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Abstract

The paper is concerned with the problem of non-existence of global
solutions for a class of stochastic reaction-diffusion equations of Itô
type. Under some sufficient conditions on the initial state, the
nonlinear term and the multiplicative noise, it is proven that, in
a bounded domain D ⊂ Rd, there exist positive solutions whose
mean Lp−norm will blow up in finite time for p ≥ 1, while, if D
= Rd, the previous result holds in any compact subset of Rd. Two
examples are given to illustrate some application of the theorems.
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1 Introduction

Consider the initial-boundary problem for a reaction-diffusion equation in
domain D ⊂ Rd: 




∂u

∂t
= ∇2u + f(u), t > 0,

u(x, 0) = g(x), x ∈ D,

u(x, t) = 0, x ∈ ∂D,

(1.1)

where ∇2 is the Laplacian operator, ∂D denotes the boundary of D, and
the functions f and g are given such that the problem (1.1) has a unique
local solution. In 1963 it was first shown by S. Kaplan [10] that, for a
certain class of nonlinear functions f(u), the solution of equation (1.1)
becomes infinite or explodes at a finite time, provided that the initial
state g(x) and the nonlinear function f(u) satisfies appropriate conditions.
His result was later extended by Fujita [6] and many others. Since then
it has become known that solutions to more general nonlinear parabolic
equations may develop singularities in finite time, see, e.g., the review
article [7] and the book [15], where an extensive references can be found.
Physically this phenomenon is manifested as the explosion in combustion,
reaction diffusion and branching diffusion problems. It is therefore of
interest to examine the effect of a random perturbation to equation (1.1)
on the existence of an explosive solution. This consideration has led us
to investigate the question of nonexistence of a global solution to the
following type of parabolic Itô equation:





∂u

∂t
= ∇2u + f(u) + σ(u)∂tW (x, t), t > 0,

u(x, 0) = g(x), x ∈ D,

u(x, t) = 0, x ∈ ∂D,

(1.2)

with a multiplicative noise, where σ is a given function and W (x, t) is a
Wiener random field. To study this type of problems, it is necessary to
employ some analytical and probabilistic tools from the theory of stochas-
tic partial differential equations (SPDEs) (see, e.g., [1], [5], among many
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papers on this subject). In contrast, for stochastic ordinary differential
equations, the general results on the explosion and non-explosion of so-
lutions have been well established, (see, e.g., [9]). However, so far, very
little is known about such results for SPDEs due to some difficulty in
infinite-dimensional stochastic analysis. Therefore one can only hope to
resolve such questions for some special cases. Recently we studied the
existence of explosive solutions for a class of nonlinear stochastic wave
equations. Based on a stochastic energy method, we were able to obtain
some sufficient conditions for the blow-up of the second moments of so-
lutions in the L2−norm [2]. In the paper [3] we considered the positive
(nonnegative) solutions of nonlinear parabolic Itô equations such as (1.2).
By extending Kaplan’s approach to the deterministic case [10], we have
shown that, if certain sufficient conditions for the explosion of the deter-
ministic case (σ ≡ 0) are satisfied and σ(u) is bounded in mean-square,
then a positive solution can blow up in finite time, in the sense of mean
Lp−norm defined by (2.10) for any p ≥ 1 [3]. In the afore-mentioned
paper, the nonlinear reaction function f(u) plays a dominant role and the
random perturbation term has only a secondary effect on the blow-up be-
havior. In a diametrically different case, Mueller [12] and, later, Mueller
and Sowers [13] investigated the problem of a noise-induced explosion for a
special case of equation (1.2) in one dimension, where f(u) ≡ 0, σ(u) = uγ

with γ > 0 and W (x, t) is a space-time white noise. It was shown that
the solution will explode in finite time with positive probability for some
γ > 3/2. In the present paper, to account for the possibility of a noise
induced explosion, we will generalize the previous result in [3] by finding
a new set of sufficient conditions for the solution to blow up in the mean
Lp−norm. However this does not imply the path-wise explosion with a
positive probability, which is an interesting open problem currently under
investigation.

