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Abstract
We consider a class of singular perturbations to the stochastic heat equation or
semilinear variations thereof. The interesting feature of these perturbations is that,
as the small parameter ε tends to zero, their solutions converge to the ‘wrong’
limit, i.e. they do not converge to the solution obtained by simply setting ε = 0. A
similar effect is also observed for some (formally) small stochastic perturbations
of a deterministic semilinear parabolic PDE.

Our proofs are based on a detailed analysis of the spatially rough component of
the equations, combined with a judicious use of Gaussian concentration inequali-
ties.

1 Introduction

A well-known ‘folklore’ statement is that if a problem (Φ) is well-posed, then the
solutions to every ‘reasonable’ sequence (Φε) of approximating problems should
converge to it. This statement is of course backed by a huge number of rigorous
mathematical statements, with virtually every theorem from numerical analysis
being an example. As usual, the devil lies in the details, in this case the meaning
of the word ‘reasonable’. However, if the problem Φ0 obtained by formally setting
ε = 0 in Φε makes sense and is well-posed, then one does usually expect the
solutions to Φε to converge to that of Φ0.

One particularly famous exception to this rule is given by approximations to
stochastic differential equations: if one constructs an approximation by smoothing
out the driving noise, for example by piecewise linear interpolation on a scale ε,
and then solving the corresponding random ODE, then the solutions converge to the
Stratonovich interpretation of the original SDE [WZ65]. On the other hand, if one
considers the usual Euler approximations with a step size of length ε, then these
will converge to the Itô interpretation [KP92]. In this case however, one may argue
that the original problem isn’t well-posed in the classical sense, since stochastic
integrals are too irregular to be defined pathwise in an unambiguous way.
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The aim of this article is to provide a class of examples of stochastic PDEs
where a similar type of inconsistency occurs, but without having any ambiguity in
the meaning of either the approximating or the limiting model. However, similar to
the case of the approximations to an SDE, the inconsistency will be a consequence
of the roughness of the solutions (but this time it is the spatial roughness that comes
into play) and the correction term that appears in the limit can be interpreted as a
kind of local quadratic variation, just as in the Itô-Stratonovich correction.

The aim of this article is to study the limit ε→ 0 of a class of stochastic PDEs
of the type

∂tuε = ν∂2xuε + f (uε) +
√

2ξ(t, x) (Φε)

− ε2∂4xuε + εg(uε)∂2xuε + εh(uε)(∂xuε ⊗ ∂xuε)

where ξ is space-time white noise1 and x ∈ [0, 2π]. For simplicity, we consider
periodic boundary conditions, but we do not expect the result to depend on this.
Note that additional constants in front of the noise term ξ can always be eliminated
by a time change, whereas additional constants in front of the term ∂4xu can be
eliminated by redefining ε, f , g and h. Here, we will assume that the solution u
takes values in Rn and that

f : Rn → Rn , g: Rn → L(Rn,Rn) , h: Rn → L(Rn ⊗ Rn,Rn) ,

are functions such that f and h are of class C1 and g is C2. It is not too difficult to
show [DPZ92, Hai09] that (Φε) has unique local weak and mild solutions in L∞,
so that our model is well-posed. Note furthermore that the stochastic noise term is
additive, so that there is no need to resort to stochastic calculus to make sense of the
solutions to (Φε). In particular, there is no ambiguity to the concept of solution to
(Φε). 2

Similarly, the model where we set ε = 0, namely

∂tu0 = ν∂2xu0 + f (u0) +
√

2ξ(t, x) , (Φ0)

is perfectly well-posed and has unique local solutions in L∞ both in the mild and
the weak sense.

It is therefore natural to expect that one has uε → u0 in some sense as ε→ 0.
Surprisingly, this is not the case! Indeed, the purpose of this article is to prove a
convergence result for (Φε) that can loosely be formulated as:

Theorem 1.1 The solutions uε to (Φε) converge in probability as ε → 0 to the
solutions u to

∂tu = ν∂2xu+ f̄ (u) +
√

2ξ(t, x) , (Φ)

1Recall that space-time white noise is the distribution-valued centred Gaussian process with
covariance given by Eξ(x, t)ξ(y, s) = δ(x− y)δ(t− s).

2Since the solutions to (Φε) are not C2 in general (they are only Cα for every α < 3
2

), the term
εg(uε)∂2

xuε has to be interpreted in the weak sense by performing one integration by parts.
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where the effective nonlinearity f̄ is given by

f̄ (u) = f (u) +
1

2
√
ν

Tr(h(u)−Dsg(u)) . (1.1)

Furthermore, for every κ > 0, the convergence rate is of order O(ε
1
2
−κ) in the

L∞-norm.

Remark 1.2 The partial trace of h is defined, in components, as (Trh)i =
∑
j hijj

and the symmetrised derivative of g is given by (Dsg)ijk = 1
2(∂kgij + ∂jgik).

Remark 1.3 Note that no growth condition is assumed on f , g and h. Therefore,
the limiting problem (Φ) could potentially have a finite explosion time τ∗. In
this case, the approximation result obviously holds only up to τ∗. Furthermore, it
requires to consider initial conditions that are ‘nice’ in the sense that they have the
same structure as the solutions to (Φ) at positive times. A precise formulation of
these conditions can be found in the rigorous version of the statement, Theorem 5.1
below.

Remark 1.4 The convergence rate ε
1
2
−κ is optimal in the sense that even in the

‘trivial’ linear case f = g = h = 0, the L∞-distance between uε and u is no better
than ε

1
2 times some logarithmic correction factor.

In the case g = 0, one interpretation of our result is that the solutions to

∂tuε = ν∂2xuε − ε2∂4xuε + f (uε) + εh(uε)(∂xuε � ∂xuε) +
√

2ξ(t, x) ,

do indeed converge as ε→ 0 to the solutions to the corresponding system where we
formally set ε = 0. In this equation, the Wick product � should be interpreted as the
Wick product with respect to the Gaussian structure induced on the solution space by
the linearised equation, as for example in [JLM85, BG97, DPD03, DPT07]. Note
that this notion of Wick product is different in general from the notion obtained by
using the Gaussian structure induced by the driving noise (i.e. the Wick product of
Wiener chaos) as in [HØUZ96, Cha00, MR10]. In our situation, we actually expect
both notions of Wick product to lead to the same limit as ε → 0, but we have no
proof of this statement.

1.1 Extensions and related problems
There are a number of extensions to these results that are worth mentioning. Note
first that if, instead of space-time white noise, we took any noise process with more
regular samples (for example such that its covariance operator is given by (−∂2x)−α

for some α > 0), then the solutions to (Φε) would indeed converge to those of (Φ0).
However, if α ∈ (0, 12 ) and one replaces the factor ε in front of the nonlinearity in
(Φε) by ε1−2α, then one can retrace the proofs in this article to show that one has
convergence to (Φ), but with the factor 1/(2

√
ν) in (1.1) replaced by

1

πνα+
1
2

∫ ∞
0

dx

x2α(1 + x2)
.
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Similarly, one could modify the linear part of the perturbation. Indeed, given a
polynomial Q with Q(0) = 1 and positive leading coefficient, we could consider
instead of (Φε) the sequence of problems

∂tuε = νQ(−ε2∂2x)∂2xuε + f (uε) +
√

2ξ(t, x)

+ εg(uε)∂2xuε + εh(uε)(∂xuε ⊗ ∂xuε) .

Again, inspection of the proofs given in this article shows that one has convergence
to (Φ), but this time the prefactor of the correction term is given by

1

πν

∫ ∞
0

dx

Q(x2)
.

More interestingly, one can also consider situations where the limiting process is
deterministic. For example, one can retrace the steps of the proof of Theorem 1.1
for the family of problems given by

∂tuε = ν∂2xuε + f (uε) +
√

2εγξ(t, x)

− ε2∂4xuε + ε1−2γg(uε)∂2xuε + ε1−2γh(uε)(∂xuε ⊗ ∂xuε) ,

and to show that for γ ∈ (0, 12 ), the solutions converge to the solutions to the
semilinear heat equation

∂tu = ν∂2xu+ f̄ (u) ,

with f̄ (u) as in (1.1).
The borderline case γ = 1

2 can also be treated, at least when g = 0, and we will
present this case in detail since it appears to be more interesting and arises from a
rather natural scaling. Consider the family of problems vε given by

∂tvε = ν∂2xvε − ε2∂4xvε + f (vε) + h(vε)(∂xvε ⊗ ∂xvε) +
√

2εξ(t, x) . (1.2)

We have the following result, which will be restated rigorously and proven in
Section 5.1 below.

