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Abstract

We prove new L2-estimates and regularity results for generalized porous media
equations “shifted by” a function-valued Wiener path. To include Wiender paths with
merely first spatial (weak) derivates we introduce the notion of “ζ-monotonicity” for
the non-linear function in the equation. As a consequence we prove that stochastic
porous media equations have global random attractors. In addition, we show that (in
particular for the classical stochastic porous media equation) this attractor consists of
a random point.

0 Introduction

In recent years there has been quite an interest in random attractors for stochastic partial
differential equations. We refer e.g. to [13],[14],[23],[7],[9],[31],[18],[8], but this list is far from
being complete. The study of a new class of stochastic partial differential equations, namely
stochastic porous media equations was initiated in [15] and further developed in [16], as well
as in a number of subsequent papers (see Sect. 1 below for a more complete list). So far,
however, random attractors for stochastic porous media equations have not been investigated.

The purpose of this paper is to analyze or even determine the random attractor (in the
sense of [10], [14], [13]) of a stochastic porous medium equation over a bounded open set
Λ ⊂ Rd of type

e1.0e1.0 (0.0) dXt = ∆(Φ(Xt))dt+QdWt, t ≥ s,

where t, s ∈ R, Φ : R → R is continuous, Φ(0) = 0, and Φ satisfies certain coercivity
conditions and (Wt)t≥0 is a function valued Wiener process on a probability space (Ω,F , P ).

To state our results precisely, we need to recall some of the underlying notions and
describe the set-up. This we shall do in Section 1 below. Here we only briefly describe some
of the main analytic results we have obtained and which are crucial for the probabilistic
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part, more precisely, for the proof of the existence of a global (compact) random attractor
for (0.0).

As explained in detail in the next section a fundamental property to be established is the
cocycle property for the random dynamical system given by the solutions to (0.0) for all
ω ∈ Ω (outside a set of P-measure zero), all times s, t ∈ R and all initial conditions x ∈ H
(= the Hilbert space carrying the solution-paths to (0.0)).
Therefore, we have to restrict to additive noise and transform equation (0.0) by the usual
change of variables

Zt := Xt −QWt(ω)

to the equation

0.30.3 (0.1) dZt = ∆Φ(Zt +QWt(ω))dt, t ≥ s,

for ω ∈ Ω fixed, i.e. to a deterministic partial differential equation with time dependent
nonlinear coefficient and fixed parameter ω ∈ Ω. The analysis of this equation is hence
purely analytic. Our main results are the regularity Lemma 3.3 and the estimate on the
L2-norm of the solution to (0.1) in Theorem 3.1. These results are crucial for the existence
proof of a random attractor for (0.0) and in particular the latter gives an explicit control of
the ω-dependence. To get this estimate on the L2-norm of the solution to (0.1) we introduce
the new notion of “ζ-weak monotonicity” (cf. Hypothesis 1.1 below) for the function Φ,
which seems to be exactly appropriate for our purposes. We distinguish two cases, namely
QWt ∈ H2,p+1

0 (Λ) and the much harder case when QWt ∈ H1,p+1
0 (Λ). For details we refer to

Sections 2 and 3 below. We would, however, like to emphasize that these analytic results are
of their own interest and bear potential for further applications besides merely the analysis
of random attractors.
On the basis of the estimates obtained in Sections 2 and 3 we can then use a meanwhile
standard result from [14] to prove the existence of a global (compact) random attractor for
(0.0) in Section 4.
In Section 5 under a different (more restrictive) set of assumptions on Φ we prove that the
random attractor exists and is just a random point by a different, but very direct technique.
We conclude this paper by some short remarks on computational methods in Section 6.

1 Basic notions and framework

Equation (0.0) has recently been extensively studied within the so-called variational approach
to SPDE (cf. e.g. [28, Example 4.1.11],[16],[29],[3],[30],[4],[5],[6],[22],[32], we also refer to
Aronson, Vazques and the references there in a background literature for the deterministic
case). The underlying Gelfand triple is

eq-ppeq-pp (1.0) V ⊂ H ⊂ V ∗,
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where V := Lp+1(Λ), H := H1
0 (Λ)∗, with H1

0 (Λ) being the Sobolev space of order one on
Λ with Dirichlet boundary conditions. We emphasize that the dualization in (1.0) is with
respect to H, i.e. precisely

V ⊂ H ≡ H∗(= H1
0 (Λ)) ⊂ V ∗,

where the identification ofH andH∗ is given by the Riesz isomorphism, ‖u‖2
H1

0
:=
∫

Λ
|∇u|2Rddξ,

u ∈ H1
0 (Λ), and ‖·‖H is its dual norm. Here |·|Rd denotes Euclidian norm on Rd and below

〈·, ·〉Rd shall denote the corresponding inner product. By ‖·‖p we will denote the Lp-norm.

Here and below the notion of solution is the usual one (cf. [28, Definition 4.1]). We recall
that in particular

(1.0’) E
∫ T

0

||Xt||p+1
p+1 dt <∞ , for all T > 0.

We take Q and the Wiener process Wt of the following special type. W = (β(1), . . . , β(m))
is a Brownian motion on Rm defined on the canonical Wiener space (Ω,F , (Ft), P ), i.e.
Ω := C(R+,Rm), Wt(ω) := ω(t), and (Ft) is the corresponding natural filtration. As usual
we can extend Wt (and Ft) for all t ∈ R (cf. e.g. [28, p. 99]). Q : Rm → H is defined by

Qx =
m∑
j=1

xjϕj, x = (x1, . . . , xm) ∈ Rm,

for fixed ϕ1, . . . , ϕm ∈ C1
0(Λ) (⊂ L2(Λ) ⊂ H). Here C1

0(Λ) denotes the set of all continuously
differentiable functions with compact support in Λ.

The existence and uniqueness of solutions for (0.0) under monotonicity and coercivity
conditions on Φ is well-known even under much more general conditions than which will be
used here (see [29], [4]). We will always assume the continuous function Φ : R→ R to satisfy
the following conditions:

(A1) Weak monotonicity: For all t, s ∈ R

(Φ(t)− Φ(s))(t− s) ≥ 0.

phi_conditions_1_2 (A2) Coercivity: There are p ∈ [1,∞), a ∈ (0,∞), c ∈ [0,∞) such that for all s ∈ R

Φ(s)s ≥ a|s|p+1 − c.

(A3) Polynomial boundedness: There are c1, c2 ∈ [0,∞) such that for all s ∈ R

|Φ(s)| ≤ c1|s|p + c2,

where p is as in (A2).
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In order to obtain the existence of a random attractor we need slightly more restrictive
dissipativity and coercivity conditions on Φ. We will prove existence under two sets of
assumptions. In the first case we need to assume stronger regularity of the noise, i.e. QWt ∈
C2

0(Λ), while in the second we allow QWt ∈ C1
0(Λ), but require stronger assumptions on the

non-linearity Φ.

phi_conditions_2 Hypothesis 1.1. Assume ϕj ∈ C2
0(Λ), 1 ≤ j ≤ m, thus QWt ∈ C2

0(Λ). Let further ζ : R→
R, ζ(0) = 0 be a function such that we have

(A1)’ ζ-Weak monotonicity: For all t, s ∈ R

(Φ(t)− Φ(s))(t− s) ≥ (ζ(t)− ζ(s))2.

