniqueness for it based on Marinelli–Röckner [37]. In Section 4, we

discuss some functional inequalities including the logarithmic Sobolev inequality (4.3) as

an application of Theorem 2.8, and in Section 5, we give another proof of the logarithmic

Sobolev inequality (4.3) by using Lemmas 5.1 and 5.2 on the approximation of the ground

state. These lemmas play key roles when we combine some tightness arguments with the

previous work to derive inequality (4.3).

2 Framework and Results

We begin by introducing some notation and objects we will be working with. We define

a weight function ρr ∈ C∞(R, R), r ∈ R, by ρr(x) := erχ(x), x ∈ R, where χ ∈ C∞(R, R)

is a positive symmetric convex function satisfying χ(x) = |x| for |x| ≥ 1. We fix a

positive constant r sufficiently small. In particular, we take r > 0 such that 2r2 < K1

if K1 > 0, where the constant K1 appears in condition (U1) below. We set E :=

L2(R, Rd; ρ−2r(x)dx). This space is a Hilbert space with its inner product defined by

(w, w̃)E :=

∫
R

(
w(x), w̃(x)

)
Rdρ−2r(x)dx, w, w̃ ∈ E.

Moreover, we set H := L2(R, Rd) and denote by ‖ · ‖E and ‖ · ‖H the corresponding norms

in E and H, respectively. We regard the dual space E∗ of E as L2(R, Rd; ρ2r(x)dx). We

endow C(R, Rd) with the compact uniform topology and introduce a tempered subspace

C := {w ∈ C(R, Rd)| lim
|x|→∞

|w(x)|ρ−r(x) < ∞ for every r > 0}.
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We easily see that the inclusion C ⊂ E∩C(R, Rd) is dense with respect to the topology of

E. Let B be the topological σ-field on C(R, Rd). For T1 < T2 ∈ R, we define by B[T1,T2] and

B[T1,T2],c the sub-σ-fields of B generated by {w(x); T1 ≤ x ≤ T2} and {w(x); x ≤ T1, x ≥
T2}, respectively. For T1, T2 ∈ R and z1, z2 ∈ Rd, let Wz1,z2

[T1,T2] be the path space measure

of the Brownian bridge such that w(T1) = z1, w(T2) = z2. We sometimes regard this

measure as a probability measure on the measurable space (C(R, Rd),B) by considering

w(x) = z1 for x ≤ T1 and w(x) = z2 for x ≥ T2.

Following Simon [48] and Iwata [27], we now proceed to introduce rigorously the Gibbs

measure on C(R, Rd). In this paper, we impose the following conditions on the potential

function U ∈ C(Rd, R):

(U1) There exist a constant K1 ∈ R and a convex function V : Rd → R such that

U(z) =
K1

2
|z|2 + V (z), z ∈ Rd.

(U2) There exist K2 > 0, R > 0 and α > 0 such that

U(z) ≥ K2|z|α, |z| > R.

(U3) There exist K3, K4 > 0 and 0 < β < 1 + α
2

such that

|∇̃U(z)| ≤ K3 exp(K4|z|β), z ∈ Rd,

where ∇̃U(z) := K1z+∂0V (z), z ∈ Rd and ∂0V is the minimal section of the subdifferential

∂V . (The reader is referred to Showalter [46] for the definition of the subdifferential for a

convex function and its minimal section. In the case where U ∈ C1(Rd, R), ∇̃U coincides

with the usual gradient ∇U .)

Let HU := −1
2
∆z + U be the Schrödinger operator on L2(Rd, R), where ∆z :=∑d

i=1 ∂2/∂z2
i is the d-dimensional Laplacian. Then condition (U2) assures that HU has

purely discrete spectrum and a complete set of eigenfunctions (see, e.g., Reed–Simon

[40]). We denote by λ0(> min U) the minimal eigenvalue and by Ω the corresponding

normalized eigenfunction in L2(Rd, R). This eigenfunction is called ground state and it

can be chosen to be strictly positive. Moreover, it has exponential decay at infinity. To

be precise, there exist some positive constants D1, D2 such that

0 < Ω(z) ≤ D1 exp
(
− D2|z|U 1

2
|z|(z)1/2

)
, z ∈ Rd, (2.1)

where U 1
2
|z|(z) := inf{U(y)| |y − z| ≤ 1

2
|z|}. See [48, Corollary 25.13] for details.

We are going to define a probability measure µ on (C(R, Rd),B). For T1 < T2, and

for all T1 ≤ x1 < x2 < · · · < xn ≤ T2, A1, A2, · · · , An ∈ B(Rd), we define a cylinder set

A ∈ B[T1,T2] by A := {w ∈ C(R, Rd) | w(x1) ∈ A1, w(x2) ∈ A2, · · · , w(xn) ∈ An}. Next,
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we set

µ(A) :=
(
Ω, e−(x1−T1)(HU−λ0)

(
1A1e

−(x2−x1)(HU−λ0)
(
1A2 · · ·

e−(xn−xn−1)(HU−λ0)
(
1Ane−(T2−xn)(HU−λ0)Ω

))))
L2(Rd,R)

= eλ0(T2−T1)

∫
Rd

dz1Ω(z1)

∫
Rd

dz2Ω(z2)p(T2 − T1, z1, z2)

×
∫

C(R,Rd)

1A(w) exp
(
−

∫ T2

T1

U(w(x))dx
)
Wz1,z2

[T1,T2](dw), (2.2)

where p(t, z1, z2), t > 0, z1, z2 ∈ Rd, is the transition probability density of standard

Brownian motion on Rd, and we used the Feynman–Kac formula for the second line.

Then by recalling that e−tHU Ω = e−tλ0Ω, ‖Ω‖L2(Rd,R) = 1 and by the Markov property

of the d-dimensional Brownian motion, (2.2) defines a consistent family of probability

measures, and hence µ can be extended to a probability measure on C(R, Rd).

In the same way as [27, Proposition 2.7], we can see that µ(C) = 1 and the following

DLR-equations hold even if we replace the potential function with polynomial growth by

the one satisfying the much weaker condition (U3):

Eµ
[
1A|B[T1,T2],c

]
(ξ) = Z−1

[T1,T2](ξ)

∫
A

exp
(
−

∫ T2

T1

U(w(x))dx
)
Wξ(T1),ξ(T2)

[T1,T2] (dw),

µ-a.e. ξ ∈ C(R, Rd), for all A ∈ B[T1,T2], T1 < T2, (2.3)

where Z[T1,T2](ξ) := EWξ(T1),ξ(T2)

[T1,T2] [exp(−
∫ T2

T1
U(w(x))dx)] is a normalizing constant. By the

continuity of the inclusion map of C into E, we may regard µ as a probability measure

on E by identifying it with its image measure under the inclusion map, and using that,

C ∈ B(E) and B(E)∩C = B(C) by Kuratowski’s theorem. The DLR-equations (2.3) imply

that the Gibbs measure µ is C∞
0 (R, Rd)-quasi-invariant, i.e., µ(· + k) and µ are mutually

equivalent, and µ(k + dw) = Λ(k, w)µ(dw) holds for every k ∈ C∞
0 (R, Rd). In particular

by Albeverio–Röckner [10, Proposition 2.7], µ(O) > 0 for every open ∅ 6= O ⊂ E, i.e., the

topological support supp(µ) is equal to all of E. The Radon-Nikodym density Λ(k, w) is

represented by

Λ(k, w) = exp
{∫

R

(
U

(
w(x)

)
− U

(
w(x) + k(x)

)
−1

2

∣∣dk

dx
(x)

∣∣2 + (w(x), ∆xk(x))Rd

)
dx

}
. (2.4)

We give the following examples which satisfy our conditions (U1), (U2) and (U3).

Example 2.1 (P (φ)1-quantum fields) We consider the case where the potential func-

tion U is written as the following potential function on Rd:

U(z) =
2n∑

j=0

aj|z|j, a2n > 0, n ∈ N.
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Especially, in the case U(z) = m2

2
|z|2, m > 0, the corresponding Gibbs measure µ is the

Gaussian measure on C with mean 0 and covariance operator (−∆x +m2)−1. It is just the

(space-time) free field of mass m in terms of Euclidean quantum field theory. A double-

well potential U(z) = a(|z|4 − |z|2), a > 0, is also particularly important from the point of

view of physics.

