WEAK SOLUTIONS TO STOCHASTIC WAVE EQUATIONS WITH
VALUES IN RIEMANNIAN MANIFOLDS

ZDZISLAW BRZEZNIAK AND MARTIN ONDREJAT

ABSTRACT. Let M be a compact Riemannian manifold. We prove existence of a global
weak solution of the stochastic wave equation D;0yu = D, 0,u + (X, + Ao(u)dwu +
A1 (v)du) W where X is a continuous tangent vector field on M, Ao, A; are continu-
ous vector bundles homomorphisms from T'M to TM and W is a spatially homogeneous
Wiener process on R with finite spectral measure. A new general method of constructing
weak solutions of SPDEs that does not rely on martingale representation theorem is used.

1. INTRODUCTION

Wave equations subject to random excitations have been intensively studied in the last
forty years for their applications in physics, relativistic quantum mechanics or oceanog-
raphy, see for instance [5, 6, 8, 9, 12, 13, 27, 28, 29, 34, 36, 37, 11, 23, 24, 30, 38, 39]
and references therein. The mathematical research has mostly considered stochastic wave
equations in Euclidean spaces. However many physical theories and models in modern
physics such as harmonic gauges in general relativity, non-linear o-models in particle sys-
tems, electro-vacuum Einstein equations or Yang-Mills field theory require the target space
of the solutions to be a Riemannian manifold ([19, 44]). One then usually speaks about
geometric wave equations (GWE).

Let us briefly outline the historical development of the deterministic theory of geometric
wave equations, about which we refer the reader to nice surveys in [44] and [51]. The
existence and the uniqueness of global solutions is known to hold for wave equations with
an arbitrary target manifold provided that the Minkowski space of the equation is either
R¥! or R™2 see [19, 20, 45, 53] or [10, 31]. In the case of R the global solutions are
known to exist in the weak [53], respectively the strong form [19, 20, 45, 26] depending
on the regularity of the initial conditions. In the case of R'*2, the existence of global
weak solutions has been established in [10] and [31]. The case of R for d > 3 is more
interesting since simple counterexamples were constructed to show that smooth solutions
may explode in finite time or that weak solutions can be non-unique, see for example
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[45, 7, 44]. Existence (without uniqueness) of global solutions on R*¢ was proved for
compact homogeneous spaces in [16].

Stochastic wave equations with values in Riemannian manifolds, also called stochastic
geometric wave equations (SGWE), see equation (1.2) below, were first studied by the
present authours in [1] and [3]. In those papers the existence and uniqueness of global strong
solutions were established for such equations defined on the one-dimensional Minkowski
space R in the case when the target manifold M is an arbitrary compact Riemannian
manifold, the (nonlinear) diffusion coefficient is a C'-class map from T?M to TM of a
sub-linear growth and the spectral measure of the Wiener process has finite moments up
to order 2. It was assumed that the initial data u(0),u,(0) are from the space HZ. x H} .
and it was proved that there exists an H?, x Hj. -valued continuous process (u, d;u) that
is a solution to the SGWE (1.2). Finally, natural definitions of an intrinsic and extrinsic
solution were proposed and and their equivalence was proved.

In a subsequent paper [2] the existence of solutions to the SGWE was investigated
when the target manifold M is of a special form. To be precise the existence (but not
uniqueness) of a global weak solution to (1.2) defined on a Minkowski space R'™¢ with
values in a compact Riemannian homogeneous space. In particular, the existence
of a global weak solution defined on a Minkowski space R with values in a sphere was
proved. It was assumed that the (nonlinear) diffusion coefficient is of the following form

d
X+ Ao(w)Ohu + Y A (u)dy,u (1.1)
j=1
with X and A;, j =0, --- ,d being respectively a continuous vector field on M and vector

bundles homomorphisms from T'M to T'M, and with W being a spatially homogeneous
Wiener process on R? whose spectral measure is finite. On the other hand it was possible
to weaken the assumptions on the spectral measure and on the space regularity of the
initial data. The price that had to be paid was the lower space-time regularity of the
solution (u,dyu) which is only an H}  x L7 -valued weakly continuous process.

The aim of the present paper is to generalise results from all three papers [1, 3, 2]. We
establish the existence of a solution under weak regularity assumptions on the data as in the
third paper [2] for a general target manifold M as in the first two papers [1, 3]. Another
generalisation of the previous results is that the diffusion coefficient is time dependent
and the spectral measure of the spatially homogeneous Wiener process is assumed to be
only finite. The main result of the present paper Theorem 3.4 generalizes [2] in the one-
dimensional R'*! case since no restriction on the target manifold imposed. This can be
seen as an analogue of results from [53] for SGSE as far as the existence is concerned. One
should point out that although uniqueness of was also proved in [53], the length of the
present paper, relative distinction of both the problem and the methods have led us to
postpone the question of uniqueness to a separate paper.

Towards this end we assume that M is a compact Riemannian manifold and we consider
the following stochastic wave equation (SGWE)

D, 0yu = D,0,u + (X + Ao(w)dyu + Ay (u)dpu) W (1.2)
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with a random initial condition (u(0,z,w), du(0,z,w)) = (uo(w, x),vo(w,z)) € TM. We
assume that X is a continuous tangent vector field on M, \;, i = 0,--- ,d are continuous
vector bundles homomorphisms from T'M to T'M and W is a spatially homogeneous Wiener
process on R with finite spectral measure, see Section 2 for details. By D we denote the
connection on the pull-back bundle v~ !T'M induced by the Riemannian connection on M,
see for instance [44]. Note however that deep understanding of the covariant derivative
D is not necessary for reading this paper, see however [3], where an attempt was made
to present the theory in a self-contained way, in particular to introduce the “acceleration”
operators D;0; and D,0,.

The equation (1.2) is written in a formal way and it was showed in [1] that the two
rigorous definitions of a strong solution, intrinsic and extrinsic, are equivalent. The proof
relies on the use of the Nash embedding theorem [32] according to which M may be
embedded by a metric-preserving diffeomorphism into a certain euclidean space R” so that
M can be identified with its image in R™. We show that also in the setting of the the
present paper that a the definitions of a weak intrinsic and weak extrinsic solutions are
equivalent, see Theorem 3.2. Finally, we prove existence of a global weak solution of (1.2)
- our Theorem 3.4.

Finally, we remark that our proof of the main theorem is based on a new general method
of constructing weak solutions of SPDEs that does not rely on any kind of martingale
representation theorem and that might be of interest itself (it was succesfully used for the
first time in [2]).

Notation, Definitions and Conventions

e /R, respectively . denote the Schwartz space of real, respectively complex, valued
C*-class of rapidly decreasing functions on R,

o .74, respectively .7 denote the corresponding spaces of tempered distributions on
R?

o F(5)= S denotes the Fourier transform of a tempered distribution S,

o J>(H,X) denotes the space of Hilbert-Schmidt operators from a Hilbert space H
to a Hilbert space X,

e M is a d-dimensional compact submanifold in R”,

e T,M and N,M denote the tangent and the normal space respectively at p € M,

e T'M, NM denote the tangent and the normal bundle, respectively,

o A, T,M xT,M — N,M is the second fundamental form of the submanifold M in
R™ at pe M,

e For k € [0,00), HF™ x HF (TM) denotes the closed subset of the metric space
HITHR; RY) x HE (R; R") consisting of the elements (f, g) such that (f(z), g(x)) €
TM for a.e. x € R,

e T?(M) denotes a vector bundle over M whose fiber at p € M is T,m x T,m,

e X is a continuous vector field on M and, for any ¢ € {0,--- ,d}, \; is a continuous
vector bundles homomorphism from T'M to T'M, i.e. X\;(p), is a linear endomor-
phism on T, M for every p € M.
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e Y is a map from T?(M) to TM of the following form
Y(p,&m) = X(p) + Xo(p) + Ni(p)n, t ERy,x €Rpe M EmeT,M. (1.3)

e Whenever E is a vector class of functions defined on R, Eiomp, will denote the
subclass of those f € E which have compact support, for instance Leomp.

e A spectral measure on R is a positive symmetric Borel measure on R. A spectral
measure satisfying pu(R) < oo will be called a finite spectral measure.

e We use the standard convention (which anyhow follows from the definition) that
inf () = oo.

e By £ - n we shall often denote the Euclidean scalar product of vectors &, n in R™.