(A2)’ ζ-Coercivity: For p, a, c as in (A2) and for all s ∈ R

Φ(s)s ≥ ζ(s)2 ≥ a|s|p+1 − c.

Remark 1.2. Note that we do not assume ζ (hence Φ) to be stricly monotone. Furthermore,
we note that the first inequality in (A2)’ follows from (A1)’ since Φ(0) = 0 = ζ(0).

rmk:phi_diff Remark 1.3. In case of a continuously differentiable nonlinearity Φ, (more precisely, it
suffices to assume that Φ ∈ H1,1

loc (R)) it is easy to find a candidate for ζ. Namely, we simply
define

0.10.1 (1.2) ζ(s) :=

∫ s

0

√
Φ′(r)dr, s ∈ R.

Then by Hölder’s inequality (A1)’ holds and hence since Φ(0) = 0, also the first inequality
in (A2)’ holds. Therefore, to ensure that also (A2)’ holds we only need to assume that for
some a ∈ (0,∞), c ∈ [0,∞), p ∈ [1,∞)

1.31.3 (1.3)

(∫ s

0

√
Φ′(r)dr

)2

≥ a|s|p+1 − c ∀s ∈ R.

Conversely, this produces a lot of examples for Φ satisfying (A1)’,(A2)’,(A3). Simply, take
ζ : R → R continuously differentiable and non-decreasing with ζ(0) = 0 and such that for
some a ∈ (0,∞); c, c1, c2 ∈ [0,∞), p ∈ [1,∞),

ζ2(s) ≥ a|s|p+1 − c, ζ ′(s) ≤ c1|s|
p−1
2 + c2 ∀s ∈ R.

Then define

Φ(s) :=

∫ s

0

(ζ ′(r))2dr, s ∈ R.

In particular, Φ(s) := s|s|p−1 arises this way (cf. also Section 5 below). In this case we have

ζ(s) =
(

2
√
p

p+1

)
s|s| p−1

2 .
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phi_conditions_3 Hypothesis 1.4. Let ϕj ∈ C1
0(Λ), 1 ≤ j ≤ m, only. Assume further that Φ ∈ C1(R),

satisfying (1.3) such that

1.41.4 (1.4) Φ′(r) > 0 for almost all r ∈ R,

and that for some c̃1 ∈ [0,∞)

1.51.5 (1.5) Φ′(s) ≤ c̃1(|s|p−1 + 1) ∀s ∈ R,

where p is as in (1.3).

Remark 1.5. Assume ϕj ∈ C2
0(Λ), 1 ≤ j ≤ m. Then Remark (1.3) implies that Hypothesis

(1.4) is stronger than Hypothesis (1.1), i.e. it implies that (A1)’ and (A2)’ hold.

1.1 Remark 1.6. (i.) There is a set Ω0 ⊂ Ω of full measure such that for each p ≥ 1, ω ∈ Ω0

and |t| → ∞, ‖QWt(ω)‖pp , ‖∇(QWt(ω))‖pp and (if QWt ∈ C2
0 ) ‖∆(QWt(ω))‖pp are

asymptotically bounded by polynomials in t with F-measurable coefficients.

(ii.) We shall largely follow the strategy of [14], in which similar assumptions on Q, hence
on the noise QW are made. The condition that each ϕi should be in C1

0(Λ) (C2
0(Λ)

resp.) can be easily relaxed to QWt ∈ H1,p+1
0 (Λ) (QWt ∈ H2,p+1

0 (Λ) resp.) and is
imposed here for the sake of simplicity only.

In the following for r ∈ N, p ≥ 1 let Hr,p
0 (Λ) denote the usual Sobolev space of order r

in Lp(Λ) with Dirichlet boundary conditions and λ1 the constant appearing in Poincaré’s
inequality, i.e. for all f ∈ H1,2

0 (Λ)

λ1

∫
Λ

f(x)2dx ≤
∫

Λ

|∇f(x)|2dx.

For t ≥ s and x ∈ H, X(t, s, x) will denote the value at time t of the solution Xt of (0.0)
such that Xs = x.

We now recall the notions of a random dynamical system and a random attractor. For
more details confer [2, 13, 14]. Let ((Ω,F ,P), (θt)t∈R) be a metric dynamical system over a
complete probability space (Ω,F ,P), i.e. (t, ω) 7→ θt(ω) is B(R) ⊗ F/F–measurable, θ0 =
id, θt+s = θt ◦ θs and θt is P-preserving, for all s, t ∈ R.

Definition 1.7. Let (H, d) be a complete separable metric space. A random dynamical
system (RDS) over θt is a measurable map

ϕ : R+ ×H × Ω→ H

(t, x, ω) 7→ ϕ(t, ω)x

such that ϕ(0, ω) = id and ϕ satisfies the cocycle property, i.e.

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω),

for all t, s ∈ R+ and all ω ∈ Ω. ϕ is said to be a continuous RDS if P-a.s. x 7→ ϕ(t, ω)x is
continuous for all t ∈ R+.
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With the notion of an RDS at our disposal we can now recall the stochastic generalization
of notions of absorption, attraction and Ω-limit sets.

def:rds_basics Definition 1.8. Let (H, d) be as in Definition 1.7

(i.) A set-valued map K : Ω → 2H is called measurable if for all x ∈ H the map
ω 7→ d(x,K(ω)) is measurable, where for nonempty sets A,B ∈ 2H we set d(A,B) =
sup
x∈A

inf
y∈B

d(x, y) and d(x,B) = d({x}, B). A measurable set-valued map is also called a

random set.

(ii.) Let A, B be random sets. A is said to absorb B if P-a.s. there exists an absorption
time tB(ω) ≥ 0 such that for all t ≥ tB(ω)

ϕ(t, θ−tω)B(θ−tω) ⊆ A(ω).

A is said to attract B if

d(ϕ(t, θ−tω)B(θ−tω), A(ω)) −−−→
t→∞

0, P-a.s. .

(iii.) For a random set A we define the Ω-limit set to be

ΩA(ω) :=
⋂
T≥0

⋃
t≥T

ϕ(t, θ−tω)A(θ−tω).

Definition 1.9. A random attrator for an RDS ϕ is a compact random set A satisfying
P-a.s.

i. A is invariant, i.e. ϕ(t, ω)A(ω) = A(θtω) for all t > 0.

ii. A attracts all deterministic bounded sets B ⊆ H.

The following proposition yields a sufficient criterion for the existence of a random at-
tractor of an RDS ϕ.

prop:suff_criterion Proposition 1.10 (cf. [14], Theorem 3.11). Let ϕ be an RDS and assume the existence of a
compact random set K absorbing every deterministic bounded set B ⊆ H. Then there exists
a random attractor A, given by

A(ω) =
⋃

B⊆H, B bounded

ΩB(ω).

From now on we take H := H1,2
0 (Λ)∗ with metric determined by its norm ‖ ·‖H . Since we

aim to apply Proposition 1.10 to prove the existence of a random attractor for (0.0), we first
need to define the RDS associated to (0.0). We take (Ω,F ,P) to be the canonical two-sided
Wiener space, i.e. Ω = C0(R,Rm) and θt to be the Wiener shift given by θtω := ω(t+·)−ω(t).
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As in [14, pp. 375–377] we consider Y (t, s, x) := X(t, s, x) − QWt. Then we have for all
s ∈ R, x ∈ H,P-a.s.:

Y (t, s, x) = x−QWs +

∫ t

s

∆Φ(Y (r, s, x) +QWr)dr, ∀t ≥ s.