The paper is organized as follows. We shall first recall some basic
results for nonlinear stochastic parabolic equations in Section 2. Here we
also present a theorem (Theorem 2.1) on the positive solutions to a class
of nonlinear stochastic parabolic equations. Since it will play a key role
in the subsequent analysis, a sketch of proof will be provided. Section 3
contains the main results of the paper as presented in Theorems 3.1 and
3.2. Under some sufficient conditions, Theorem 3.1 shows the existence of
positive solutions in a bounded domain that will explode within a finite
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time in the mean Lp−norm, while, in the case D = Rd, Theorem 3.2
affirms a similar result in any compact subset of Rd. Finally in Section
4, we apply the theorems to two special problems to obtain some explicit
conditions for explosive solutions.

2 Preliminaries

Let D be a domain in Rd, which has a smooth boundary ∂D if it is
bounded. We set H = L2(D) with the inner product and norm are denoted
by (., .) and ‖.‖ respectively. Let H1 = H1(D) be the L2-Sobolev space
of first order and denote by H1

0 the closure in H1 of the space of C1-
functions with compact support in D.

Let W (x, t), for x ∈ Rd, t ≥ 0, be a continuous Wiener random field
defined in a complete probability space (Ω,F ,P) with a filtration Ft (p.38,
[1]). It has mean E W (x, t) = 0 and covariance function q(x, y) defined by

E W (x, t)W (y, s) = (t ∧ s)q(x, y), x, y ∈ R,

where (t ∧ s) = min{t, s} for 0 ≤ t, s ≤ T .
Consider the initial-boundary value problem for the parabolic Itô equa-

tion




∂u

∂t
= Au + f(u, x, t) + σ(u,∇u, x, t)∂tW (x, t),

u(x, 0) = g(x), x ∈ D,

u(x, t)|∂D = 0, t ∈ (0, T ),

(2.3)

where A =
d∑

i,j=1

∂

∂xi

[aij(x)
∂

∂xj

] is a symmetric, uniformly elliptic operator

with smooth coefficients (say, in C3(D) ), that is, there exists a constant
a0 > 0 such that

b(x, ξ) :=
d∑

i,j=1

aij(x)ξiξj ≥ a0|ξ|2, (2.4)
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for all x ∈ D and ξ = (ξ1, · · · , ξd) ∈ R. Certain conditions will be imposed
on the functions f, σ, g later.

Now, to regard the equation (2.3) with a homogeneous boundary condi-
tion as an Itô equation in the Hilbert space H, we set ut = u(·, t), Ft(u) =
f(u, ·, t), Σt(u) = σ(u,∇u, ·, t) and so on, and rewrite it as





dut = [A ut + Ft(ut)] dt + Σt(ut) dWt, 0 < t < T,

u0 = g,

(2.5)

where A is now regarded as a linear operator from H1 into H−1 with
domain H1

0 ∩ H2, Ft : H → H is continuous and, for v ∈ H1, Σt(v) :
C(D) → H can be defined as a multiplication operator. In this paper we
assume that the covariance function q(x, y) is bounded, continuous and
there is q0 > 0 such that

sup
x,y∈D

|q(x, y)| ≤ q0, and

∫

Rd

q(x, x) dx < ∞. (2.6)

Then we can rewrite equation (2.5) as

ut = g +

∫ t

0

[Aus + Fs(us)] ds +

∫ t

0

Σs(us) dWs, (2.7)

where the stochastic integral is well defined (see Theorem 2.4, [1]).
Under the usual conditions, such as the stochastic coercivity, Lipschitz

continuity and monotonicity conditions, the equation (2.7) is known to
have a unique global strong solution u ∈ C([0, T ]; H) ∩ L2((0, T ); H1

0 ) for
any T > 0 (Theorem 7.4, [1]). Moreover, for a continuous C2− functional
Φ on H, the Itô formula holds [14], [8]





