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Abstract

This article is devoted to the numerical study of various finite difference approximations
to the stochastic Burgers equation. Of particular interest in the one-dimensional case is
the situation where the driving noise is white both in space and in time. We demonstrate
that in this case, different finite difference schemes converge to different limiting processes
as the mesh size tends to zero. A theoretical explanation of this phenomenon is given and
we formulate a number of conjectures for more general classes of equations, supported by
numerical evidence.

1 Introduction

This article is devoted to the numerical study of several finite difference schemes for the viscous
stochastic Burgers equation:

∂tu(x, t) = ν ∂2xu− g(u)∂xu+ σ ξ(x, t), x ∈ [0, 2π], t ≥ 0. (1)

In this equation, ξ denotes space-time white noise, that is the centred, distribution-valued Gaus-
sian random variable such that E

(
ξ(x, t)ξ(y, s)

)
= δ(t− s)δ(x− y).

Motivations for studying the stochastic Burgers equation are manifold. Just to name a few,
it is used to model vortex lines in high-temperature superconductors [BFG+94], dislocations in
disordered solids and kinetic roughening of interfaces in epitaxial growth [Bar96], formation of
large-scale structures in the universe [GSS85, SZ89], constructive quantum field theory

[BCJL94], etc. Since in the case σ = 0 and g(u) ∝ u this equation is furthermore ex-
plicitly solvable via the Hopf-Cole transform (u = v′/v, where v solves the heat equation), it
comes as no surprise that a wealth of numerical and analytical results are available. From a
purely mathematical point of view, let us mention for example the well-posedness results from
[BCF91, BCJL94, DPDT94, Gyö98, Kim06] and the ergodicity results obtained in [TZ06, GM05].
One remarkable achievement was the construction of a stationary solution in the inviscid limit
with non-vanishing noise [EKMS00] (dissipation then occurs purely through shocks). From a
more quantitative perspective, the scaling exponents of the solutions in the small viscosity limit
have attracted considerable interest, both in the physics and the applied mathematics literature
[YC96, BM96, Kra99, EVE00a, EVE00b].

Because of the presence of the white noise term ξ in (1), its solutions u will in general be very
“rough”, and in particular will not be differentiable in the classical sense in the spatial variable x.
As a consequence, it transpires that the solutions to (1) are extremely unstable under natural
approximations of the nonlinearity. For example, it is natural to consider for any a, b ≥ 0 with
a+ b > 0 the approximating equation

∂tu
ε(x, t) = ν ∂2xu

ε(x, t)− g
(
uε(x, t)

)
Dεu

ε(x, t) + σ ξ(x, t), (2)

where we defined the approximate derivative Dε by

Dεu(x, t) =
u(x+ aε, t)− u(x− bε, t)

(a+ b)ε
. (3)

In the absence of the noise term ξ, it would be a standard exercise in numerical analysis to show
that the solution to (2) does converge as ε → 0 to the solution to (1). This is just an example
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of the widely accepted ‘folklore’ fact that if an equation is well-posed, then any ‘reasonable’
approximation will converge to the exact solution. 1

In this article, we will argue that if ξ is taken to be space-time white noise, the limit of (2)
as ε→ 0 depends on the values a and b and is equal to (1) if and only if either g is constant or
a = b! Furthermore, it will follow from the argument that, if one considers driving noise that
is slightly rougher than space-time white noise (taking a noise term equal to (1 − ∂2x)αdw(t)
with α ∈ (0, 1/4) still yields a well-posed equation), then one does not expect solutions to the
approximate equation (2) to converge to anything at all, unless a = b. Our methodology here is
to first present a heuristic argument which allows to derive quantitative predictions for the effect
of the finite differences discretisation on the solution. We will then use numerical experiments
to verify these predictions.

At this point we would like to emphasise that the aim of this article is certainly not to
advocate the use of a finite difference scheme of the type (2) to effectively simulate (1). Indeed,
we will show in Section 2.2 below that approximations of the nonlinearity of the type DεG(u),
where G is the antiderivative of g already have much better stability properties. Instead, our
aim is merely to give a striking illustration of the fact that caution should be exercised in the
simulation of stochastic PDEs driven by spatially rough noise.