We can rewrite this as an ω-wise equation:

eqn:o-wiseeqn:o-wise (1.6) Zt(ω) = x−QWs(ω) +

∫ t

s

Aω(r, Zr(ω))dr, ∀t ≥ s,

where Aω(r, v) := ∆Φ(v + QWr(ω)). Since for each fixed ω ∈ Ω, Aω : V → V ∗ is hemicon-
tinuous, monotone, coercive and bounded we can apply [28, Theorem 4.2.4] to obtain the
unique existence of a solution

eqn:lp-bddeqn:lp-bdd (1.7) Z(t, s, x, ω) ∈ Lp+1
loc ([s,∞);V ) ∩ C([s,∞), H)

to (1.6) for all x ∈ H, ω ∈ Ω, s ∈ R and its continuous dependence on the initial condition
x. We now define in analogy to [13]

S(t, s, ω)x := Z(t, s, x, ω) +QWt(ω), s, t ∈ R; s ≤ t

ϕ(t, ω)x := S(t, 0, ω)x = Z(t, 0, x, ω) +QWt(ω), t ≥ 0.eqn:def_rdseqn:def_rds (1.8)

By uniqueness for (0.0) S(t, s, ω)x is a version of X(t, s, x)(ω), for each x ∈ H, s ∈ R. For
fixed s, ω, x we at times abbreviate S(t, s, ω)x by St and Z(t, s, x, ω) by Zt. By the pathwise
uniqueness of the solution to equation (1.6) we have for all ω ∈ Ω, r, s, t ∈ R, s ≤ r ≤ t,

S(t, s, ω) = S(t, r, ω)S(r, s, ω)1.6’1.6’ (1.8’)

S(t, s, ω) = S(t− s, 0, θsω).1.6’’1.6’’ (1.8”)

Hence ϕ defines an RDS. We can thus apply Proposition 1.10 to prove the existence of a
random attractor for ϕ. For this we need to prove the existence of a compact set K(ω), which
absorbs every bounded deterministic set in H, P-almost surely. This set will be chosen as

K(ω) := BL2(0, κ(ω))
H

, where BL2(0, κ) denotes the ball with center 0 and radius κ in L2.
Note that since ϕ(t, θ−tω) = S(t, 0, θ−tω) = S(0,−t, ω), this amounts to proving pathwise
bounds on S(0,−t, ω)x in the L2-norm, where we use the compactness of the embedding
L2(Λ) ↪→ H. In order to get such estimates we consider norms ‖·‖Ha on H such that for
a ↓ 0, ‖·‖Ha ↑ ‖·‖L2 . These are defined as the dual norms (via the Riesz isomorphism) of the
norms

H1
0 (Λ) 3 u 7→

(
a

∫
Λ

|∇u|2dξ +

∫
u2dξ

)1/2

.

Then for s ≤ t we have (see e.g. [30, Theorem 2.6 and Lemma 2.7 (i),(ii)]) for a := 1
n

eqn:approx-itoeqn:approx-ito (1.9) ‖Zt‖2
H 1
n

= ‖Zs‖2
H 1
n

+ 2

∫ t

s

〈Φ(Sr), n(1− 1

n
∆)−1Zr − nZr〉dr,
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where for f, g : Λ→ R measurable we set

〈f, g〉 :=

∫
Λ

f g dξ

if |fg| ∈ L1(Λ). We shall use (1.9) in a crucial way several times below.

2 Estimates for ‖St‖H and bounded absorption

thm:H-bound Theorem 2.1. Let β ∈ (0,∞), with β ≤ a
2
, if p = 1. Then there exists a function p

(β)
1 :

R× Ω→ R+ with F–measurable coefficients and for |t| → ∞ of at most polynomial growth
in t, such that for all x ∈ H, ω ∈ Ω0 and s ∈ R:

‖Z(t2, s, x, ω)‖2
H ≤ ‖Z(t1, s, x, ω)‖2

H − β
∫ t2

t1

‖Z(r, s, x, ω)‖2
2 dr +

∫ t2

t1

p
(β)
1 (r, ω)dr,eqn:H-boundeqn:H-bound (2.1)

for all s ≤ t1 ≤ t2.

Proof. We fix x, ω, s and set Zr := Z(r, s, x, ω), Sr := S(r, s, ω)x for r ≥ s. All constants
appearing in the proof below are, however, independent of x, ω and s!
Since for s ≤ t1 ≤ t2

‖Zt2‖
2
H = ‖Zt1‖

2
H − 2

∫ t2

t1

〈Zr,Φ(Sr)〉dr,

we have for dr–a.e. r ∈ [s,∞) by (A2)

d

dr
‖Zr‖2

H = −2〈Zr,Φ(Sr)〉

= −2〈Sr −QWr,Φ(Sr)〉
= −2〈Sr,Φ(Sr)〉+ 2〈QWr,Φ(Sr)〉

≤ −2a

∫
Λ

|Sr|p+1dξ + 2

∫
Λ

(|QWrΦ(Sr)|+ c) dξ.

By Young’s inequality, for arbitrary ε > 0 and some Cε(= Cε(p)), C1, C2 ∈ R we have by
(A3) ∫

Λ

|QWrΦ(Sr)|dξ ≤
∫

Λ

(
Cε|QWr|p+1 + ε|Φ(Sr)|

p+1
p

)
dξ

≤ εC1||Sr||p+1
p+1 + Cε||QWr||p+1

p+1 + εC2|Λ|,

where |Λ| :=
∫

Λ
dξ. Thus by choosing ε = a

C1
we obtain for dr–a.e. r ∈ [t1, t2]

d

dr
‖Zr‖2

H ≤ −a||Sr||
p+1
p+1 + Cε||QWr||p+1

p+1 + 2|Λ|(c+ C3).
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where C3 := aC2

C1
.

Now, if p > 1, then for each β > 0 we can find a Cβ such that for all y ∈ R one has
a|y|p+1 ≥ 2β|y|2 − Cβ. If p = 1, then we have the same, provided β ∈ (0, a

2
]. We obtain

a||Sr||p+1
p+1 ≥ 2β||Sr||22 − |Λ|Cβ = 2β||Zr +QWr||22 − |Λ|Cβ ≥ β||Zr||22 − 2β||QWr||22 − |Λ|Cβ.

Hence for

p
(β)
1 (r, ω) :=

{
2β||QWr||22 + |Λ|Cβ + Cε||QWr||p+1

p+1 + 2|Λ|(c+ C3) , if ω ∈ Ω0

0 , else

we obtain for dr-a.e. r ∈ [t1, t2]

d

dr
‖Zr‖2

H ≤ −β||Zr||
2
2 + p

(β)
1 (r, ω).

and the assertion follows.

cor:H-bound Corollary 2.2. Let β ∈ (0,∞), with β ≤ a
2

if p = 1 and let t ∈ R. Then there exists an

F–measurable function q
(β,t)
1 : Ω→ R, such that for all x ∈ H, ω ∈ Ω0 and s ≤ t

starstar (2.2) ‖Z(t, s, x, ω)‖2
H ≤ q

(β,t)
1 (ω) + e−

β

e2
(t−s) ‖Z(s, s, x, ω)‖2

H .