Φ(ut) = Φ(u0) +

∫ t

0

[〈Aus, Φ
′(us)〉+ (Fs(us), Φ

′(us)] ds

+

∫ t

0

(Φ′(us), Σs(us) dWs) +
1

2

∫ t

0

Tr [Φ′′(us)Σ
?
s(us)QΣs(us)] ds,

(2.8)
where Φ′, Φ′′ denote the first and second Fréchet derivatives of Φ, Q is the
covariance operator with kernel q, the star means the conjugate and Tr is
the trace of an operator.
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On the other hand, if the nonlinear terms are only locally Lipschitz
continuous and the monotonicity condition is dropped, one can only as-
sert the existence of a unique local solution. In this case, by the con-
ventional definition, the solution ut in H is said to explode or blow up if
the probability Pr{τ < ∞} = 1, where τ is the explosion time defined
by τ = inf{t > 0 : ‖ut‖ = ∞} [9]. In this paper we shall introduce an
alternative definition which is closer to the deterministic case. For any
p ≥ 1, we let Lp = Lp(D) denote the usual Lp space of functions v on D
with norm ‖v‖p defined by

‖v‖p := {
∫

D
|v(x)|p dx}1/p. (2.9)

Then we say that the solution ut explodes in the mean Lp−norm if there
exists a constant Tp > 0 such that the left limit

lim
t→T−p

E ‖ut‖p = lim
t→T−p

E {
∫

D
|u(x, t)|p dx}1/p = ∞, (2.10)

where Tp is called an explosion time. Clearly, by the Hölder inequality,
the limit (2.10) implies that

lim
t→T−p

E ‖ut‖p
p = ∞.

To consider positive (nonnegative) solutions, we suppose that the parabolic
Itô equation (2.3) has a unique strong solution u(·, t) for t ≤ T . In addi-
tion, assume that the following conditions hold:

(P1) There exists a constant δ ≥ 0 such that

1

2
q(x, x)σ2(r, ξ, x, t)−

d∑
i,j=1

aij(x)ξiξj ≤ δ r2,

for all r ∈ R, x ∈ D, ξ ∈ Rd and t ∈ [0, T ].

(P2) The function f(r, x, t) is continuous on R × D ×[0, T ] such that
f(r, x, t) ≥ 0 for r ≥ 0 and x ∈ D, t ∈ [0, T ].

(P3) The initial datum g(x) on D is positive and continuous.
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Then it can be shown that the solution of equation (2.3) is positive.
Notice that, due to the lack of a maximum principle for parabolic equations
as in the deterministic case [11], the proof will be quite different. In fact
we shall make use of a regularization technique and the Itô formula (2.8).
The following positivity theorem was proved in (Theorem 3.3, [3]). For
the article to be more self-contained, the proof will be sketched here.

Theorem 2.1 Suppose that the conditions (P1), (P2) and (P3) hold
true. Then the solution of the initial-boundary problem for the parabolic
Itô equation (2.3) remains positive so that u(x, t) ≥ 0, a.s. for almost
every x ∈ D, ∀ t ∈ [0, T ].

Proof Let η(r) = r− denote the negative part of r for r ∈ R, or
η(r) = 0, if r ≥ 0 and η(r) = −r, if r < 0. Set k(r) = η2(r) so that
k(r) = 0 for r ≥ 0 and k(r) = r2 for r < 0. It can be shown that,
for ε > 0, there is a C2−regularization kε(r) of k(r) which satisfies the
conditions: k′ε(r) = 0 for r ≥ 0; k′ε(r) ≤ 0 and k′′ε (r) ≥ 0 for any r ∈ R.
Moreover, as ε → 0, we have

kε(r) → k(r), k
′
ε(r) → −2 η(r) and k

′′
ε (r) → 2θ(r), (2.11)

for any r ∈ R, where θ(r) = 0 for r ≥ 0, θ(r) = 1 for r < 0.
Let ut = u(·, t) denote the solution of the parabolic Itô equation (2.3).