The text is structured as follows: We start in section 2 by presenting our argument for the
case of the stochastic Burgers equation, i.e. for g(u) = u. In section 3 we will present the
corresponding results for more general equations and in section 4 we study the limit of vanishing
noise and viscosity. Finally, in appendix A we give some details about how the numerical
simulations in this article were performed.
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2 Stochastic Burgers Equation

In this section we consider the stochastic Burgers equation

du = ν ∂2xu dt− u ∂xu dt+ σ dw, (4)

as well as the approximation given by

duε = ν ∂2xu
ε dt− uεDεu

ε dt+ σ dw. (5)

Here u and uε take values in the space L2
(
[0, 2π],R

)
, on which the operator ∂2x is endowed

with periodic boundary conditions, and w is an L2-cylindrical Wiener process (see [DPZ92]
for details). Equation (4) is well-posed, since we can rewrite u∂xu as 1

2∂x(u2) which is locally

Lipschitz from the Sobolev space H1/4 into H−1, thus allowing us to apply general local existence
theorems as in [DPZ92, Hai09]. For fixed time t > 0, the solutions to (4) have the regularity of
Brownian motion, when viewed as a function of the spatial variable x. In particular, they are
not differentiable in x. Figure 1 shows numerical solutions of equation (5) for different values
of a and b. One can see that different choices for these parameters lead to an O(1) difference in
the solutions.

Our aim in this article is to understand and quantify these differences. In particular, in
Conjecture 1 below, we compute a correction term to (4) and we verify numerically that the
solutions to (5) converge to this corrected equation as ε→ 0. This understanding will then allow
us to conjecture the appearance of similar correction terms in more complicated situations and
we will also verify these conjectures numerically.

1Remember that we are working here at fixed non-zero viscosity, so we do not require an upwind scheme in
order to obtain convergence.
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Figure 1: Illustration of the discretisation error for the finite differences method (5). The three
lines correspond to a right-handed discretisation (a = 1, b = 0; top line), a centred discretisation
(a = 1, b = 1; middle line) and a left-handed discretisation (a = 0, b = 1; bottom line), all
computed using the same instance of the noise. The picture clearly shows that there is an O(1)
difference between the solutions obtained by the three different discretisation schemes. From the
argument presented in the text, we assume that the exact solution of (4) will be closest to the
middle of the three lines.

2.1 Heuristic explanation

For simplicity, we consider the solution v to the stochastic heat equation

dv = ν∂2xv dt+ σ dw(t) (6)

instead of u. Since the properties of the discretisation of differential operators only depend on
local properties, and since v has the same spatial regularity as u, it will be sufficient to study
how well v Dεv approximates v ∂xv = 1

2∂xv
2.

By expressing v in the Fourier-basis
{

einx/
√

2π
}
n∈Z, it is easy to check that the stationary

solution to (6) is

v(t, x) =
∑

n∈Z\{0}

σ

in
√

2ν
ξn(t)

einx√
2π

+ ξ0(t)
1√
2π
,

where the ξ0 is a (real-valued) standard Brownian motion and ξn for n 6= 0 are complex-valued
Ornstein-Uhlenbeck processes with variance 1 (in the sense that E|ξn(t)|2 = 1) and time constant
νn2 which are independent, except for the condition that ξ−n = ξ̄n. Therefore, the derivative of
v is given (at least on a formal level) by

∂xv(x) =
∑
n 6=0

σξn(t)einx

2
√
νπ

. (7)

The ε-approximation to the derivative given in (2) on the other hand is given by

Dεv(x) =
∑
n 6=0

σξn(t)einx

2
√
νπ

einaε − e−inbε

(a+ b)iεn
. (8)

It is clear that the terms in (8) are a good approximation to the terms in (7) only up to n ≈ ε−1.
For larger n, the multiplier in (8) will decrease like n−1.

For our analysis we restrict ourselves to the constant (n = 0) Fourier mode. Our numerical
experiments, below, show that the contributions from this mode are already enough to explain
the observed differences between the solutions of (5) and the exact solution. Since v∂xv is a total
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derivative, the 0-mode of this term vanishes. In contrast, the 0-mode of vDεv does not vanish
at all. We obtain instead for this term the sum〈

1, vDεv
〉

=
∑
n6=0

σ2ξ−n(t)ξn(t)

4νπ(−in)

einaε − e−inbε

(a+ b)εin

=
σ2

2πν

∑
n>0

|ξn(t)|2 cos aεn− cos bεn

(a+ b)εn2

(9)

The expectation of this expression, as ε→ 0, converges to

lim
ε↓0

E
〈
1, vDεv

〉
=

σ2

2πν

∫ ∞
0

cos ax− cos bx

(a+ b)x2
dx = −σ

2

4ν

a− b
a+ b

.

As a consequence, one expects the following result.

Conjecture 1 The solution of the approximating equation (5) converges, as ε → 0, to the
solution of

du = ν ∂2xu dt− u ∂xu dt+
σ2

4ν

a− b
a+ b

dt+ σ dw. (10)

Thus, the approximation converges to the stochastic Burgers equation (4) only for a = b.