Example 2.2 (exp(φ)1-quantum fields) We consider an exponential type potential func-

tion U : Rd → R (with weight ν) given by

U(z) =
m2

2
|z|2 + V (z) :=

m2

2
|z|2 +

∫
Rd

e(ξ,z)Rdν(dξ), z ∈ Rd,

where ν is a bounded positive measure with supp(ν) ⊂ {ξ ∈ Rd| |ξ| ≤ L} for some L > 0.

We note that U is a smooth strictly convex function (i.e., ∇2U ≥ m2). Hence we can

take K1 = m2, K2 = m2

2
and α = 2. Moreover,

|U(z)| ≤ m2

2
|z|2 + ν(Rd)eL|z| ≤

( m2

2L2
+ ν(Rd)

)
e2L|z|, z ∈ Rd,

and

|∇U(z)| ≤ m2|z| +
∫

Rd

|ξ|e(ξ,z)Rdν(dξ) ≤ (
m2

L
+ Lν(Rd))eL|z|, z ∈ Rd.

Thus we can take β = 1, which satisfies β < 1 + α
2

in condition (U3).

Remark 2.3 We discuss a simple example of exp(φ)1-quantum fields in the case d = 1.

This example has been discussed in the 2-dimensional space-time case in [6]. Let δa be

the Dirac measure at a ∈ R and we consider ν(dξ) := 1
2

(
δ−a(dξ) + δa(dξ)

)
, a > 0. Then

the corresponding potential function is U(z) = m2

2
z2 +cosh(az), and (2.1) implies that the

Schrödinger operator HU has a ground state Ω satisfying

0 < Ω(z) ≤ D1 exp
(
− D2√

2
|z|e

a
4
|z|), z ∈ R, (2.5)

for some D1, D2 > 0. By the translation invariance of the Gibbs measure µ and (2.5),

there exist positive constants M1 and M2 such that

AT := µ
(
{w ∈ C(R, R)| |w(T )| >

4

a
log log T}

)
=

∫
|z|> 4

a
log log T

Ω(z)2dz

≤ M1 exp
{
− M2(log T )(log log T )

}
= M1T

−M2 log log T (2.6)

for T large enough, and (2.6) implies
∑∞

T=1 AT < ∞. Then the first Borel–Cantelli lemma

yields

µ
(
{w ∈ C(R, R)| lim sup

T→∞

|w(T )|
log log T

≤ 4

a
}
)

= 1,

and thus µ is supported by a much smaller subset of C(R, R) than C.
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Example 2.4 (Trigonometric quantum fields) We consider a trigonometric type po-

tential function U : Rd → R (with weight ν) given by

U(z) =
m2

2
|z|2 + V (z) :=

m2

2
|z|2 +

∫
Rd

cos
{
(ξ, z)Rd + α

}
ν(dξ), z ∈ Rd,

where α ∈ R, m > 0, and ν is a bounded signed measure with finite second absolute

moment, i.e.,

|ν|(Rd) < ∞, K(ν) :=

∫
Rd

|ξ|2|ν|(dξ) < ∞.

This potential function is smooth, and it can be regarded as a bounded perturbation of a

quadratic function. Moreover, ∇2U ≥ m2 − K(ν) and

|∇U(z)| ≤ m2|z| + K(ν)1/2|ν|(Rd)1/2.

This type of potential functions corresponds to quantum field models with “trigonometric

interaction” and has been discussed especially in the 2-dimensional space-time case (see,

e.g., [5, 22, 25]).

Remark 2.5 Further examples can be obtained by considering U : Rd → R of the form

U(z) = λ1U1(z) + λ2U2(z) + λ3U3(z), where λi ≥ 0, i = 1, 2, 3, and U1, resp. U2, resp.

U3, is as given in Example 2.1, resp. Example 2.2, resp. Example 2.4.

Now we are in a position to introduce the pre-Dirichlet form (E ,FC∞
b ). Let K ⊂ E∗

be a dense linear subspace of E and let FC∞
b (K) be the space of all smooth cylinder

functions on E having the form

F (w) = f(〈w,ϕ1〉, . . . , 〈w,ϕn〉), w ∈ E,

with n ∈ N, f ∈ C∞
b (Rn, R) and ϕ1, . . . , ϕn ∈ K. Here we set 〈w,ϕ〉 :=

∫
R(w(x), ϕ(x))Rddx

if the integral converges absolutely, and set FC∞
b := FC∞

b (C∞
0 (R, Rd)) for simplicity. Since

we have supp(µ) = E, two different functions in FC∞
b (K) represent two different µ-classes.

Note that FC∞
b is dense in Lp(µ) for all p ≥ 1. For F ∈ FC∞

b , we define the H-Fréchet

derivative DHF : E → H by

DHF (w) :=
n∑

j=1

∂f

∂αj

(〈w,ϕ1〉, . . . , 〈w,ϕn〉)ϕj.

Then we consider the pre-Dirichlet form (E ,FC∞
b ) which is given by

E(F,G) =
1

2

∫
E

(
DHF (w), DHG(w)

)
H

µ(dw), F,G ∈ FC∞
b .
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Proposition 2.6

E(F,G) = −
∫

E

L0F (w)G(w)µ(dw), F,G ∈ FC∞
b , (2.7)

where L0F ∈ Lp(µ), p ≥ 1, F ∈ FC∞
b , is given by

L0F (w) =
1

2
Tr(D2

HF (w)) +
1

2

〈
w, ∆xDHF (w(·))

〉
− 1

2

〈
(∇̃U)(w(·)), DHF (w)

〉
=

1

2

n∑
i,j=1

∂2f

∂αi∂αj

(
〈w,ϕ1〉, . . . , 〈w,ϕn〉

)
〈ϕi, ϕj〉

+
1

2

n∑
i=1

∂f

∂αi

(
〈w,ϕ1〉, . . . , 〈w,ϕn〉

)
·
{
〈w, ∆xϕi〉 − 〈(∇̃U)(w(·)), ϕi〉

}
.

for F (w) = f(〈w,ϕ1〉, . . . , 〈w,ϕn〉).

This proposition means that the operator L0 is the pre-Dirichlet operator which is

associated with the pre-Dirichlet form (E ,FC∞
b ). In particular, (E ,FC∞

b ) is closable in

L2(µ). Let us denote by D(E) the completion of FC∞
b with respect to the E1/2

1 -norm.

(Here we use standard notations of the theory of Dirichlet forms, see, e.g., [1, 23, 36].)

By standard theory (cf. [1, 11, 23, 36]), (E ,D(E)) is a Dirichlet form and the operator L0

has a self-adjoint extension (Lµ, Dom(Lµ)), called the Friedrichs extension, corresponding

to the Dirichlet form (E ,D(E)). The semigroup {etLµ}t≥0 generated by (Lµ, Dom(Lµ))

is Markovian, i.e., 0 ≤ etLµF ≤ 1, µ-a.e. whenever 0 ≤ F ≤ 1, µ-a.e. Moreover, since

{etLµ}t≥0 is symmetric on L2(µ), the Markovian property implies that∫
E

etLµF (w)µ(dw) ≤
∫

E

F (w)µ(dw), F ∈ L2(µ), F ≥ 0, µ-a.e.

Hence ‖etLµF‖L1(µ) ≤ ‖F‖L1(µ) holds for F ∈ L2(µ), and {etLµ}t≥0 can be extended as a

family of C0-semigroup of contractions in Lp(µ) for all p ≥ 1. See e.g., Shigekawa [43,

Proposition 2.2] for details.

On the other hand, it is a fundamental question whether the Friedrichs extension is

the only closed extension generating a C0-semigroup on Lp(µ), p ≥ 1, which for p = 2

is equivalent to the fundamental problem of essential self-adjointness of L0 in quantum

physics (cf. Eberle [21]). Even if p = 2, in general there are many lower bounded self-

adjoint extensions L̃ of L0 in L2(µ) which therefore generate different symmetric strongly

continuous semigroups {et eL}t≥0. If, however, we have Lp(µ)-uniqueness of L0 for some

p ≥ 2, there is hence only one semigroup which is strongly continuous and with generator

extending L0. Consequently, in this case, only one such Lp-, hence only one such L2-

dynamics exists, associated with the Gibbs measure µ.