2. SPATIALLY HOMOGENEOUS WIENER PROCESS

Following [37] and [4] let us assume that p is a finite symmetric Borel measure on R and
let (Q,.7,F,P), (%:)>0 be a stochastic basis. A spatially homogeneous Wiener process
with spectral measure p can be introduced in two equivalent ways. The first one is to
consider a centered Gaussian random field (W(t,z) : ¢ > 0,2 € R) such that for every
rx e R, W(t,x):t >0)is an F-Wiener process and

E{W(s,x)W(t,y)} = min{s, t}I'(z — y), t,s >0, z,yeR (2.1)

where I' : R — R is the Fourier transform of the measure (27r)‘ép, ie.

[(z) = (2n)" / e u(d¢), x € R.

R

The second is to consider an .g-valued F-Wiener process satisfying the following condi-
tion, with s At := min {s,t},

E{(W(s),00)(W(t), 1)} = s ANt (Do, P1) L2()> t,s >0, 0,01 € Tk (2.2)

The equivalence between these two points of view is best seen from the following formula,
see for instance [37, p. 190],

(W), o) = /RW(t,x)go(x) de,  t>0, pe T (2.3)

Here however we will leave aside this question and use only the second approach.

The following result describes the reproducing kernel Hilbert space (RKHS) of a spatially
homogeneous Wiener process and some of its properties, see Proposition 1.2 in [37] and
Lemma 1 in [34].

Proposition 2.1. Let W be a spatially homogeneous Wiener process with a finite spectral

measure ju. Let H,, the reproducing kernel Hilbert space' of W. Then the following equality
holds

H, = {dp:vy e LA(R,p), (x) = ¥(-2)}, (2.4)
(Vopts V1) m, = (o, V1) L2y, Yot bip € H,. (2.5)

IMore precisely, H, , is the RKHS of the law of the .#}-valued gaussian random variable W (1).
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Moreover, H,, is continuously embedded in the space Cy(R) of real continuous and bounded
functions on R and there exists a constant ¢ € Ry such that

1
1€ = PEll g (h, 22®)) = cp(R)]2 [Pl 2@y,  h € Lg(R). (2.6)

2.1. Stochastic integration. If X and H are separable Hilbert spaces, the latter being
real, and W is an H-cylindrical F-Wiener process then the Ito integral fOT hdW can be
constructed as an X-valued random variable provided that h € N?(0,T; J>(H, X)), i.e. h
is an F-progressively measurable processes with values in J5(H, X) and

T
/o ||h(s)||2j2(H’X) ds < 0. (2.7)

See for instance [14] for details. Moreover, there exists an X-valued continuous F-local
martingale M = (M (t))¢cjo,r) such that for every ¢ € [0,77], P almost surely,

M) = /0 h(s) AV ().

With a slight abuse of notation such martingales will often be denoted by fg h(s) dW (s),
t>0.

We will often consider integrals, including Ito6 integrals, taking values in the local spaces,
for instance H{, (R), where [ > 0. We will thus write that integrals converge in H}, (R)
whenever they converge in the Hilbert spaces H'(—R, R) for every R > 0.

Remark 2.2. Tt is known that reproducing kernel Hilbert space of a spatially homogeneous
F-Wiener process W with spectral measure p is equal to H,,.

A proof of the following proposition is based on the Garsia-Rodemich-Rumsey lemma
[18] and can be found for instance in Lemma 4 in [36].
Proposition 2.3. Let p,r € (2,00) and v € (0, %) satisfy v + % + % < % and let K be a
separable Hilbert space. Then there exists a constant c, such that

. p t
[ otsyaw <CE ( / H¢<s>|\92w,mds) 30
0 C([0,t];K) 0

holds for every cylindrical Wiener process W on some real separable Hilbert space U and
every progressively measurable process 1 with paths in L] (Ry; Jo(U, K)).

loc

38

E

We assume that (X, d) is a separable Fréchet space, see paper [21] by Hamilton, sat-

ety (Tn)nZy and
(Tnm)1<n<m<oco such that for each n € N*, H" is a separable Hilbert space, 7, : X — X,

isfying the following properties. There exist sequences (X)), (X,)

and 7,,, : X,, — X,, are continuous linear surjections, 7, o 7,, = 7, forn < m, X, is a
dense subspace of X,,, and a family (¢, )n=1 defined by ¢, (z) = |7,(2)|x,, form a family of
semi-norms on X defining the topology on X. Deterministic calculus for functions taking
values in X is described in the above mentioned work by Hamilton. What concerns the
stochastic calculus, it is natural to generalise the Ito integral to the current setting.
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Let K be separable real Hilbert space and W is an K-cylindrical F-Wiener process.
We say that a process h belongs to N?(0,T; J2(K, X)), if and only if for each n € N,
7, © h is an F-progressively measurable J5(K, X, )-valued process. We say that h €
M0, T; Jo(K, X)) iff h € N?(0,T; Jo(K, X)) and for each n € N

T
E/ |7 © h(s)||2‘72(K’Xn) ds < . (2.8)
0

It is possible to prove that for each h € M?(0,T; J»(K, X)) there exists a unique X-valued
continuous process M such that n € N, 7, o M is an X,,-valued local martingale and, for
each ¢t € 0,77,

Tn o M(t) = /0 7 0 h(s) dW (s). (2.9)

Moreover, if h € M?(0,T; Jo(K, X)), then the process M is such that n € N, 7, o M is
an X,-valued martingale and,

T
Elm, o M(t)[%, = E/ |7 © h(s)||?72(K’Xn) ds. (2.10)
0

3. STATEMENTS OF THE MAIN RESULTS

Definition 3.1. Let W be a spatially homogeneous Wiener process with a finite spectral
measure [i.

An intrinsic solution to problem (1.2) is an F-adapted weakly continuous H} . x L3
valued process z = (u,v) such that

for every w € Q and every ¢ € L%, (R) the equality

comp
d

%W(',w)»@LQ(R) = (v(-,w), V) 2(r) (3.1)

(T'M)-

holds on R,
for every smooth vector field Z on M and every ¢ € H!  (R) the equality

comp

(o(t) - Z(u(?)), ) 2m) = (O)'Z(u<0))7¢>L2(R)_/O (Ovuls) - Z(u(s)), Do) 2wy ds

(v
t
— /0 (0zu(s) - (Vo,uZ)lu(s): ) 1) 5
t
+ /O<U(S)'(vU(S)Z>|U(S)’¢>L2(R) ds
t

+ /O ([Y (u(s), v(s), Ozuls)) - Z(u(s))] AW, 9) 12w (3.2)
holds P-IP almost surely, for everyt > 0.

An extrinsic solution to problem (1.2) is an F-adapted weakly continuous H}, x L} (TM)-
valued process z = (u,v) satisfying the condition (3.1) and, instead of (3.2), the following

one.
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For any ¢ € HL _(R) the equality

comp

(), ) 2@y = (V(0):9) 2wy — /0 (Ozu(s), Oz 12wy ds
_'_ /0 <Au(5) (U(S>7 U(5)> - AU(S) (853“(5)7 axu(s)) ’ (‘0>L2(]R) dS

t
+ /0 (Y(u(s),v(s), Ou(s)) AW, ) 12, (3.3)
holds P almost surely for every t > 0.

The next result is about the relationship between two different types of solution. Its
proof is postponed till section 8.

x L?

ine(TM)-valued process z is an

Theorem 3.2. An F-adapted weakly continuous H .

loc
intrinsic solution if and only if it is an extrinsic solution.

Hence the following definition is well posed.
Definition 3.3. An intrinsic or an extrinsic solution is called a solution.

Now we are ready to formulate the main result of our paper. Its proof will be preceded
by some auxiliary results presented in the forthcoming sections.

Theorem 3.4. Let © be a Borel probability measure on H., x L (TM) and let p be
a finite spectral measure on R. Then there exists a completely filtered probability space
(Q, .7, (F),P), a spatially homogeneous F-Wiener process W with spectral measure j1 and
an F-adapted process z with weakly continuous paths in H} . x L2 (TM) such that (z, W)

is a solution and © is the law of z(0). Morover, if ¢ > 0 and T > 0, then there ezists a
constant ¢ depending on q, T, X, Ao, A1 and u(R) such that

E sup [nTeTﬂ(S, Z(S)) S 3€tc {E [Ir,TeT,Qq(Oa Z(O))]}

s€0,t]

[NIES

(3.4)

holds for every r > 0 and t € [0,T) where I.p = 1j.() | and

|H1(—T,T)><L2(—T,T)§r

1 1 1 1
erq(t, u,v) = (1 + 5’“‘%2(—T+t,T—t) + §’axu|i2(—T+t,T—t) + §’U|%2(—T+t,T—t)) (3.5)

is defined for (u,v) € H. (R) x L} (R).

loc

Remark 3.5. er, is a local energy function and (3.5) is a uniform local energy estimation.