Remark 2.1 The solution to the stochastic Burgers equation (or rather the integrated process
which solves the corresponding KPZ equation) arising as the fluctuations process in the weakly
asymmetric exclusion process [BG97, BQS09] is driven by the derivative of space-time white
noise. As a consequence, it does not solve an SPDE that is well-posed in the classical sense
and can currently only be defined via the Hopf-Cole transform. Such a process is even much
rougher (by “one derivative”) than the process considered here and one would expect the ‘wrong’
numerical approximation schemes to fail there in an even more spectacular way.

Remark 2.2 One may think of two reasons why the correction term vanishes when a = b. On
the one hand, this discretisation is more symmetric. On the other hand, it yields a second-order
approximation to the derivative at x. The correct explanation is closer to the first one. Indeed,
consider for example the discretisation(

D̃εu
)
(x) ≈ c u(x+ 2ε) + (1− 3c)u(x+ ε) + 3c u(x)− (1 + c)u(x− ε)

2ε
. (11)

This discretisation is of second order for every c ∈ R. However, if we perform the same calculation
as above with this discretisation, we obtain a correction term equal to

σ2

2πν

∫ ∞
0

c cos 2x− 4c cosx+ 3c

2x2
dx = −cσ

2

8ν
,

which vanishes only if c = 0, thus reducing (11) to (3).

In the above calculation, both the limiting equation and the approximating equation live in
the same space. It is possible to carry out a similar analysis in the case where the approximating
equation takes values in a different space, typically RN for some large N . For example, we can
consider the ‘finite differences’ approximation given by

∂2xu ≈
u(x+ δ)− 2u(x) + u(x− δ)

δ2
def
=
(
∆Nu

)
(x)

u ∂xu ≈ uDδu = u(x)
u(x+ δ)− u(x)

δ

def
= FN (u)(x),

(12)

where we set δ = 2π
N for the approximation with N gridpoints. In this setting, we approximate

u by uN ∈ RN with uNj ≈ u(jδ). The natural candidate for the approximation of space-time

white noise is then given by dWN
j = δ−1/2dWj , where the Wj are independent, one-dimensional

standard Brownian motions. This is the correct scaling, since it ensures for example that
∑
WN
j δ
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is a Wiener process with covariance 2π. With this notation, the approximating equation we
consider is given by

duN = ν∆Nu
N dt− FN (uN ) dt+ σ dWN (t). (13)

Let us take N even for the sake of simplicity. It is then straightforward to check that the
eigenvectors for ∆N are given as before by einx with n = −N2 + 1, . . . , N2 , but the corresponding
eigenvalues are

λn =
2

δ2
(
cosnδ − 1

)
= −

(2

δ
sin
(nδ

2

))2 def
= −η2n.

(Note that for fixed n and small δ, one has indeed λn ≈ −n2.) It then follows as previously that
the solution to the linearised equation is given by

v(t, x) =
∑
n 6=0

σ

2
√
νπiηn

einxξn(t) +
1√
2π
ξ0(t),

and that its discrete derivative Dδv is given by

Dδv(t, x) =
∑
n 6=0

σeinxξn(t)

2
√
νπiηn

einδ − 1

δ
.

Note that both sums in these expressions only run over all admissible values of n, that is
n = −N2 + 1, . . . , N2 . Similarly to above, we obtain that the expectation of the zero mode
of the product v Dδv is given by

E
〈
1, vDεv

〉
=

σ2

2πν

N/2∑
n=1

cos δn− 1

δη2n
= − σ2

2πν

N/2∑
n=1

δ

2
= −σ

2

4ν
. (14)

One therefore expects the following result.

Conjecture 2 The numerical approximation (13) converges, as N →∞, to the solution of

du = ν∂2xu dt− u∂xu dt+
σ2

4ν
dt+ σ dw(t).

To test this conjecture, we use the following numerical experiment: We numerically solve
both the “approximating” equation (13) and the “corrected” SPDE

duγ = ν ∂2xuγ dt− uγ ∂xuγ dt+ γ
σ2

ν
dt+ σ dw(t), (15)

until a fixed time T , using the same instance of the noise and γ ∈ R. To discretise the term u ∂xu
in (15) we use the approximation

(
u(x)2/2− u(x− δ)2/2

)
/δ, which is known to converge to the

exact solution. For increased accuracy we also use a finer grid for (15) than we did for (13). To
compare the solutions, we consider ‖uN (T, · )− uγ(T, · )‖2 as a function of γ. If the conjecture
is correct, we expect this function to take its minimum at γ = 1/4. The result of a simulation
is given by the line labelled “finite differences” in figure 2. It can be seen that the minimum of
the curve is indeed located close to γ = 1/4.