The following theorems are the main results of this paper. For the notions of “quasi-

everywhere” and “capacity”, we refer to [1, 23, 36].
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Theorem 2.7 (1) The pre-Dirichlet operator (L0,FC∞
b ) is Lp(µ)-unique for all p ≥

1, i.e., there exists exactly one C0-semigroup in Lp(µ) such that its generator extends

(L0,FC∞
b ).

(2) There exists a diffusion process M := (Θ,F , {Ft}t≥0, {Xt}t≥0, {Pw}w∈E) such that the

semigroup {Pt}t≥0 generated by the unique (self-adjoint) extension of (L0,FC∞
b ) satisfies

the following identity for any bounded measurable function F : E → R, and t > 0:

PtF (w) =

∫
Θ

F (Xt(ω))Pw(dω), µ-a.s. w ∈ E. (2.8)

Moreover, M is the unique diffusion process solving the following “componentwise” SDE:

〈Xt, ϕ〉 = 〈w,ϕ〉 + 〈Bt, ϕ〉 +
1

2

∫ t

0

{
〈Xs, ∆xϕ〉 − 〈(∇̃U)(Xs(·)), ϕ〉

}
ds,

t > 0, ϕ ∈ C∞
0 (R, Rd), Pw-a.s., (2.9)

for quasi-every w ∈ E and such that its corresponding semigroup given by (2.8) consists of

locally uniformly bounded (in t) operators on Lp(µ), p ≥ 1, where {Bt}t≥0 is an {Ft}t≥0-

adapted H-cylindrical Brownian motion starting at zero defined on (Θ,F , {Ft}t≥0, Pw)

and ∇̃U was defined in condition (U3).

Theorem 2.8 For quasi-every w ∈ E, the parabolic SPDE

dXt(x) =
1

2

{
∆xXt(x) − (∇̃U)(Xt(x))

}
dt + dBt(x), x ∈ R, t > 0, (2.10)

has a unique strong solution X = {Xw
t (·)}t≥0 living in C([0,∞), E). Namely, there exists

a set S ⊂ E with Cap(S) = 0 such that for any H-cylindrical Brownian motion {Bt}t≥0

starting at zero defined on a filtered probability space (Θ,F , {Ft}t≥0, P) satisfying the usual

conditions and an initial datum w ∈ E \ S, there exists a unique {Ft}t≥0-adapted process

X = {Xw
t (·)}t≥0 living in C([0,∞), E) satisfying (2.9).

Remark 2.9 Obviously, the uniqueness result in Theorem 2.8 implies the (thus weaker)

uniqueness stated for the diffusion process M in Theorem 2.7. However, it does not imply

the Lp(µ)-uniqueness of the Dirichlet operator. This is obvious, since a priori the lat-

ter might have extensions which generate non-Markovian semigroups which thus have no

probabilistic interpretation as transition probabilities of a process. Therefore, neither of

the two uniqueness results in Theorems 2.7 and 2.8, i.e., Lp(µ)-uniqueness of the Dirichlet

operator and strong uniqueness of the corresponding SPDE respectively, implies the other.

We refer to Albeverio–Röckner [13, Sections 2 and 3] and see also [17, Section 8] for a

detailed discussion.

Remark 2.10 If the potential function U is a C1-function with polynomial growth at

infinity, Iwata [28] proves that SPDE (2.10) has a unique strong solution Xw = {Xw
t (·)}t≥0
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living in C([0,∞), C) for every initial datum w ∈ C. On the other hand, in the case of

exp(φ)1-quantum fields, since (∇U)(w(·)) /∈ C for w ∈ C in general, we cannot expect to

solve SPDE (2.10) in C([0,∞), C) for a given initial datum w ∈ C. Hence if we replace

the state space C by a much smaller tempered subspace Ce such that (∇U)(w(·)) ∈ Ce

holds for w ∈ Ce, we might construct a unique strong solution to SPDE (2.10) living in

C([0,∞), Ce) for every initial datum w ∈ Ce. (A possible candidate for Ce could be the

space of all paths behaving like

|w(x)| ∼ log(log(log(log(· · · x))))

at infinity.) We will discuss this problem in the future.

3 Proof of the Main Results

At the beginning, we give the proof of Proposition 2.6.

Proof of Proposition 2.6: Firstly, we aim to prove that∫
E

( ∫
R
|(∇̃U)(w(x))|2ρ−2r(x)dx

)p/2

µ(dw) < ∞, p ≥ 1. (3.1)

By the translation invariance of the Gibbs measure µ, for every p ≥ 2, it holds that∫
E

( ∫
R
|(∇̃U)(w(x))|2ρ−2r(x)dx

)p/2

µ(dw)

≤
∫

E

{(∫
R
|(∇̃U)(w(x))|pρ−2r(x)dx

)( ∫
R

ρ−2r(x)dx
) p−2

2

}
µ(dw)

≤
(1

r

) p−2
2

∫
R

( ∫
E

|(∇̃U)(w(0))|pµ(dw)
)
ρ−2r(x)dx

≤
(1

r

)p/2
∫

Rd

|∇̃U(z)|pΩ(z)2dz

≤
(K2

3

r

)p/2
∫

Rd

exp(pK4|z|β)Ω(z)2dz. (3.2)

On the other hand, condition (U2) leads to a lower bound U 1
2
|z|(z) ≥ K2

2α |z|α for |z| ≥ 2R.

Hence we can continue to bound the integral on the right-hand side of (3.2) as follows:∫
|z|≥2R

exp(pK4|z|β)Ω(z)2dz

≤ D2
1

∫
|z|≥2R

exp
{
p(K4|z|β − D2|z|U 1

2
|z|(z)1/2)

}
dz

≤ D2
1

∫
|z|≥2R

exp
{

p
(
K4|z|β − D2K

1/2
2

2α/2
|z|1+

α
2

)}
dz < ∞, (3.3)
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where we used the estimate (2.1) for the second line and β < 1 + α
2

for the third line.

Hence by combining (3.2) with (3.3), we see that the left-hand side of (3.2) is finite

for all p ≥ 2. Since µ is a probability measure on E, we have shown that (3.1) holds for

all p ≥ 1. In the same way, we also have∫
E

‖w‖p
E µ(dw) < ∞, p ≥ 1. (3.4)

Next, we define

βϕ(w) := 〈w, ∆xϕ〉 − 〈(∇̃U)(w(·)), ϕ〉, w ∈ E, ϕ ∈ C∞
0 (R, Rd).

Then by noting that ϕ has compact support, one has ‖∆xϕ‖E∗ + ‖ϕ‖E∗ < ∞, and (3.1)

and (3.4) lead to∫
E

|βϕ(w)|pµ(dw) ≤ 2p−1
(
‖∆xϕ‖p

E∗ + ‖ϕ‖p
E∗

)
×

∫
E

{
‖w‖p

E +
( ∫

R
|(∇̃U)(w(x))|2ρ−2r(x)dx

)p/2}
µ(dw) < ∞.

Thus we have shown that L0F ∈ Lp(µ) holds for all p ≥ 1 and F ∈ FC∞
b . Hence the

right-hand side of (2.7) is well-defined and finite, and the quasi-invariance of µ yields

(2.7).

Before proceeding to the proofs of our main theorems, we make some preparations.

We fix a positive constant κ > 2r2, and set

Gtw(x) :=

∫
R

1√
2πt

e−
(x−y)2

2t w(y)dy, t > 0, x ∈ R.