4. APPROXIMATION

Let us assume that (2,.%,F,P), where F = (.%;);>0 be a complete filtered probability
space. Let 29 = (ug,vp) be an (Fy)-measurable H., x L} (TM)-valued random variable

whose law is ©. Finally, let (37 : i, j € N) be a double sequence of i.i.d. standard F-Wiener
processes.
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4.1. Approximation of the initial condition. By Lemma A.2 we can find a sequence

26 = (ub,vf) (Fo)-simple HZ x H} (TM)-valued random variables such that
28 — 2 in HL (R) x L2 (R) on (4.1)
and, for some C; >0 and R >0 and k € N
|25 (R R 12(—R.R) < Crn(R? + | 20| F1 (—R—1,R41)x L2 (= R—1,R+1)) ON €2, (4.2)

Remark 4.1. Approximation of the initial data 2o by H?, x H._(TM)-valued random

variables in H. X L} -norm would be trivial and would follow from the density of H?_ x

loc
H. (TM)in H. xL? (T M) had we not required a sort of uniform approximation satisfying

condition (4.2) which is not trivial and needs a justification.

4.2. Approximation of the Wiener process. It is well known, see [1], that there ex-
ists a strong solution of stochastic geometric wave equations available driven by spatially
homogeneous Wiener processes with spectral measure having finite moments up to order
2. Since our assumptions on g are much weaker, i.e. we only assume that p is just a finite
measure, a ‘localization” argument has to be emplyed. For this purpose we introduce the
following sequence (1), of symmetric Borel measures on R

vi(A) = n(AN(B(0,k) \ B(0,k —1))),k e N, Ae BR), (4.3)
where B(0,k) :=={z € A: k—1<|z| <k} for k> 1 and B(0,0) := (). We also introduce
a corresponding sequence (H,, )7, of Hilbert spaces by

Hy = (v 0 € LER, w), 9(e) = $(~2)} (44)
endowed with the following scalar products
(ovk, Yrvi)m,, = (Y0, V1) 120

We write

N*, otherwise.

o {{1,--. (dim(H,,)}, if dim(H,,) < oo,

If k € N* then by {&; : j € Ji} we denote an orthonormal basis in H,,. For each k € N
we consider a cylindrical F-Wiener process W* on H,, of the following form

k

WHe) = B9%4(), ¢e€Fw  keN (4.5)

i=1 jeJ;

Note that W is a spatially homogeneous F-Wiener processes with spectral measure j, :=

k
> i1 Vie

The following results are simple and hence their proofs will be omitted.

Lemma 4.2. For every k € N.

/R (1+9) (dy) < oc. (4.6)

In particular, each measure py, k € N, satisfies the condition (2.3) from [1].
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Lemma 4.3. The system U {&j @ 7 € Ji} is an orthonormal basis in H,.

4.3. Approximation of the diffusion coefficient Y. Theorem 11.1 in [1] requires the
diffusion coefficient to be of C'-class and to satisfy the growth conditions (2.1)-(2.2) from
therein. In order to apply this result we have to approximate our Y in a suitable way. The
following result shows that this is possible.

Proposition 4.4. There exist the following objects.

(i) A sequence (X*), of smooth compactly supported functions Xk R = R,
(ii) a continuous compactly supported function X : R — R",

iii) sequences (\E)" and (N¥)°° . of smooth compactly supported L(R™, R™)-valued func-
0/ k=1 1) k=1

tions A\J, \F : R" — L(R™ R") o

(iv) continuous and compactly supported functions Ag, A1 : R" — R"*"

such that

o X*(p) € T,M for every k > 1 and p € M,
e X =X on M,
o \o(p), M(p) map T,M into itself for every p e M, k € N*,

.)\OZAOL)\1:>\1_O’I’LM, B
o Xk — X \F— N\, ¥ — A\ uniformly on R™.

In particular,

YE(p, &) = XH(p) + A€+ Nip)n,  peM, &neT,M (4.7)
satisfies the conditions (2.1) and (2.2) from [1] for every k € N and a map Y defined by
Y(g:&n) =X @)+ @+ (@, ¢.&neR” (4.8)

1s an extension of the map Y .

Proof. Let Up the neighbourhood of M introduced in Lemma A.1 and let P be the function
also introduced in that Lemma. We define a a vector field X on Up by

X(q) = X(P(q)), for q € Up.

Obviously, X is an extension of the vector field X. Next, by employing the partition of
unity, we can find a compactly supported continuous function X° : R™ — R" such that the
restriction of X° to M equals X.

Now, let b be a smooth symmetric densities on R” whose support is contained in a ball
of radius 1. We put b, = k"/2b(k-), k € N*. Let 7 : R* — L(R",R") be a C§° function
such that

mp is the orthogonal projection from R" to T,M, p € M.

Define next smooth compactly supported functions X* by
XF = 7(by * X°).

Then obviously, the restriction of X* to M is a smooth vector field for each k € N*.
Moreover, X* converges, as k — oo, uniformly on R", to X := 7(X°).
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Constructions of the approximation of the functions \g and \; are fully analogous. If j €
{0,1} then B,Z := X\;(p)m,Z, Z € R" defines a continuous L£(R", R")-valued function on M
which can be extended to a compactly supported continuous £(R"™, R™)-valued function on
R™, denoted again by B. We consider any smooth compactly supported £(R", R")-valued
functions B* such that B* converges uniformly to B on R" and then we set )\? :=mo B*

and 5\]- ‘=1moB. O

4.4. Solutions of the approximating problems. It has been shown in [1, Theorem
11.1], that for each k € N* there exists an F-adapted H?,. x H}. (T M)-valued continuous
process 2% = (u*, v*) such that

e every path of the process u* belongs to C* (R4, H.,(R)),

o %(t,w} = o*(t,w) in H. (R) for every (t,w) € R, x ,
o 2F(0) = 2¥ P-almost surely
and, for every ¢ > 0 and R > 0, the following equality is satisfied in L*((—R, R); R"), P

almost surely:
t
R (t) = b +/ (00" (s) — Auk(s)(vk(s),vk(s)) +Auk(s)(ﬁmuk(s),ﬁxuk(s))] ds
0

t
+ / Y*(u*(s),v"(s), Opu”(s)) dW*. (4.9)
0
Remark 4.5. By [1, Theorem 11.1] a strong solutions to problem (4.9) exists if the spectral
measure i, satisfies condition (4.6) and the diffusion coefficient Y* satisfies the growth
and smoothness conditions (2.1)-(2.2) from therein.

Remark 4.6. A process 2* = (uF,v*) satisfies the extrinsic equation (4.9) for every t > 0
P-P almost surely if and only if it satisfies the following intrinsic equation (4.10) for every
t > 0 P almost surely.

(W' (), Z(u"(t))p = <v’5,Z(uk(0))>ﬁ+/;(Y’“(U’“(S),v’“(S),axuk(S)),Z(U'“(S))h’édW'“

[ 0t (6.2 + (00, Vg Zlario )] s (410

whenever Z is a smooth vector field on M, see [1, Theorem 12.1].

In the following we will show that approximating processes (u*, v*) satisfy the following

local energy inequality, where the local energy functional er, has been defined in equality
(3.5).

Theorem 4.7 (Uniform Local Energy Inequality). Let ¢ > 0 and T > 0. Then there exists
a constant ¢, depending on q, T, X, Ao, A1 and u(R) such that for every r >0, t € [0,T)
and k € N

NI

E sup I}rer,(s, 2"(s)) < 3¢ {E[I}rer2,(0,2"(0))]}

s€[0,t]

(4.11)
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where

Iy = (4.12)

{Zo:|zk(0)|H1(7T,T)><L2(—T,T)§r} '

Remark 4.8. The local energy inequality does not hold for any nonlinear wave equation
unless, for instance, the drift nonlinearity f(u, Du) in the equation either depends only
on u and it is a gradient of a positive potential f(u) = VF(u), F' > 0, see for instance
[47, 49, 48], or it is orthogonal to the velocity, i.e. (f(u, Du),dyu) = 0 as it is so in our case.
Indeed, u is manifold valued, 0,u € T,,M and the second fundamental form A, € N, M.

Proof of Theorem 4.7. Let b be a smooth symmetric density on R with supports in (—1, 1).
Define a sequence (b;) by b; = /jb(-/j).
Let us fix £ € N. Define the following sequences of processes, j € N,
71 = (U, Vi) = 2Fxb;
a = bx [Auk (0", 0,uF) — A (vk,vk)} ,
Y& = bix [YRWF 05 0.0ME], el

Then, for every w € (), we have

lim sup |Z7(t) — (t)|H2(—T,T)xH1(—T,T) =0,
J—00 4e(0,T]

lim sup a7 (t) — [Aye () (Opu® (1), 05" (£)) = Ayr oy (V" (8), 0*(0)] |1 -y = 0.

