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DIMENSION-INDEPENDENT HARNACK INEQUALITIES FOR
SUBORDINATED SEMIGROUPS

MARIA GORDINA†, MICHAEL RÖCKNER‡, AND FENG-YU WANG∗),∗∗)

Abstract. Dimension-independent Harnack inequalities are derived for a class
of subordinate semigroups. In particular, for a diffusion satisfying the Bakry-

Emery curvature condition, the subordinate semigroup with power α satisfies
a dimension-free Harnack inequality provided α ∈

`
1
2
, 1

´
, and it satisfies the

log-Harnack inequality for all α ∈ (0, 1). Some infinite-dimensional examples

are also presented.
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1. Introduction

By using the gradient estimate for diffusion semigroups, the following dimension-
free Harnack inequality was established in [19] for the diffusion semigroup Pt gener-
ated by L = ∆+Z on a complete Riemannian manifold M with curvature Ric−∇Z
bounded below by −K ∈ R

(1.1)

(Ptf(x))p 6 exp
(

pKρ(x, y)2

2(p− 1)(e2Kt−1)

)
Ptf

p(y), t > 0, x, y ∈M,f ∈ B+
b (M),
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where p > 1, ρ is the Riemannian distance, and B+
b (M) is the class of all bounded

positive measurable functions on M . This inequality has been extended and applied
in the study of contractivity properties, heat kernel bounds, strong Feller properties
and cost-entropy properties for finite- and infinite-dimensional diffusions. In par-
ticular, using the coupling method and Girsanov transformations developed in [4],
this inequality has been derived for diffusions without using curvature conditions,
see e.g. [5, 6, 9, 13–15, 17, 20] and references therein. See also [1–3] for applications
to the short time behavior of transition probabilities. On the other hand, however,
due to absence of a chain rule for the “gradient estimate” argument and an explicit
Girsanov theorem, this technique of proving dimension independent Harnack in-
equalities is not applicable to pure jump processes. The main purpose of this paper
is to establish such inequalities for a class of α-stable like jump processes by using
subordination.

Let (E, ρ) be a Polish space with the Borel σ-algebra B (E), and Pt the semi-
group for a time-homogenous Markov process on E. Let {µt}t≥0 be a convolution
semigroup of probability measures on [0,∞), i.e. one has µt+s = µt ∗µs for s, t ≥ 0
and µt → µ0 := δ0 weakly as t → 0. Thus, the Laplace transform for µt has the
form

(1.2)
∫ ∞

0

e−xs µt(ds) = e−tB(x), for any x > 0, t > 0

for some Bernstein function B, see e.g. [12]. We shall study the Harnack inequality
for the subordinated semigroup

(1.3) PBt :=
∫ ∞

0

Psµt(ds), t > 0.

Obviously, if Pt is generated by a negatively definite self-adjoint operator (L,D(L))
on L2(ν) for some σ-finite measure ν on E, then PBt is generated by −B(−L). In
particular, if B(x) = xα for α ∈ (0, 1], we shall denote the corresponding µt by µαt ,
and PBt by Pαt respectively.

We shall use (1.3) and a known dimension independent Harnack inequality for
Pt to establish the corresponding Harnack inequality for PBt . For instance, suppose
we know that

(Ptf(x))p 6 exp (Φ(p, t, x, y))Ptfp(y), x, y ∈ E, t > 0, p > 1, f ∈ B+
b (E)

for some Φ : (1,∞)× (0,∞)× E2 → [0,∞). Then (1.3) implies

(PBt f(x))p =
(∫ ∞

0

Psf(x)µt(ds)
)p

6

(∫ ∞
0

(Psfp(y))1/p exp
(

Φ(p, s, x, y)
p

)
µt(ds)

)p
(1.4)

6 (PBt f
p(y))

(∫ ∞
0

exp
(

Φ(p, s, x, y)
p− 1

)
µt(ds)

)p−1

.
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In general, Φ(p, s, x, y)→∞ as s→ 0, so we have to verify that exp[Φ(p, s, x, y)/(p−
1)] is integrable w.r.t. µt(ds). Similarly to (1.1), for many specific models the sin-
gularity of Φ(p, s, x, y) at s = 0 behaves like eδ/s

κ

for some δ = δ (p, x, y) > 0, κ > 1
(see Section 3 below for specific examples). In this case, the following results say
that the Harnack inequality provided by (1.4) is valid for Pαt with α > κ/(κ+ 1).