Then by [33, Lemma 3.2], we see that {e−κt/2Gt}t≥0 is a strongly continuous contraction

semigroup on E with ‖e−κt/2Gt‖L(E,E) ≤ exp{−(κ
2
− r2)t}. Let A : Dom(A) ⊂ E → E

be the infinitesimal generator of {e−κt/2Gt}t≥0. We set etA := e−κt/2Gt throughout this

paper. By the Hille–Yosida theorem, (A, Dom(A)) is m-dissipative and it satisfies

(Aw,w)E ≤ (r2 − κ

2
)‖w‖2

E, w ∈ Dom(A). (3.5)

Lemma 3.1 (1) C∞
0 (R, Rd) is dense in Dom(A) with respect to the graph norm ‖w‖A :=

‖w‖E + ‖Aw‖E, w ∈ Dom(A), and we have

Aϕ =
1

2
(∆x − κ)ϕ, ϕ ∈ C∞

0 (R, Rd). (3.6)

(2) Let A∗ : Dom(A∗) ⊂ E → E denote the adjoint operator of (A, Dom(A)). Then

Dom(A∗) = Dom(A). Moreover, we have

A∗ϕ =
1

2
∆x(ρ−2r · ϕ)ρ2r −

κ

2
ϕ

= Aϕ − 2r
dχ

dx
· dϕ

dx
+

{
2r2

(dχ

dx

)2 − r∆xχ
}
ϕ, ϕ ∈ C∞

0 (R, Rd), (3.7)
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and

etA∗
w(y) := e−κt/2ρ2r(y) · Gt(ρ−2r · w)(y), t > 0, y ∈ R, w ∈ E. (3.8)

Proof: (1) By a straightforward computation, we can easily see that C∞
0 (R, Rd) ⊂

Dom(A) and that (3.6) holds. We introduce

C∞
∞ :=

∞⋂
k=0

⋂
r>0

{
ϕ ∈ C∞(R, Rd) | sup

x∈R

∣∣dkϕ

dxk
(x)

∣∣ρr(x) < ∞
}

.

Then C∞
0 (R, Rd) ⊂ C∞

∞ and the differential operator A can be naturally extended to the

domain C∞
∞ through (3.6). By using the cut-off argument discussed in [33, Lemma 4.7],

we can show that C∞
0 (R, Rd) is dense in C∞

∞ with respect to the graph norm ‖ · ‖A.

Now, we take a function ϕ ∈ C∞
∞ . Then for every k ∈ N∪{0} and r > 0, we can find a

positive constant C(k, r) such that
∣∣dkϕ

dxk (x)
∣∣ ≤ C(k, r)ρ−r(x) for all x ∈ R. Here we recall

that ∫
R

1√
2πt

e−
(x−y)2

2t ρ−2r(y)dy ≤ e2r2tρ−2r(x), t > 0, x ∈ R. (3.9)

(cf. e.g., Da Prato–Zabcyzk [20, Lemma 9.44].) Then for every k ∈ N ∪ {0} and r > 0,∣∣ dk

dxk
(Gtϕ)(x)

∣∣ρr(x) ≤ ρr(x)

∫
R

1√
2πt

e−
(x−y)2

2t

∣∣dkϕ

dxk
(y)

∣∣dy

≤ ρr(x)

∫
R

1√
2πt

e−
(x−y)2

2t

(
C(k, 2r)ρ−2r(y)

)
dy

≤ C(k, 2r)ρr(x)
(
e2r2tρ−2r(x)

)
≤ C(k, 2r)e2r2t < ∞, x ∈ R,

where we used (3.9) for the third line and ρ−2r(x)ρr(x) = ρ−r(x) ≤ 1 for the fourth line.

This means that (e−κt/2Gt)(C∞
∞) ⊂ C∞

∞ for all t ≥ 0, and by [21, Theorems 1.2 and 1.3],

we see that C∞
∞ is an operator core for A. Hence we have shown that C∞

0 (R, Rd) is dense

in Dom(A) with respect to the graph norm ‖ · ‖A.

(2) Since (3.7) and (3.8) follow by straightforward computations, it is sufficient to show

the equivalence of the graph norms ‖ϕ‖A and ‖ϕ‖A∗ for ϕ ∈ C∞
0 (R, Rd).

Using integration by parts, Young’s inequality 2ab ≤ δ−2a2+δ2b2 and that ‖dχ
dx
‖∞ ≤ 1,

we obtain ∥∥dϕ

dx

∥∥2

E
= −(ϕ, ∆xϕ)E + 2r

∫
R

(
ϕ(x),

dϕ

dx
(x)

)
Rd

dχ

dx
(x)ρ−2r(x)dx

≤
( 1

2δ2
‖ϕ‖2

E +
δ2

2
‖∆xϕ‖2

E

)
+ r

( 1

2r

∥∥dϕ

dx

∥∥2

E
+ 2r‖ϕ‖2

E

)
,

which in turn implies that∥∥dϕ

dx

∥∥
E
≤

(
2r +

1

δ

)
‖ϕ‖E + δ‖∆xϕ‖E, δ > 0, ϕ ∈ C∞

0 (R, Rd). (3.10)
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Recalling (3.7), we deduce that

‖Aϕ‖E ≤ ‖A∗ϕ‖E + 2r‖ϕ̇‖E + (2r2 + r‖∆xχ‖∞)‖ϕ‖E

≤ ‖A∗ϕ‖E + 2r
{(

2r +
1

δ

)
‖ϕ‖E + δ‖∆xϕ‖E

}
+ (2r2 + r‖∆xχ‖∞)‖ϕ‖E

≤ ‖A∗ϕ‖E + 4rδ‖Aϕ‖E +
(
6r2 +

2r

δ
+ 2rδκ + r‖∆xχ‖∞

)
‖ϕ‖E, (3.11)

where we used ‖dχ
dx
‖∞ ≤ 1 again for the first line and (3.10) for the second line.

Now, we choose δ := 1
8r

. Then (3.11) implies

‖Aϕ‖E ≤ 2‖A∗ϕ‖E +
(
22r2 + κ + r‖∆xχ‖∞

)
‖ϕ‖E,

and by repeating a similar argument for A∗ϕ, we also have

‖A∗ϕ‖E ≤ 3

2
‖Aϕ‖E +

(
22r2 + κ + r‖∆xχ‖∞

)
‖ϕ‖E.

This completes the proof.

Proof of Theorem 2.7: (1) Although we mostly follow the argument in [33], which in

turn is based on a modification of a technique in [17], we give an outline of the argument

for the convenience of the reader. We define EU := {w ∈ E; ‖(∇̃U)(w(·))‖E < ∞}.
Then by (3.1), we see that EU ∈ B(E) and µ(EU) = 1. We define a measurable map

b̃ : Dom(̃b) ⊂ E → E with Dom(̃b) = EU by

b̃(w)(·) := −1

2
(∂0V )(w(·)) = −1

2

{
(∇̃U)(w(·)) − K1w(·)

}
, w ∈ Dom(̃b). (3.12)

We note that µ(Dom(̃b)) = 1, and since V is convex, b̃ is dissipative, i.e.,(
w1 − w2, b̃(w1) − b̃(w2)

)
E
≤ 0, w1, w2 ∈ Dom(̃b). (3.13)

On the other hand, we note that b̃ is not continuous on E in general. Thus we need to

introduce the following regularization scheme. For α > 0, we recall the Moreau–Yosida

approximation of V which is defined by

Vα(z) := inf
y∈Rd

{ 1

2α
|y − z|2 + V (y)

}
, z ∈ Rd. (3.14)

Then Vα(z) ↗ V (z) for every z ∈ Rd as α ↘ 0. On the other hand, ∂0V : Rd → Rd is

maximal dissipative by convexity of V . For α > 0, we set Jα(z) :=
(
IRd +α∂0V

)−1
(z), z ∈

Rd, and define the Yosida approximation (∂0V )α : Rd → Rd by

(∂0V )α(z) :=
1

α
(Jα(z) − z) = (∂0V )(Jα(z)), z ∈ Rd.
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Then (∂0V )α is monotone and the following Lipschitz continuity holds:∣∣(∂0V )α(z1) − (∂0V )α(z2)
∣∣ ≤ 2

α
|z1 − z2|, z1, z2 ∈ Rd,

Furthermore, it is known that (∂0V )α(z) = (∂0Vα)(z), z ∈ Rd (cf. e.g., [46, Proposition

1.8]), and ∣∣(∂0V )α(z)
∣∣ ≤ ∣∣∂0V (z)