Theorem 1.5 As ε→ 0, the solution vε to (1.2) converges to v, where

∂tv = ν∂2xv + f̄ (v) + h(v)(∂xv ⊗ ∂xv) .

Here, f̄ = f+ 1
2
√
ν

Trh, and the convergence takes place inHβ for every β ∈ (12 , 1).

Finally, an even more interesting class of generalisations is obtained by removing
the prefactor ε in front of the nonlinearity altogether, as in (1.2), but keeping a noise
term of order 1 and subtracting the corresponding ‘infinite correction’ from the
nonlinearity in the hope that a finite object is obtained in the limit. For example,
one would like to be able to study the limit ε→ 0 in

∂tuε = ν∂2xuε − ε2∂4xuε + h(uε)(∂xuε ⊗ ∂xuε)−
Trh(uε)
2
√
νε

+
√

2ξ(t, x) .
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In the particular case n = 1 and h = 1, this reduces to the KPZ equation and
it can be shown, using the Hopf-Cole transform, that a limit exists [BG97], at
least for a slightly different kind of approximation. Unfortunately, no such tool
exists in the general case and the problem of making sense of a KPZ-type equation
directly is still wide open, although some results have been obtained in this direction
[Cha00, Ass02, DPDT07].

1.2 Structure of the article
The remainder of the article is structured as follows. In Section 2, we show how
equations of the type (Φε) arise in a class of path sampling problems, thus giving an
additional motivation to this work. This is followed by a brief heuristic calculation
which explains why the limiting equation should have the nonlinearity f̄ instead
of f and shows how to easily compute the prefactor 1/(2

√
ν) or the variations

thereof that were discussed in the previous section. In Section 3, we give a number
of preliminary calculations that are useful for the proof and that show how the
solutions to these equations behave. Section 4 is devoted to the proof of the main
technical bound that allows to control the difference between ε(∂xuε ⊗ ∂xuε) and
a suitable multiple of the identity matrix in some negative Sobolev norm. This
bound is the main ingredient for the proof of Theorem 1.1 which is reformulated in
a rigorous way and proved in Section 5.
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2 A motivation from path sampling

Besides pure mathematical interest and the, admittedly rather tenuous, connection
to the KPZ equation discussed in the previous section, the study of this kind of
singular limit is motivated by the following path sampling problem. Consider the
ordinary differential equation describing gradient motion of a stochastic particle in
a smooth potential V :

dq = −∇V (q) dt+
√

2T dW (t) , (2.1)

as well as the Langevin equation for a massive particle of mass m subject to the
same potential:

dq = q̇ dt , mdq̇ = −∇V (q) dt− q̇ dt+
√

2T dW (t) . (2.2)

(We consider this as a 2n-dimensional SDE for the pair (q, q̇).) It is well-known
(see for example [Fre04, KPS04] for a recent exposition of this fact in the context of
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a larger class of problems) that if one takes the limit m→ 0 in the second equation,
one recovers the solution to (2.1). This is usually referred to as the Smoluchowski-
Krames approximation to (2.1) and can also be guessed in a ‘naive’ way by simply
deleting the term mdq̇ appearing in the left hand side of the second identity in (2.2)
and noting that q̇ dt = dq from the first identity.

Assume now that V has a critical point at the origin and consider a ‘bridge’ for
both (2.1) and (2.2). In the case of (2.1), this is a solution starting at the origin and
conditioned to return to the origin after a fixed time interval (which we assume to
be equal to π in order to simplify some expressions in the sequel). In the case of
(2.2), this is a sample from the stationary solution conditioned to pass through the
origin at times 0 and π. Denote by µm the bridge for (2.2) and by µ0 the bridge for
(2.1) so that both µm and µ0 are probability measures on the space C0([0, π],Rn)
of continuous functions vanishing at their endpoints.

It was then shown in [HSVW05, HSV07] under some regularity and growth
assumptions on V that µ0 is the invariant measure for the stochastic PDE given by

dui =
1

2T
∂2t u

i dτ − 1

2T
∂2ijV (u)∂jV (u) dτ +

1

2
∂3ijjV (u) dτ +

√
2 dW (τ ) , (2.3)

where W is a cylindrical process on L2([0, π],Rn) (so that dWdt is space-time white
noise) and the linear operator ∂2t is endowed with Dirichlet boundary conditions.
Summation over the index j is implied in those terms where it appears. Note that
the variable t plays the role of space in this stochastic PDE, whereas the role of
time is played by the ‘algorithmic time’ τ .

Actually, (2.3) is even reversible with respect to µ0 and the corresponding
Dirichlet form is given by

E0(ϕ,ϕ) =

∫
L2([0,π],Rn)

‖∇ϕ(u)‖2 µ0(du) , (2.4)

where∇ denotes the L2-gradient.
On the other hand, it was shown in [HSV09] that µm is the invariant measure

for the fourth-order SPDE given by

dui =
1

2T
∂2t u

i dτ − m2

2T
∂4t u

i dτ − 1

2T
∂2ijV (u)∂jV (u) dτ

− m

2T
∂3ij`V (u)∂xu`∂xuj dτ −

m

T
∂2ijV (u)∂2xu

j dτ +
√

2 dW (τ ) ,
(2.5)

where the linear operator is endowed with Dirichlet boundary conditions (for both
u and its second derivative). Here, summation over repeated indices is also implied.
The fact that 0 is a critical point for V was used in order to derive (2.5). If this
was not the case, then the boundary conditions for the linear operator would be
somewhat more involved, but the final result would be the same. Again, (2.5) is
reversible with respect to µm and the corresponding Dirichlet form Em is given by
(2.4) with µ0 replaced by µm.
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It is therefore a natural question to ask whether (2.3) can also be recovered as
the limit of (2.5) when the mass m tends to zero. On the one hand, this should be
the case since Em(ϕ,ϕ)→ E0(ϕ,ϕ) for sufficiently regular test functions ϕ. On the
other hand, taking the ‘naive’ limit m→ 0 in (2.5) by simply deleting all the terms
that contain a factor m or m2 yields

dui =
1

2T
∂2xu

i dτ − 1

2T
∂2ijV ∂jV (u) dτ +

√
2 dW (τ ) .

While this is indeed very similar in structure to (2.3), we note that the term containing
third-order derivatives of V is missing!

Theorem 1.1 does indeed explain this apparent discrepancy since (2.5) is pre-
cisely of the form (Φε) if we make the identifications

ε =
m√
2T

, ν =
1

2T
,

and define the functions

fi(u) = −
∂2ijV (u)∂jV (u)

2T
, gij(u) = −

2∂2ijV (u)
√

2T
, hij`(u) = −

∂3ij`V (u)
√

2T
.

We then have

f̄i(u) = fi(u) +

√
T

2
(hijj(u)− ∂jgij(u))

= − 1

2T
∂2ijV (u)∂jV (u)−

√
T

2

∂3ijjV (u)− 2∂3ijjV (u)
√

2T

= − 1

2T
∂2ijV (u)∂jV (u) +

1

2
∂3ijjV (u) .

It therefore follows at once from Theorem 1.1 that (2.3) can indeed be recovered as
the limit as m→ 0 of (2.5) as expected at the level of the corresponding Dirichlet
forms.3

2.1 Heuristic explanation
Before we turn to the rigorous formulation of Theorem 1.1 and to its proof, let us
give a formal argument why a careful analysis of (Φε) reveals that f̄ should indeed
have the form given in (1.1). We expand uε into Fourier modes uε,k ∈ Rd (we drop
the subscript ε from now on and simply write uk instead of uε,k), so that

uε(x, t) =
∑
k∈Z

uk(t) ek(x) , ek(x) =
exp(ikx)√

2π
. (2.6)

3Strictly speaking, Theorem 1.1 does not apply to this situation since there we consider periodic
rather than Dirichlet b.c.’s. We do not expect this to make any difference, but some of the arguments
would be slightly more involved.