Proof. Since the embedding L2 ↪→ H is continuous, there is a constant c > 0 such that
‖v‖H ≤ c ‖v‖2, for all v ∈ L2. Hence by Theorem 2.1

d

dr
(‖Zr‖2

H) ≤ − β
c2
‖Zr‖2

H + p
(β)
1 (r, ω) dr–a.e. on [s, t].

Hence by Gronwall’s Lemma the assertion follows with qβ,t1 (ω) :=
∫ t
−∞ e

− β

c2
(t−r)p1(r, ω)dr.

cor:bdd-absorption Corollary 2.3 (Bounded absorption). Let t ∈ R. Then there is an F–measurable function

q
(t)
1 : Ω → R such that for each % > 0 there is an s(%) ≤ t such that for all ω ∈ Ω0, x ∈ H

with ‖x‖H ≤ %

Z(t, s, x, ω) ∈ B̄H(0, q
(t)
1 (ω)), for all s ≤ s(%)

i.e. there exists a bounded random set absorbing (Zt) at time t.

Proof. Let β := a
2
. By Corollary 2.2, we have for β̃ := β

c2

‖Zt‖2
H ≤ e−β̃(t−s) ‖Zs‖2

H + q
(β,t)
1

≤2e−β̃(t−s)(‖x‖2
H + ‖QWs‖2

H) + q
(β,t)
1

≤2%2e−β(t−s) + 2e−β̃(t−s) ‖QWs‖2
H + q

(β,t)
1 ,

for all t ≥ s. Hence the result follows with

q
(t)
1 := 1 + q

(β,t)
1 + 2 sup

s≤t
(e−β̃(t−s) ‖QWs‖2

H)

and s(%) ≤ t chosen so that 2%2e−β̃(t−s) ≤ 1 for all s ≤ s(%).
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We will need the following auxiliary estimate.

cor:aux_estimate Corollary 2.4. There is an F–measurable function q : Ω → R+ such that for each % > 0
there exists s(%) ≤ −1 such that for all ω ∈ Ω0, x ∈ H with ‖x‖H ≤ %∫ 0

−1

‖S(r, s, ω)x‖2
2 dr ≤ q(ω) for all s ≤ s(%).

Proof. Using (2.1) in Theorem 2.1 with t1 = −1, t2 = 0 and then using Corollary 2.3 for
t = −1 yields for β = a

2
and s ≤ s(%), where s(%) ≤ −1 is as in Corollary 2.3,

β

∫ 0

−1

‖S(r, s, ω)x‖2
2 dr ≤ 2 ‖Z(−1, s, x, ω)‖2

H + 2

∫ 0

−1

p
(β)
1 (r, ω)dr + 2β

∫ 0

−1

‖QWr(ω)‖2
2 dr

≤ βq(ω),

where q(ω) := 2
β
q

(−1)
1 (ω) + 2

β

∫ 0

−1
p

(β)
1 (r, ω)dr + 2

∫ 0

−1
‖QWr(ω)‖2

2 dr.

3 Estimate for ‖St‖2 and compact absorption

thm:L2-bound Theorem 3.1. Suppose that either Hypothesis 1.1 or Hypothesis 1.4 holds. Let α > 0, with
α ∈ (0, αλ1

2
] if p = 1. Then there is a function p

(α)
2 : R×Ω→ R with F-measurable coefficients

and for |t| → ∞ of at most polynomial growth in t such that for all x ∈ L2(Λ), ω ∈ Ω0, and
s ∈ R

‖Z(t2, s, x, ω)‖2
2 ≤ ‖Z(t1, s, x, ω)‖2

2 − α
∫ t2

t1

‖Z(r, s, x, ω)‖2
2 dr +

∫ t2

t1

p
(α)
2 (r, ω)dreqn:L2-boundeqn:L2-bound (3.1)

for all s ≤ t1 ≤ t2.

In particular, t→ Zt is strongly right continuous in L2(Λ).

Proof. Again we fix x, ω, s and use the abbreviation Zr := Z(r, s, x, ω), Sr := S(r, s, ω)x for
r ∈ [s,∞). But all constants appearing in the proof below are independent of x, ω and s.
Case 1: Assume Hypothesis 1.1.

Let t1 ≥ s such that Zt1 ∈ L2(Λ) and t2 ≥ t1. (1.9) implies

‖Zt2‖
2
H 1
n

= ‖Zt1‖
2
H 1
n

+ 2

∫ t2

t1

〈Φ(Sr), n(1− 1
n
∆)−1Sr − nSr〉dreqn_L^2_1eqn_L^2_1 (3.2)

− 2

∫ t2

t1

〈Φ(Sr),∆(1− 1
n
∆)−1QWr〉dr.

10



A calculation analogous to the calculation following formula (5.6) in [30] yields for dr-a.e.
r ∈ [s,∞)

〈Φ(Sr), n(1− 1
n
∆)−1Sr − nSr〉 = −n〈Φ(Sr), Sr − (1− 1

n
∆)−1Sr〉

= −n
2

∫
Λ

∫
Λ

[Φ(Sr(ξ̃))− Φ(Sr(ξ))][Sr(ξ̃)− Sr(ξ)]pn(ξ, dξ̃)dξ

− n
∫

Λ

(1− (1− 1

n
∆)−11)Φ(Sr)Srdξ

≤ −n
2

∫
Λ

∫
Λ

(ζ(Sr(ξ̃))− ζ(Sr(ξ)))
2pn(ξ, dξ̃)dξ

− n
∫

Λ

(1− (1− 1

n
∆)−1)ζ(Sr)

2dξ

= −n〈ζ(Sr), (1− (1− 1

n
∆)−1)ζ(Sr)〉

= −E (n)(ζ(Sr), ζ(Sr)),

where pn(ξ, dξ̃) is the kernel corresponding to (1 − 1
n
∆)−1 (cf. Lemma 5.1 in [30]) and

(E (n),D(E (n))) is the closed coercive form on L2(Λ) with D(E (n)) = H1
0 (Λ) and generator

n(1− (1− 1
n
∆)−1) = ∆(1− 1

n
∆)−1. We obtain:

‖Zt2‖
2
H 1
n

+ 2

∫ t2

t1

E (n)(ζ(Sr), ζ(Sr))dreqn_L^2_3eqn_L^2_3 (3.3)

≤ ‖Zt1‖
2
H 1
n

− 2

∫ t2

t1

〈Φ(Sr),∆(1− 1
n
∆)−1QWr〉dr.

Next we prove an upper bound for the second term on the right hand side of (3.3). Note
that we shall make use of the assumption QWt ∈ C2

0 here. Using Young’s inequality, for all
ε > 0 and some Cε, C1, C2 > 0 we obtain for dr–a.e. r ∈ [s,∞)

|〈Φ(Sr),∆(1− 1

n
∆)−1QWr〉| = |〈Φ(Sr), (1−

1

n
∆)−1∆QWr〉|

≤ ε

∫
Λ

|Φ(Sr)|
p+1
p dξ + Cε

∫
Λ

|((1− ∆

n
)−1∆QWr)|p+1dξ

≤ εC1||Sr||p+1
p+1 + Cε||∆QWr||p+1

p+1 + C2.