Define

Φε(ut) = (1, kε(ut)) =

∫

D
kε(u(x, t))dx. (2.12)

Then, by applying the Itô formula, we can obtain the following formula





Φε(ut) = Φε(g)−
∫ t

0

∫

D
k′′ε (u(x, s)) b(x,∇u(x, s)) dx ds

+

∫ t

0

∫

D
k′ε(u(x, s))f(u, x, s) dx ds

+

∫ t

0

∫

∂D
k′ε(h(x))

∂

∂ν
u(x, s) dS ds

+
1

2

∫ t

0

∫

D
k′′ε (u(x, s))q(x, x) σ2(u,∇u, x, s) dx ds

+

∫ t

0

∫

D
k′ε(u(x, s))σ(u,∇u, x, s) dW (x, s)dx,

(2.13)
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where b(x, ξ) is defined by (2.4), dS is the element of surface area on ∂D,
and ∂

∂ν
denotes the differentiation with respect to the conormal vector field

ν = (ν1, · · · , νd) with

νi(x) :=
d∑

j=1

aij(x)nj, (2.14)

and n = (n1, · · · , nd) being the unit outward normal vector to the bound-
ary ∂D.

After taking an expectation over equation (2.13), we get




E Φε(ut) = Φε(g) + E

∫ t

0

∫

D
{ k′′ε (u(x, s)) [

1

2
q(x, x) σ2(u,∇u, x, s)

−b(x,∇u(x, s))] + k′ε(u(x, s))f(u, x, s) } dx ds

+ E

∫ t

0

∫

∂D
k′ε(h(x))

∂

∂ν
u(x, s) dS ds.

(2.15)
By making use of condition (P1) and the properties of kε we can deduce

from equation (2.15) that




E Φε(ut) ≤ Φε(g) + δ E

∫ t

0

∫

D
k′′ε (u(x, s)) |u(x, s)|2 dx ds

+ E

∫ t

0

∫

D
k′ε(u(x, s))f(u, x, s) dx ds

+ E

∫ t

0

∫

∂D
k′ε(h(x))

∂

∂ν
u(x, s) dS ds.

(2.16)

Note that lim
ε→0

E Φε(ut) = E ‖η(ut))‖2. By taking the limits termwise

as ε → 0 and making use of (2.11), the equation (2.16) yields




E

∫

D
|η(u(x, t))|2 dx ≤

∫

D
|η(g(x))|2 dx

+ 2 δ E

∫ t

0

∫

D
θ(u(x, s)) |u(x, s)|2 dx ds

− 2 E

∫ t

0

∫

D
η(u(x, s))f(u, x, s) dx ds

− 2 E

∫ t

0

∫

∂D
η(h(x))

∂

∂ν
u(x, s) dS ds.

(2.17)
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By definition of η and conditions (P2) and (P3), we have η(g) = η(h) = 0,
θ(u)u2 = η2(u) and η(u)f(u, ξ, s) ≥ 0 so that equation (2.17) can be
reduced simply to

E ‖η(ut))‖2 ≤ 2δ

∫ t

0

E ‖η(us))‖2 ds,

which, by means of the Gronwall inequality, implies that

E ‖η(ut))‖2 = E

∫

D
|η(u(x, t))|2 dx = 0 ∀ t ∈ [0, T ].

It follows that η(u(x, t)) = u−(x, t) = 0 a.s. for a.e. x ∈ R and t ∈ [0, T ].
The theorem is thus proved. 2

Remark: The above theorem shows that, under appropriate condi-
tions, a global solution is positive. This is also true for a local solution
ut before the explosion occurs. The proof can be carried out similarly as
before by localization, that is, replacing t in the integrals by τt = (t ∧ τ),
where τ is a stopping time.

3 Existence of Explosive Solutions

Now we consider the unbounded solutions to the stochastic reaction-
diffusion equation:





∂u

∂t
= Au + f(u, x, t) + σ(u, x, t)∂tW (x, t),

u(x, 0) = g(x), x ∈ D,

u(x, t)|∂D = 0, t ∈ (0, T ),

(3.18)

which is a special case of equation (2.3), where σ is independent of the
gradient ∇u. Before proceeding to the key theorems, we consider the
eigenvalue problem for the elliptic equation:




Av = −λv in D,

v = 0 on ∂D.