8 A MOTIVATION FROM PATH SAMPLING

Since we only consider real-valued solutions, we furthermore have the constraint
u−k = ūk. One would then expect the ‘high modes’ to behave roughly like the
linear part of (Φε), that is for k � 1 one would expect to have uk(t) ≈ ψεk(t) with

dψε,ik = (−νk2 − ε2k4)ψε,ik dt+
√

2 dW i
k(t) , (2.7)

where the W i
k’s are i.i.d. standard complex-valued Wiener processes. For fixed t,

this means that uik(t) ≈ N (0, (νk2 + ε2k4)−1), which is the invariant measure for
(2.7).

We treat the two terms g(u)∂2xu and h(u)(∂xu⊗ ∂xu) appearing in (Φε) sepa-
rately, starting with the second term. The main contribution is expected to come
from the ‘diagonal terms’ where no cancellations occur. Therefore, if these terms
give a finite contributions to the limiting equation, one can reasonably expect the re-
maining terms to give a vanishing contribution. In order to compute the contribution
of one of these terms, consider a product of the form ϕ = vw2, where v is a func-
tion that has mainly low-frequency components and w has mainly high-frequency
components that are furthermore independent and of zero mean. Since we have the
identity

ek(x)e`(x)em(x) =
1

2π
ek+`+m(x) ,

it follows that the components of ϕ are given by

ϕn =
1

2π

∑
k+`+m=n

vmwkw` , (2.8)

Since we assumed that the componentswk are independent and that vm is ‘small’ for
‘large’ values of m, it is a reasonable expectation that the main contribution to this
sum stems from the terms such that k = −` (recall that the wk are complex-valued
random variables so that Ew2

k = 0, but Ewkw−k = E|wk|2 6= 0), so that

ϕn ≈
vn
2π

∑
k∈Z
|wk|2 =

vn
2π
‖w‖2 .

Turning back to the term h(u)(∂xu⊗∂xu), these considerations and the fact that the
high-frequency components of uε are expected to be close to those of ψε suggest
that one should have

εhijk(u)(∂xuj∂xuk) ≈ εhijj(u)(∂xψε,j)
2 ≈ δkj

ε

2π
hijj(u) ‖∂xψj‖2 .

On the other hand, one has

ε

2π
‖∂xψi‖2 ≈

ε

2π

∑
k 6=0

k2

νk2 + ε2k4
≈ 1

2π

∑
k∈Z

ε

ν + (εk)2

≈ 1

2π

∫ ∞
−∞

dk

ν + k2
=

1

2
√
ν

,
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so that one does indeed expect to have a contribution of

εh(u)(∂xu⊗ ∂xu) ≈ 1

2
√
ν

Trh(u) .

Let us now turn to the term containing g. If g was constant, then this term could
be absorbed into the constant ν, thus not contributing to the limit. However, if g is
not constant, then the high-frequency components of g can interact with the high-
frequency components of ∂2xu in order to produce a non-vanishing contribution to
the final result. If the high-frequency part of u is given by ψ, then the high-frequency
part of g(u) is in turn expected to be given by Dg(u)ψ, so that a reasoning similar
to before yields one to expect

εg(u)∂2xu ≈ εDg(u)(ψ ⊗ ∂2xψ) ≈ TrDg(u)
ε

2π

∑
|k|�1

−k2

νk2 + ε2k4
≈ −TrDg(u)

2
√
ν

.

One can also reach this conclusion by noting that εg(u)∂2xu = ε∂x(g(u)∂xu) −
εg′(u)(∂xu)2 and arguing that the first term should not matter because the first
derivative gets ‘swallowed’ by the regularising properties of the Laplacian. This is
actually the argument that will be used later on in the proof.

3 Preliminary calculations

Let us rewrite the solutions to (Φ) and (Φε) as

u(t) = S(t)u0 +

∫ t

0
S(t− s)F (u(s)) ds+ ψ0(t) , (3.1a)

uε(t) = Sε(t)u0 +

∫ t

0
Sε(t− s)Fε(uε(s)) ds+ ψε(t) , (3.1b)

where we set

Fε(u) = 1 + f (u) + εg(u)∂2xu+ εh(u)(∂xu⊗ ∂xu) , F (u) = 1 + f̄ (u) . (3.1c)

Here and throughout the remainder of this article, we denote by ψε and ψ0 the
stationary solutions to the linearised equations

dψε(t) = (ν∂2x − 1)ψε(t) dt− ε2∂4xψε(t) dt+
√

2dW (t) ,

dψ0(t) = (ν∂2x − 1)ψ0(t) dt+
√

2dW (t) .

Here, W is a standard cylindrical Wiener process onH = L2([0, 2π],Rn) and the
operators L = ν∂2x − 1 and Lε = ν∂2x − 1− ε2∂4x are both endowed with periodic
boundary conditions.

Remark 3.1 The reason why we subtract the constant 1 to the definitions of ψε

and ψ0 is so that the 0-mode has also a stationary regime. This is also why we then
add 1 to the definition of F to compensate.
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We denote by S(t) the semigroup generated by L and by Sε(t) the semigroup
generated by Lε, so that

ψ0(t) =
√

2

∫ t

−∞
S(t− s) dW (s) ,

and similarly for ψε.

Remark 3.2 Note that u0 is not the initial condition for either (3.1a) or (3.1b), since
ψ0 and ψε are stationary solutions to the corresponding linear evolution equations.
Therefore, one has u(0) = u0 + ψ0(0) and uε(0) = u0 + ψε(0).

We also denote by Hα with α ∈ R the usual fractional Sobolev spaces, i.e.
Hα is the domain of (−L)α/2, and we denote by ‖ · ‖α the norm in Hα. It is
straightforward to check that for every ε > 0, ψε takes values in Hs for every
s < 3

2 , while ψ0 only takes values in Hs for s < 1
2 . We first note that one has the

following local existence and uniqueness results [DPZ92, Hai09]:

Lemma 3.3 Equation 3.1a admits a unique local mild solution for every u0 ∈ L∞
and (3.1b) admits a unique local mild solution for every u0 ∈ H1.

Proof. For 3.1a, it suffices to note that ψ0 has continuous sample paths with values
inL∞ [DPZ92] and that F is locally Lipschitz fromL∞ into itself, so that a standard
Picard fixed point argument applies. Similarly, ψε has continuous sample paths
with values in H1 and it is easy to check that Fε is locally Lipschitz from H1 into
H−1. Since furthermore ‖Sε(t)‖H−1→H1 ≤ Cε/

√
t, the claim follows again from

a standard fixed point argument.

Remark 3.4 Note that at this stage we do not make any claim on the uniformity of
bounds on the solutions to (3.1b) as ε→ 0.

In particular, this implies that, for every initial condition u0 ∈ L∞, there exists
a stopping time τ∗ such that (3.1a) has a unique mild solution for t < τ∗ and such
that either τ∗ =∞ or limt→τ∗ ‖u(t)‖L∞ =∞.

3.1 Semigroup

In this subsection, we give a few convenient bounds on the semigroups S and Sε.
Recall that for every α ≥ β, every T > 0 and every γ > 0, there exists a constant
C such that

‖exp(−(−L)γt)u‖α ≤ Ct
β−α
2γ ‖u‖β , (3.2)

for every u ∈ Hβ and every t ≤ T . This follows from standard semigroup theory
and can also be checked directly by decomposing into Fourier modes.

Using this, we start by giving a sharp bound on the regularising properties of Sε
as a function of the parameter ε > 0. We have:
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Lemma 3.5 For every α ≥ β and T > 0, there exists C > 0 such that the bound

‖Sε(t)u‖α ≤ C(t
β−α
2 ∧ (ε2t)

β−α
4 )‖u‖β ,

holds for every ε ≤ 1 and every t ≤ T .

Proof. Since Lε ≤ L−K1ε
2L2 +K2 for some constants Ki, we have

‖Sε(t)u‖α ≤ C(‖S(t)u‖α ∧ ‖ exp(−K1ε
2L2t)u‖α) ,

so that the bound follows immediately from (3.2).

Lemma 3.6 For every γ < 2, every β ≤ α+ 2γ, and every T > 0, there exists a
constant C such that the bound

‖S(t)u− Sε(t)u‖α ≤ Cεγt
β−α−γ

2 ‖u‖β (3.3)

holds for every t ≤ T and every u ∈ Hβ .

Proof. Denote by uk the kth Fourier mode of u, by rk the kth Fourier mode of
r

def
= S(t)u− Sε(t)u, and set sk(t) = e−(νk2+1)t. We then have

|rk| = sk(t)|(e−ε2k4t − 1)uk| ≤ sk(t)(k4ε2t ∧ 1)|uk| ≤ εγk2γt
γ
2 sk(t)|uk| .