Theorem 1.1. Let p > 1, κ > 0 and α ∈
(

κ
κ+1 , 1

)
be fixed. Suppose that Pt

satisfies the Harnack inequality

(1.5) (Ptf(x))p 6 exp
(
H(x, y)(ε+ t−κ)

)
Ptf

p(y), x, y ∈ E, f ∈ B+
b (E), t > 0,

for some positive measurable function H on E × E and a constant ε > 0. Then
there exists a constant c > 0 depending on α and κ such that

(Pαt f(x))p

6 eεH(x,y)

1 +

[
exp

((
cH(x, y)

(p− 1)tκ/α

)1/(1−(α−1−1)κ)
)
− 1

](1−(α−1−1)κ)
p−1

Pαt f
p(y)

6 2p−1 exp

(
εH(x, y) + Cp,κ,α

(
H(x, y)
tκ/α

)1/(1−(α−1−1)κ)
)
Pαt f

p(y), t > 0, x, y ∈ E

holds for all f ∈ B+
b (E), where

Cp,κ,α =
(1− (α−1 − 1)κ)c1/(1−(α−1)κ)

(p− 1)(α−1−1)κ/(1−(α−1−1)κ)
.

Consequently, if Pt has an invariant probability measure µ, we have that
(i) for any p, q > 1,

‖Pαt ‖p→q
2(p−1)/p

6

∫
E

µ(dx)( ∫
E

exp
[
−εH(x, y)− Cp,κ,α

(
H(x,y)
tκ/α

)1/(1−(α−1−1)κ)
]
µ(dy)

)q/p


1/q

;

(ii) Pαt has a transition density pαt (x, y) w.r.t. µ such that for any x ∈ supp (µ)

∫
E

pαt (x, y)2µ(dy)

6 2

(∫
E

exp

(
−εH(x, y)− Cp,κ,α

(
H(x, y)
tκ/α

)1/(1−(α−1−1)κ)
)
µ(dy)

)−1

.

As an application of Theorem 1.1 (ii), we have the following explicit heat kernel
upper bounds for stable like processes.

Example 1.2. Let Pt be generated by L = ∆ + Z on a complete Riemannian
manifold such that Ric−∇Z ≥ −K. By (1.1), (1.5) holds for H(x, y) = ρ(x, y)2

and κ = 1. So, for α ∈ (1/2, 1], Theorem 1.1 (ii) implies
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pα2t(x, x) 6
c

µ({y : ρ(x, y) 6 t1/2α})
, x ∈M, t > 0

for some constant c > 0. In particular, for L = ∆ on Rd, µ(dx) = dx and K = 0,
we have

sup
x,y∈Rd

pαt (x, y) = sup
x∈Rd

pαt (x, x) 6 ct−d/2α, t > 0,

for some constant c > 0. This is sharp due to the well known explicit bounds of
heat kernels for the classical stable processes on Rd.

Theorem 1.1 does not apply to α ∈ (0, κ
κ+1 ], since in this case

∫∞
0

eδ/s
κ

µαt (ds) =
∞ for large δ > 0. A more careful analysis allows us to treat the case α = κ

κ+1

under certain restrictions on x, y, t. Thus results of this type apply also to the
Cauchy process.

Proposition 1.3 (The case α = κ
κ+1 ). Suppose that Pt satisfies the Harnack in-

equality (1.5) for some positive measurable function H on E × E and a constant
ε > 0. Then there exists a constant C > 0 depending on κ such that

(P
κ
κ+1
t f(x))p

6 eεH(x,y)

1 +
C

e(p−1)
H(x,y)κ

(
κt
κ+1

)κ+1 − 1

p−1

P
κ
κ+1
t fp(y), f ∈ B+

b (E)

holds for all t > 0, x, y ∈ E such that

e(p− 1)(tκ)κ+1 > κ(κ+ 1)κ+1H(x, y).

In other cases we can still prove the log-Harnack inequality. For diffusion semi-
groups, the known log-Harnack inequality looks like

(1.6) Pt log f(x) 6 logPtf(y) +H(x, y)(ε+ t−κ), x, y ∈ E, t > 0, f ≥ 1,

for some positive measurable function H on E×E and some constants ε ≥ 0, κ ≥ 1.
In many cases, one has H(x, y) = cρ(x, y)2 for a constant c > 0 and the intrinsic
distance ρ induced by the diffusion (see e.g. [18]).