(3.19)
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It is well known that all the eigenvalues are strictly positive, increasing,
and the eigenfunction φ corresponding to the smallest eigenvalue λ1 does
not change sign in the domain D (see pp.451-455, [4]). Therefore we can
normalize it in such a way that

φ(x) ≥ 0,

∫

D
φ(x) dx = 1. (3.20)

To prove the main theorems, we impose the following Conditions N on
the nonlinear function f for the reaction rate:

(N1) There exists a constant r1 > 0 and a continuous function F (r) such
that F is convex, positive and strictly increasing for r ≥ r1 and
satisfy

f(r, x, t) ≥ F (r),

for any x ∈ D, t ∈ [0,∞).

(N2) There exists a constant M1 > r1 such that F (r) > λ1 r for r ≥ M1.

(N3) The positive initial datum satisfies the condition

(ϕ, u0) =

∫

D
ϕ(x)g(x) dx > M1.

(N4) The following integral is convergent so that

∫ ∞

M1

dr

F (r)− λ1r
dr < ∞.

Alternatively we impose the following Conditions S on the noise term:

(S1) The correlation function q(x, y) is continuous and positive for x, y ∈
D such that ∫

D

∫

D
q(x, y)v(x)v(y)dxdy ≥ q1

∫

D
v2(x)dx

for any positive v ∈ H and for some q1 > 0.

10



(S2) There exist a constant r2 > 0, and continuous functions σ0(r) and
G(r) such that they are both convex, positive and strictly increasing
for r ≥ r2 and satisfy

σ(r, x, t) ≥ σ0(r) and σ2
0(r) ≥ 2G(r2),

for r ≥ r2, x ∈ D, t ∈ [0,∞).

(S3) There exists a constant M2 > r2 such that q1G(r) > λ1 r, for r > M2.

(S4) The positive initial datum satisfies the condition

(ϕ, u0) =

∫

D
ϕ(x)g(x) dx > M2.

(S5) The following integral is convergent so that

∫ ∞

M2

dr

q1G(r)− λ1r
dr < ∞.

The following theorem is concerned with explosive solutions under
Conditions N or Conditions S, which will be called case N and case S,
respectively. It is an extension of Theorem 3.3 in [3] to include case S for
noise-induced explosion. Since the proof of case S is a generalization of
that for case N, for the sake of continuity and completeness, the proofs for
both cases will be given.

Theorem 3.1 Suppose the initial-boundary value problem (3.18) has
a unique local solution and the conditions (P1)–(P3) are satisfied. In
addition we assume that either the conditions (N1)–(N4) or the alternative
conditions (S1)–(S5) given above hold true. Then, for an integer p > 0,
there exists a constant Tp > 0 such that

lim
t→T−p

E ‖ut‖p = lim
t→T−p

E {
∫

D
|u(x, t)|p dx }1/p = ∞, (3.21)
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or the solution explodes in the mean Lp−norm as shown by (3.21), where
p ≥ 1 under Conditions N, while p ≥ 2 under Conditions S.

Proof Under conditions (P1)–(P3), by Theorem 2.1, the equation
(3.18) has a unique positive solution. We will prove the theorem by con-
tradiction. First we suppose conditions (N1)–(N4) are satisfied but the
conclusion (3.21) is false. Then there exist a global positive solution u and
a real number p ≥ 1 such that

sup
0≤t≤T

E {
∫

D
|u(x, t)|p dx }1/p < ∞, (3.22)

for any T > 0. To reach a contradiction, let φ be the eigenfunction as
given by (3.19) and define

û(t) :=

∫

D
u(x, t)φ(x) dx ≥ 0. (3.23)

Since φ is positive and normalized as in (3.20), it can be regarded as
the probability density function of a random variable ξ in D, indepen-
dent of Wt, and the above integral can be interpreted as an expectation
û(t) = Eξ{u(ξ, t)} with respect to this random variable. Since û is a linear
functional of u, we can deduce from (3.19) and (3.23) that





û(t) = (g, φ) +

∫ t

0

∫

D
[Au(x, t)]φ(x) dx ds

+

∫ t

0

∫

D
f(u, x, s) φ(x) dx ds

+

∫ t

0

∫

D
σ(u, x, s) φ(x) dW (x, s) dx.