The correction terms in conjectures 2 and 1 (with a = 1 and b = 0) coincide, even though the
constants arise in a completely different ways. This might lead one to speculate that the value
of this constant is an intrinsic property of the limiting equation, rather than of the particular
way of approximating it. This is not the case, as one can also perform the same calculation with
a ‘spectral Galerkin’ approximation of the linear part of the equation, but retaining a ‘finite
difference’ approximation to the nonlinearity. In other words, we consider (13) as before, but we
take for ∆N the self-adjoint matrix with eigenvectors einx and eigenvalues −n2. (This can be
achieved by first applying the discrete Fourier transform, then multiplying the nth component
by −n2, and finally applying the inverse Fourier transform.) In this case one has ηn = n, and it
transpires that the correction term is given by

N/2∑
n=1

σ2

2πνη2n

1− cosnδ

δ
≈ σ2

2πν

∫ π

0

1− cosx

x2
dx ≈ 0.193σ2

ν
.
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Figure 2: This figure compares the solution uN = u1,0 of (13) (using right-handed discretisation)
to the solution of the “corrected” SPDE (15) which includes an additional drift term γσ2/ν. The
curves show the L2-norm difference between the solutions (for the same instance of the noise) as
a function of γ, once using finite difference discretisation (12) of the linear part (corresponding
to the top-most curve in figure 1) and once using the spectral Galerkin discretisation. The two
vertical line segments give the predicted locations for the minima of the two curves. It can be
seen that predictions and simulations are in good agreement.

which is clearly different from (14).
To verify that the spectral Galerkin discretisation of the linear part indeed leads to this

changed correction term, we modify the code which we used to validate conjecture 2 above. The
result of this simulation is given by the line labelled “Galerkin” in figure 2. Again, there is good
agreement between our conjecture and the simulation results.

2.2 The case of more regular noise

To conclude this section, let us argue that the situation considered in this article is truly a
borderline case in terms of regularity and that if we drive (5) by noise that gives rise to slightly
more regular solutions, one would expect its solutions to converge to those of (4) without any
correction term. Indeed, consider a general semilinear stochastic PDE driven by additive noise:

du = −Audt+ F (u) dt+Qdw(t), (16)

where A is a strictly positive-definite selfadjoint operator on some Hilbert space H, F is a
(possibly unbounded) nonlinear operator from H to H, W is a standard cylindrical Wiener
process on H, and Q : H → H is a bounded operator.

Denote furthermore Hα = D(Aα) for α > 0 and let H−α be the dual space to Hα under the
dual pairing given by the Hilbert space structure of H. (So that H−α is a superspace of H for
α > 0.) Finally, we denote as before by v the solution to the linearised system

dv = −Av dt+Qdw(t),

which we assume to be an H-valued Gaussian process with almost surely continuous sample
paths. One then has the following convergence result:

Theorem 2.3 Assume that there exists γ ≥ 0 and a ∈ [0, 1) such that F : Hγ → Hγ−a is locally
Lipschitz continuous and such that the process v has continuous sample paths with values in Hγ .
Assume furthermore that Fε : Hγ → Hγ−a is such that Fε is locally Lipschitz and such that the
convergence Fε(u)→ F (u) takes place in Hγ−a, locally uniformly in Hγ . Then, the solutions uε
to

duε = −Auε dt+ F (uε) dt+Qdw(t), (17)
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converge to the solutions to (16) as ε→ 0.

Proof. The proof is straightforward and we only sketch it. We assume without loss of generality
that the parameter ε is chosen in such a way that for every R > 0 there exists a constant CR
such that

sup
‖x‖γ≤R

‖Fε(u)− F (u)‖γ−a ≤ CRε. (18)

Denote now by u the solution to (16) with initial condition u0 and by uε the solution to (17) with
initial condition uε0. Let t > 0 be small enough so that ‖u(s)‖γ ≤ R and ‖u(s) − uε(s)‖γ ≤ R
for s ≤ t. We then have

‖u(t)− uε(t)‖γ ≤ ‖u0 − uε0‖γ + C

∫ t

0

(t− s)−a‖Fε(uε(s))− F (u(s))‖γ−a ds

≤ ‖u0 − uε0‖γ + C

∫ t

0

(t− s)−a‖Fε(uε(s))− F (uε(s))‖γ−a ds

+ C

∫ t

0

(t− s)−a‖F (uε(s))− F (u(s))‖γ−a ds

≤ ‖u0 − uε0‖γ + CRε+ CRt
1−a sup

s≤t
‖u(s)− uε(s)‖γ .

The claim then follows by taking t sufficiently small and performing a simple iteration.

Despite its simplicity, this criterion is surprisingly sharp. Indeed, we argue that if we consider
(4) but with the space-time white noise dw replaced by (1−∂2x)−δdw for δ > 0, then the assump-
tions of Theorem 2.3 can be satisfied with some choice of exponent γ for the approximation

Fε(u)(x) = u(x)
u(x+ ε)− u(x)

ε

def
= u(x)

(
Dεu

)
(x).

Obviously, this cannot be the case when δ = 0, since we then observe the convergence to solutions
to (10).