Hence

‖Zt2‖
2
H 1
n

+ 2

∫ t2

t1

E (n)(ζ(Sr), ζ(Sr))dreqn_L^2_4eqn_L^2_4 (3.4)

≤ ‖Zt1‖
2
2 − 2

∫ t2

t1

[
εC1||Sr||p+1

p+1 + Cε||∆QWr||p+1
p+1 + C2

]
dr <∞.

11



We note that by (1.7) the right hand side of (3.4) is indeed finite. Since E (n)(ζ(Sr), ζ(Sr))
is increasing in n, we conclude that sup

n∈N
E (n)(ζ(Sr), ζ(Sr)) < ∞ for dr-a.e. r ∈ [t1,∞). By

(A2)’ and (A3) we know that for some c1, c2 ≥ 0

ζ(s)2 ≤ Φ(s)s ≤ c1|s|p+1 + c2|s|.

Since Sr ∈ Lp+1(Λ) this implies ζ(Sr) ∈ L2(Λ) for dr-a.e. r ∈ [t1,∞). We now recall the
following result from the theory of Dirichlet forms: Let (E ,D(E)) be the closed coercive form
on L2(Λ) given by E(f, g) =

∫
Λ
〈∇f,∇g〉Rddξ for f, g ∈ D(E) = H1

0 (Λ). From [24, Chap.

I, Theorem 2.13] we know for f ∈ L2(Λ), that f ∈ D(E) = H1
0 (Λ) iff sup

n∈N
E (n)(f, f) < ∞

and lim
n→∞

E (n)(f, g) = E(f, g) =
∫

Λ
〈∇f,∇g〉Rddξ for f, g ∈ D(E). Hence we obtain for dr-a.e.

r ∈ [t1,∞) that ζ(Sr) ∈ D(E) = H1
0 (Λ) and that

lim
n→∞

E (n)(ζ(Sr), ζ(Sr)) = E(ζ(Sr), ζ(Sr)) =

∫
Λ

|∇ζ(Sr)|2Rddξ.

Using Fatou’s lemma and taking n→∞ in (3.4) yields

‖Zt2‖
2
2 + 2

∫ t2

t1

∫
Λ

|∇ζ(Sr)|2Rddξ dr2.62.6 (3.5)

≤ ‖Zt1‖
2
2 + 2εC1

∫ t2

t1

||Sr||p+1
p+1dr +

∫ t2

t1

(Cε||∆QWr||p+1
p+1 + C2)dr.

Since Zs = x−QWs ∈ L2(Λ), for all t1 ≥ s we obtain Zt1 ∈ L2(Λ) and thus (3.5) holds for
all t2 ≥ t1 ≥ s.

Choosing ε = aλ1

2C1
, applying Poincaré’s inequality and using the fact that if p > 1 for each

α > 0 we can find C̃α ≥ 0 such that for all y ∈ R one has aλ1|y|p+1 ≥ 2α|y|2 − C̃α, and that
the same is true for p = 1, if α ∈ (0, αλ1

2
]. We obtain from (A2)’ that

‖Zt2‖
2
2 ≤ ‖Zt1‖

2
2 − 2λ1

∫ t2

t1

||ζ(Sr)||22dr + aλ1

∫ t2

t1

||Sr||p+1
p+1dr +

∫ t2

t1

(Cε||∆QWr||p+1
p+1 + C2)dr

≤ ‖Zt1‖
2
2 − aλ1

∫ t2

t1

||Sr||p+1
p+1dr +

∫ t2

t1

(Cε||∆QWr||p+1
p+1 + C2 + c)dr

≤ ‖Zt1‖
2
2 − 2α

∫ t2

t1

||Sr||22dr +

∫ t2

t1

(Cε||∆QWr||p+1
p+1 + C2 + c+ C̃α)dr.

Now
‖Zr‖2

2 = ‖Sr −QWr‖2
2 ≤ 2

(
‖Sr‖2

2 + ‖QWr‖2
2

)
,

whence

‖Zt2‖
2
2 ≤ ‖Zt1‖

2
2 − α

∫ t2

t1

||Zr||22dr +

∫ t2

t1

pα2 (r, ω)dr,eqn_final_boundeqn_final_bound (3.6)

12



for α > 0 arbitrary and

p
(α)
2 (r, ω) :=

{
Cε||∆QWr||p+1

p+1 + C2 + c+ C̃α + 2α ‖QWr‖2
2 , if ω ∈ Ω0

0 , else.

To obtain right continuity of Zt in L2(Λ) first note that by (3.5) applied for t1 = s and
continuity of Zt in H we obtain weak continuity in L2(Λ). Now for tn ↓ t by (3.5) applied
to t1 = t we obtain

lim sup
n→∞

‖Ztn‖
2
2 ≤ ‖Zt‖

2
2 ,

which implies the right continuity of Zt in L2(Λ).

Case 2: Assume Hypothesis 1.4.
Let ζ be as defined in Remark 1.3 and again let t1 ≥ s such that Zt1 ∈ L2(Λ) and

t2 ≥ t1. In order to prove (3.1) in the case QWt ∈ C1
0(Λ) we need to be more careful when

bounding the second term on the right hand side of (3.3). For this we need the regularity
result proved in Lemma 3.3 below, which implies that for every ε > 0 there exist constants
Cε, C̃ε(= Cε(p), C̃ε(p)) such that for dr-a.e. r ∈ [s,∞)

−〈Φ(Sr),∆(1− 1

n
∆)−1QWr〉 = 〈∇Φ(Sr),∇(1− 1

n
∆)−1QWr〉

≤ ε||∇Φ(Sr)||
p+1
p
p+1
p

+ Cε||∇(1− 1

n
∆)−1QWr||p+1

p+13.6’3.6’ (3.6’)

≤ ε||∇Φ(Sr)||
p+1
p
p+1
p

+ C̃ε||∇QWr||p+1
p+1.

Now using Lemma 3.3 and (3.6’) with ε = 1 in (3.3) yields for some constants c, C ∈ R

‖Zt2‖
2
H 1
n

+ 2

∫ t2

t1

E (n)(ζ(Sr), ζ(Sr))dr

≤ ‖Zt1‖
2
H 1
n

+ 2

∫ t2

t1

[
||∇Φ(Sr)||

p+1
p
p+1
p

+ C̃1||∇QWr||p+1
p+1

]
dr

≤ c ‖Zt1‖
2
2 + C

∫ t2

t1

(||∇QWr||p+1
p+1 + 1)dr <∞ .

Now we can proceed as after (3.4) to deduce ζ(Sr) ∈ D(E) = H1
0 (Λ) and

lim
n→∞

E (n)(ζ(Sr), ζ(Sr)) =

∫
Λ

|∇ζ(Sr)|2Rddξ,

for dr-a.e. r ∈ [s,∞). Since Φ′(r) > 0, ζ =
∫ ·

0

√
Φ′(r)dr is C1(R) with continuous inverse
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ζ−1. Thus

Φ(x) =

∫ x

0

Φ′(r)dr =

∫ x

0

√
Φ′(r)

√
Φ′(r)dr

=

∫ x

0

ζ ′(r)
√

Φ′(r)dr =

∫ ζ(x)

0

√
Φ′(ζ−1(r))dr = F (ζ(x)),

where F :=
∫ ·

0

√
Φ′(ζ−1(r))dr. Since F ∈ C1(R), ζ(Sr) ∈ H1

0 (Λ) for dr-a.e. r ∈ [s,∞)

and F ′(ζ(Sr))∇ζ(Sr) =
√

Φ′(Sr)∇ζ(Sr) ∈ L1(Λ) (by (1.4)), we have Φ(Sr) = F (ζ(Sr)) ∈
H1,1

0 (Λ) for dr-a.e. r ∈ [s,∞) with

2.92.9 (3.7) ∇Φ(Sr) =
√

Φ′(Sr)∇ζ(Sr) ∈ L1(Λ).