I tel0,T]

Let us choose and fix ¢ > 0, R > 0 and 7" > 0 and let us denote the local energy function

er, by e.
Thus we infer that
lim e(-, Z7(-,w)) = e(-, 2 (-,w)) uniformly on [0, 7). (4.13)
=00

Moreover, since for r = 1 is such that U;supp (b;) C (—r,r), for every i, every s € [0,T)
and w € €2,

Him [y (5, 0)G 2 rparogy = V(0 (5,0), 0" (5,0), 0o (5, 0)Gil T2z

|y (87 w)gi’L2(—T+s,T—s) < ‘Y (uk(57 w)? Uk(‘S? w)? azuk(& w>>£i|i2(—T—r,T+r)7
Since by Proposition 2.1
Z ’Yk (uk> Ukv 8xuk)€l ’%2(—T—T,T—|—7‘) = Clk (R) ‘Yk (ukv Uk7 &,;uk) ’%2(—T—T,T+T) (4'14)
in view of the Lebesgue Dominated Convergence Theorem, we infer that for every ¢t € [0, 7)),
t

lim [ S Z] Z|y €%|L2( T+s,T—s) ds (415)

j—o0 0

— cu(R) / le(s, ()] [Y*(ub(s), 0¥(s), Dttt () 22y ds, om
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Finally, let us put
. q—1 . .
hji(s) = le(s,Z(s))] = <VJ(S)>y](5)§i>L2(—T+s7T—s)a

q—1

hl<3) = [e<37 Zk(‘g))]T <Uk<8)> Yk(uk(s)a Uk(s)v axuk(s))£i>L2(—T+s,T—s)
Then, since lim; .o hj; = h; on [0,T) x 2 and
[hji(s,w) = hi(s,w)|* < Cr(w)[Y*(uF(s), 0" (s), 0uu® () &il72( 1)

and equality (4.14) we infer, by the Lebesgue Dominated Convergence Theorem, that on
Q

?

t
lim / Z |hji(s) — hi(s)|> ds = 0, for every t € [0,T). (4.16)
0

j—00

Let us observe that since for every R € N the convolution operator b;* is Hibert-Schmidt
from the RKHS to H!(—R, R) by invoking Proposition 2.1 we infer that the following
equality holds in H! (R) for every t > 0 and every [ € N, IP almost surely,

loc
Uity = Uj(0)+/th(s)ds
Vi) — Vi(0)+ /0 [0, U%(s) + o (s)] ds + /0 y(s) dIVE.

Let us point out here that the stochastic integrals are convergent by Proposition 2.1.
Note the local energy function e = er,, is of C*?-class on [0, T)x H*(—R, R)x H'(—R, R)
and, for z = (u,v) € H*(—R, R) x H'(—R, R),

de(t,z) = =Sl Y (=T +)P+ T -1)P)
he{u,0zu,v}
de(t,2)r = qle(t, 2T (e )i+ (0.3%) 1)

q—2
0..e(t, z)(x1,72) = q—1)[e(t, z)] = ((uabul(—T—H,T—t) + (v, x%>L2(—T+t,T—t))
U

; x%>H1(7T+t,T7t) + (v, x§>L2(7T+t,Tft))
g-1
+ qle(t,z)] = (<xivx%>H1(fT+t,Tft) + <x%>x§>L2(fT+t,Tft))~

Therefore the It6 formula, see for instance [14, Theorem 4.17], is applicable.
Note also that by the by integration by parts

1% a—

ate(tu ZJ) + aze(tv Z]) ( 8 Uj + aj ) S q[e(tu Zj)]T<Uj + ajv Vj>L2(—T+t,T—t)
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and, for any ONB (§;) in H,, ,

00,2 (e, ) (e ) = Seta= Dl 20T P& rny

+ Z le(t, Z])] |y fz\m —T+t,T—t)
< ch[ e(t, Z])] ]y €Z’L2 —T44,T—t)

Applying finally the It6 formula yields that for every ¢ € [0,T)
t —1 .
e(t,Z'(t)) < e(0, Zj(o))Jr/ gle(s, Z7(s))] T (U7(s) + a7 (), V() 12( -1 a0 ds
0
t
+ Cq/[ s, 2% (s Z‘y §z|L2 _T4s7—s) 45
0

T / ale(s, 29 ()7 (V¥(8), 47 () W*) 2 prazsy (4.17)

P almost surely.
Note that by (4.13),(4.15),(4.16), in view of [35, Proposition 4.1}, we have

t

lim [ gle(s, 27(s)]T (VI(s), 47 (5) AW®) 277 (4.18)

Jj—0o0 0

- [ ' gle(s, #5(9))]

in probability.
Since v* € T,x M and A,x takes values in N, M, by letting j — oo in (4.17), we obtain
for every t € [0,7T), P almost surely,

q—1

T (F(s), YF(uF(s), 0" (s), 0pu" (5)) dWF) 2 s T—s)

q—1

elt. (1) < e(0.5O0) + [ alels, FONT (6 KD rrangn b5 (419)

q—1

t
+ cqhi(R) / [e(s, 2"(s))] @ [Y*(u"(s), 0" (s), Do () Fa(—rpsr—s) ds
0
+ Mk,q(t)a
where M}, , is a martingale defined by

q—1

M q(t) :/0 qlerq(s, 2(s))] @ (0" (5), Y*(u"(5),v"(s), 0ot (5)) AW ") 2o m-s).

Since by the assumptions on the coefficient Y, the definitions of Y* and e, we have

[V (uf(5), 0" (), 0uu"(5)) 12 riar—o) < O rlerg(s, 25 (s))]e (4.20)
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by (4.19) we infer that there exists a constant ¢, depending only on ¢, T, X, A9, A\; and
w(R), such that for every t € [0,T), P almost surely,

er,(t, (1)) < er,(0, 2F(0)) + C*/o er (s, 2F(s))ds + My ,(1). (4.21)

Note that by Proposition 2.1 and (4.20), the quadratic variation of (M, ,) of My , satisfies

2(g—1)

(Myq)e = Z/O Clerg(s, 2" ()] o (v (s), Y*(u"(s),0"(5), 00u"(5))€1) Lo (par—s) d

< c*/ eraq(s,25(s)) ds, t € 0,7). (4.22)
0
Define, for each j € N, an F-stopping time 7;, by
7, =1inf {t € [0,T) : er,(t,2"(t)) > j}.

Note that the function IF; defined in (4.12) is Fo-measurable.
By inequalities (4.21) and (4.22) in view of the Gronwall Lemma we infer that

EIfper (t A7, 2" (t A1y)) < e“EIfper,(0,25(0)), for every t €[0,7).
Hence, by the Fatou Lemma,
]EI,’?’TeTg(t,zk(t)) < R [ﬁTeT,q(O, zk(O)), tel0,7). (4.23)
On the other hand, denoting

e(t) = sup eT,q(s,zk(S)), te[0,7T)
s€[0,t]

we infer from (4.21) that

¢
Elfre(t A1) < Elerg(0,2°0) +c. | Elfre(s A1j)ds
0
+ E sup Ifp|Mpg(s A7) (4.24)

s€[0,t]

Since by the maximal Doob inequality for martingales, (4.22) and (4.23),

E sup I Mig(s A7y)| <
sef0t]

2 1
E sup If’;T\Mk,q(s A Tj)|2] <2 [EI£T<Mk,q>t/\Tjj| 2

s€[0,t]
< 26" [E 1) pers(0,27(0))]2
the Gronwall inequality applied to (4.24) yields
E I pe(t ATy)) < 3" (E IEper (0, zk(O)))% : te[0,T)

and the result follows by again applying the Fatou Lemma. U
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5. PSEUDOINTRINSIC EQUATION

We will see later in this paper that we can find a subsequence of z* = (u¥,v*) that
converges (on another probability space) to a limit z = (u,v) in the locally uniform weak
topology of H} (R) x L? (R). Unfortunately, the nonlinearities in both the extrinsic equa-
tion (4.9) and the intrinsic equation (4.10) do not allow to pass in the limit. This is due to
the fact that the weak convergence of z* to z does not imply the convergence of nonlinear
the terms A5 (V(s), 0%(s)), Ayr(s) (00" (s), OpuF(s)) in (4.9) and (V¥ (s), Vyr(s) Z |un(s) ) rrn
in (4.10) to Ay (v(s),v(s)), Aus)(Ozu(s), Oxu(s)) and (v(s), Vi) Z|u(s))re in any topolog-
ical sense, respectively.