It follows that ‖r‖α ≤ Cεγt
γ
2 ‖S(t)u‖α+2γ , so that the result follows again from

(3.2).

Remark 3.7 Note that as operators from Hα to Hα, one has for every T > 0

lim inf
ε→0

sup
t∈[0,T ]

‖S(t)− Sε(t)‖α > 0 ,

as can easily be seen by looking at the operators acting on ek for suitably chosen k.
This explains the presence of a divergence as t→ 0 in (3.3) if one takes α = β and
γ > 0.

3.2 Stochastic convolution
We first recall the following quantitative version of Kolmogorov’s continuity test:

Proposition 3.8 Let Ψ be a Gaussian random field on [0, 1]d with values in a
separable Hilbert spaceH such that there exist constants K, and α > 0 such that

E‖Ψ(x)−Ψ(y)‖2 ≤ K|x− y|α ,

holds for every x, y. Then, for every p > 0 there exist a constant C such that

E sup
x∈[0,1]d

‖Ψ(x)‖p ≤ C|K + E‖Ψ(0)‖2|
p
2 .
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Proof. It suffices to keep track of constants in the standard proof of Kolmogorov’s
criterion as in [RY91]. It also follows immediately from the Fernique-Talagrand
result on the supremum of Gaussian processes [Fer74, Tal87].

Denoting by ψεk(t) the scalar product 〈ψε(t), ek〉, we then have

E|ψεk|
2(t) =

1

1 + νk2 + ε2k4
.

It follows immediately that one has the following a priori bounds on ψε:

Lemma 3.9 There exist constants C > 0 and Cα such that the bounds

E‖ψε(t)‖2α ≤ Cα , α ∈ (−∞, 12 ) ,

E‖ψε(t)‖2α ≤ C| log ε| , α = 1
2 ,

E‖ψε(t)‖2α ≤ Cαε1−2α , α ∈ (12 ,
3
2 ) ,

hold for every ε ∈ (0, 1]. Furthermore, for every δ > 0 and every T > 0, there exist
constants C̃α such that we have the bounds

E sup
t∈[0,T ]

‖ψε(t)‖2α ≤ C̃α , α ∈ (−∞, 12 ) ,

E sup
t∈[0,T ]

‖ψε(t)‖2α ≤ C̃αε1−2α−2δ , α ∈ [12 ,
3
2 ) .

Proof. The first set of bounds follows from a straightforward explicit calculation.
The second set of bounds follows similarly by applying Proposition 3.8. For
example, for α ∈ [12 ,

3
2 ) and γ ∈ (0, 34 −

α
2 ), one obtains the bound

E‖ψε(t)− ψε(s)‖2α ≤
∑
k∈Z

k2α

1 + νk2 + ε2k4
(1 ∧ |t− s|(νk2 + ε2k4))

≤ |t− s|γ
∑
k∈Z

k2α

(1 + νk2 + ε2k4)1−γ

≈ ε1−2α−2γ |t− s|γ
∫ ∞
−∞

x2(α+γ−1)

(ν + x2)1−γ
dx ,

which implies the required bound by Proposition 3.8. The other bounds follow
similarly.

Note that the function α 7→ Cα is bounded on any closed interval not including
1
2 or 3

2 , but it diverges at these two values. Similarly, the function C̃α diverges
as it approaches 1

2 from below. We now give a bound on the speed at which ψε

approaches ψ0 as ε→ 0.

Proposition 3.10 For every κ > 0 and every T > 0, there exists a constant C such
that

E sup
t∈[0,T ]

‖ψε(t)− ψ0(t)‖L∞ ≤ Cε
1
2
−κ ,

for every ε < 1.
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Proof. Define the random fields

∆k
ε (x, t) = (ψεk(t)− ψ0

k(t)) ek(x) ,

so that
∆ε

def
= ψε − ψ0 =

∑
k∈Z

∆k
ε ,

and the fields ∆k
ε are all independent. Let us first obtain a bound on the second

moment of ∆k
ε (t, x). For k = 0, we have ∆0

ε = 0, while for k 6= 0 we have the
bound

E|ψεk(0)− ψ0
k(0)|2 ≤

∫ ∞
0

e−2νk
2t(1− e−ε2k4t)2 dt .

Noting that there exists a constant C such that

(1− e−ε2k4t)2 ≤ C(1 ∧ ε4k8t2) ,

we can break this integral into two parts. For the first part, we obtain

ε4k8
∫ ε−2k−4

0
e−2νk

2tt2 dt = ε4k2
∫ ε−2k−2

0
e−2νtt2 dt ≤ C(ε4k2 ∧ ε−2k−4) .

For the second part, we obtain∫ ∞
ε−2k−4

e−2νk
2t dt = k−2

∫ ∞
ε−2k−2

e−2νt dt ≤ Ck−2
(
1 ∧

∫ ∞
ε−2k−2

dt

t3

)
= C(k−2 ∧ ε4k2) .

Note now that if k−2 < ε4k2, then one has ε−2k−4 < k−2 so that, combining these
two bounds, we conclude that

E|ψεk(0)− ψ0
k(0)|2 ≤ C(k−2 ∧ ε4k2) . (3.4)

In particular E(∆k
ε (t, x))2 ≤ C(k−2 ∧ ε4k2) by stationarity and the fact that the

functions ek are uniformly bounded.
On the other hand, ψ0

k(t) is a stationary Ornstein-Uhlenbeck process with both
characteristic time and variance 1/(1 + νk2). We thus have

E(ek(x)ψ0
k(t)− ek(y)ψ0

k(s))2 ≤ CE|ψ0
k(t)− ψ0

k(s)|2 + Ck2|x− y|2E|ψ0
k(s)|2

≤ C|t− s|+ C|x− y|2 ,

and it can easily be checked that the same bound also holds for ψεk(t), uniformly in
ε. It follows from this and (3.4) that

E(∆k
ε (x, t)−∆k

ε (y, s))2 ≤ C(k−2 ∧ ε4k2 ∧ (|t− s|+ |x− y|2))

≤ Cε1−2κk−1−κ(|t− s|+ |x− y|2)
κ
4 .

Since the ∆k
ε are independent for different values of k, we then obtain

E(∆ε(x, t)−∆ε(y, s))
2 ≤

∑
k≥1

E(∆k
ε (x, t)−∆k

ε (y, s))2

≤ Cε1−2κ(|t− s|+ |x− y|2)
κ
4 ,

so that the claim follows from Proposition 3.8.
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4 Averaging results

The aim of this section is to show that, for any sufficiently regular function v, one
has

v · (ε∂xψε(t)⊗ ∂xψε(t)−A)→ 0 ,

in a weak sense as ε→ 0, where A is a shorthand for 1/(2
√
ν) times the identity

matrix. In fact, if v ∈ Hα for some α > 1
2 and the convergence is measured

in a weak Sobolev space of sufficiently negative index (less than −1
2 ), then the

convergence takes place at speed O(
√
ε).

Let {wεk}k∈Z be a sequence of centred complex Gaussian random variables that
are independent, except for the constraint w−k = w̄k, and depending on a parameter
ε > 0 with variance σk = k2

1+νk2+ε2k4
. We also set σ̂k = 1

ν+ε2k2
, and we note that

one has

|σk − σ̂k| ≤
C

1 + k2
. (4.1)

One should think of thewk as being the Fourier coefficients of one of the components
of ∂xψε(t) for any fixed time t. We also consider {w̃εk}k∈Z a sequence with the
same distribution but independent of the wk’s. Think of w̃ as describing a different
component from the one that w describes.

Let furthermore vk be a (possibly ε-dependent) sequence of complex random
variables such that v ∈ Hα almost surely for some α > 1

2 . With this notation, the
nth Fourier modes of ϕ = v(w2 − 1/(2ε

√
ν)) and ϕ̃ = vww̃ are given by

ϕn =
1

2π

∑
k+`+m=n

vmwkw` −
vn

2ε
√
ν

,

ϕ̃n =
1

2π

∑
k+`+m=n

vmwkw̃` .