By (A2)’ and (1.5) there are some constants C1, C2 such that

ζ ′(r)2 p+1
p−1 ≤ C1ζ(r)2 + C2.

Using (3.7) and then Young’s and Poincaré’s inequalities, for some constants C1, C2 (which
may change from line to line) we have for dr-a.e. r ∈ [s,∞)

||∇Φ(Sr)||
p+1
p
p+1
p

=

∫
Λ

|∇Φ(Sr)|
p+1
p dξ =

∫
Λ

|
√

Φ′(Sr)∇ζ(Sr)|
p+1
p dξ

=

∫
Λ

|ζ ′(Sr)∇ζ(Sr)|
p+1
p dξ ≤ ||∇ζ(Sr)||22 + C1

∫
Λ

|ζ ′(Sr)|2
p+1
p−1dξeqn:bound_phi_zetaeqn:bound_phi_zeta (3.9)

≤ ||∇ζ(Sr)||22 + C1||ζ(Sr)||22 + C2 ≤ C1||∇ζ(Sr)||22 + C2.

We can now go on with bounding the second term on the right hand side of (3.3) as follows:
(3.6’) and (3.9) imply that for dr-a.e. r ∈ [s,∞)

〈Φ(Sr),∆(1− 1

n
∆)−1QWr〉 ≤ ε||∇Φ(Sr)||

p+1
p
p+1
p

+ C̃ε||∇QWr||p+1
p+1

≤ εC1||∇ζ(Sr)||22 + εC2 + C̃ε||∇QWr||p+1
p+1.eqn:noise-boundeqn:noise-bound (3.10)

Using this with ε = 1
C1

in (3.3) and letting n→∞ yields for some constant C

‖Zt2‖
2
2 +

∫ t2

t1

||∇ζ(Sr)||22dr ≤ ‖Zt1‖
2
2 + 2C

∫ t2

t1

(1 + ||∇QWr||p+1
p+1)dr.(3.11)

Now we can proceed as done in the proof of Case 1 after (3.5).

Remark 3.2. As indicated before the arguments in the proof can easily be generalized to
noise QWt ∈ H2,p+1

0 (Λ) (QWt ∈ H1,p+1
0 (Λ) resp.).
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lemma:regularity Lemma 3.3. Let x ∈ L2(Λ), s ∈ R and ω ∈ Ω. Then Φ(S(·, s, ω)x) ∈ L
p+1
p

loc ([s,∞);H
1, p+1

p

0 )
and there exist constants c > 0, C ∈ R, independent of x, s and ω, such that

||Z(t2, s, x, ω)||22 + c

∫ t2

t1

||∇Φ(S(r, s, ω)x)||
p+1
p
p+1
p

dr

≤||Z(t1, s, x, ω)||22 + C

∫ t2

t1

(||∇QWr(ω)||p+1
p+1 + 1)dr, ∀t2 ≥ t1 ≥ s.

Proof. We use the Galerkin approximation and the notation used in the proof of unique
existence of a solution to (1.6) in [28, Theorem 4.2.4]). Let {ei|i ∈ N} be the orthonormal
basis of H consisting of eigenfunctions of ∆ on L2(Λ) with Dirichlet boundary. Then ei ∈
C∞0 (Λ) ⊆ V . Furthermore, let Hn = span{e1, ..., en} and define Pn : V ∗ → Hn ⊆ C∞0 (Λ) by

Pny :=
n∑
i=1

V ∗ < y, ei >V ei.

Note that via the embedding L2(Λ) ⊆ H ⊆ V ∗, Pn|L2(Λ) : L2(Λ)→ Hn is just the orthogonal
projection in L2(Λ) onto Hn. Let t1 ≥ s such that Zt1 ∈ L2(Λ), let Zn

t denote the solution
of

Zn
t = PnZt1 +

∫ t

t1

PnAω(r, Zn
r )dr, ∀t ≥ t1

and let Snt := Zn
t +QWt. By the chain rule, for all t2 ≥ t1

||Zn
t2
||22 = ||PnZt1 ||22 + 2

∫ t2

t1

〈Aω(r, Zn
r ), Zn

r 〉 dreqn:galerkin_1eqn:galerkin_1 (3.12)

= ||PnZt1||22 + 2

∫ t2

t1

〈∆Φ(Snr ), Snr 〉 dr − 2

∫ t2

t1

〈∆Φ(Snr ), QWr〉 dr.

By the same argument as for (3.7) we get

〈∆Φ(Snr ), Snr 〉 = −〈∇Φ(Snr ),∇Snr 〉 = −
〈√

Φ′(Snr )∇ζ(Snr ),∇Snr
〉

= −||∇ζ(Snr )||22

and using Young’s inequality

−〈∆Φ(Snr ), QWr〉 = 〈∇Φ(Snr ),∇QWr〉 ≤ ε||∇Φ(Snr )||
p+1
p
p+1
p

+ Cε||∇QWr||p+1
p+1,

for all ε > 0 and some Cε ∈ R. By (3.12) this yields

||Zn
t2
||22 ≤ ||PnZt1||22 − 2

∫ t2

t1

||∇ζ(Snr )||22dreqn:galerkin_2eqn:galerkin_2 (3.13)

+ 2ε

∫ t2

t1

||∇Φ(Snr )||
p+1
p
p+1
p

dr + 2Cε

∫ t2

t1

||∇QWr||p+1
p+1dr.
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By the same argument as for (3.9) we realize

||∇Φ(Snr )||
p+1
p
p+1
p

≤ C1||∇ζ(Snr )||22 + C2,

for some constants C1, C2. Using this in (3.13), with ε = 1
2C1

yields for some c > 0, C ∈ R

||Zn
t2
||22 + c

∫ t2

t1

||∇Φ(Snr )||
p+1
p
p+1
p

dr ≤ ||Zt1||22 + C

∫ t2

t1

(||∇QWr||p+1
p+1 + 1)dr.eqn:galerkin_3eqn:galerkin_3 (3.14)

Both C1, C2 and c, C are independent of x, s and ω.