(3.24)

Recall that A is self-adjoint. So we have 〈Au, φ〉 = (u,Aφ) = −λ1(u, φ).
After taking the expectation E{·} over equation (3.24) and changing the
order of the expectation and an integration by appealing to Fubini’s the-
orem, we obtain





E û(t) = (g, φ)− λ1

∫ t

0

E û(s) ds

+

∫ t

0

E

∫

D
f(u, x, s) φ(x) dx ds,

12



or, in the differential form,





dµ(t)

dt
= −λ1 µ(t) + E

∫

D
f(u, x, t) φ(x) dx,

µ(0) = µ0,

(3.25)

where we set µ(t) = E û(t) and µ0 = (g, φ). In view of condition (N1),
the equation (3.25) yields





dµ(t)

dt
≥ −λ1 µ(t) + E

∫

D
F (u(x, t)) φ(x) dx,

µ(0) = µ0.

(3.26)

By condition (N1), F (r) is convex and positive for r > r1 so that Jensen’s
inequality gives us





E

∫

D
F (u(x, t)) φ(x) dx = E Eξ F (u(ξ, t))

≥ F (E Eξ u(ξ, t)) = F (µ(t)).

(3.27)

By taking (3.26), (3.27) and conditions (N2)–(N3) into account, we find




dµ(t)

dt
≥ F (µ(t))− λ1 µ(t),

µ(0) = µ0 = (ϕ, g),

(3.28)

which implies, for µ0 > M1, F (µ(t))−λ1 µ(t) > 0 and µ(t) > µ0 for t > 0.
An integration of equation (3.28) yields

T ≤
∫ µ(T )

µ0

dr

F (r)− λ1r
≤

∫ ∞

M1

dr

F (r)− λ1r
. (3.29)

But, by condition (N4), the last integral is bounded. Hence the inequality
(3.29) cannot hold for a sufficiently large T . This contradiction shows that

µ(t) = E

∫

D
u(x, t)φ(x) dx must blow up at a time Te ≤

∫ ∞

µ0

dr

F (r)− λ1r
.
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Since φ is bounded and continuous on D, we apply Hölder’s inequality for
each p ≥ 1 to get

µ(t) ≤ Cp E {
∫

D
|u(x, t)|p dx}1/p,

where Cp = {
∫

D
|φ(x)|q dx}1/q with q = p/(p − 1). Therefore we can

conclude that the positive solution explodes at some time Tp ≤ Te in the
mean Lp-norm for each p ≥ 1, as asserted by equation (3.21).

Now we suppose that the alternative conditions (S1)-(S5) hold true
but the assertion (3.21) is false. Then the solution u exists and, for some
p ≥ 2, E ‖ut‖p < ∞ for any T > 0.

Let û(t) = (ϕ, ut) as defined as before. By applying Itô’s formula to
û2(t) and making use of (3.24), we can obtain




û2(t) = (g, φ)2 − 2λ1

∫ t

0

∫

D
û2(s) ds + 2

∫ t

0

∫

D
û(s)f(u, x, s) φ(x) dx ds

+2

∫ t

0

∫

D
û(s)σ(u, x, s) φ(x) dW (x, s) dx

+

∫ t

0

∫

D

∫

D
q(x, y)φ(x)φ(y)σ(u, x, s) σ(u, y, s) dxdyds.

(3.30)
Let η(t) = Eû2(t). By taking an expectation over equation (3.30), it

yields





η(t) = (g, φ)2 − 2λ1

∫ t

0

η(s) ds + 2 E

∫ t

0

∫

D
û(s)f(u, x, s) φ(x) dx ds

+E

∫ t

0

∫

D

∫

D
q(x, y)φ(x)φ(y)σ(u, x, s) σ(u, y, s) dxdyds.