∣∣, z ∈ Rd, (3.15)

lim
α↘0

(∂0V )α(z) = ∂0V (z), z ∈ Rd. (3.16)

See [46, Theorem 1.1] for details. We define b̃α : E → E in the same way as b̃ with ∂0V

replaced by (∂0V )α. Then b̃α is Lipschitz continuous and dissipative on E. By (3.15) and

(3.16), we also have

lim
α↘0

b̃α(w) = b̃(w), w ∈ Dom(̃b). (3.17)

However, since b̃α is not differentiable in general, we need to introduce a further regular-

ization. Let B : Dom(B) ⊂ E → E be a self-adjoint negative definite operator such that

B−1 is of trace class. For any α, β > 0, we set

b̃α,β(w) :=

∫
E

eβB b̃α

(
eβBw + y

)
N 1

2
B−1(e2βB−1)(dy), w ∈ E, (3.18)

where NQ is the standard centered Gaussian measure with covariance given by a trace

class operator Q. Then by applying [20, Theorem 9.19], we prove that b̃α,β is dissipative,

of class C∞, has bounded derivatives of all orders and

lim
β↘0

b̃α,β(w) = b̃α(w), ‖b̃α,β(w)‖E ≤ Cα(1 + ‖w‖E), w ∈ E. (3.19)

We also define a measurable map b : Dom(b) ⊂ E → E with Dom(b) = EU by

b(w) :=
1

2
(κ − K1)w + b̃(w), w ∈ Dom(b), (3.20)

and define bα,β with b̃α,β replacing b̃ in (3.20).

Now, we consider the stochastic evolution equation on E given by

dXt = AXtdt + bα,β(Xt)dt +
√

QdWt

= AXtdt +
1

2
(κ − K1)Xtdt + b̃α,β(Xt)dt +

√
QdWt, t ≥ 0, (3.21)

where Q is a bounded linear operator on E defined by Qw := ρ−2r · w, w ∈ E, and

{Wt}t≥0 is an E-cylindrical Brownian motion defined on a fixed filtered probability space
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(Θ,F , {Ft}t≥0, P). Note that Q−1 is not bounded on E. This kind of equation is regarded

as an abstract formulation of SPDE (2.10) in the sense of [20], i.e., in the mild form.

Since each etA
√

Q is a Hilbert–Schmidt operator on E and bα,β is Lipschitz continuous

on E, SPDE (3.21) has a unique mild solution X = {Xw
t (·)}t≥0 living in C([0,∞), E) for

every initial datum w ∈ E. Here we recall that X is a mild solution to SPDE (3.21) with

X0 = w ∈ E if one has

Xt = etAw +

∫ t

0

e(t−s)Abα,β(Xs)ds +

∫ t

0

e(t−s)A
√

QdWs, t > 0, P-a.s. (3.22)

By a standard coupling method for SPDEs applied to (3.21), we see that∥∥Xw
t − X w̃

t

∥∥
E
≤ e

(−K1+2r2)t
2 ‖w − w̃‖E, w, w̃ ∈ E, (3.23)

also holds with probability one. We can then define the transition semigroup correspond-

ing to SPDE (3.21), denoted by {Pα,β
t }t≥0.

For F ∈ FC∞
b and λ > (−K1

2
+ r2) ∨ 0, we consider the function

Φα,β(w) :=

∫ ∞

0

e−λtPα,β
t F (w)dt, w ∈ E.

Then (3.23) leads us to the estimate

‖DΦα,β(w)‖E ≤ 2

2λ + K1 − 2r2
‖DF‖∞, w ∈ E, (3.24)

where DF : E → E is the E-Fréchet derivative of F . We have the relation DHF =√
QDF . By Proposition 2.6, (L0,FC∞

b ) is dissipative in Lp(µ), p ≥ 1, and then it is

closable. Let (L0, Dom(L0)) denote the closure in Lp(µ). However, since it is not easy

to consider L0 directly, we need to insert a tractable space between FC∞
b and Dom(L0).

Here we recall some beautiful results on Lipschitz perturbations of Ornstein–Uhlenbeck

operators discussed in [16, 18, 39]. By modifying the results in [16, 18, 39] for our use,

we deduce that Φα,β belongs to a “nice” domain D(L,C1
b,2(E)) (see [33] for the precise

definition and details) of the Ornstein–Uhlenbeck operator L associated with the SPDE

dYt = AYtdt +
√

QdWt, t ≥ 0.

Moreover, recalling (3.4), we see that L0F = LF + (b,DF )E for F ∈ D(L,C1
b,2(E)) and

this identity implies the inclusion D(L,C1
b,2(E)) ⊂ Dom(L0). Hence we have Φα,β ∈

Dom(L0) ∩ C2
b (E) and moreover Φα,β satisfies

(λ − L0)Φα,β = F +
(̃
bα,β − b̃, DΦα,β

)
E
. (3.25)

By using (3.24), the right-hand side of (3.25) can be estimated as follows:

Iα,β :=

∫
E

∣∣(̃bα,β(w) − b̃(w), DΦα,β(w)
)

E

∣∣pµ(dw)

≤
( 2

2λ + K1 − r2
‖DF‖∞

)p
∫

E

∥∥b̃α,β(w) − b̃(w)
∥∥p

E
µ(dw). (3.26)
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Recalling (3.15), (3.16), (3.19) and using Lebesgue’s dominated convergence theorem, we

conclude that

lim
α↘0

lim
β↘0

Iα,β = lim
α↘0

(
lim sup

β↘0
Iα,β

)
= 0.

From this and (3.25), (3.26), we obtain

lim
α↘0

lim
β↘0

(λ − L0)Φα,β = F in Lp(µ).

This means that the closure of Range(λ − L0) contains FC∞
b . Since FC∞

b is dense in

Lp(µ), Range(λ − L0) is also dense in Lp(µ). Then by the Lumer–Phillips theorem, we

have that (L0, Dom(L0)) generates a C0-semigroup in Lp(µ), and this completes the proof

of (1).

(2) Since C∞
0 (R, Rd) is dense in E∗, D(E) coincides with the closure of FC∞

b (E∗) with

respect to the E1/2
1 -norm. Thus, we can directly apply the general methods of the theory

of Dirichlet forms [1, 36] to prove quasi-regularity of (E ,D(E)) and the existence of a

diffusion process M properly associated with (E ,D(E)).

Here, following Röckner [41] and Funaki [24], we introduce scaled Sobolev spaces:

Hm
r (R, Rd) := {ϕ| ρrϕ ∈ Hm(R, Rd)}, m ≥ 0, r ∈ R,

equipped with norms |ϕ|m,r := ‖ρrϕ‖Hm(R,Rd). Note that this norm is equivalent to

‖ϕ‖m,r :=
∑m

k=0 ‖ρr

(
dkϕ
dxk

)
‖L2(R,Rd) in the case m ∈ N ∪ {0}. Let (Hm

r (R, Rd))∗ be the

dual space of Hm
r (R, Rd). Then we have

(Hm
r (R, Rd))∗ = H−m

−r (R, Rd) = {w| ρ−rw ∈ H−m(R, Rd)},

and, clearly H = H0
0 (R, Rd), E = H0

−r(R, Rd). For our later use, we consider a separable

Hilbert space H := H−2
−r (R, Rd). Since H∗ = H2

r (R, Rd), we have

C∞
0 (R, Rd) ⊂ H∗ ⊂ E∗ ⊂ H∗ ≡ H ⊂ E ⊂ H

and the inclusions are dense and continuous.