In order to resolve this difficulty by a forced strengthening of weak convergence to strong
convergence which is done by mollification of the solutions z¥ by a smooth compactly
supported density b. For example, b * u* converges to b * u locally uniformly in the norm
topology of H} (R). This approach is only applicable for the intrinsic equation (4.10). In
order to carry out this programme we will need the following result.

Lemma 5.1. Let b be a smooth compactly supported symmetric density on R. Let us
assume that the functions ¢ : R — R and Z : R* — R" are of C’)‘X’-class. Then the

processes (2*) constructed in Section 4.4 satisfy the following. For everyt > 0, P almost
surely,

(W (t) - Z(bxuF(t)), ©)r2m) = (vg - Z(b * ulg), ©)L2(R) (5.1)

= [t 205 6, e+ [ (6] Zs o5 05D, P s
[ O Zaso 05 2005, P e
+ /0 ([Aur (o) (00" (5), 05" () — Ayr(s (V5 (), 0" (5))] - Z(bxu*(5)), ©) 12w ds

+ /0 ([Y*(u"(s),0"(s), 0,u"(s)) - Z(b* u"(s)] dW*, @) 2.

Proof of Lemma 5.1. Assume that both ¢ and b have support in some (—r,r), put R = 3r
and define, with K = L*((—R, R); R") x L*((—R, R); R"),

Blun,wp) = / (o) - 20 ()pla) do,

wi(z) = /_Rwl(y)b(x —y)dy, w= (w1, ws) € K.
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Then obviously the mapping B is of C? class on K and, for w,p,q € K, the following
formulae holds.
R

R
B(w)g = / qQ(w)-Z(wl(w))w(Jf)dﬂiJr/ w(x) - Z'(wy ()@ (z) () d

-R -R

B"(w)(q,p) = /_R [@2(x) - Z' (01 (2)p1 (2) + pa(z) - Z' (w1 (2)) 1 (2) | p(2) da

R
+ / wn(z) - 2/ (0 (2)) (@), (o) ()

Since h = b*h on (—r, 1), we get the result by applying the Ito formula [14, Theorem 4.17]

to the process z*. O

6. TIGHTNESS

For any fixed m € N and r > 0 let us define the following set

Sy = {20 ¢ 20| (c2m—1,2m11)x 12 (—2m—1,2m41) < T} - (6.1)

It follows from (4.2) in subsection 4.1, or rather from Lemma A.2, that there exist constants
Cnr such that

Sm,r g ﬂ {ZO : |Zé€|H1(—2m,2m)><L2(—2m,2m) S Om,’r} (62)
k=1
Hence by Theorem 4.7 we infer that for every m € N, r > 0 and ¢ € (0, 00)

Crrg =sup E |1g, . sup |2F(?) HY (o) x L2 (—mam) | < O©- (6.3)
keN te[0,m]

6.1. Tightness of the sequence (2*).eny on L. Let us define a set

L=L' &L := Cy(Ry; Hy (R)) & Cu(Re; L2, (R)), (6.4)

loc

i.e. L' resp. L% resp. L is a locally convex topological vector spaces of weakly continuous
H} (R)-, resp. L? (R)-, resp. H]} _(R) x L? (R)-valued functions defined on R,. The
properties of these spaces are discussed in the Appendix B.

Lemma 6.1. The sequence of laws of the random variables (2*) constructed in Section 4.4
15 tight on the space L.

Proof. We introduce open sets in I’

J! (a) = {h cL': sup |h(t)

te[0,m]

K! (a) = {h cL': sup [lh(t) — h(s)|H1(_m’m)] > a} : a> 0.

0<s<t<m (t — s)é

Hi(—m,m) > a} s a>0
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The following inequalities consequencies either of the Sobolev embedding theorems or
Lemma 2.1.

Bl cmm) < 2m)2 Bl ), B € L' (—m,m) (6.5)

a1 mmy < hli2mmy, b€ L*(—=m,m) (6.6)
Ouahl -1 (=mmy < Bl (cmmy, b€ H*(—=m,m) (6.7)

€ = el gyt i1 Cmamy S Col(R)2li2mmy, B € LP(—=m,m), k € N. (6.8)

Let us fix ¢ > 0 and for each natural number m € N find a corresponding positive number
rm > 0 such that
€
P(Snr,)>1——— e N.
Next we put

6.8 ms
Oy = fm [Cm,rm,l + (Sm)

N

2'8m'm'5m'(1+cm,rm,8):|é
£

Oy - Cm,rm,z] + {

where the numbers C, .. 4, ¢ = 1,2 have been defined in (6.3) and

B = 37e.Cyc[u(R)]*(2m)’,
Ca = sup {[A,(,8)]: £ €T, M, [(]=1,pe M},

cr — Sup{lY"’(p,f,n)l

:kGN,f,nETM,pGM}.
L+ [€] + [n] :

Since

Pt € Jh(an)] < PO\ Snp) +Plls,,. sup [5(0)]im(mm > ]
te[0,m]
Cmr
E gy Tmrmd o © (6.9)

2.8m oy, 8m

IN

P* € J0(am)] < P(Q\ Smr) +P[Ls,.,  sup [0F(E)]r2 mm) > )

te[0,m]

IN
+
|
B
=
=

(—m,m) d
Plu* € K} ()] < P(Q\ Suyr,) +P |1s,, — sup f [Vl il >0zm]

0<s<t<m (t — 3)

IN
+
N

|
=
—
N
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where we used (6.6) in (6.11). Concerning the term P [v* € K? ()], we define processes

Ift) = Dprti¥(s) ds, t>0
0

5t = /0 (A () (050" (5), 0" (5)) — Aye(s) (V5 (5),0%(s))] ds, t>0

) = /0 YEE(s), o8 (s), Dy (s)) AWE, £ >0

where the integrals are convergent in every L?*(—m,m), m € N. By (6.7) the following
inequality is satisfied.

B t
aﬂ,‘]} k - —m,m d m
Plieis (S2)] < PO\Swn) +P |15, sw Jo st Ol &7 o
3 "™ 0<s<t<m (t—s)s 3
< P(Q\ Spr) +P |mils, sup 005 (1) 2y > -2
i , te[0,m)] 3
7
€ 3msCh, 1 €
< L 6.12
- 2.-8m + Oy - 8m ( )

Moreover, we have

P [ire it (4)] 2P0 5

+P

0<s<t<m (t — s)% 3

1s,, .~ sup fst |Auk(r‘) (axuk(r)a &cuk(?”)) - Auk(r) (Uk(r),vk(r)”H,l(_m,m) dr N Oé_m] |

Hence, by inequality (6.5), we deduce that

Pl (%)) < PO

Lk 2
zM(r dr
+ P |(8m)2Cals,, —sup Jo 121 )’Hl(fm’m)fw*m’m) > dm
T 0<s<t<m (t — 8)§ 3
e 7 1 Q
< + P |ms(8m 50,415”” sup Zk t 7 —mm) = —
2-8m (8m) ’mte[o,m]| Ol 3
7 1
< < n 3m8(8m>20AOm,rm,2 < i (6.13)

2.-8m Oy - 8m
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Finally, by Proposition 2.3 we infer that

Qi A =
P [I§ €K, (y)} < P@Q\Sny,)+P |:|1Smﬂ'm[§‘C%([O,m];H—l(fm,m)) = ?] Sggm
3¢, " k(o k k k 8
+ al, . /0 L ‘Y (u”(s),v"(s), Osu (8))‘j2(HMk7H_1(_m’m)) s

- 2.8m ad, gm’

Indeed, by (6.8) we have

IN

Y (u", 0", Opu @)Y (W, 0", 02 my
< 370}8/62 [/‘L(R>]4[(2m)4 + |aﬂfuk|i2(fm,m) + |vk|i2(7m,m)]
< BTCVA R (2m) (1 + 12 3 oy ¢ 22(mm))-

The estimates (6.12)-(6.14) imply that

kN |8
) |J2(Huk7H_1(_m7m))

P [vf € KO ()] < il@ [IJ’? e K° (%’”ﬂ < g’—i (6.15)

On the other hand, by Proposition B.2 the set

C. — { ﬁ (L (J2 (o) U Kgn(am))}} X { ﬁ [LO (I (am) U K%(am))}}

m=1 m=1

is compact in L and, by inequalities (6.9)-(6.11) and (6.15) we infer that
PlzFeC])>1-¢  keN.
This completes the proof. O

6.2. Tightness of the auxiliary processes. We introduced the pseudointrinsic equation
(5.1) in Section 5 in order to avoid lack of convergence when passing to a limit in the
intrinsic equation (4.10). However, there are still terms in (5.1), denoted by Qj , , in the
sequel, that might not converge to the corresponding term. Luckily, these terms form a
tight sequence on one hand are “small” on the other.