The aim of this section is to give sharp bounds on these quantities. Our main result
in this setting is the following

Proposition 4.1 Let v be a random variable such that ‖v‖α <∞ almost surely for
some fixed α > 1

2 . Then, for every γ > 1
2 , there exist constants C, c and δ such that

the bound

P(‖ϕ‖−γ ≥ K) ≤
∑
n≥1

P(‖v‖α ≥ V nδ) + C exp
(
−c
√
εK

V

)
, (4.2)

hold for every K > 0 and every V > 0, and similarly for ϕ̃.

The main ingredient in the proof of Proposition 4.1 is the Gaussian concentration
inequality for Lipschitz continuous functions [SC74, Bor75, Tal95], which we state
here in the following form:
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Proposition 4.2 Let G: RN → R be Lipschitz continuous with Lipschitz constant
L and let X be a normal RN -valued Gaussian random variable. Then, there exists
c > 0 independent of N such that the bound

P(|G(X)− EG(X)| ≥ K) ≤ exp
(
−cK

2

L2

)
, (4.3)

holds for every K > 0.

Remark 4.3 The bound (4.3) also holds if X is centred Gaussian with a covariance
matrix different from the identity, provided that the eigenvalues of the covariance
matrix are bounded by some constant independent of N . In this case, the optimal
constant c depends on that bound.

Another useful tool is the following little calculation:

Lemma 4.4 For every δ > 0 and every α < 1, there exists a constant C > 0 such
that the bound

1 ∧
∑
n≥1

exp(−Knδ) ≤ C exp(−αK) ,

holds for every K > 0.

Proof. The bound is trivial for K < 1, so that we assume K ≥ 1 in the sequel.
Since for every α < 1 there exists a constant c such that (1 + x)δ ≥ α + cxδ, we
have∑
n≥1

exp(−Knδ) ≤ e−K +

∫ ∞
1

exp(−Kxδ) dx = e−K +

∫ ∞
0

exp(−K(1 + x)δ) dx

≤ e−K + e−αK
∫ ∞
0

exp(−Kcxδ) dx = e−K + CK−
1
δ e−αK ,

as claimed.

We have now all the tools required for the

Proof of Proposition 4.1. We start with the bound on ϕ. Note first that since γ > 1
2 ,

there exists a constant C and some κ > 0 (any value less than γ − 1
2 will do) such

that the implication

‖ϕ‖−γ ≥ K ⇒ ∃n : |ϕn| ≥ CKnκ

holds for every K > 0. Furthermore, we see from the definition of ϕ that there
exist elements f (n) such that ϕn can be written as ϕn = 〈v, f (n)〉. In particular,
|ϕn| ≤ ‖v‖α‖f (n)‖−α, so that one has the implication

|ϕn| ≥ CKnκ ⇒ ‖v‖α ≥ V nδ or ‖f (n)‖−α ≥ C
Knκ−δ

V
.
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Combining these implications, we obtain the bound

P(‖ϕ‖−γ ≥ K) ≤
∑
n≥1

P(‖v‖α ≥ V nδ) +
∑
n≥1

P
(
‖f (n)‖−α ≥ C

Knκ−δ

V

)
. (4.4)

Since the first term on the right hand side is exactly of the desired form, it remains
to obtain suitable bounds on the f (n). Note at this point that if we want to have
any chance to obtain the desired bound, we need to choose δ in such a way that
κ− δ > 0, which imposes the restriction δ < γ − 1

2 .
We now break f (n) into a ‘diagonal’ part and a ‘off-diagonal’ part by writing

f (n) = f (n,1) + f (n,2) with

f (n,1)
m =

( 1

2π

∑
k∈Z
|wk|2 −

1

2ε
√
ν

)
δ−n,m ,

f (n,2)
m =

1

2π

∑
k+`=m+n

′
wkw` .

Here, the ′ over the second sum indicates that we omit the terms with k + ` = 0.
The first term can be bounded in a straightforward manner. We have

‖f (n,1)‖−α ≤
1

2π|n|α
∣∣∣Tν
ε
−
∑
k∈Z
|wk|2

∣∣∣ ,

where we set Tν = π√
ν

as a shorthand. At this stage, we note that
∑
k εσ̂k is nothing

but a Riemann sum for the integral
∫∞
−∞

dx
ν+x2

. Since the value of this integral is
precisely equal to Tν and since the function 1/(ν + x2) is decreasing on [0,∞)
and since

∑
k |σk − σ̂k| ≤ C by (4.1), we find that |Tν −

∑
k εσk| ≤ Cε for some

constant C. Applying Proposition 4.2 to the function G(w) =
√∑

k∈Z |wk|2, it
follows that the bound

P(‖f (n,1)‖−α ≥ K) ≤ C exp(−c
√
εKnα) , (4.5)

holds for some constants c and C, uniformly in K.
We now aim for a similar bound for f (n,2). In order to do this, we make use of

the following trick. Setting

fn =
(
ε
(∑
k∈Z
|wk|2

)2
+
∑
m∈Z

(1 + |m|)−2α
∣∣∣ ∑
k+`=m+n

′
wkw`

∣∣∣2)1/4 ,

we have the almost sure bound ‖f (n,2)‖−α ≤ 2f2n, so that it is sufficient to be able
to get bounds on the fn. Of course, this would also be true if the definition of fn
didn’t include the term proportional to ε, but we will see shortly that this term is
very useful in order to be able to apply Proposition 4.2.

We first obtain a bound on the expectation of f4n:

E|fn|4 ≤ εC
(

E
∑
k∈Z
|wk|2

)2
+
∑
m∈Z

(1 + |m|)−2αE
∣∣∣ ∑
k+`=m+n

′
wkw`

∣∣∣2 .
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Since
∑
k σk = O(ε−1), the first term in this sum is of order ε−1. Furthermore,

since the wk’s are independent, only the ‘diagonal’ terms remain when expanding
the square under the second expectation. We thus have

E|fn|4 ≤
C

ε
+ C

∑
m∈Z

(1 + |m|)−2α
( ∑
k+`=m+n

′
σkσ`

)
≤ C

ε
+ C

∑
m∈Z

(1 + |m|)−2α
∑
k∈Z

σk ≤
C

ε
, (4.6)

for some universal constant C, provided that α > 1
2 . Here, we have used the fact

that
∑
k σk = O(1/ε), as already mentioned previously. In particular, the bound

(4.6) implies that E|fn| ≤ Cε−1/4 by Jensen’s inequality.
Our next step is to obtain a bound on the Lipschitz constant of fn as a function

of the w’s. Denoting by ∂j the partial derivative with respect to wj , we have

2f3n∂jfn = εw−j
∑
k∈Z
|wk|2 +

∑
m∈Z

(1 + |m|)−2αwm+n−j
∑

k+`=m+n

′
wkw` .

It then follows from the Cauchy-Schwarz inequality that

2|f3n∂jfn| ≤ |fn|2
(√

ε|w−j |+
√∑
m∈Z

(1 + |m|)−2α|wm+n−j |2
)
.

Setting ‖Dfn‖2 =
∑
j≥1 |∂jfn|2 for the norm of the derivative of fn, it follows that

‖Dfn‖2 ≤ C|fn|−2
(
ε
∑
`∈Z
|w`|2 +

∑
k∈Z
|wk|2

∑
m∈Z

(1 + |m|)−2α
)
. (4.7)

Since α > 1
2 by assumption, the last sum in this term is finite. We see now why it

was useful to add this additional term proportional to ε in the definition of fn. This
term indeed now allows us to obtain the bound∑

k∈Z
|wk|2 ≤

1√
ε
|fn|2 ,

(which would not hold otherwise!), thus yielding ‖Dfn‖ ≤ Cε−1/4. Combining
this with (4.6), we conclude that the bound

P(|fn| ≥ K) ≤ P
(
|fn − Efn| ≥ K − Cε−1/4

)
≤ C exp

(
−c
√
εK2

)
,

holds by Remark 4.3, so that

P(‖f (n,2)‖−α ≥ K) ≤ C exp(−c
√
εK) .

Combining this bound with (4.5), we conclude that

P(‖f (n)‖−α ≥ K) ≤ C exp(−c
√
εK) , (4.8)
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for possibly different constants c and C. Inserting this into (4.4), we obtain

P(‖ϕ‖−γ ≥ K) ≤
∑
n≥1

P(‖v‖α ≥ V nδ) +
∑
n≥1

C exp
(
−c
√
ε
Knκ−δ

V

)
,

so that the desired bound follows from Lemma 4.4.
We now turn to the bound for ϕ̃, which is obtained in a very similar way.