Theorem 1.4. If (1.6) holds, then for any α ∈ (0, 1],

Pαt log f(x) 6 logPαt f(y) +H(x, y)

(
ε+ logPαt f(y) +H(x, y)

(
ε+

Γ
(
κ
α

)
αt

κ
αΓ (κ)

))
,

t > 0, x, y ∈ E, f ≥ 1.

As observed in [6] and [18] , the log-Harnack inequality implies an entropy-
cost inequality for the semigroup and an entropy inequality for the corresponding
transition density. Let WH be the Wasserstein distance induced by H, i.e.

WH(µ1, µ2) = inf
π∈C(µ1,µ2)

∫
E×E

H(x, y)π(dx, dy),

where µ1, µ2 are probability measures on E and C(µ1, µ2) is the set of all couplings
for µ1 and µ2.
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Corollary 1.5. Assume that (1.6) holds and let Pt have an invariant probability
measure µ. Then for any α ∈ (0, 1]:

(1) The entropy-cost inequality

µ(((Pαt )∗f) log(Pαt )∗f) 6WH(fµ, µ)

(
ε+ logPαt f(y) +H(x, y)

(
ε+

Γ
(
κ
α

)
αt

κ
αΓ (κ)

))
,

t > 0, f > 0, µ(f) = 1

holds for all α ∈ (0, 1], where (Pαt )∗ is the adjoint of Pαt in L2(E;µ).
(2) If H(x, y)→ 0 as y → x holds for any x ∈ E, then Pαt is strong Feller and

thus has a transition density pt(x, y) w.r.t. µ on suppµ, which satisfies the
entropy inequality∫

E

pt(x, z) log
pt(x, z)
pt(y, z)

µ(dz) 6 H(x, y)
(
ε+

Γ
(
κ
α

)
αt

κ
αΓ (κ)

)
, t > 0, x, y ∈ suppµ.

2. Proofs

Proof of Theorem 1.1. The consequences of the desired Harnack inequality are straight-
forward. Indeed, (i) follows by noting that the claimed Harnack inequality implies

(Pαt f(x))p
∫
E

exp
[
− εH(x, y)− Cp,κ,α

(H(x, y)
tκ/α

)1/(1−(α−1−1)κ)]
µ(dy)

6 µ(Pαt f
p) = µα(fp),

which also implies (ii) by taking p = 2 and f(z) = pαt (x, z), z ∈ E. Indeed, with
f = 1A for a µ-null set A, this inequality implies that the associated transition
probability Pαt (x, ·) is absolutely continuous w.r.t. µ and hence, has a density
pαt (x, ·) for every x ∈ E. Then the desired upper bound for

∫
E
pαt (x, y)2µ(dy)

follows by first applying the above inequality with p = 2 and f(z) = pαt (x, z) ∧ n
then letting n→∞. So, it remains to prove the first assertion.

By (1.5), (1.4) holds for Φ(p, s, x, y) = H(x, y)(ε+ s−κ), i.e.

(2.1) (Pαt f(x))p 6 eεH(x,y)(Pαt f
p(y))

(∫ ∞
0

exp
[
H(x, y)

(p− 1)sκ

]
µt(ds)

)p−1

.

So it suffices to estimate the integral
∫∞
0

eδ/s
κ

µt(ds) for δ := H(x,y)
(p−1) > 0.

We use the formula

s−r =
1

Γ (r)

∫ ∞
0

xr−1 e−xs dx, r > 0.

to obtain

∫ ∞
0

µαt (ds)
sr

=
∫ ∞

0

1
Γ (r)

∫ ∞
0

xr−1e−xsdxµt (ds) =

1
Γ (r)

∫ ∞
0

xr−1

∫ ∞
0

e−xsµt (ds) dx =
1

Γ (r)

∫ ∞
0

xr−1e−tB(x)dx.

In particular, for B (x) = xα we have
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(2.2)∫ ∞
0

µαt (ds)
sr

=
1

Γ (r)

∫ ∞
0

xr−1e−tx
α

dx =
1

αΓ (r)

∫ ∞
0

y
r
α−1e−tydy =

Γ
(
r
α

)
αΓ (r)

t−
r
α .