Hence we obtain the existence of a φ̄ ∈ L
p+1
p ([t1, t2];H

1, p+1
p

0 ) such that (selecting a subse-
quence if necessary)

Φ(Snr ) ⇀ φ̄,

in L
p+1
p ([t1, t2];H

1, p+1
p

0 ) and thus in L
p+1
p ([t1, t2];L

p+1
p (Λ)). By the proof of unique existence

of a solution we also know that (again selecting a subsequence if necessary)

∆Φ(Snr ) ⇀ ∆Φ(Sr),

in L
p+1
p ([t1, t2];V ∗) and by definition of ∆Φ : V → V ∗ this is equivalent to Φ(Snr ) ⇀ Φ(Sr),

in L
p+1
p ([t1, t2];L

p+1
p (Λ)). Hence φ̄ = Φ(Sr). An analogous argument applied to Zn

t2
yields

Zn
t2
⇀ Zt2 in L2(Λ). Letting n→∞ in (3.14) we arrive at

||Zt2 ||22 + c

∫ t2

t1

||∇Φ(Sr)||
p+1
p
p+1
p

dr ≤ ||Zt1||22 + C

∫ t2

t1

(||∇QWr||p+1
p+1 + 1)dr.eqn:galerkin_4eqn:galerkin_4 (3.15)

Since Zs = x−QWs ∈ L2(Λ), for all t1 ≥ s we obtain Zt1 ∈ L2(Λ) and thus (3.15) holds for
all t2 ≥ t1 ≥ s.

cor:compact-absorption Corollary 3.4 (Compact absorption). There is an F–measurable function κ : Ω→ R+ such
that for each % > 0 there exists s(%) ≤ −1 such that for all x ∈ H with ‖x‖H ≤ % and all
ω ∈ Ω0

‖S(0, s, ω)x‖2 ≤ κ(ω), for all s ≤ s(%).

Remark 3.5. This is analogous to [14, Lemma 5.5, p. 380].

Proof. (3.1) in Theorem 3.1 with t2 = 0 ≥ t1 ≥ s implies

‖Z0‖2
2 ≤ ‖Zt1‖

2
2 − α

∫ 0

t1

(
‖Zr‖2

2 + p
(α)
2 (r, ω)

)
dr.

Integrating over t1 ∈ [−1, 0] yields

‖Z0‖2
2 ≤

∫ 0

−1

(
‖Zr‖2

2 + |p(α)
2 (r, ω)|

)
dr

≤
∫ 0

−1

(2 ‖Sr‖2
2 + 2 ‖QWr‖2

2 + |p(α)
2 (r, ω)|)dr.

Hence using Corollary 2.4 and recalling that Z0 = S(0, s, ω)x we obtain the assertion.
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4 Existence of the global random attractor

thm:existence_random_attractor Theorem 4.1. The random dynamical system associated with (0.0) and defined by (1.8)
admits a random attractor.

Proof. We show that the assumptions of Proposition 1.10 are satisfied. Since the embedding
L2(Λ) ↪→ H is compact, for each ω ∈ Ω the set

K(ω) := B̄L2(0, κ(ω))
H

is nonempty and compact in H.
For the reader’s convenience, we prove that it is a random set (cf. Definition 1.8 (i)) in

the Polish space H. According to [11, Proposition 2.4], it is enough to check that for each
open set O ⊂ H, CO := {ω ∈ Ω|O ∩K(ω) 6= ∅} is measurable. But

O ∩K(ω) =O ∩ B̄L2(0, κ(ω))
H

= O ∩ B̄L2(0, κ(ω))

=O ∩ L2(Λ) ∩ B̄L2(0, κ(ω)).

For C ⊆ L2(Λ) and x ∈ L2(Λ) let dL2(x,C) := inf
y∈C
||x− y||2. If O ∩L2(Λ) = ∅, then CO = ∅

is measurable and if O ∩ L2(Λ) 6= ∅, then

CO = {ω ∈ Ω|dL2

(
0, O ∩ L2(Λ)

)
≤ κ(ω)}

is measurable as κ is.
Let B be a bounded subset of H. Then B ⊂ B̄H(0, %), for some % > 0. By Corollary 3.4

there exists a tB := −s(%) ≥ 1 such that for all x ∈ B, t ≥ tB and ω ∈ Ω0

ϕ(t, θ−tω)(x) = S(t, 0, θ−tω)x = S(0,−t, ω)x ≤ κ(ω).

Hence for all t ≥ tB, ω ∈ Ω0, ϕ(t, θ−tω)(B) ⊂ K(ω), i.e. the random compact set K absorbs
all deterministic bounded sets.

Now we may apply Proposition 1.10 to get the existence of a global compact attractor
A, given by:

A(ω) =
⋃

B⊂H,B bounded

ΩB(ω)
H

,

where ΩB(ω) :=
⋂
T≥0

⋃
t≥T

ϕ(t, θ−tω)B denotes the Ω-limit set of B.

Remark 4.2. By [14, Proposition 4.5] the existence of a random attractor as constructed in
the proof of Theorem 4.1 implies the existence of an invariant Markov measure µ· ∈ PΩ(H)
for ϕ (in the sense of [14, Definition 4.1]), supported by A. Hence using [12] there exists an
invariant measure for the Markovian semigroup defined by Ptϕ(x) = E[ϕ(S(t, 0, x))] and it
is given by

µ(B) =

∫
Ω

µω(B)P (dω),
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where B ⊆ H is a Borel set. If the invariant measure µ for Pt is unique, then the invariant
Markov measure µ· for ϕ is unique and given by

µω = lim
t→∞

ϕ(t, θ−tω)µ.

5 Attraction by a single point

So far we obtained the existence of the random attractor A for (0.0), but we did not deduce
any information about its finer structure. Under a stronger monotonicity condition which
was first introduced in [16] we will now prove that A consists of a single random point. While
we had to restrict to noise of regularity at least H1,p+1

0 (Λ) before, we can now allow Q to be
a Hilbert-Schmidt operator from L2(Λ)→ H.

Let Wt denote a cylindrical Brownian Motion on L2(Λ) and define Φ : R → R to be a
continuous function such that there exist some constants c ≥ 0, p ∈ (1,∞), η > 0 such that

|Φ(s)| ≤ c(1 + |s|p)eqn:monotoneeqn:monotone (5.16)

(s− t)(Φ(s)− Φ(t)) ≥ η|s− t|p+1, s, t ∈ R.

It has been shown in [16] that (5.16) holds if Φ ∈ C1(R), Φ(0) = 0 and if there exist constants
κ, η > 0 such that

eqn:strong_monotoneeqn:strong_monotone (5.17)
(p+ 1)2

4
η|s|p−1 ≤ Φ′(s) ≤ κ(1 + |s|p−1), s ∈ R.

This, for example is true for Φ(s) = s|s|p−1. By Remark 1.3 it is easy to see that (5.17) implies
the weaker monotonicity assumption (A1)’. Also note that (5.16) implies the coercivity
property (A2). Thus (A1)-(A3) are satisfied and we can define Zt, St and the RDS ϕ as
before (cf. (1.8)).

thm:main Theorem 5.1. For s1 ≤ s2 < t, ω ∈ Ω and x, y ∈ H we have:

||S(t, s1, ω)x− S(t, s2, ω)y||2H ≤
{
||S(s2, s1, ω)x− y||1−pH + ηλ

p+1
2

1 (p− 1)(t− s2)
}− 2

p−1

≤
{
ηλ

p+1
2

1 (p− 1)(t− s2)
}− 2

p−1

.

In particular for each t ∈ R, lim
s→−∞

S(t, s, ω)x = ηt(ω) exists independently of x and uniformly

in x, ω.