Let D := {ϕn}∞n=1 ⊂ C∞
0 (R, Rd) be the countable weakly dense Q-linear subspace of

H∗ constructed on page 369 of Albeverio–Röckner [12]. Then by [12, Theorem 5.3], for

each n ∈ N, there exists some Sn ⊂ E with Cap(Sn) = 0 such that the diffusion process

M satisfies

〈Xt, ϕn〉 = 〈w,ϕn〉 + B
(n)
t +

1

2

∫ t

0

βϕn(Xs)ds, t > 0, Pw-a.s., (3.27)

for all w ∈ E \ Sn, where {B(n)
t }t≥0 is a one-dimensional {Ft}-adapted Brownian motion

on (Θ,F , Pw) starting at zero multiplied by ‖ϕn‖H . On the other hand, by recalling (3.1),

(3.4) and [12, Lemma 4.2], there exists a set S0 ⊂ E with Cap(S0) = 0 such that

Pw

( ∫ T

0

(
‖(∇̃U)(Xs(·))‖E + ‖Xs(·)‖E

)
ds < ∞ for all T > 0

)
= 1 (3.28)
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for any w ∈ E \S0. Here we set S := ∪∞
n=0Sn. Obviously, Cap(S) = 0. By noting that the

embedding map H ↪→ H is a Hilbert–Schmidt operator (cf. [24, Remark 2.1]), and [12,

Remark 6.3], we can apply [12, Lemma 6.1 and Theorem 6.2], which implies that there

exists an {Ft}t≥0-Brownian motion on (Θ,F , Pw) with values in H starting at zero with

covariance (·, ·)H (i.e., an H-cylindrical Brownian motion) under Pw for every w ∈ E \ S

such that

〈Bt, ϕn〉 := H〈Bt, ϕn〉H∗ = B
(n)
t , n ∈ N, t ≥ 0, Pw-a.s., w ∈ E \ S. (3.29)

Since D is dense in C∞
0 (R, Rd) with respect to the weak topology of H∗, for every

ϕ ∈ C∞
0 (R, Rd), we can take a subsequence {ϕn(j)}∞j=1 ⊂ D such that ϕn(j) → ϕ weakly

in H∗ as j → ∞. Furthermore, the Banach–Saks theorem implies that, selecting another

subsequence again denoted by {ϕn(j)}∞j=1, the Cesàro mean ϕ̂k := 1
k

∑k
j=1 ϕn(j), k ∈ N,

converges to ϕ strongly in H∗ as k → ∞. Thus ‖ϕ − ϕ̂k‖E∗ + ‖∆xϕ − ∆xϕ̂k‖E∗ → 0 as

k → ∞. On the other hand, (3.27) and (3.29) imply

〈Xt, ϕ̂k〉 = 〈w, ϕ̂k〉 + 〈Bt, ϕ̂k〉 +
1

2

∫ t

0

βϕ̂k
(Xs)ds, t > 0, Pw-a.s., (3.30)

for all w ∈ E \ S. Hence due to (3.28) we can take the limit k → ∞ on both sides of

(3.30) to obtain SDE (2.9) for all w ∈ E \ S. Besides, the uniqueness statement for M is

derived from item (1) (cf. [13, Sections 2 and 3] and also [17, Section 8]). This completes

the proof.

Proof of Theorem 2.8: By noting (3.28), the fact that Q−1(C∞
0 (R, Rd)) = C∞

0 (R, Rd)

and Theorem 2.7, we can read (2.9) as

(Xt, ϕ)E = (w,ϕ)E +

∫ t

0

(
√

Qϕ, dWs)E +

∫ t

0

{
(Xs, A

∗ϕ)E + (b(Xs), ϕ)E

}
ds,

t > 0, ϕ ∈ C∞
0 (R, Rd), Pw-a.s., w ∈ E \ S. (3.31)

for all w ∈ E \ S, where {Wt}t≥0 is an {Ft}t≥0-adapted E-cylindrical Brownian motion

corresponding to the H-cylindrical Brownian motion {Bt}t≥0 defined on (Θ,F , Pw). (See

[33, Remark 3.5] for details.) Furthermore, by recalling Lemma 3.1, we have equation

(3.31) for every ϕ ∈ Dom(A∗). We also mention that (3.31) is equivalent to the mild-form

(3.22) of SPDE (3.21) with bα,β replaced by b. We refer to Ondreját [38, Theorem 13] for

details.

Now, we prove pathwise uniqueness based on the argument of Marinelli–Röckner [37].

Suppose that X = Xw and X̃ = X̃w are two weak solutions to SPDE (3.21) defined on the

same filtered probability space (Θ,F , {Ft}t≥0, P) with the same E-cylindrical Brownian

motion {Wt}t≥0 and X0 = X̃0 = w ∈ E \ S such that∫ T

0

‖b(Xs)‖Eds < ∞,

∫ T

0

‖b(X̃s)‖Eds < ∞ for all T > 0, P-a.s. (3.32)
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We fix T > 0 from now on, and set Ψt := Xt− X̃t. Note that it enjoys an ω-wise equation

dΨt = AΨtdt + (b(Xt) − b(X̃t))dt, 0 < t ≤ T,

with the initial datum Ψ0 = 0, again to be understood in the mild form. Since X and

X̃ have continuous paths on E, (3.32) implies that b(X·) − b(X̃·) ∈ L1([0, T ], E) and

sup0≤t≤T ‖Ψt‖E < ∞ hold for P-a.s ω ∈ Θ. Let {ϕn}∞n=1 ⊂ C∞
0 (R, Rd) be a CONS of H,

and we set ϕ̃n := ρrϕn and en := (I + εA∗)−1ϕ̃n ∈ Dom(A∗) for n ∈ N. We mention that

{ϕ̃n}∞n=1 is a CONS of E. Recalling (3.31) and applying Itô’s formula, we have

(en, Ψt)
2
E = 2

∫ t

0

Ψn(s)dΨn(s)

+2

∫ t

0

(en, Ψs)E

(
en, b(Xs) − b(X̃s)

)
E
ds

=: 2
(
J1

n(t) + J2
n(t)

)
, 0 ≤ t ≤ T. (3.33)

For the first term J1
n(t), Lebesgue’s dominated convergence theorem leads us to

∞∑
n=1

J1
n(t) =

∫ t

0

∞∑
n=1

(
(I + εA∗)−1ϕ̃n, Ψs

)
E
·
(
(A(I + εA)−1)∗ϕ̃n, Ψs

)
E
ds

=

∫ t

0

∞∑
n=1

(
ϕ̃n, (I + εA)−1Ψs

)
E
·
(
ϕ̃n, A(I + εA)−1Ψs

)
E
ds

=

∫ t

0

(
(I + εA)−1Ψs, A(I + εA)−1Ψs

)
E
ds

≤
(
r2 − κ

2

) ∫ t

0

∥∥(I + εA)−1Ψs

∥∥2

E
ds, (3.34)

where we used (I +εA∗)−1 = ((I +εA)−1)∗ and the fact that A∗ and (I +εA∗)−1 commute

for the second line, and (3.5) for the fourth line.

For the second term J2
n(t), since we have∫ t

0

∥∥b(Xs) − b(X̃s)
∥∥

E
‖Ψs‖Eds

≤
(

sup
0≤t≤T

‖Ψs‖E

) ∫ T

0

∥∥b(Xs) − b(X̃s)
∥∥

E
ds < ∞, 0 ≤ t ≤ T, P-a.s.,

Lebesgue’s dominated convergence theorem also yields

∞∑
n=1

J2
n(t) =

∫ t

0

∞∑
n=1

(
ϕ̃n, (I + εA)−1Ψs

)
E
·
(
ϕ̃n, (I + εA)−1

(
b(Xs) − b(X̃s)

))
E
ds

=

∫ t

0

(
(I + εA)−1Ψs, (I + εA)−1

(
b(Xs) − b(X̃s)

))
E
ds. (3.35)
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Then by putting (3.34) and (3.35) into (3.33), we have

‖(I + εA)−1Ψt‖2
E = 2

∞∑
n=1

(
J1

n(t) + J2
n(t)

)
≤ (2r2 − κ)

∫ t

0

∥∥(I + εA)−1Ψs

∥∥2

E
ds

+2

∫ t

0

(
(I + εA)−1Ψs, (I + εA)−1

(
b(Xs) − b(X̃s)

))
E
ds.

Moreover letting ε ↘ 0 on both sides, and recalling the dissipativity (3.13) for b̃ and

(3.20), we obtain that

‖Ψt‖2
E ≤ (−K1 + 2r2)

∫ t

0

‖Ψs‖2
Eds.