We can use the generalization of Stirling’s formula giving the asymptotic behavior
of the Gamma function for large r

Γ (r) =
√

2πrr−
1
2 e−r+η(r),

where

η (r) =
∞∑
n=0

(
r + n+

1
2

)
ln
(

1 +
1

r + n

)
− 1 =

θ

12r
, 0 < θ < 1.

We apply this estimate to Γ (κn), Γ
(
κn
α

)
and n!. Thus

∫ ∞
0

e
δ
sκ µαt (ds) = 1 +

∞∑
n=1

δn

n!
Γ
(
κn
α

)
αΓ (κn)

t−
κn
α =

1 +
1
α

∞∑
n=1

δn

n!
(κn)κn( 1

α−1) e−κn( 1
α−1)α

1
2−

κn
α e

θ1α−θ2
12κn t−

κn
α 6

1 +
1√
α

∞∑
n=1

δn

n!
(κn)κn( 1

α−1) e−κn( 1
α−1)α−

κn
α e

α
12κn t−

κn
α =(2.3)

1 +
1√
α

∞∑
n=1

nκn( 1
α−1)

n!

(
δ
(κ
e

)κ( 1
α−1)

α−
κ
α t−

κ
α

)n
e

α
12κn 6

1 +
1√
2πα

∞∑
n=1

nκn( 1
α−1)−n− 1

2

(
δ
(κ
e

)κ( 1
α−1)

α−
κ
α t−

κ
α

)n
e

α
12κn .

This series converges for α > κ
κ+1 , moreover, there is a constant c depending only

on κ such that

1√
2παn

((κ
e

)κ( 1
α−1)

α−
κ
α t−

κ
α

)n
e

α
12κn 6 cn.

Denote

c (δ, α, κ) := 1 +
∞∑
n=1

nn(κ( 1
α−1)−1) (cδt− κα )n ,

then

(Pαt f(x))p 6 eεH(x,y)

(
c

(
H (x, y)
p− 1

, α, κ

))p−1

Pαt f
p(y).

Note that for a > 0, 1 > b > 0 we have the following estimate
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∞∑
n=1

an

nbn
=
∞∑
n=1

(2a)n

nbn
1
2n
6

( ∞∑
n=1

(2a)
n
b

nn
1
2n

)b
6

( ∞∑
n=1

(2a)
n
b

n!
1
2n

)b
=
(
e

(2a)1/b

2 − 1
)b

,

where we used Jensen’s inequality. Thus for any α ∈
(

κ
κ+1 , 1

)
we use the above

estimate with b := κ
(
1− 1

α

)
+ 1 6 1 to see that

c (δ, α, κ) = 1 +
∞∑
n=1

nn(κ( 1
α−1)−1) (cδt− κα )n 6

1 +

exp

(2cδt− κα )
1

κ(1− 1
α )+1

2

− 1


κ(1− 1

α )+1

.

Thus we can say that there is c > 0 depending on α and κ such that

∫ ∞
0

e
H(x,y)
(p−1)sκ µαt (ds) 6 1 +

(
exp

(( cH (x, y)
(p− 1) t

κ
α

) 1

κ(1− 1
α )+1

)
− 1
)κ(1− 1

α )+1

Using the inequality

1 + (x− 1)a 6 2xa

for any x > 1 and 0 6 a 6 1 we see that

∫ ∞
0

e
δ
sκ µαt (ds) 6 2 exp

((
κ

(
1− 1

α

)
+ 1
)(

cH (x, y)
(p− 1) t

κ
α

) 1

κ(1− 1
α )+1

)

which completes the proof.
�

Proof of Proposition 1.3. In the case α = κ
κ+1 the series in (2.3) converges for t > 0

and x, y ∈ E such that

(2.4) e(p− 1)(tκ)κ+1 > κ(κ+ 1)κ+1H(x, y).

Note that for δ := H(x,y)
p−1 the last line of (2.3) reduces to
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1 +

√
κ+ 1
2πκ

∞∑
n=1

1√
n

(
δκ

e

(
κ+ 1
κt

)κ+1
)n

e
1

12(κ+1)n

6 1 + C

∞∑
n=1

(
δκ

e

(
κ+ 1
κt

)κ+1
)n

= 1 +
C

e
δκ

(
κt
κ+1

)κ+1 − 1
.

This completes the proof. �

Proof of Theorem 1.4. By (2.2) with r = κ, we have

∫ ∞
0

µαt (ds)
sκ

=
Γ
(
κ
α

)
αt

κ
αΓ (κ)

.