Indeed, we first note that since the linear operator appearing in (4) is of second order, we
have the correspondence

Hγ = H2γ ,

between interpolation spaces and fractional Sobolev spaces. In order to keep our notation coher-
ent throughout this section, we still denote by ‖ · ‖γ the norm of Hγ , i.e. ‖u‖γ = ‖(1−∂2x)γu‖L2 ,
where we implicitly endow ∂2x with periodic boundary conditions. With this notation, we have

Lemma 2.4 For γ ≥ 0 and a ∈ [ 12 , 1], we have ‖Dεu− ∂xu‖γ−a ≤ Cε2a−1‖u‖γ .

Proof. The operator Dε−∂x is given by the Fourier multiplier Mε(k) = ε−1
(
eikε− 1− ikε

)
. We

immediately obtain the bound

|Mε(k)| ≤ k
(
εk ∧ 1

)
≤ k(εk)2a−1,

from which the claim follows at once.

Since furthermore Hγ is an algebra for γ > 1
4 , we conclude that the bound (18) holds (for

some different power of ε), provided that we choose γ ∈ ( 1
4 ,

1
2 ] and a = 2γ. On the other hand,

the solution to the linearised equation

dv = ∂2xv dt+ (1− ∂2x)−δdw

belongs to Hγ if and only if γ < 1
4 + δ, thus supporting our claim that the case δ = 0 is precisely

borderline for the applicability of Theorem 2.3.
If on the other hand we make the more natural choice

Fε(u) =
1

2
Dε

(
u2
)
, (19)
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Figure 3: Illustration of the divergence of the right-hand discretisation for noise rougher than
space-time white noise. The three panels show, for different values of δ, the L2-norm of numerical
solutions of equation (20). The full lines correspond to a centred discretisation (a = 1, b = 1)
whereas the dotted lines correspond to the right-hand discretisation (a = 1, b = 0). The figures
show that only the centred discretisation seems to be stable for δ < 0.

then it turns out that we can apply Theorem 2.3 even in the case δ = 0. Indeed, it follows
from standard Sobolev theory (see for example [Hai09]) that if γ ∈ ( 1

8 ,
1
4 ), the map u 7→ u2 is

locally Lipschitz from Hγ into Hβ provided that β < 2γ − 1
4 . As a consequence, it follows from

Lemma 2.4 that the approximation Fε given by (19) converges to u∂xu in the sense of (18),
provided that γ ∈ ( 1

8 ,
1
4 ) and a ∈ ( 3

4 − γ, 1).

Remark 2.5 Some ad hoc numerical scheme was shown to converge to the exact solution in
[AG06]. Some other schemes are shown to converge in [GKN02], but only in the case δ > 0
of more regular noise. A particle approximation to a specific modification was constructed in
[GD04].

2.3 Numerical verification of the borderline case

We have performed numerical simulations that corroborate the argument presented in the pre-
vious section and show that δ = 0 truly is the borderline case for the limiting equation to be
independent on the type of discretisation performed on the nonlinearity. In the case δ < 0 (i.e.
the case where the driving noise is rougher than space-time white noise), our preceding discussion
suggests that the centred discretisation should converge to the correct solution for |δ| sufficiently
small, but that the solutions to both the left-handed and the right-handed discretisations should
diverge as ε→ 0.

In order to verify this effect, we numerically solve the SPDE

du = ν ∂2xu dt− u ∂xu dt+ (1− ∂2x)−δ dw, (20)

using different discretisation schemes and different values for δ. The results are show in figure 3.
The simulations are in good agreement with the argument outlined above.

3 Possible Generalisations of the Argument

In this section, we discuss a number of possible extensions of these results to more general
Burgers-type equations. We restrict ourselves in this discussion to the case a = 1, b = 0, i.e.
to right-handed discretisations. This is purely for notational convenience, and one would expect
similar correction terms to appear for arbitrary values of a and b, just as before.
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3.1 More General Nonlinearities

Consider the equation

dui = ν ∂2xui dt+

d∑
j=1

∂jhi(u)∂xuj dt+ σ dwi, (21)

for an Rd-valued process u and a smooth function h : Rd → Rd with bounded second and third
derivatives. Rewriting the nonlinearity as ∂x

(
hi(u)

)
, we see that this equation is globally well-

posed. As before, we consider the approximating equation

duεi (x, t) = ν∂2xu
ε
i (x, t) dt+

∑
j

∂jhi
(
uε(x, t)

)
Dεu

ε
j(x, t) dt+ σ dwi(t). (22)

The idea now is to introduce a cut-off frequency N and to write uε = ūε + ũε, where ūε is
the projection of uε onto Fourier modes with |k| ≤ N . Since the linear part of the equation
dominates the nonlinearity at high frequencies, one expects ũε to be well approximated by ṽ,
the projection of v onto the high frequencies. This on the other hand is small in the L∞ norm
(it decreases like N−s for every s < 1

2 ), so that

∂jhi(u
ε) ≈ ∂jhi(ūε) +

∑
k

∂2jkhi(ū
ε)ṽk.