Proof. Let s1 ≤ s2 < t. Then for all s2 ≤ s ≤ t

S(t, s1, ω)x−S(t, s2, ω)y = S(s, s1, ω)x−S(s, s2, ω)y+

∫ t

s

A(S(r, s1, ω)x)−A(S(r, s2, ω)y)dr.
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By Itô’s-Formula and since ||u||p+1
p+1 ≥ λ

p+1
2

1 ||u||p+1
H , for all s2 ≤ s ≤ t:

||S(t, s1, ω)x− S(t, s2, ω)y||2H
= ||S(s, s1, ω)x− S(s, s2, ω)y||2H

+ 2

∫ t

s
V ∗ 〈A(S(r, s1, ω)x)− A(S(r, s2, ω)y), S(r, s1, ω)x− S(r, s2, ω)y〉

V
dr

= ||S(s, s1, ω)x− S(s, s2, ω)y||2Heqn:diff2eqn:diff2 (5.18)

− 2

∫ t

s

〈Φ(S(r, s1, ω)x)− Φ(S(r, s2, ω)y), S(r, s1, ω)x− S(r, s2, ω)y〉 dr

≤ ||S(s, s1, ω)x− S(s, s2, ω)y||2H − 2η

∫ t

s

||S(r, s1, ω)x− S(r, s2, ω)y||p+1
p+1dr

≤ ||S(s, s1, ω)x− S(s, s2, ω)y||2H − η̃
∫ t

s

||S(r, s1, ω)x− S(r, s2, ω)y||p+1
H dr,

where for notational convenience we have set η̃ := 2ηλ
p+1
2

1 . Thus formally ||S(t, s1, ω)x −
S(t, s2, ω)y||2H is a subsolution of the ordinary differential equation

h′(t) = −η̃h(t)
p+1
2 , ∀t ≥ s2def:odedef:ode (5.19)

h(s2) = ||S(s2, s1, ω)x− y||2H .

Let

hε(t) =

{
(||S(s2, s1, ω)x− y||H + ε)1−p +

η̃

2
(p− 1)(t− s2)

}− 2
p−1

, t ≥ s2.

hε is a solution of (5.19) with hε(s2) = (||S(s2, s1, x)−y||H+ε)2, which suggests ||S(t, s1, ω)x−
S(t, s2, ω)y||2H ≤ hε(t). This will be proved next.

Let Φε(t) := hε(t)− ||S(t, s1, ω)x−S(t, s2, ω)y||2H and τε = inf {t ≥ s2| 0 ≥ Φε(t)}. Using
0 < Φε(s2) and continuity of Φε we realize τε > s2. Further note that by definition we have
hε(t) ≥ ||S(t, s1, ω)x− S(t, s2, ω)x||2H on [s2, τε] and that

hε(t) ≤ (||S(s2, s1, ω)x− y||H + ε)2 =: cε.

Assume τε <∞. Then Φε(τε) ≤ 0 and for all s2 ≤ s ≤ t ≤ τε, by the mean value theorem
and (5.18):

Φε(t) = hε(t)− ||S(t, s1, ω)x− S(t, s2, ω)y||2H

≥ Φε(s)− η̃
∫ t

s

(hε(r)
p+1
2 −

(
||S(r, s1, ω)x− S(r, s2, ω)||2H

) p+1
2 )dr

≥ Φε(s)− η̃
(
p+ 1

2

)
c
p−1
2

ε

∫ t

s

Φε(r)dr.

19



Using the Gronwall Lemma we obtain

Φε(τε) ≥ Φε(s2)e−η̃(
p+1
2 )c

p−1
2

ε (τε−s2) > 0.

This contradiction proves τε =∞ and since this is true for all ε > 0 we conclude:

||S(t, s1, ω)x− S(t, s2, ω)y||2H ≤
{

(||S(s2, s1, ω)x− y||H)1−p +
η̃

2
(p− 1)(t− s2)

}− 2
p−1

≤ ||S(s2, s1, ω)x− y||2H ∧
{
η̃

2
(p− 1)(t− s2)

}− 2
p−1

≤
{
η̃

2
(p− 1)(t− s2)

}− 2
p−1

,

for each t > s2.

Theorem 5.2. The random dynamical system given by ϕ(t, ω)x = S(t, 0, ω)x has a compact
global attractor A(ω) consisting of one point

A(ω) = {η0(ω)}.

Proof. Since η0(ω) is measurable, A(ω) is a random compact set. We need to check invariance
and attraction for A(ω). Let t > 0. Then for any x ∈ H, by continuity of x 7→ S(t, 0, ω)x
and (1.8’), (1.8”)

ϕ(t, ω)A(ω) =

{
S(t, 0, ω) lim

s→−∞
S(0, s, ω)x

}
=

{
lim

s→−∞
S(t, s, ω)x

}
=

{
lim

s→−∞
S(0, s− t, θtω)x

}
= {η0(θtω)} = A(θtω).

Since the convergence in Theorem 5.1 is uniform with respect to x ∈ H, for any bounded
set B ⊆ H we have (again using (1.8”))

d(ϕ(t, θ−tω)B,A(ω)) = sup
x∈B
||S(t, 0, θ−tω)x− η0(ω)||H

= sup
x∈B
||S(0,−t, ω)x− η0(ω)||H → 0,

for t→∞. Hence A(ω) attracts all deterministic bounded sets.
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It is easy to see that the convergence lim
s→−∞

S(t, s, ω)x = ηt(ω) implies the existence

and uniqueness of an invariant measure for the associated Markovian semigroup, defined by
Ptϕ(x) := E[ϕ(S(t, 0, ·)x)] (cf. [16]). This invariant measure is given by µ = P ◦ η−1

0 . In fact
we can deduce much more. Since evidently η0 is measurable with respect to F− by [12] µω :=
lim
t→∞

ϕ(t, θ−tω)µ exists P-a.s. and defines an invariant measure for the random dynamical

system ϕ (for more details on invariant random measures cf. [14]). Moreover by [11, Theorem
2.12] every invariant measure for ϕ is supported by A = {η0}, i.e. µω({η0(ω)}) = 1 for P-a.a.
ω. Hence we have proved the following

Corollary 5.3. There exists a unique invariant random measure µ· ∈ PΩ(H) for the random
dynamical system ϕ and it is given by

µω = δη0(ω), P-a.s. .

6 Concluding remarks on computational methods

The porous medium equation considered here is a model case for a general type of equations
that include more details of the permeable medium and that has important applications to
the simulation of oil reservoirs. We refer to [1] for such an application and for an up-to-
date finite element method that can be used for solving the deterministic version of (1.1).
One of the major difficulties here is to account for the spatial variations (represented by the
functions ϕj in the operator Q) by introducing different scales in the finite element subspace.
For the quasilinear steady state equation suitable finite element approximations have been
set up, cf. [27],[26] and the references therein.

It seems, however, that computational methods for random attractors in infinite dimen-
sional systems (except for the case of a singleton) are well beyond today’s computational
capabilities.

There are a few approaches to approximate random attractors in stochastic ordinary dif-
ferential equations [21],[20]. These are based on the subdivision and box covering techniques
developed over the last years by Dellnitz and coworkers (see [17] for a survey). However,
these methods are essentially still limited to lower dimensions. In order to proceed to high-
dimensional or even infinite-dimensional cases (see e.g. [33]) one will need reduction princi-
ples as they are well established in the theory of inertial manifolds for deterministic PDEs.
The corresponding properties of squeezing and flattening (cf. [19],[25]) have been generalized
to random dynamical systems in [23]. It is also shown in [23] that squeezing is a stronger
condition than flattening, but that the latter one is sufficient to establish the existence of
a compact random attractor. The determining modes occuring in these properties should
form the basis of a reduced space to which numerical methods apply.
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