Using (1.2), (1.6) we obtain

Pαt log f(x) =
∫ ∞

0

Ps log f(x)µαt (ds) 6
∫ ∞

0

(
logPsf(y) +H(x, y)(ε+ s−κ)

)
µαt (ds)

= logPαt f(y) +H(x, y)

(
ε+

Γ
(
κ
α

)
αt

κ
αΓ (κ)

)
.

This completes the proof.
�

Proof of Corollary 1.5. (1) It suffices to prove for f ∈ B+
b (E) such that inf f > 0

and µ(f) = 1. In this case, there exists a constant c > 0 such that cf > 1. By
Theorem 1.4 for cPαt f in place of f , we obtain

Pαt log(Pαt )∗f(x) 6 logPαt (Pαt )∗f(y) +H(x, y)
(
ε+

Γ
(
κ
α

)
αt

κ
αΓ (κ)

)
.

Since µ is invariant for Pαt and (Pαt )∗, taking the integral for both sides w.r.t.
π ∈ (fµ, µ) and minimizing in π, we prove the first assertion.

(2) The strong Feller property follows from Theorem 1.4 according to [18, Propo-
sition 2.3], while by [18, Proposition 2.4] the desired entropy inequality for the
transition density is equivalent to the log-Harnack inequality for Pαt provided by
Theorem 1.4.

�

3. Some infinite-dimensional examples

As explained in Section 1, Theorems 1.1 and 1.4 hold for κ = 1 if Pt is a diffusion
semigroup on a Riemannian manifold with the Ricci curvature bounded below. In
this section we present some infinite dimensional examples where these theorems
can be used.
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3.1. Stochastic porous medium equation. Let ∆ be the Dirichlet Laplace op-
erator on a bounded interval (a, b) and Wt the cylindrical Brownian motion on
L2((a, b); dx). Since the eigenvalues {λi} of −∆ satisfies

∑∞
i=1 λ

−1
i < ∞, Wt is a

continuous process on H, the completion of L2((a, b); dx) under the inner product

〈x, y〉 :=
∞∑
i=1

1
λi
〈x, ei〉〈y, ei〉,

where ei is the unit eigenfunction corresponding to λi for each i ≥ 1. Let ‖·‖ denote
the norm on H, and suppose r > 1. Then the following stochastic porous medium
equation has a unique strong solution on H for any X0 ∈ H (see e.g. [7]):

dXt = ∆Xr
t dt+ dWt.

Let Pt be the corresponding Markov semigroup. According to [20, Remark 1.1 and
Theorem 1.2], Theorem 1.1 in [20] holds for θ = r−1 and some constant γ, δ, ξ > 0.
Thus, there exist two constants c1, c2 > 0 depending on r such that

(Ptf)p(x) 6 (Ptfp(y)) exp
[

c1p‖x− y‖4/(1+r)

(p− 1)(1− e−c2t)(3+r)/(1+r)

]
, p > 1, t > 0, x, y ∈ H

holds for all f ∈ B+
b (H). By [18, Proposition 2.2] for ρ(x, y)2 = ‖x− y‖2/(1+r), this

implies the log-Harnack inequality

Pt log f(x) 6 logPtf(x) +
c1‖x− y‖4/(1+r)

(1− e−c2t)(3+r)/(1+r)
, x, y ∈ H, f ≥ 1.

Therefore, Theorems 1.1 and 1.4 apply to Pαt for

κ =
r + r

1 + r

and some constant ε depending on r.

3.2. Singular stochastic semi-linear equations. Let H be a separable Hilbert
space with inner product 〈·, ·〉, and Wt the cylindrical Brownian motion on H.
Consider the stochastic equation

(3.1) dXt = (AXt + F (Xt))dt+ σdWt, X0 ∈ H.

Let A,F and σ satisfy the following hypotheses:

(H1) (A,D(A)) is the generator of a C0-semigroup, Tt = etA, t ≥ 0, on H and for
some ω ∈ R

(3.2) 〈Ax, x〉 ≤ ω‖x‖2, ∀ x ∈ D(A).