Similarly to before, we have ϕ̃n = 〈v, g(n)〉 for elements g(n) given by

g(n)
m =

∑
k+`=m+n

wkw̃` .

Similarly to before, we set

g4n = ε
(∑
m∈Z
|wm|2

)2
+ ε

(∑
m∈Z
|w̃m|2

)2
+
∑
m∈Z

(1 + |m|)−2α
( ∑
k+`=m+n

wkw̃`
)2

,

so that the bound ‖g(n)‖−α ≤ |gn|2 holds almost surely.
Let us first compute the expectation of |gn|4. Expanding the last square, we

see that as previously, since w and w̃ are independent, only the ‘diagonal’ terms
contribute, so that

E|gn|4 ≤
C

ε
+
∑
m∈Z

(1 + |m|)−2α
∑

k+`=m+n

σkσ` ≤
C

ε
.

Here, we have used the fact that σk ≤ 1/ν to go from the first to the second line.
Since gn is symmetric in w and w̃, it suffices to obtain a bound of the form

‖Dgn‖ ≤ Cε−1/4 to conclude in the same way as before. We have the identity

2g3n∂jgn = εw−j
∑
k∈Z
|wk|2 +

∑
m∈Z

(1 + |m|)−2αw̃m+n−j
( ∑
k+`=m+n

wkw̃`
)

,

from which a bound similar to (4.7) (only with w replace by w̃ in the second term)
follows. The rest of the argument is identical to before.

We will mostly make use of the following two special cases. The first one is
obvious from (4.2):

Corollary 4.5 Let α, γ > 1
2 and let v be a random variable such that ‖v‖α ≤ V

almost surely. Then,

P(‖ϕ‖−γ ≥ K) ≤ C exp
(
−c
√
εK

V

)
,

and similarly for ϕ̃.

The second corollary does require a short calculation:
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Corollary 4.6 In the setting of Proposition 4.1, let ṽn be a collection of independent
centred Gaussian random variables such that Eṽ2n = σn

n2 and assume that v is a
random variable such that ‖v‖α ≤ 1 + ‖ṽ‖α almost surely. Then,

P(‖ϕ‖−γ ≥ K) ≤ C exp
(
−cε2α/3K2/3

)
, (4.9)

and similarly for ϕ̃.

Proof. A straightforward calculation shows that

E‖ṽ‖2α ≤
∑
n≥1

1

n2−2α(ν + ε2n2)
= O(ε1−2α) ,

so that by Fernique’s theorem there exists a constant c such that

P(‖ṽ‖α > K) ≤ exp(−cε2α−1K2) ,

and similarly for v. It therefore follows from (4.2) and Lemma 4.4 that

P(‖ϕ‖−γ ≥ K) ≤ C exp(−cε2α−1V 2) + C exp
(
−c
√
ε
K

V

)
.

Setting V = ε
1
2
− 2α

3 K
1
3 completes the proof.

Remark 4.7 Here we did not make any assumption regarding the correlations
between the vn and the wn. In the special cases when either vn = wn

n or v is
independent of w and w̃, it is possible to check by an explicit calculation that the
boundary α = 1

2 can be reached in (4.9). Since this is of no particular use to us,
there is no need to make this additional effort.

5 Proof of the main result

This section is devoted to the proofs of Theorems 1.1 and 1.5. We first reformulate
Theorem 1.1 in a more precise way:

Theorem 5.1 Let u0 be an H
3
2 -valued random variable. Then, for every κ > 0

and every T > 0, there exists a sequence of stopping times τε with τε → T ∧ τ∗ in
probability, so that

lim
ε→0

P
(

sup
t∈[0,τε]

‖u(t)− uε(t)‖L∞ > ε
1
2
−κ
)

= 0 .

Remark 5.2 Assuming that u0 takes values in H
3
2 may look unnatural at first sight

since the solutions to (Φ) do not take values in that space. Note however that u0
is not the initial condition to (Φ) since we have assumed that ψ0 is a stationary
realisation of the solution to the linearised problem. Therefore, the initial condition
for the Cauchy problem (Φ) is given by u0 + ψ0(0) and it turns out that the solution
to (Φ) with continuous initial condition is of this form after any positive time.
(Actually, it is even of this form with u0 ∈ Hs for every s < 5

2 .)
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Remark 5.3 If the limiting problem has global solutions, then one has τε → T
in probability. However, this does not imply that the approximating problem has
global solutions! It only implies that its explosion time becomes arbitrarily large as
ε→ 0. This is also why it would be unrealistic to expect approximation results in
expectation rather than in probability.

In order to prove Theorem 5.1, we consider the following two intermediary
problems:

u(1)
ε (t) = S(t)u0 +

∫ t

0
S(t− s)F (u(1)

ε (s)) ds+ ψε(t) ,

u(2)
ε (t) = Sε(t)u0 +

∫ t

0
Sε(t− s)F (u(2)

ε (s)) ds+ ψε(t) ,

where the notations are the same as in (3.1). We are then going to bound first
the L∞-norm of u(1)

ε − u, then the Hα-norm of u(1)
ε − u(2)

ε for some α > 1
2 , and

finally the H1-norm of u(2)
ε − uε. Combining these bounds and using the Sobolev

embedding Hα ↪→ L∞ then shows the required claim. We now proceed to obtain
these bounds. In the sequel, one should think of the terminal time T , the exponent
κ, and the (possibly random) ‘initial condition’ u0 ∈ H

3
2 as being fixed once and

for all.
We also consider a (large) cutoff value K > 0. One should think of K as being

a fixed constant in the sequel although at the end we will take K →∞ as ε→ 0.

Notation 5.4 From now on, we will denote byCK a generic constant that is allowed
to depend only on the particulars of the problem at hand (f , g, h, etc), on the choice
of the cutoff value K, and possibly on κ. It is not allowed to depend on ε or on the
initial condition u0. The precise value of CK is allowed to change without warning,
even from one line to the next within the same equation.

We define a first stopping time τK by

τK = inf{s ≤ T : ‖u(s)‖L∞ ≥ K} ,

with the convention that τK = T if the set is empty. Note that τK → T ∧ τ∗ in
probability as K →∞ by the definition of τ∗.

We then set

τK1 = τK ∧ inf{s ≤ T : ‖u(s)− u(1)
ε (s)‖L∞ ≥ K} .

Our first step is to show that before the time τK1 , the quantity ‖u(s)− u(1)
ε (s)‖L∞ is

small with very high probability:

Proposition 5.5 For every K > 0, one has

lim
ε→0

P
(

sup
t≤τK1

‖u(t)− u(1)
ε (t)‖L∞ > ε

1
2
−κ
)

= 0 .
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Proof. Define the ‘residue’ R(1)(t) = ψε(t)− ψ0(t) and set %(t) = u(t)− u(1)
ε (t) +

R(1)(t), so that % satisfies the integral equation

%(t) =

∫ t

0
S(t− s)(F (u(s))− F (u(s)− %(s) +R(1)(s))) ds .

Note now that for s ≤ τK1 , the two arguments of F are bounded by 2K in the
L∞-norm by construction. Combining this with the local Lipschitz property of f̄
and the fact that S is a contraction semigroup in L∞, there exists a constant CK
such that

‖%(t)‖L∞ ≤ CK
∫ t

0
(‖%(s)‖L∞ + ‖R(1)(s)‖L∞) ds .

The claim now follows at once from Proposition 3.10, combined with Gronwall’s
inequality.

In our next step, we obtain a bound on the difference between u(1)
ε and u(1)

ε in a
very similar way. We define as before the stopping time

τK2 = τK1 ∧ inf{s ≤ T : ‖u(1)
ε (s)− u(2)

ε (s)‖α + ‖ψε(s)‖L∞ ≥ K} ,

but this time it additionally depends on a parameter α to be determined later. One
should think of α as being very close to, but slightly greater than, 1/2. We then
have,

Proposition 5.6 For every α ∈ (12 , 1), one has

lim
ε→0

P
(

sup
t≤τK2

‖u(1)
ε (t)− u(2)

ε (t)‖α > ε
1
2
−κ
)

= 0 .