(3.31)
or, in the differential form,





dη(t) = [−2λ1η(t) + 2 E û(t)

∫

D
f(u, x, t) φ(x) dx

+E

∫

D

∫

D
q(x, y)φ(x)φ(y)σ(u, x, t) σ(u, y, t) dxdy ] dt,

η(0) = η0 = (g, φ)2.

(3.32)

14



Making use of conditions (S1) and (S2), the Jensen inequality as well as
the Cauchy-Schwarz inequality, we can get





∫

D

∫

D
q(x, y)φ(x)φ(y)σ(u, x, t) σ(u, y, t) dxdy

≥ q1

∫
D φ2(x)σ2

0(u) dx ≥ q1[
∫
D φ(x)σ0(u) dx]2

≥ q1 σ2
0(û(t)) ≥ 2 q1 G(û2(t)).

(3.33)

In view of (3.33) and the fact that the second term on the right-hand
side of equation (3.32) is positive, we can deduce from (3.32) that





dη(t) ≥ [−2λ1η(t) + 2q1 E G(û2(t))]dt

≥ [−2λ1η(t) + 2q1 G(ηt)]dt,

(3.34)

where the Jensen inequality was used one more time. Similar to the pre-
vious case (3.29), it follows from (3.34) that, for η0 > M2,

T ≤ 1

2

∫ η(T )

η0

dr

q1G(r)− λ1r
≤

∫ ∞

M2

dr

q1G(r)− λ1r
< ∞,

where the integrals are well defined as ensured by conditions (S3) and
(S5). Again this shows that T cannot be arbitrarily large. Hence the
mean-square ηt = E (ϕ, ut)

2 must blow up at some finite time Te > 0. It
follows from the Hölder inequality that the assertion (3.21) must hold for
any p ≥ 2. 2

Now we consider the Cauchy problem for equation (2.3) in an un-
bounded domain D = Rd, where the boundary condition is omitted. Let
B(R) = {x ∈ Rd : |x| < R} be an open ball of radius R in Rd . In this
case Theorem 3.1 still holds in the mean Lp−norm on B(R) for any R > 0
as indicated in the following theorem.
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Theorem 3.2 Suppose the conditions for Theorem 3.1 hold with D
= Rd. Then the solution u of the Cauchy problem for equation (3.18)
explodes in the mean Lp(B(R))−norm, or, for a positive p, there is a
constant Tp(R) > 0 such that

lim
t→T−p (R)

E {
∫

B(R)

|u(x, t)|p dx }1/p = ∞, (3.35)

for any R > 0, where p ≥ 1 under Conditions N, while p ≥ 2 under
Conditions S.

Proof We will only sketch the proof under Conditions S. The proof
under Conditions N is similar.

Consider the eigenvalue problem (3.19) with D = B(R) and let φ be
the eigenfunction normalized as in (3.20). By restricting the solution u to

B(R), let û(t) =

∫

B(R)

u(x, t)φ(x) dx as defined by (3.23). Then, as in the

proof of Theorem 3.1, one can proceed to obtain equation (3.30) with an
additional boundary integral term. This is the case because u ≥ 0 on the
boundary ∂B(R). By Green’s identity, instead of 〈Au, φ〉 = −λ1û(t), one
would get

〈Aut, φ〉 = −λ1û(t) +

∫

∂B(R)

u(x, t)[−∂φ(x)

∂ν
] dS. (3.36)

Since the matrix [aij(x)] is uniformly positive definite, in view of equation
(2.4), ν · n = Σi,jaijninj ≥ 0. Hence the conormal ν(x) is an exterior
direction field. Due to the fact that φ > 0 in B(R) and φ = 0 on ∂B(R),

we have
∂φ(x)

∂ν
≤ 0. Therefore the extra term in (3.30):

2 û(t)

∫

∂B(R)

u(x, t)[−∂φ(x)

∂ν
] dS

is positive so that the differential inequality (3.34) remains valid and the
rest of proof can be completed as in Theorem 3.1. 2
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4 Examples