Notation 6.2. Ifa,b € R are such that a < b, then by oLip [a, b] = ¢C[a, b] we will denote
a Banach space of all Lipschitz continuous functions h : [a,b] — R such that h(a) = 0,
equipped with a norm
h(t) — h(s
Rlo, o = Sup [P(t) — h(s)|

a<s<t<b t—s

Lemma 6.3. Let b be a smooth symmetric density on R with support in (—1,1), ¢ a
smooth real function on R with support in (—r,r), Z : R™ — R"™ be a smooth and compactly
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supported function such that Z(p) € T,M, p € M and let (2%) be the processes constructed
in Section 4.4. The sequence of processes (Q'g,%z : k € N) where

t
Qb2 (t) = /0 ([Aur () (006" (5), pu® () = Ayr() (0" (5), 0" (5))] - Z(b x u(5)), ) r2(=) ds
is tight in C(R) and there exist a constant ¢ depending on A, Z and ¢ such that

|Q£,¢,Z|OCO’1[0J] < ClZk|%°°((0,l);H1(—7",7’)><L2(—7“,7")) ’b * uk - uk‘Lw((Ovl)§Lw(—TvT)) (616)
< €12 oo (00 (o tr b 1) L2 (—r1r1)) (6.17)
holds for every k,l € N.
Proof. Since A, takes values in N, M and Z(u*) € T, M the following identity holds
[Aur () (00" (5), 0,u"(5)) — Aoy (V" (5),0%(s5))] - Z(u*(s)) = 0

Hence, we get

IN

Q% o zloco1104 o] oo ) | Z (b % u*) — Z(uF)| Lo ((0,0), ¢ (<)

‘Auk ((%uk, 8xuk) — Auk (Uk, Uk) |L°°((0,l),L1(fr,r))

IN X

ClZk|%°°((0,l);H1(—r,r)><L2(—r,r)) b uf — Uk‘LW((OJ);Lw(—m))

IN

k
C12* oo (00951 (Lt 1) ¢ L2(—r1r41))

for some ¢ > 0 and (6.16), (6.17) are proved.
Now, let my=min{m e N:m>r+1, m>1}, 1 €N, fixe >0, set

3l : C . Cm;,m,?}

J = {h € C(Ry) : h(0) = 0, [Blgigy < =

and find 7; > 0 so that P (S, ,) > 1 — 57 where we use the notation (6.1) and (6.3). Then
we have

3l ) g : Cm T2
P [Q’;M ¢J] < P(Q\Smu) +P {15mm|Q’§,%Z|Cg,1[07l] > %]

S_

3l

3l . le,rl,Q 2¢e
15

€ k|2
< 3l +P [1sz’rz|z |L°°((07ml);H1(—mz,ml)XLz(—ml,ml)) >
by (6.3). Hence
>1—c¢

P [Q{i%z e/
=1

and ()2, J' is compact in C'(Ry) by the Arzela-Ascoli theorem. d
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7. SKOROKHOD REPRESENTATION THEOREM

Let us consider the following objects.

e A smooth symmetric density b on R with support a sequence of in (—1,1), b, =
\/Zb</l)7 [ e N¥,

e the sequence (z*) of processes constructed in Section 4.4,

e a family (87); jen of i.i.d. Brownian Motions used in Section 4.2,

e the orthonormal bases (&) ;e ien of Hy, introduced Section 4.2,

° Q’bi%z the processes from Lemma 6.3,

(pm) the sequence in C*°(R) with supports in (—r,, ) from Proposition D.2,

the smooth vector fields (Z1,..., ZV) satisfying (A.1),

the spaces ¥ introduced in Section B.2,

the extension Y of Y from equality (4.8).

Remark 7.1. Using Proposition A.1, each Z° can be extended to a compactly supported
mapping from R” to R", denoted again by Z°.

Let us recall that by Lemmata 6.1 and 6.3, the sequence of laws of random vectors

(Ug, Uga uka Uk7 (ﬁw)l,ja (ngl,tpm,Z’Y)l7m€N,’Ye{1 ----- N})kEN

is tight on the space

Hp, (R) x L, (R) x L' x L x [ C(Ry) x 1T C(Ry).

(4,5)EN? (Im,7)EN?x{1,..,N}

Moreover, as remarked in Section 4.1, the sequence (uf, v§) converges in H}

lOC(R) X leoc(R)
to zg on 2. Hence, by the Skorokhod-Jakubowski Theorem C.1, there exists a subsequence
(ko) and the following Borel measurable maps with o-compact range

eu:[0,1] —-LYu:[0,1] - C(Ry; H (R)), « € N,

*Vv: {07 1] - ]L’Ov Ve [07 1] - C(R+;Hlloc(R))u Q< N7

e B} :[0,1] = C(Ry), By : [0,1] — C(Ry), a,i,j €N,

e Q. [0,1] = C(Ry), Qumy  [0,1] = C(Ry), vl meN, y€{1,...,N}

where [0, 1] is equipped with the Borel o-algebra Z and Lebesgue measure Leb (which
happens to be a the probability measure) such that

u®(0) converges in H}  to u(0) on [0, 1],

v*(0) converges in L2 to v(0) on [0, 1],

u® converges in L' to u on [0, 1],

v® converges in L? to v on [0, 1],

e B converges in C(R,) to By; on [0,1] for every i,j € N,

e Qp,, converges in C(R;) to Quu, on [0,1] for every m,l € N, v € {1,..., N}

and, for each a € N, the laws on the Borel o-algebra of

C(Ry; Hipo(R)) x C(Ry; Hipo(R)) < [ ¢®)x [T C®Ry),

(4,j)€N? (I,m,y)eN2x{1,...,N}
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of

under the Lebesgue measure Leb, are equal.

Remark 7.2. In fact, the Skorokhod-Jakubowski theorem implies that u® and v® are ran-
dom variables in L' and L° respectively. Since the embeddings C'(R,; H2 .(R)) C L' and
C(R+, Hl

L.(R)) C LY are continuous, in view of Proposition C.2, we infer that these sets
are Borel subsets of LY and L! respectively and that

Leb ({u” € (R HR,(R)Y) = B{u' € C(Ry; HZ(R))}) = 1,
Leb ({v* € C(Ry; Hp(R)}) = PB{vh € C(Re: Hp,(R))}) = L.

Hence, by the completeness of relevant probability spaces, we may assume that for every

a € N, u®, respectively v*, is a random variable with values in C'(R,; H?,_(R)), respectively
C(Ry; Hj, (R)).

Remark 7.3. We will write z* = (u®, v®) and z = (u,v).

Notation 7.4. By B;, where t € [0,T), we will denote the o-algebra on [0, 1] generated by
the following random variables:
v(0) : [0,1] — Li.(R),
u(s) : [0, 1] — H, (R),
Byj(s): [0,1] — K.
Quniy 0 [0,1] = R for s €[0,t], 4,j,m,l e N, ye{l,...,N}.
By B we will denote the filtration (B)icpo1)-
Denote finally by B = (B(t))te[o ) the natural augmentation of the filtration B =

(B(t)) t€l0,T)"

Let us here point out that as in [52], in view of [15, p. 75|, in order to show that a
process an B-martingale it is enough to show that it is an B-martingale.

7.1. Uniform Local Energy and other Inequalities. The following results are an

immediate consequence of Theorem 4.7and the equality of the laws of z® and z** on the
Borel g-algebra over C(R; H7 (R)) x C(Ry; H. (R)). Let us first introduce some useful
notation.