Proof. Writing v(i)
ε (t) = u(i)

ε (t)− ψε(t), we have v(i)
ε (0) = u0 and

v(1)
ε (t) = S(t− s)v(1)

ε (s) +

∫ t

s
S(t− r)F (v(1)

ε (r) + ψε(r)) dr ,

v(2)
ε (t) = Sε(t− s)v(2)

ε (s) +

∫ t

s
Sε(t− r)F (v(2)

ε (r) + ψε(r)) dr ,

As before, we define the residue R(2)(t) = Sε(t)u0 − S(t)u0 and we note that

sup
s≤T
‖R(2)(s)‖α ≤ Cε

1
2 ‖u0‖α+ 1

2
,

follows immediately from Lemma 3.6. Using the triangle inequality and the bound
on the differences between the two semigroups given by Lemma 3.6, we furthermore
obtain for any u, v with ‖u‖L∞ + ‖v‖L∞ ≤ K the bound

‖S(t)F (u)− Sε(t)F (v)‖α ≤ ‖(S(t)− Sε(t))F (u)‖α + ‖Sε(t)(F (u)− F (v))‖α
≤ CKε

1
2 t−

α
2
− 1

4 + C̄Kt
−α

2 ‖u− v‖L∞ .
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In this bound, we single out the constant C̄K in order to able to reuse its precise
value later in the proof. Setting % = u(1)

ε − u(2)
ε = v(1)

ε − v(2)
ε we conclude that, for

any t ≤ τK2 , we have

‖%(t)‖α ≤ CKε
1
2 (1 + ‖u0‖ 3

2
) + C̄Kt

1−α
2 sup
0<r<t

‖%(r)‖α . (5.1)

On the other hand, we obtain in a similar way from Lemma 3.6 the bound

‖S(t)u− Sε(t)v‖α ≤ ‖u− v‖α + Cε
1
2 t−

α
2
− 1

4 ‖v‖L2 ,

so that

‖%(t)‖α ≤ ‖%(s)‖α + CKε
1
2 (1 + (t− s)−

α
2
− 1

4 ) + C̄K(t− s)1−
α
2 sup
s<r<t

‖%(r)‖α .

(5.2)
In order to obtain a bound on % over the whole time interval [0, τK2 ], we now fix
some δK sufficiently small so that C̄K(2δK)1−

α
2 ≤ 1

2 . Setting

rk
def
= sup

kδK∧τK2 ≤t≤(k+1)δK∧τK2
‖%(t)‖α ,

it then follows from (5.1) that

r0 ∨ r1 ≤ CKε
1
2 (1 + ‖u0‖ 3

2
) . (5.3)

Then, from (5.2), we obtain

rk+1 ≤ ‖%((k − 1)δK ∧ τK2 )‖α + CKε
1
2 (1 + δ

−α
2
− 1

4
K ) +

1

2
(rk + rk+1) ,

so that, since δK is independent of ε,

rk+1 ≤ 3rk + CKε
1
2 . (5.4)

Combining the bounds (5.3) and (5.4) shows that supt≤τK2 ‖%(t)‖α ≤ CKε1/2, thus
concluding the proof.

It now remains to obtain a bound on the difference between u(2)
ε (t) and uε. This

time, we are going to consider the H1 norm, so that we set

τK3 = τK1 ∧ inf{s ≤ T : ‖u(2)
ε (s)− uε(s)‖1 ≥ K} .

Note first that one has the following a priori bound:

Lemma 5.7 The bound
‖uε(t)− ψε(t)‖1 ≤ CK

holds for every t ≤ τK3 .
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Proof. It follows from the definition of u(2)
ε that

‖u(2)
ε (t)− ψε(t)‖1 ≤ ‖u0‖1 +

∫ t

0
‖Sε(t− s)F (u(2)

ε (s))‖1 ds .

Since ‖F (u(2)
ε (s))‖L∞ ≤ CK for t ≤ τK3 , it follows from the regularising properties

of the semigroup Sε that

‖u(2)
ε (t)− ψε(t)‖1 ≤ CK .

The claim then follows from the definitions of the various stopping times.

Proposition 5.8 For every κ > 0 and every K > 0, one has

lim
ε→0

P
(

sup
t≤τK3

‖u(2)
ε (t)− uε(t)‖1 > ε

1
2
−κ
)

= 0 .

Proof. As before, we write % = uε − u(2)
ε , so that

%(t) =

∫ t

0
Sε(t− s)(Fε(uε(s))− F (uε(s)− %(s))) ds .

Note now that since ‖uε‖L∞ is bounded by a fixed constant before time τK3 ,
‖F (uε)− F (uε − %)‖L∞ is bounded by a constant (depending only on K) multiple
of ‖%‖L∞ so that, for any two times s < t ≤ τK3 , we have the almost sure bound

‖%(t)‖1 ≤ ‖%(s)‖1 +
∥∥∥∫ t

s
Sε(t− r)(Fε(uε(r))− F (uε(r))) dr

∥∥∥
1

+ CK(t− s)
1
2 sup
s<r<t

‖%(r)‖1 .

By breaking the interval [0, T ] into a finite number of subintervals [tk, tk+1] of
sufficiently short length, we conclude as above that

sup
t<τK3

‖%(t)‖1 ≤ CK sup
k

sup
t∈[tk,tk+1]

∥∥∥∫ t

tk

Sε(t−s)(Fε(uε(s))−F (uε(s)))1s<τK3 ds
∥∥∥
1
.

In view of Proposition A.1 below, it thus suffices to show that, for every p > 0,
there exists a constant CK depending also on p such that

E(1s<τK3 ‖Fε(uε(s))− F (uε(s))‖p−1) ≤ CKε
1−κ
2
p . (5.5)

In order to obtain such a bound, we write

Fε(uε)− F (uε) = ε∂x(g(uε)∂xuε) + εh̄(uε)((∂xuε ⊗ ∂xuε)−A) ,

where we have set h̄ = h−Dsg (see Remark 1.2 for the meaning of Dsg), and A
is a shortcut for 1

2
√
ν

times the identity matrix.
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We then decompose uε as uε = vε + ψε and recall that ‖vε‖1 ≤ CK by
Lemma 5.7. Since, for times less than τK3 , the L∞-norm of g(uε) and the H1-norm
of vε are almost surely bounded by a constant depending on K, it follows from the
bounds of Lemma 3.9 on the H1-norm of ψε that the first term does indeed satisfy
the bound (5.5). The second term can be rewritten as

εh̄(uε)((∂xuε⊗∂xuε)−A) = εh̄(uε)((∂xψε ⊗ ∂xψε)−A)

+ 2εh̄(uε)(∂xvε ⊗ ∂xψε) + εh̄(uε)(∂xvε ⊗ ∂xvε) .

The terms on the second line satisfy the bound (5.5) in the same way as before, so
that it remains to consider the first term. Note that for times t ≤ τK3 , one has the
almost sure bound

‖h̄(uε(t))‖α ≤ CK(1 + ‖ψε(t)‖α) .

This allows us to apply Corollary 4.6, thus showing that (5.5) also holds for this
term and concluding the proof.

As an immediate corollary of propositions 5.5, 5.6, and 5.8, we have:

Corollary 5.9 One has limε→0 P(τK = τK1 = τK2 = τK3 ) = 1 for every K > 0.
In particular, for every choice of K, τK3 → T ∧ τ∗ in probability as ε→ 0.

Proof. It suffices to note that the additional a priori constraint enforced by any of
the τKi is always given as %i(t) ≤ K, for some quantity %i for which we then obtain
a bound of the type

lim
ε→0

P
(

sup
t≤τKi

%i(t) ≥ εβ
)

= 0 ,

for some exponent β > 0. Since, setting τK0 = τK , we then have P(τKi 6= τKi−1) =
P(%i(τKi ) ≥ K) for i ∈ {1, 2, 3}, the claim follows at once.