It now follows from the same argument as before that the term ∂2jkhi(ū
ε)ṽkDεvj is expected to

yield a non-vanishing contribution for k = j in the limit ε→ 0 and N →∞. Provided that we
keep N � 1

ε , this contribution will again be described by (9), so that we expect the following
behaviour.

Conjecture 3 The solution of (22) converges, as ε→ 0, to solutions of the equation

dui = ν ∂2xui dt+
∑
j

(
∂jhi(u)∂xuj −

σ2

4ν
∂2jjhi(u)

)
dt+ σ dwi. (23)

In the one-dimensional case we can recover conjecture 1 from conjecture 3 by choosing h(u) =
−u2/2.

We perform the following numerical experiment to validate the functional form of the correc-
tion term given in conjecture 3: We numerically solve both the “approximating” equation (22)
(for d = 1; employing the same discretisation as for conjecture 2) and the “corrected” SPDE

dû = ν ∂2xû dt+ h′(û)∂xû dt−
σ2

4ν
p(û) dt+ σ dw. (24)

until a fixed time T , using the same instance of the noise and some function p : R → R. To
discretise the term u∂xu in (15) we use again the approximation

(
h(x)− h(x− δ)

)
/δ and again

we solve (15) on a finer grid. Then we numerically optimise p (using some parametric form)
in order to minimise the distance ‖uN (T, · )− û(T, · )‖2. If the conjecture is correct, we expect
the minimum to be attained for a function p which is close to the predicted correction term h′′.
The result of a simulation is shown in figure 4, where we used fifth-order polynomials for p. The
figure shows that there is indeed a good fit between the conjectured and numerically determined
correction terms.

3.2 Classically Ill-Posed Equations

Pushing further the class of equations considered in the previous subsection, one may want to
consider equations of the form

dui = ν ∂2xui dt+

d∑
j=1

Gij(u)∂xuj dt+ f(u) dt+ σ dwi (25)

9
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Figure 4: Illustration of the convergence of (22) to (23) for the one-dimensional case h′(x) =
sin(x)2. For the figure we numerically compute the finite differences solution uN to (22). We
then compute solutions û to (24), with the same noise and using a fifth-order polynomial for the
correction term p. This polynomial is then numerically fitted to minimise ‖uN (1, · )− û(1, · )‖2.
The top panel shows the resulting fitted correction term −σ2p/4ν (full line) together with the
correction term −σ2h′′(u)/4ν from conjecture 3 (dotted line). To give an idea which range of
the correction term is actually used in the computation, the lower panel shows the histogram of
the values of uN (the vertical bars indicate the 5% and 95% quantiles). The graphs shows a good
fit between the numerically determined and conjectured correction terms.
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for some functions G : Rd → Rd×d and f : Rd → Rd. If we do not assume that G has an
antiderivative and since solutions are only expected to be α-Hölder continuous in space for
α < 1

2 , it is no longer even clear what it means to be a solution to this equation. So, at least
classically, (25) is ill-posed and the mere concept of solutions to such an evolution equation is
difficult to establish.

However, the discretised equation does of course still make sense for any fixed value of ε.
Furthermore, we observed numerically that there seems to be no instability as ε→ 0; indeed one
observes pathwise convergence to a limiting process. By analogy with the behaviour observed
for the situations where (25) is classically well-posed (i.e. when G has an antiderivative), one
would then be tempted to define solutions to (25) to be those processes that can be obtained
as limits as ε → 0 of the solutions to the equation where ∂xuj is replaced by its symmetric
discretisation. Formally, we would then expect solutions of the discretised equation with right-
handed discretisation to converge, as ε→ 0, to solutions of the corrected equation

dui = ν ∂2xui dt+
∑
j

(
Gij(u)∂xuj −

σ2

4ν
∂jGij(u)

)
dt+ f(u) dt+ σ dwi.

Conjecture 4 As ε→ 0, the equations

duεi = ν ∂2xu
ε
i dt+

d∑
j=1

Gij(u
ε)D1,0

ε uεj dt+ f(uε) dt+ σ dwi, (26)

where D1,0
ε denotes the right-handed discretisation, and

dũεi = ν ∂2xũ
ε
i dt+

d∑
j=1

(
Gij(ũ

ε)D1,1
ε ũεj −

σ2

4ν
∂jGij(ũ

ε)
)
dt+ f(ũε) dt+ σ dwi, (27)

where D1,1
ε denotes centred discretisation, converge to the same limit.