Ig,T 1{Z0:|Za(0)|H1(—T,T)XLQ(—T,T)ST}’

I’”vT = 1{|Z(O)|H1(7T,T) xL2(7T,T)§T}'

The constant ¢, is taken from in Theorem 4.7) (and hence does not depend on ¢, T, X,
Ao, A1 and p(R)).
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Corollary 7.5. Foranyq>0,T >0,r>0,t€[0,T) and o € N, the following inequality
holds

1

E sup I? ery(s,z%(s)) < 3e" {E I 1er,(0,2%(0))] } % . (7.1)
s€[0,t]
In particular, for every m € N, r >0 and q € (0, 00),
Chrq=sup E [I7, sup [z°() qu(m,m)XLQ(m,m)] < 0. (7.2)
a€eN te[0,m]

Corollary 7.6. For any ¢ >0, T >0, r >0 andt € [0,T) the following inequality holds
E sup I rer,(s,z(s)) < 3¢ {E[I,rer2(0,2(0))]}> .

s€[0,t]

In particular, for allm € N and ¢ € (0,00) and anyr > 0 such that Leb {’Z(())’Hl(me,Zm)xL2(72m,2m) _
7“}) = 0, the following holds

E < Chura: (7.3)

Ir,2m sup |Z<t) ?—Il(fm,m)xLQ(fm,m)
tel0,m]

Proof of Corollary 7.6. We can apply the Fatou Lemma to the inequality (7.1) in Corollary
7.5 for r > 0 such that Leb ({ZO Nz (0)| mr(—rryx L2 (1) = 7"}) = 0, and then use Beppo
Levi’s monotone convergence theorem to get the result for other » > 0. O

Corollary 7.7. For every m € N then there exists a constant (7, such that for every
vye{l,...,N}, T >0, k € max{r,, + 1,T},00) NN, o, € N and for every r > 0 such
that Leb ({Zo . ’Z(O)’Hl(_gmz,{)XLz(_QmQ,ﬁ) = 7"}) = O,

E {24/ Qumr locor0, } < C%Cé,m {E [Troxlby 0w =)o (0 19000 (o ) ) }% . (T4)

Proof of Corollary 7.7. Since the laws on the Borel g-algebra on C(R; H (R))xC(R; H. (R))x
C(R,) of the random variables (ufe, v*e ngﬁ¢m,zw> and (u®,v*, Q) are equal, by (6.16)
we infer that for every v € {1,..., N} and «,l € N, P almost surely,

|Qlam'y|oco’l[0,T} < C:n|za|%°°((O,T);Hl(—rm,rm)XLQ(—rm,rm)) b0 — | oo ((0,7); 20 (<)) - (7-5)

The inequality (7.2) now implies that

E {Ig2n|Qlofn |00071[0,T]} < C;Cém {E [ISQ,{”’l *u® — uaﬁoo 0,7); L% (=T ,"m ” (7.6)
. y s ) ((0,T);Lo° (=rm;Tm))

Since the weak convergence in H} (R) implies the strong convergence in L;2.(R) we infer
that on [0, 1]

[NIES

T (b u® —u®pe 01100 (<)) = 1006 W= 0 Lo (019250 (< )
E (1 50l00% 0 = 0o o,y (crmr] S 1O (B0 Loe (0,090 (o)
< ¢E [I?‘,zn\ua!ﬁw((o,fe);Hl(—m))}

S CHCH,’I‘,4'
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Hence the the final result follows by letting o — oo in inequality (7.6) and applying the
Fatou Lemma. U

7.2. Identification of the random variables on [0,1]. In this whole subsection we
assume that the sequence (y,,) is as in Proposition D.2.

Lemma 7.8. There exists a set Q0 C [0, 1] of full Leb -measure such that for every & € Q,
and for all R > 0 and t > 0, the following equality holds in L*(—R, R)

u(t) = u(0) + /Otv(s) ds.

Proof. Let us note that the sequence (p,,) separate points of L, .(R). Hence, it is enough

to find set Q C [0, 1] of full Leb-measure such that for every w € Q), the following equality
holds on C(R})

(u(-), 90m>L2(R) - <u(0)790m>L2(R) - /0-@(5)7 90m>L2(R) ds. (7.7)

For this aim we introduce the following sequence of continuous mappings

By L' xL 3 (u,0) — (u(*), om)r2®)

- <u(0)7§0m>L2(R) - /0.<U(3), ¢m>L2(R) ds € C(R+)

Since, for every o € N, the laws on the Borel g-algebra on IL! x LY of (u*, v*) and (u®, v®)
are equal and (u®, v®) converges in L' x L% to (u, v) on [0, 1], B,,(u*>, vk) = 0 Leb almost
surely and

By (u,v) = lim B,,(u* v*) =0 Leb almost surely

we infer that B,,(u®*,v*) =0 Leb almost surely. This completes the proof of (7.7) and so
the result follows. 0

2
loc

Corollary 7.9. The process v has L
B-adapted.

(R)-valued weakly continuous paths. Moreover it is

Proof of Corollary 7.9. Let t > 0, m € N and j € N. Then a function
. 1
a; (t) =J (<1.1(t), me>L2(R) - <u(t - ;)7 90m>L2(IR))

is B;-measurable and a;(t) — (v(t), om)r2®) Leb almost surely by Lemma 7.8. Hence
(V(t), ¢m) 2(r) 18 Bi-measurable. Finally, (¢,,) generate the Borel o-algebra of L7, (R) by

loc

Proposition D.2. Il
Lemma 7.10. For every t >0, z(t) € H}. x L2 (T'M) Leb -almost surely.

loc loc
Proof of Lemma 7.10. Theset H} x L?

L.XL2 (T M) is sequentially closed in the space (H}.
(L

be(R), weak) x
2 (R), weak) and z*=(t) has the same law as z*(t) on the Borel o-algebra over (H}., (R), weak) x
(L} .(R), weak) for every € N and ¢t > 0. Hence z*(t) € H., x L2 (T M) P-almost surely
x L?

and so z(t) € H} 2 (T M) P-almost surely. Since the paths of z are (H. _(R), weak) x

loc loc
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(L? .(R), weak)-valued continuous, we can exchange the order of ‘P almost surely” and

>0 U
Lemma 7.11. The processes (B;;)i jen are independent standard B-Wiener processes.

Proof. The random variable (5%); jen has the same law as (B§;)ijen on the Borel o-algebra
over [[;;cy C(Ry) for every a and (Bf);jen converges to (Bij)meN as @ — oo in the
topology of []; ey C(Ry). Hence (Bm)weN are independent processes such that for all

0 <1y < t1, the random variable w is N(0,1), i.e. astandard centered Gaussian.
1 0
Let us fix a natural number ¥ € N and real numbers 0 < r; < --. < r. <ty < t;. Put

K=k+kKk-K+K-K-k+ K-k N -xand consider the following RF-valued random vectors:

Ok = (<U§7§0m>L2(R) <uk(ré) 90m>L2(]R) ﬁij(T(s)?Qllfl,(pm,ZW(rzs))i’j,l’mﬁgnwg]v

0" = (<Va( ) gpm>L2 ’< ( ) (pm>L2(R) (B%(T5>>i7j’Q;lrrw(?ﬂl;))l,m,(;g,ﬂ’,ygjv (78)
O = <(<V com)2@)) g (((s), o) 2@ 5y ((Big(76))ig) 5y
(Quns (r5))}, 1 1) )

The law of O% under P coincides with the law of O% under Leb for every a and O%
converges to O on [0, 1]. Hence, if go is a continuous bounded function on R* and ¢ is a
continuous real bounded function, there is

[E go(O) [Eg1(Brs(t1) = Brs(to)] = lim [Ego(O%)][E g1 (BT, (1) — B, (t0))]
= lim [Ego(O™)] [Eg:i(8"(t2) — 8" (t))]
= lim E [0(0")g1 (8" (t2) — 8 (10))]
= lim E [50(0°)01 (B, (1) — B (1))
= E [90(0)g1(Brs(t1) — Brs(to))]
so Byy(t1) — Byy(to) is independent from By, for every I,J € N. O
Remark 7.12. The process
=> ) Biylilp), €S (7.9)
i=1 jeJ;
is a spatially homogeneous B-Wiener process with the spectral measure pu.

Let us recall that Y is an the extension of Y from equality (4.8). Let us introduce
auxiliary operators

Vi, Ve Vo VI8 V7 L x L — O(Ry) (7.10)

Imy? Vimy
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Vimy(2)(t) = (u(t) - Z7 (b * u(l)), m) 2y — (0(0) - Z7 (b % w(0)), om) oy (7.11)

b [ ) 200 (s, D)

0

+ /0 (02u(8) - (Z7 )y wu(s) (bt * Dpuu(s ))’¢m>L2(R) ds

Vi (2)(0) = (Y4 ((). 0(5). D,0() - 27 (b u()] €1 o) o | 812)
Vi (2)(0) = ZZ / 0(s). Byu(s)) - 27 (b ()] €y |
VA0 = [ (V). o6, Dutls)) - 205 )] o) oy B (1)

if i <k and j € J;, otherwise Vlmv(z) =0,

Vi (2)(8) = / ([V (u(s), 0(s), Douls)) - 27 (b % u(s))] €y o) oy s
if j € J;, otherwise V;ﬂnkv(z) =0.