It is now straightforward to assemble all the pieces:

Proof of Theorem 5.1. Combining propositions 5.5–5.8, we obtain

lim
ε→0

P
(

sup
t≤τK3

‖uε(t)− u(t)‖L∞ > ε
1
2
−κ
)

= 0 . (5.6)

Since this is true for every K > 0, a standard ‘diagonal’ argument shows that there
exists a sequence Kε →∞ such that (5.6) still holds with K replaced by Kε. Since
τK → T ∧ τ∗ in probability as K → ∞, it follows from Corollary 5.9 that the
sequence of stopping times τε = τKε3 has the same property as ε→ 0, thus proving
the claim.
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5.1 Proof of Theorem 1.5
The proof of Theorem 1.5 is slightly more straightforward than the proof of Theo-
rem 1.1, mainly due to the fact that we gain regularity in the limit ε → 0 instead
of losing regularity. First of all, we reformulate the solutions as solutions to the
corresponding integral equations by setting:

vε(t) = Sε(t)v0 +

∫ t

0
Sε(t− s)G(vε(s)) ds+

√
εψε(t) , (5.7a)

v(t) = S(t)v0 +

∫ t

0
S(t− s)Ḡ(v(s)) ds , (5.7b)

where we have defined

G(u) = f (u) + h(u)(∂xu⊗ ∂xu) , Ḡ(u) = f̄ (u) + h(u)(∂xu⊗ ∂xu) ,

with f̄ = f + 1
2
√
ν

Trh. This time, v0 really is the initial condition for (5.7b),
but as before it is not the initial condition for (5.7a) since ψε(0) 6= 0. Again, we
assume throughout that f and h are in C1. It then follows from Sobolev calculus
and a standard bootstrapping argument that (5.7b) is locally well-posed for initial
conditions in H1 and that its solutions, as long as they exist, belong to Hs for all
s < 3. Therefore, for every v0 ∈ H1, there exists a (possibly infinite) time τ∗ such
that the solutions to (5.7b) exist up to time τ∗ and such that, provided τ∗ 6=∞, one
has limt→τ∗ ‖v(t)‖1 =∞.

With this notation, we have the following rigorous formulation of Theorem 1.5:

Theorem 5.10 Let v0 be an H2-valued random variable and fix β ∈ (12 , 1). Then,
for every κ > 0 and every T > 0, there exists a sequence of stopping times τε with
τε → T ∧ τ∗ in probability, so that

lim
ε→0

P
(

sup
t∈[0,τε]

‖v(t)− vε(t)‖Hβ > ε1−β−2κ
)

= 0 .

Remark 5.11 Note that in this case, we are unable to deal with a nonlinearity of the
form g(v)∂2xv, mainly since this would lead to a fully non-linear limiting equation,
so that some of the techniques employed here break down.

Proof. Fix two exponents α, β such that α ∈ (1, 32 ) and β ∈ (2−α, 1). One should
think of α as being slightly less than 3

2 and β as being slightly more than 1
2 . We also

fix an exponent κ < 1
4 , we set % = vε − v −

√
εψε(t), and we define a stopping

time τK by

τK = inf{t < T : εβ+κ−
1
2 ‖ψε(t)‖β+

√
ε‖ψε(t)‖1−κ+‖%(t)‖α+‖v(t)‖2 > K} .

For t ≤ τK , one then has the bound

‖%(t)‖α ≤ Cε
1
2 ‖v0‖2 +

∥∥∥∫ t

0
Sε(t− s)(G(vε(s))− Ḡ(v(s)))

∥∥∥
α
ds
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+

∫ t

0
‖(Sε(t− s)− S(t− s))Ḡ(v(s))‖α ds ,

≤ ε
1
2 (C‖v0‖2 + CK) +

∥∥∥∫ t

0
Sε(t− s)(G(vε(s))− Ḡ(v(s)))

∥∥∥
α
ds ,

where we have made use of Lemma 3.6 and the fact that ‖v(s)‖2 < K in order to
bound the last term. Similarly, we obtain for s < t < τK the bound

‖%(t)‖α ≤ ‖%(s)‖α + CKε
1
2 +

∥∥∥∫ t

s
Sε(t− r)(G(vε(r))− Ḡ(v(r)))

∥∥∥
α
dr .

Before we proceed, we obtain bounds on the last term in this inequality.
For this, we rewrite G(vε)− Ḡ(v) as

G(vε)− Ḡ(v) = (f (vε)− f (v)) + (h(vε)− h(v))(∂xv ⊗ ∂xv +A)

+ h(vε)(ε∂xψε ⊗ ∂xψε −A)

+ h(vε)(∂x%⊗ (2∂xv + ∂x%))

+ 2
√
εh(vε)(∂xψε ⊗ ∂xv)

+ 2
√
εh(vε)(∂xψε ⊗ ∂x%)

def
= I1 + I2 + I3 + I4 + I5 ,

and we bound these terms separately. Since it follows from the definition of τK

that both v and vε are bounded by some constant CK in H1−κ (and therefore in
particular in L∞), it follows that

‖I1‖L2 ≤ CK(ε1−β−κ + ‖%‖L2) . (5.8a)

In order to bound I2, we use the fact that ‖h(vε)‖β ≤ CK almost surely to apply
Corollary 4.5. Therefore, for every γ > 1

2 and every p > 0, we obtain constants
CK(p) such that

E1t≤τK‖I2(t)‖p−γ ≤ CK(p)ε
p
2 . (5.8b)

In order to bound I3, we use the fact that both ∂x% and ∂xv are bounded in L2,
together with the fact that L1 ⊂ H−γ for every γ > 1

2 , so that we have

‖I3‖−γ ≤ CK‖%‖α . (5.8c)

The bound on I4 exploits the fact that
√
ε∂xψ

ε is bounded by Kε1−β−κ in Hβ−1,
together with the fact that h(vε)∂xv is bounded by a constant in H1−κ. Furthermore,
the product of an element in Hβ−1 with an element in H1−κ lies in H−

1
2 , provided

that κ < β (which is always the case since we assumed that β > 1
2 ), so that

‖I4‖− 1
2
≤ CKε1−β−κ .

Finally, in order to bound I5, we use the fact that
√
ε∂xψ

ε is bounded by K in H−κ,
h(vε)∂x% is bounded by CK‖%‖α in H

1
2
−κ, and κ < 1

4 to deduce that

‖I5‖− 1
2
≤ CK‖%‖α .
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Making sure that the constant γ appearing in the bounds on I2 and I3 is less that
2− α, we can combine all of these bounds in order to get the inequality

‖%(t ∧ τK)‖α ≤ ‖%(s ∧ τK)‖α +Rs(t) + CK |t− s|δ sup
s≤r≤t

‖%(r ∧ τK)‖α ,

where the remainder term Rs satisfies

E sup
t≤τK

‖Rs(t)‖α ≤ CK(ε1−β−
3
2
κ + ε

1
2 ‖v0‖2) ,

by Proposition A.1. We now conclude in the same way as in the proof of Proposi-
tion 5.8.

Appendix A Factorisation method

The aim of this section is to show the following:

Proposition A.1 For every κ > 0 there exists p > 0 such that the bound

E sup
t∈[0,T ]

∥∥∥∫ t

0
Sε(t− s)R(s) ds

∥∥∥p
γ
≤ Cε−κp sup

t∈[0,T ]
E‖R(t)‖pγ−2 ,

holds for every γ ∈ R and every Hγ−2-valued stochastic process R.

Proof. The proof relies on the ‘factorisation method’ as in [DPKZ87]. We make
use of the following bounds. Recall Minkowski’s integral inequality,(

E
(∫ t

0
f (s) ds

)p)1/p

≤
∫ t

0
(Efp(s))1/p ds , (A.1)

which holds for every p ≥ 1 and every real-valued stochastic process f . Given R,
we then define a process y by

y(t) =

∫ t

0
(t− s)−αSε(t− s)R(s) ds , (A.2)

where α is some (typically very small) exponent to be determined later. The
convolution of R with Sε is then given by

R̃(t) def
=

∫ t

0
Sε(t− s)R(s) ds = Cα

∫ t

0
(t− s)α−1Sε(t− s) y(s) ds , (A.3)

where the constant Cα gets large as α gets small. It is known that for every p > 1/α,
the map y 7→ R̃ given by (A.3) is bounded from Lp([0, T ], Hγ) into C([0, T ], Hγ)
[Hai09], so that

E sup
t∈[0,T ]

‖R̃(t)‖pγ ≤ C sup
t∈[0,T ]

E‖y(t)‖pγ .
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It thus suffices to show that E‖y(s)‖pγ is bounded by ε−κp supt∈[0,T ] E‖R(t)‖pγ−2
for some large enough value of p.

Combining (A.2) with (A.1), we have the bound

(E‖y(t)‖pγ)1/p ≤
∫ t

0
(t− s)−α(E‖Sε(t− s)R(s)‖pγ)1/p ds .

It then follows from Lemma 3.5 that there exists a constant C such that

(E‖y(t)‖pγ)1/p ≤ Cε−4α
∫ t

0
(t− s)α−1(E‖R(s)‖pγ−2)

1/p ds ,

so that the required bound follows by setting α = κ/4.
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