To test conjecture 4, we use the following numerical experiment: we consider the SPDE

∂tu =
1

σ2
∂2xu+

2

σ2

(
0 cos(u2)− sin(u1)

sin(u1)− cos(u2) 0

)
∂xu

+
4

σ2

(
sin(u1) cos(u1)
− cos(u2) sin(u2)

)
+
√

2 ∂tw.

(28)

This SPDE is of the form (25) where G has no antiderivative. SPDEs like (28) occur in the
problem described in [HSV07, section 9] where we conjecture that the stationary distribution of
this SPDE on L2

(
[0, 2π],R2

)
(when equipped with appropriate boundary conditions) coincides

with the distribution of the SDE

dU(t) = 2

(
− sin(U2(t))

cos(U1(t))

)
dt+ σ dB(t).

For our experiment we numerically solve the SPDEs (26) and (27) and compare the solutions.
The result is displayed in figure 5. As can be seen from the figure, the simulation results are in
good agreement with conjecture 4.

3.3 Multiplicative noise

Consider the equation
du = ν∂2xu dt+ g(u)∂xu dt+ f(u) dw,

where g is as before and f is a smooth bounded function with bounded derivatives of all orders.
Such an equation is well-posed if the stochastic integral is interpreted in the Itô sense [GN99].
(Note that it is not well-posed if the stochastic integral is interpreted in the Stratonowich sense.
This follows from the fact that, at least formally, the Itô correction term is infinite when f is
not constant.)
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Figure 5: Illustration of the convergence in conjecture 4. The left-hand panel shows a numerical
solution of the SPDE (28) at a fixed time t. Since we use periodic boundary conditions, the
plotted graph of u(t, · ) forms a loop in R2. The black line in this plot was obtained using a
centred discretisation, whereas the gray line in the background was obtained using a right-handed
discretisation. As in figure 1, there is an O(1) difference between the two discretisation schemes.
The two plots on the right-hand side show the differences uε1 − ũε1 (upper panel) and uε2 − ũε2
(lower panel) between the discretisation schemes (26) and (27) (full lines). For comparison, the
plots also show the functions uε1− ūε1 and uε2− ūε2 where ūε is the solution of the SPDE (28) using
a centred discretisation (dotted lines). The graphs show good agreement between the solutions of
(26) and (27).
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Figure 6: Illustration of the convergence of (29) to (30) in conjecture 5, for the case g(u) = u and
f(u) = 1 + 1

2 cos(3u). See figure 4 for an explanation of the graphs. Here we use a sixth-order
polynomial p to fit the correction term. The figure shows that the fit is significantly worse than
in figure 4. See the text for a discussion of possible reasons for this effect.

In such a case, the local quadratic variation of the solution is expected to be proportional to
f2(u), so that one expects the right-handed discretisation to exhibit a correction term propor-
tional to g′(u)f2(u). More precisely, in analogy to conjecture 3 one would expect the following
conjecture to hold.

Conjecture 5 The solutions of

du = ν ∂2xu dt+ g(u)Dεu dt+ f(u) dw, (29)

converge, as ε→ 0, to solutions of the equation

du = ν ∂2xu dt+ g(u) ∂xu dt+
1

4ν
g′(u)f2(u) dt+ f(u) dw. (30)

To test this conjecture we perform a numerical experiment, similar to the one for conjecture 3;
the result is shown in figure 6. The fit between predicted and numerically determined correction
term in figure 6 is worse than in figure 4 and thus the numerical test is not entirely conclusive.

One possible reason is that the spatial resolution of our numerical simulations is not sufficient.
Indeed, the argument of the previous sections is based on a spatial averaging of the small-scale
fluctuations of the process. In the case of multiplicative noise, these small-scale fluctuations
are themselves multiplied by a the process f(u), which is spatially quite rough. Therefore, this
spatial averaging will hold only on extremely small scales, essentially sufficiently small so that
f(u) is constant for all practical purposes. In order to be seen by the numerical simulation, these
scales still need to be resolved at sufficient precision to have some version of the law of large
numbers.
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4 Small noise / viscosity limit

One regime that is of particular interest is the small noise/small viscosity limit. If one takes
ν ∝ σ2 in conjectures 1 and 2, one obtains a non-vanishing correction even for arbitrarily small
ν and σ! It is therefore of interest to study approximations to

du = ε ∂2xu dt− u∂xu dt+
√
ε dw (31)

for ε� 1.
It is well-known that in the absence of viscosity, finite difference schemes for the Burgers

equations can only be used with extreme caution due to the presence of shocks in the solution.
For the limiting equation (ε = 0), a shock is a jump discontinuity of the solution with the
value u± to the right/left of the jump satisfying u+ < u−. In other words, the jumps are
always downwards jumps. For viscosity solutions2 to the inviscid Burgers equation, shocks move
through the system at velocity 1