Hence, we have Ψt = Xt − X̃t = 0, 0 ≤ t ≤ T , P-almost surely by an application of

Gronwall’s inequality, which proves the pathwise uniqueness. Then by [38, Theorem 2], a

Yamada–Watanabe type argument implies that SPDE (2.10) has a unique strong solution.

This completes the proof.

By repeating the same argument as in the above proof, we can easily deduce the

following coupling estimates (3.36) and (3.37) which play crucial roles in the next section.

Corollary 3.2 Let Xw and X w̃ denote the strong solutions of SPDE (2.10) with the

initial datum Xw
0 = w ∈ E \ S and X w̃

0 = w̃ ∈ E \ S, respectively. Then∥∥Xw
t − X w̃

t

∥∥
E
≤ e

(−K1+2r2)t
2 ‖w − w̃‖E, t ≥ 0, P-a.s. (3.36)

In addition, for every h ∈ H \ S, we have

‖Xw+h
t − Xw

t ‖H ≤ e−
K1t
2 ‖h‖H , t ≥ 0, P-a.s. (3.37)

4 Some Functional Inequalities

In this section, as an application of Theorem 2.8 and Corollary 3.2, we present some func-

tional inequalities for the diffusion semigroup {Pt}t≥0 generated by the Dirichlet operator

Lµ. In particular, we prove the gradient estimate for {Pt}t≥0 and logarithmic Sobolev

inequalities under much weaker conditions on the regularity and the growth rate of the

potential function U than in the previous papers [29, 30] (which however already included

the P (φ)1-case).

There are at present some approaches to derive these functional inequalities, and it

is well-known that Bakry–Émery’s Γ2-method (cf. Bakry [15]) works efficiently on finite

dimensional complete Riemannian manifolds. In contrast to finite dimensions, we face a
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big difficulty to define the Γ2-operator when we work in infinite dimensional frameworks,

because it is not so easy to check the existence of a suitable core which is not only a ring

but also stable under the operations both of the diffusion semigroup and its generator.

Hence, we cannot apply this method directly to the infinite dimensional model in the

present paper.

On the other hand, we have the coupling estimates (3.36) and (3.37) which are implied

by the strong uniqueness of the solution to SPDE (2.10). By making use of them, we can

apply the stochastic approach presented in [29, 30].

First, we give the following gradient estimate for {Pt}t≥0.

Proposition 4.1 (Gradient estimate) For any F ∈ D(E), we have the following gra-

dient estimate

‖D(PtF )(w)‖H ≤ e−
K1t
2 Pt

(
‖DF‖H

)
(w), µ-a.e. w ∈ E, t > 0. (4.1)

Proof: The proof is done in the same manner as the proof of [29, Proposition 2.4] together

with the coupling estimate (3.37). So we omit it here.

Now, we are in a position to state logarithmic Sobolev inequalities.

Theorem 4.2 (Log-Sobolev inequalities) (1) For F ∈ D(E), we have the following

heat kernel log-Sobolev inequality

Pt(F
2 log F 2)(w) − Pt(F

2)(w) log Pt(F
2)(w)

≤ 2(1 − e−K1t)

K1

Pt(‖DF‖2
H)(w), µ-a.e. w ∈ E, t > 0. (4.2)

(2) If K1 > 0, that is, U is strictly convex, then the following log-Sobolev inequality∫
E

F (w)2 log
( F (w)2

‖F‖2
L2(µ)

)
µ(dw) ≤ 2

K1

∫
E

‖DHF (w)‖2
Hµ(dw), F ∈ D(E) (4.3)

holds. Consequently, we have the spectral gap estimate inf
(
σ(−Lµ) \ {0}

)
≥ K1

2
.

Proof: We first sketch the proof of (1). We refer to [29, 30] for all technical details. We

may assume F ∈ FC∞
b , i.e., F (w) = f(〈w,ϕ1〉, . . . , 〈w,ϕn〉), where {ϕi}n

i=1 ⊂ C∞
0 (R, Rd).

Note that PtF can be extended to a function in Cb(E) by using the coupling estimate

(3.36), and the fact that supp(µ) = E. We fix δ > 0, and introduce a function G : [0, t] →
L1(µ) by

G(s) := Pt−s

{
(Ps(F

2) + δ) log(Ps(F
2) + δ)

}
(·), 0 ≤ s ≤ t.

Then G is differentiable with respect to s and

Ġ(s) = −1

2
Pt−s

{‖DPs(F
2)‖2

H

Ps(F 2) + δ

}
(·), 0 < s < t. (4.4)
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On the other hand, Proposition 4.1 and Schwarz’s inequality imply

‖DPs(F
2)‖2

H ≤ 4e−K1sPs(F
2) · Ps

(
‖DF‖2

H

)
. (4.5)

By combining (4.4) with (4.5), we have

Ġ(s) ≥ −2e−K1sPt−s

{
Ps

(
‖DF‖2

H

)}
= −2e−K1sPt

(
‖DF‖2

H

)
.

This imply the heat kernel logarithmic Sobolev inequality (4.2) by first integrating over

s from 0 to t and then by letting δ ↘ 0.

Next, we prove (2). By noting that the Gibbs measure µ is the invariant measure for

our stochastic dynamics M, we have the following estimate for w ∈ E \ S and t ≥ 0:∣∣PtF (w) − Eµ[F ]
∣∣ ≤

∫
E

E
[
|F (Xw

t ) − F (X ew
t )|

]
µ(dw̃)

≤ ‖∇f‖∞
( n∑

i=1

‖ϕi‖2
E∗

)1/2
e(

−K1+2r2

2
t)

∫
‖w − w̃‖E µ(dw̃)

≤
√

2‖∇f‖∞
( n∑

i=1

‖ϕi‖2
E∗

)1/2
e(

−K1+2r2

2
t)
{
‖w‖2

E +

∫
E

‖w̃‖2
Eµ(dw̃)

}1/2

,

(4.6)

where we used (3.36) for the second line. Since r > 0 satisfies 2r2 < K1, (4.6) implies the

following ergodic property of {Pt}t≥0:

lim
t→∞

PtF (w) = Eµ[F ], w ∈ E \ S, (4.7)

Finally, we have the desired logarithmic Sobolev inequality (4.3) by letting t → ∞ on

both sides of (4.2) and using (4.7). This completes the proof of (2).

Remark 4.3 The logarithmic Sobolev inequality (4.3) holds with K1 ≥ m2 in the case of

exp(φ)1-quantum fields.

Remark 4.4 We mention that many other functional inequalities including the dimen-

sion free parabolic Harnack inequality (cf. [29]) and the Littlewood–Paley–Stein inequality

(cf. Kawabi–Miyokawa [32]) for our infinite dimensional model can be obtained from

the gradient estimate (4.1). In particular, it is a fundamental and important problem

in harmonic analysis and potential theory to ask for boundedness of the Riesz transform

Rα(Lp) := DH(α−Lp)
−1/2 on Lp(µ) for all p > 1 and some α > 0, where Lp is the exten-

sion of (L0,FC∞
b ) in Lp(µ), because boundedness of Rα(Lp) yields the Meyer equivalence of

first order Sobolev norms. In [44], Shigekawa studied this problem in a general framework

assuming the intertwining property of the diffusion semigroup {Pt}t≥0 and another semi-

group {
−→
P t}t≥0 acting on vector-valued functions. We note that essential self-adjointness

of (L0,FC∞
b ) as obtained in Theorem 2.7 plays a crucial role to prove this property for

our model. (See e.g., Shigekawa [45] and Kawabi [31].) We will discuss boundedness

of the Riesz transform by making use of the Littlewood–Paley–Stein inequality and this

intertwining property in a forthcoming paper.
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5 Appendix: Another Approach to the Log-Sobolev

Inequality (4.3)

In this section, we give another approach to the log-Sobolev inequality (4.3). First, we

prepare the following lemma taken from Arai–Hirokawa [14, Lemma 4.9]:

Lemma 5.1 Let {Tn}∞n=1 and T be self-adjoint operators on a Hilbert space H having a

common core D such that, for all ψ ∈ D, Tnψ → Tψ as n → ∞. Let ψn be a normalized

eigenvectors of Tn with eigenvalue En : Tnψn = Enψn. Assume that E := limn→∞ En

exists and that the weak limit w- limn→∞ ψn = ψ also exists and one has ψ 6= 0. Then

ψ is an eigenvector of T with eigenvalue E. In particular, if ψn is a ground state of Tn,

then ψ is a ground state of T .