As the first example, let us consider the following problem in a spherical
domain D = B(R) in R3:





∂u

∂t
= ∇2u + |u|1+α + γ u ∂tW (x, t),

u(x, 0) = a0 e−β|x|,

u(x, t)||x|=R = 0,

(4.37)

where W (x, t) is a continuous Wiener random field with the covariance
function

q(x, y) = b0 exp {−ρ (x · y)}, for x, y ∈ R3. (4.38)

All of the above constants a0, b0, α, β, ρ, γ are strictly positive and

x · y =
3∑

i=1

xiyi. Obviously the functions f = |u|1+α, σ(t, x, u) = γ u and

g = a0 e−β|x| satisfy conditions (P1)–(P3). By Theorem 2.1, the solution
u of equation (4.37) is positive.

To determine sufficient conditions for explosion, consider the associated
eigenvalue problem for the Laplace equation in B(R). It is not hard to

find the smallest eigenvalue λ1 = (
π

R
)2 and the corresponding normalized

eigenfunction φ(x) =
C

|x| sin
π|x|
R

for |x| ≤ R and C =
1

4R2
. Let F (r) =

f(r) = r1+α with α > 0 so that condition (N1) holds for any r > 0. Let

M1 be any number greater than λ
1/α
1 = (

π

R
)2/α. For definiteness, take

M1 = (
2π

R
)2/α. Then, for r ≥ M1,

F (r)− λ1 r = r1+α − λ1 r > 0,

so that condition (N2) is met. By some simple calculations, we can show
that condition (N3) is satisfied if the initial amplitude a0 is large enough
such that

a0

R

∫ R

0

r exp{−βr} sin
πr

R
dr > (

2π

R
)2/α, (4.39)
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where the integral can be evaluated exactly but will not be given for

brevity. For any α > 0, the integral

∫ ∞

M1

dr

r1+α − λ1r
is convergent so

that condition (N4) holds. Therefore, by Theorem 3.1, the solution of the
equation (4.37) will blow up in finite time in the mean Lp−norm for any
p ≥ 1. In view of Theorem 3.2, this is also true for the corresponding
Cauchy problem in R3. Of course, in this case, the mean Lp−norm is
restricted to any ball B(R) ⊂ R3.

As the second example, we consider the following initial-boundary
value problem in a spherical domain as in the previous example:





∂u

∂t
= ∇2u + k u + γ u1+α ∂tW (x, t),

u(x, 0) = a0 e−β|x|,

u(x, t)||x|=R = 0,

(4.40)

where k and γ are constants, and the rest of parameters are the same as
in (4.37). Let the correlation function q(x, y) be given by (4.38) as before.
Then we have

q(x, y) ≥ q1 = b0 exp {−ρR2}
for all x, y ∈ B(R). Then, for any positive v ∈ H, we have

∫

D

∫

D
q(x, y)v(x)v(y)dxdy ≥ q1 [

∫

D
v(x)dx]2

so that the condition (S1) is met. Clearly σ(r, x, t) = σ0(r) = γ r1+α is
convex and so is G(r) for any r > 0, where 2 G(r2) = σ2

0(r) = γ2 (r2)1+α.
So the condition (S2) is easily verified. Condition (S3) requires that

1

2
q1 γ2 r1+α − λ1r > 0,

which holds for r > M2 = (
4λ1

q1γ2
)1/α. Similar to (4.39), condition (S4) is

satisfied if the initial amplitude a0 is large enough such that

a0

R

∫ R

0

r exp{−βr} sin
πr

R
dr > (

4π2

b0γ2R2
)1/α exp {−ρR2/α}. (4.41)
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For any α > 0, the integral in condition (S5) is convergent so that, by
Theorem 3.1, the mean Lp−norm of the solution will blow up in finite
time for any p ≥ 2. For D = R3, by Theorem 3.2, this is also true for the
corresponding Cauchy problem, for which the mean Lp−norm is restricted
to any ball B(R) ⊂ R3.
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