2 (u+ + u−).
If the limiting non-viscous Burgers equation is discretised as

∂tun = −1

δ
un
(
un+1 − un

)
, (32)

then a simple linear stability analysis reveals that the solutions to this equation develop an
ultraviolet instability (i.e. the mode vn = (−1)n becomes unstable) in the regions where u > 0.
Similarly, the corresponding left-handed discretisation reveals an instability in the regions where
u < 0. However, in the case of a centred discretisation, the highly oscillatory modes are stable.
A similar phenomenon appears if we consider the discretisation

∂tun = − 1

2δ

(
u2n+1 − u2n

)
, (33)

or variants thereof.
What happens at the formation of a shock? In this case, one expects to observe the correct

behaviour only for discretisations that are conservative (i.e. of the type (33) rather than (32)) and
that are ‘upwind’ in the sense that the direction of the discretisation coincides with the direction
of propagation of the shock [CIR52, MRTB05]. In the case of a non-conservative discretisation
of the type (32), we still expect the scheme to be stable when the discretisation is ‘upwind’, but
we expect the shock to propagate at the wrong speed.

How is this picture modified for non-zero values of ε? The instabilities discussed above grow
at a speed O(δ−1) and are therefore dominated by the stabilising effect of the viscosity (which
is of the order εδ−2) only if ε � δ. Regarding the behaviour after the formation of a shock,
a simple boundary layer analysis (see for example [EVE00a] for a more sophisticated boundary
layer analysis that even goes to the next order in ε) shows that a typical shock for (31) has width
O(ε), so that the caveats pointed out above are expected to become relevant as soon as ε . δ.
On the other hand, at least away from shocks, the analysis performed in Section 2 holds as soon
as u can be approximated by the solution to the linearised equation at sufficiently small (but
still much larger than δ) scales. Away from shocks, one expects this to be the case, provided
that the linearised equation reaches equilibrium in times much smaller than 1. This is the case
for wavenumbers higher than ε−1/2, so that one expects the results from Section 2 to be relevant
as long as ε� δ2. This leads to the following set of conjectures (for ε� 1):

1. If we take δ � ε, then the solution to the finite difference approximation (32) of (31)
converges to the viscosity solution of

∂tu = −1

2
∂tu

2 +
c

4
, (34)

where c ∈ {1, 0,−1} depending on whether the discretisation is right-handed, centred, or
left-handed.

2Also called entropy solutions, these are the solutions that are obtained as limits of (31) as ε → 0
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2. If we take ε � δ �
√
ε, then we expect the finite difference approximation for (31) to

converge to the solutions to (34), as long as solutions remain smooth and have the correct
sign to prevent ultraviolet blow-up. After the occurrence of a shock, one expects to see
the behaviour described above (i.e. stability only if the scheme is upwind, but wrong
propagation speed even then).

3. If we take
√
ε � δ, then we expect both the viscosity and the noise term to become

irrelevant, so that the solution behaves like the corresponding approximation to the inviscid
Burgers equation. In particular, as long as solutions remain smooth and have the correct
sign to prevent ultraviolet blow-up, we expect to always converge to (34) with c = 0. (With
shocks having the wrong propagation speed for discretisations of the type (32).)

A Simulations

To verify the heuristic arguments presented above, we perform a series of numerical simulations.
This section describes some of the technical details of these simulations.

For the space discretisation we approximate u ∈ L2
(
[0, 2π],R

)
by uN ∈ RN . The space

discretisation of the differential operators is already described above. The finite differences
discretisation of the white noise process w is WN/

√
∆x where WN is a standard Brownian

motion on RN and ∆x = 2π/N is the grid size. This leads to RN -values SDEs of the form

duN = νLNu
N dt+ FN (uN ) dt+ σ

√
1

∆x
dWN (t)

where LN ∈ RN×N is the discretisation of the linear part and FN : RN → RN is the discretisation
of the nonlinearity.

For discretising time we use the θ-method

u(n+1) = u(n) + νLN
(
θu(n+1) + (1− θ)u(n)

)
∆t+ FN

(
u(n)

)
∆t+ σ

√
∆t

∆x
ξ(n+1)

where ∆t > 0 is the time step size, u(n) is the discretised solution at time n∆t and ξ(n) are i.i.d.,
N -dimensional standard normally distributed random variables. Rearranging this equation gives

(
I − νθ∆tLN

)
u(n+1) =

(
I + ν(1− θ)∆tLN

)
u(n) + FN (u(n)) ∆t+

√
∆t

∆x
ξ(n+1). (35)

Relation (35) allows to compute u(n+1) from u(n); since I − νθ∆tLN is cyclic tridiagonal, this
system can be solved efficiently.

Give link to code??
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