(H2) σ is a bounded positively definite, self-adjoint operator on H such that σ−1 is
bounded and

∫∞
0
‖Ttσ‖2HSdt <∞, where ‖ · ‖HS denotes the norm on the space of

all Hilbert–Schmidt operators on H.
(H3) F : D(F ) ⊂ H→ H is an m-dissipative map, i.e.,

〈F (x)− F (y), x− y〉 6 0, x, y ∈ D(F ), u ∈ F (x), v ∈ F (y),
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(“dissipativity”) and

Range (I − F ) :=
⋃

x∈D(F )

(x− F (x)) = H.

Furthermore, F0(x) ∈ F (x), x ∈ D(F ), is such that

‖F0(x)‖ = min
y∈F (x)

‖y‖.

Here we recall that for F as in (H3) we have that F (x) is closed, non empty and
convex.

The corresponding Kolmogorov operator is then given as follows: Let EA(H)
denote the linear span of all real parts of functions of the form ϕ = ei〈h,·〉, h ∈
D(A∗), where A∗ denotes the adjoint operator of A, and define for any x ∈ D(F ),

L0ϕ(x) =
1
2

Tr (σ2D2ϕ(x)) + 〈x,A∗Dϕ(x)〉+ 〈F0(x), Dϕ(x)〉, ϕ ∈ EA(H).

Additionally, we assume:

(H4) There exists a probability measure µ on H (equipped with its Borel σ-algebra
B(H)) such that

(i) µ(D(F )) = 1,
(ii)

∫
H

(1 + ‖x‖2)(1 + ‖F0(x)‖)µ(dx) <∞,
(iii)

∫
H
L0ϕdµ = 0 for all ϕ ∈ EA(H).

By [8], the closure of (L0, EA(H)) in L1(H;µ) generates a Markov semigroup Pt
with µ as an invariant probability measure, which is point-wisely determined on
H0 := suppµ. If moreover the following hypotheses holds:

(H5) (i) (1+ω−A,D(A)) satisfies the weak sector condition: there exists a constant
K > 0 such that

(3.3) 〈(1+ω−A)x, y〉 6 K〈(1+ω−A)x, x〉1/2〈(1+ω−A)y, y〉1/2, ∀ x, y ∈ D(A).

(ii) There exists a sequence of A-invariant finite dimensional subspaces Hn ⊂
D(A) such that

⋃∞
n=1 Hn is dense in H.

Then (see [9, Theorem 1.6])

(Ptf(x))p 6 Ptfp(y) exp
[
‖σ−1‖2 pω‖x− y‖2

(p− 1)(1− e−2ωt)

]
, t > 0, x, y ∈ H0.

As mentioned above, according to [18, Proposition 2.2] this implies the correspond-
ing log-Harnack inequality. Therefore, our Theorems 1.1 and 1.4 apply to P pt for
κ = 1.

3.3. The Ornstein–Uhlenbeck type semigroups with jumps. Consider the
following stochastic differential equation driven by a Lévy process

(3.4) dXt = AXtdt+ dZt, X0 = x ∈ H,

where A is the infinitesimal generator of a strongly continuous semigroup (Tt)t≥0

on H, Zt := {Zut , u ∈ H} is a cylindrical Lévy process with characteristic triplet
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(a,R,M) on some filtered probability space (Ω,F , (Ft)t≥0,P), that is, for every
u ∈ H and t ≥ 0

E exp(i〈Zt, u〉) = exp ( it〈a, u〉 − t

2
〈Ru, u〉

−
∫

H

[
1− exp(i〈x, u〉) + i〈x, u〉1{‖x‖61}(x)

]
,M(dx)

)
,

where a ∈ H, R is a symmetric linear operator on H such that

Rt :=
∫ t

0

TsRT
∗
s ds

is a trace class operator for each t > 0, and M is a Lévy measure on H. (For
simplicity, we shall write Zut = 〈Zt, u〉 for every u ∈ H.) In this case, (3.4) has a
unique mild solution

Xt = Ttx+
∫ t

0

Tt−sdZs, t > 0.

Let

Ptf(x) = Ef(Xt), x ∈ H, f ∈ Bb(H).
If

‖R−1/2TtRx‖ 6
√
h(t) ‖R1/2x‖, x ∈ H, t ≥ 0

holds for some positive function h ∈ C([0,∞)). Then by [16, Theorem 1.2] (see
also [17] for the diffusion case),

(Ptf)α(x) 6 exp
[
α‖R−1/2(x− y)‖2

2(α− 1)
∫ t
0
h(s)−1ds

]
Ptf

α(y), t > 0, x− y ∈ R1/2H

holds for all f ∈ B+
b (H). By this and [18, Proposition 2.2] which implies the cor-

responding log-Harnack inequality, Theorems 1.1 and 1.4 apply to some ε ≥ 0 and
κ ≥ 1 if

lim sup
t→0

1
tκ

∫ t

0

ds
h(s)

> 0.