Lemma 5.2 Let UN(z) := K1

2
|z|2 + V1/N(z), N = 1, 2, . . ., be potential functions, where

V1/N is the Moreau–Yosida approximation of V . We consider the Schrödinger operator

HUN
= −1

2
∆z + UN on L2(Rd, R), and denote by (λ0)N and ΩN the minimal eigenvalue

and the (normalized) ground state of HUN
, respectively. Then the following properties hold

under the assumption K1 > 0:

(1) (λ0)N ↗ λ0 as N → ∞.

(2) There exists a sub-sequence {N(k)}∞k=1 of N → ∞ such that ‖ΩN(k) − Ω‖L2(Rd,R) → 0

as k → ∞.

Proof. (1) Since UN ↗ U as N → ∞, we have (λ0)1 ≤ (λ0)2 ≤ · · · ≤ λ0. Moreover,

recalling (2.1) and taking into account the estimate (UN) 1
2
|z|(z) ≥ K1

8
|z|2, z ∈ Rd for every

N ∈ N, we have the following uniform pointwise upper bound for {ΩN}∞N=1:

0 < ΩN(z) ≤ D1 exp(−D2K
1/2
1

2
√

2
|z|2), z ∈ Rd. (5.1)

On the other hand, the variational characterization of the minimal eigenvalue and the

ground state implies

(λ0)N =
(
ΩN , HUN

ΩN

)
L2(Rd,R)

=
(
ΩN , HUΩN

)
L2(Rd,R)

−
(
ΩN , (V − VN)ΩN

)
L2(Rd,R)

≥ λ0 −
(
ΩN , (V − VN)ΩN

)
L2(Rd,R)

, (5.2)

and by Lebesgue’s monotone convergence theorem, we also have

0 ≤ lim
N→∞

(
ΩN , (V − VN)ΩN

)
L2(Rd,R)

≤ D2
1 lim

N→∞

∫
Rd

(V (z) − VN(z)) exp(−D2K
1/2
1√
2

|z|2)dz

= D2
1

∫
Rd

lim
N→∞

(V (z) − VN(z)) exp(−D2K
1/2
1√
2

|z|2)dz = 0, (5.3)
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where we used (5.1) for the second line.

Hence by combining (5.2) with (5.3), we have limN→∞(λ0)N ≥ λ0, which completes

the proof of (1).

(2) We take C∞
0 (Rd, R) as a common core of the Schrödinger operators {HUN

}∞N=1 and

HU (cf. [40, Theorem X.28]), and by Lebesgue’s monotone convergence theorem, we can

easily see that HUN
ψ → HUψ for all ψ ∈ C∞

0 (Rd, R) as N → ∞. Since ‖ΩN‖L2(Rd,R) = 1

for all N ∈ N, there exist a sub-sequence {N(k) ↗ ∞} and a function ψ ∈ L2(Rd, R)

such that ΩN(k) → ψ weakly as k → ∞. On the other hand, by [48, Theorem 25.16],

there exist some positive constants D3, D4 independent of N such that

ΩN(z) ≥ D3 exp
(
− D4|z|U (∞)

N (z)1/2
)
, z ∈ Rd, (5.4)

where U
(∞)
N (z) := inf{UN(y)| |y| ≤ 3|z|}. Recalling condition (U3), we see that

U
(∞)
N (z) ≤ inf{U(y)| |y| ≤ 3|z|}

≤ |U(0)| + 3K3|z| exp(3βK4|z|β), z ∈ Rd. (5.5)

Then combining (5.4) with (5.5), we deduce that

ΩN(z) ≥ D3 exp
{
− D4|z|

√
|U(0)| + 3K3|z| exp(3βK4|z|β)

}
=: Ψ(z), z ∈ Rd, (5.6)

and hence the uniform pointwise lower estimate (5.5) implies that

lim
k→∞

(ΩN(k), Ψ)L2(Rd,R) ≥ ‖Ψ‖2
L2(Rd,R) > 0

and we now see that ψ 6= 0 holds.

Now by item (1) and Lemma 5.1, it follows that ψ is a ground state of HU . However,

since we already know the uniqueness of the ground state of HU , ΩN(k) → ψ = Ω weakly

as k → ∞. Moreover since

lim
k→∞

‖ΩN(k)‖L2(Rd,R) = ‖Ω‖L2(Rd,R) = 1,

we conclude that limk→∞ ‖ΩN(k) − Ω‖L2(Rd,R) = 0.

Proof of the Log-Sobolev Inequality (4.3): By the same procedure as in Section

2, we can construct a Gibbs measure µN with µN(C) = 1 if we replace U by UN . As

we have seen in the proof of Theorem 2.7, ∇̃U1/N(z) = K1z + ∂0(V1/N)(z), z ∈ Rd, is

Lipschitz continuous. Thus, we can apply [30, Theorem 1.2], and we see that the following

logarithmic Sobolev inequality holds for each µN :∫
E

F (w)2 log
( F (w)2

‖F‖2
L2(µN )

)
µN(dw) ≤ 2

K1

∫
E

‖DHF (w)‖2
HµN(dw), F ∈ FC∞

b . (5.7)
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Next, we aim to prove the tightness of the family of probability measures {µN}∞N=1 on

C. Due to [28, Lemma 5.4], it suffices to verify the following two conditions:

(i) There exists a constant γ > 0 such that sup
N∈N

∫
C
|w(0)|γµN(dw) < ∞.

(ii) For each r > 0, there exist constants p, q,M > 0 independent of N such that∫
C
|w(x1) − w(x2)|pµN(dw) ≤ M |x1 − x2|2+qρr(x1) for x1, x2 ∈ R with |x1 − x2| ≤ 1.

By combining the translation invariance of µN with estimate (5.1), we have∫
C
|w(0)|2µN(dw) =

∫
Rd

|z|2ΩN(z)2dz ≤ D2
1

∫
Rd

|z|2 exp(−D2K
1/2
1√
2

|z|2)dz.

Hence we have shown that condition (i) holds with γ = 2. Besides, in a similar way to

[27], we see that∫
C
|w(x1) − w(x2)|2mµN(dw)

≤ exp
{(

(λ0)N − inf
z∈Rd

UN(z)
)
|x1 − x2|

}(
sup
z∈Rd

ΩN(z)
)

×
∫

Rd

ΩN(z)dz · (2m − 1)!! · |x1 − x2|m

≤ exp
{(

λ0 − inf
z∈Rd

U1(z)
)
|x1 − x2|

}
D2

1

( √
2π

D2K
1/2
1

)d/2

(2m − 1)!! · |x1 − x2|m

for every m ∈ N, where (2m− 1)!! :=
∏m

k=1(2k− 1) and we used Lemma 5.2 and (5.1) for

the third line. Hence we can find a positive constant C independent of N such that∫
C
|w(x1) − w(x2)|2mµN(dw) ≤ C|x1 − x2|m, for x1, x2 ∈ R with |x1 − x2| ≤ 1,

and hence we have proven condition (ii).

Thus we can find a sub-sequence {N(j) ↗ ∞} such that µN(j) converges to some

probability measure µ∗ weakly on C. On the other hand, by virtue of the Feynman–Kac

formula, we have

lim
N→∞

‖e−tHUN ψ − e−tHU ψ‖L2(Rd,R) = 0, ψ ∈ L2(Rd, R). (5.8)

Then by putting (5.8) and Lemma 5.2 into (2.2), we see that there exists a sub-sequence

{N(k) ↗ ∞} of {N(j)} such that limk→∞ µN(k)(A) = µ(A) for each cylinder set A ∈
B[T1,T2], T1 < T2. Hence we obtain µ∗ = µ.

Finally, since F ∈ FC∞
b can be regarded as an element of Cb(C) in a natural way, we

can take the limit k → ∞ on both sides of (5.7). This implies the desired inequality (4.3).
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