3.4. Infinite-dimensional Heisenberg groups. In [10] an integrated Harnack
inequality similar to (1.1) has been established for a Brownian motion on infinite-
dimensional Heisenberg groups modeled on an abstract Wiener space. The inequal-
ity is the consequence of the Ricci curvature bounds for both finite-dimensional
approximations to these groups and the group itself, and the results established for
inductive limits of finite-dimensional Lie groups in [11]. Even though the methods
described in that paper are applicable to inductive and projective limits of finite-
dimensional Lie groups, the infinite-dimensional Heisenberg groups provide a very
concrete setting. We follow the exposition in [10].

Let (W,H, µ) be an abstract Wiener space over R(C), C be a real(complex)
finite dimensional inner product space, and ω : W ×W → C be a continuous skew
symmetric bilinear quadratic form on W . Further, let

(3.5) ‖ω‖0 := sup {‖ω (w1, w2)‖C : w1, w2 ∈W with ‖w1‖W = ‖w2‖W = 1}
be the uniform norm on ω which is finite since ω is assumed to be continuous. We
will need the Hilbert-Schmidt norm of ω which is defined as
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‖ω‖22 = ‖ω‖H∗⊗H∗⊗C :=
∞∑

i,j=1

‖ω (ei, ej)‖2C ,

which is finite by Proposition 3.14 in [10].

Definition 3.1. Let g denote W ×C when thought of as a Lie algebra with the
Lie bracket operation given by

(3.6) [(A, a) , (B, b)] := (0, ω (A,B)) .

Let G := G (ω) denote W ×C when thought of as a group with the multiplication
law given by

(3.7) g1g2 = g1 + g2 +
1
2

[g1, g2] for any g1, g2 ∈ G.

It is easily verified that g is a Lie algebra and G is a group. The identity of G is
the zero element, e : = (0, 0).

Notation 3.2. Let gCM denote H ×C when viewed as a Lie subalgebra of g and
GCM denote H × C when viewed as a subgroup of G = G (ω). We will refer to
gCM (GCM ) as the Cameron–Martin subalgebra (subgroup) of g (G). (For
explicit examples of such (W,H,C, ω), see [10].)

We equip G = g = W ×C with the Banach space norm

(3.8) ‖(w, c)‖g := ‖w‖W + ‖c‖C
and GCM = gCM = H ×C with the Hilbert space inner product,

(3.9) 〈(A, a) , (B, b)〉gCM := 〈A,B〉H + 〈a, b〉C .

The associated Hilbertian norm is given by

(3.10) ‖(A, δ)‖gCM :=
√
‖A‖2H + ‖δ‖2C.

As was shown in [10, Lemma 3.3], these Banach space topologies on W × C and
H ×C make G and GCM into topological groups.

Then we can define a Brownian motion on G starting at e = (0, 0) ∈ G to be
the process

(3.11) g (t) =
(
B (t) , B0 (t) +

1
2

∫ t

0

ω (B (τ) , dB (τ))
)
.

We denote by νt the corresponding heat kernel measure on G. The following esti-
mate was used in the proof of Theorem 8.1 in [10]. For any h ∈ GCM , 1 < p <∞

(3.12)
∫
G

|f (xh)| dνt (x) 6 ‖f‖Lp(G,νt) exp
(
c (−k (ω) t) (p− 1)

2t
d2
GCM (e, h)

)
.

where
c (t) =

t

et − 1
for all t ∈ R

with the convention that c (0) = 1 and

k (ω) :=
1
2

sup
‖A‖H=1

‖ω (·, A)‖2H∗⊗C 6
1
2
‖ω‖22 <∞.
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Equation (3.12) implies the corresponding Lp-estimates of Radon-Nikodym deriva-
tives of νt relative to the left and right multiplication by elements in GCM . This
in turn is equivalent to the Harnack inequality (1.1) following an argument similar
to Lemma D.1 in [11]

[(Ptf) (x)]p ≤ Cp (Ptfp) (y) for all f > 0.

Thus we are in position to apply our results to the heat kernel measure νt subordi-
nated as described in Section 1.
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