Lemma 7.13. Vipy, Vi, Vix.,» V;ﬁg and V;* J are sequentially continuous mappings from
L' x L% to C(R,) for every k,l,m € N and v € {1,. N} Moreover, if z* converges
to z in L' x L0 then Vj;, (2*) converges to Viy, (2) cmd V”

lm'y(
C(Ry) for every k,l,m € N and v € {1,...,N}.

) converges to V;rjnoﬂj(z) in

Proof. 1t is enough to apply the Lebesgue Dominated Convergence Theorem. Indeed, if

2% = (u*, v*) converges to z = (u,v) in L' x L? then, for every R > 0,

lim < sup |b; * vk(t) — by xv(t)|c(-rr) + sup ]uk(t) - u(t)|C([—R,R])> =0,
k—oo \ ¢efo,R] te[0,R]
if h* converge to h uniformly on [0, R] X [-R, R] then
lim sup [(v"(t), ")) 2 rry — V() () 12_r.R)| = O

k=00 te(0,R)
and
S >~ U(R)  p(R)
ZZK@](x)‘ —Z or = 7, r € R. (7.14)
i=1 jeJ; i=1
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Lemma 7.14. Under the above assumptions, the following identity

(v(t) - Z7(bix a(t), om) 12w
Qimy (1) + (v(0) - Z7(by + 1(0)), om) 2 (x)

_ /t (Op(s) + Z7(by * 0(s)), Oafrm) oy d

- /(au Doveuts) (00 # 0x0(5)), @) o) ds

! / (V(8) - (Z o) (B % V(5)) Pm) o gy s

- /0 (Y (u(s), v(s), dou(s)) - 27 (b % u(s))] AW, o) 1oia

holds for everyt >0, m,l € N and vy € {1,..., N} P almost surely.

Remark 7.15. Notice that the equation in Lemma 7.14 is only similar to the pseudoin-
trinsic equation (5.1) since the term Q. is not identified as indefinite integral of the
corresponding integrand as in Lemma 6.3 and plays just a role of a “small” remainder that
will eventually disappear as [ — oo.

Proof. Let us begin with fixing T'> 0, m,l e N,y € {1,...,N}, N> k > max {t,r,, + 1}.

Let us take 0 <ty < t; < T. Then we observe that using the notation of Corollaries 7.5
and 7.6, the following equality

Vlm'y( a ) le ©ms Z’Y( )

Q/<Y“ ko (), 08 (), D™ () - 27 (b 2 05)] AW, ) e
holds for every a € N and ¢ > 0 P almost surely by (5.1). Since

Sup. (Vi (25)(8)] + [ Vhis, () (0] + Ve (5) ()] + | @k, - 1))

te[0,k]

< Cem (1 + |Zka’%"0((O,fz);Hl(—n,n)XLQ(—H,n)))

by (6.17) and (7.14), we infer that also

i (Vo 01+ [V 590+
t€(0,x]

Vi (2)(0)| + Q6 (1))

< Cem <1 + |Za|%°°((O,n);H1(—N,K)XLQ(—N,R)))
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P almost surely and that the processes

r2n [Vlm’y( ) le Om,s ZW} ,
]f%m { [Vlm’v( bl Oms ZW}Z Vl]jz'y “ } ,
5 { Vi () = @l ] 67 = Vilke ()}

are F-martingales on [0, k] for every r > 0 and 4, j,a € N by Theorem 4.7. Hence, with
the same notation as in (7.8),

E 90(0)Xr21 [Vimy (2) (1) = Qumy (t1)] = 1im E go(O)I7,, [Vimn (27)(t1) — QG (£1)]
= lim Ego(Oka) ¥5 Vimn (25) (t1) — Qpe,, 72 (t)]
= lim Ego (OF)I}5,. Vimy (2" (to) — @32, 1+ (t0)]
= (}ggoEgo(Oa)IfQH [Vimy (2%) (o) — Qi (t0)]
= Ego(O)L26 [Vimy (2)(t0) — Qume(to)]

]E90<O) 7,25 {[Vlm'y( )( 1) - le7<t1)]2 - Vﬁiy(z)( )}
= Jim E go(O") T, { Vi (2)(12) = Qi ()] = Vi, (2)(0)
= Tim Ego(O") 15, { Vi (%)) = Qb o (0] = Vi, (5 (1) }

a— 00

= lim Ego(O") 5, { Vi (%) (t0) = Q2 (t0)]” = Vi, (") () }

= lim Ego(0°)12a, { Vi (2°)(t0) = Qs (00)]” = Vi, (2°)(t0) |
= Ego(O)L2x { Vi~ (2)(t0) — Qi (t0))* = Vi (2)(t0) }

and

E go(O)L 2 { [Vim- (2 ( ) - lev(tl)] Bij(t1) = Viny (2)(t1) }

— i Ego(O")E, { [Vins (2 le(h)} B (1) — Viniy (=) (1) }
= lim Ego(O") 15, { Vi () (1) = Qo (1] B7 (1) = Vidke (5 () }
= Jim B go(08) 185, { Vi (5 (t0) — @l (10)] 87(t0) — Ve (5 10) }

= lim Ego(0") L, { [Vima (2°)(t0) — Q?m(to)} B (to) — Vit (2°)(to) |
= Ego(O)L 2 {Vimr(2)(to) — Qumy(t0)] Bij(to) — Vi2r (z)(to) }
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holds for every r > 0 such that Leb ({\Z(O)\Hl(,gm%)xp(,%%) = r}) =0 by Lemma 7.13
and by the Lebesgue Dominated Convergence Theorem as (7.2) holds. In particular,

Vimy(2) = Qi
Vi (2) = Quunn)” — vm ),
Vimn(2) — Quma] Bij — V;gfj( z)

are local B-martingales for every I,m,i,j € N, v € {1,...,N}. Hence, the quadratic
variation satisfies

<v1m<> Qu, /'<[Y< (), ¥(5), 0,u(s)) - 2" (b u(s))] dw,¢m>L2(R)>

= (Viny(2) — Qimy) + </ < s),0xu(s)) - Z7(by * U—(S))] dw’§0m>L2(R)>
= 2 (Vi@ ~ Quuo. [ [V (09 ¥(6),0.0(9) - 2700 0] AW ) )
= Vi, (2) + Vi, (2) 222
i=1 jeJ;

<Vlm7 lev’/ < s),0.u(s)) - Z7(by * u(s))} €ijs cpm>L2(R) dBij>

AR S / V(5), p(s)) - Z27(br * (s))] € n) gy
i=1 jeJ;

= 0.

The result now follows from equality Y (u, v, d,u) = Y (u, v, d,u) P which in view of Lemma
7.10 holds almost surely. O

Lemma 7.16. In the above framework the following identity
(v(t) - Z7(a(t), em) oy = (V(0) - Z27(u(0)), om) 12g) (7.15)
t
— [ @) 2. D)y
- / <a u(s vc') u(s) )|u(s)a (‘Om>L2(R) ds
+ / (vV(8) - (V@ Z)luts) #m) 12z @8

+ /0 ([Y ((s), v(s), Bara(s)) - 27 (u(s))] AW, o) 1o

holds for everyt >0, m € N and v € {1,..., N} P almost surely.
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Proof. Since for every R > 0

lim [sup by = u(t) — u(t)IC([—R,RD] =0
l=00 | +e(0,R]

we infer that
lim [ sup |Z7(by*xu(t)) — Zw(u(t)NC([—R,RD] =0

=00 | te(o,R]
for every R > 0 and v € {1,..., N} on [0,1]. On the other hand, the terms d,u * b; and

v % by converge to d,u and v in L7 (R) for every (t,w) € Ry x [0,1]. Moreover, we also

have
o) T
lim 33" / (Y (u(s), v(s), Dou(s))€] - [Z7(uls) b)) — Z7((s))], o) ez ds
=1 jeJ;
_ rpp(R)
< Jim P ey sup |27(bx u(t)) = 27 (@),
o0 t€[0,T]
X sup |Y(u(t)7 V(t)> axu(t))‘%ﬂ(—rm,rm) =0
te(0,7)

on [0,1] for every T'> 0, m € N and v € {1,...,N} by (7.14), hence by for instance

Proposition 4.1 in [35]
¢

lim [ ([Y'(u(s), v(s), u(s)) - Z7(u(s) * by)] AW, o) 1>

= [ ) v, 009) - 2] AW

locally uniformly in ¢ in probability. Finally,

llfilo |szw|cgv1 o] =Y

in probability for every m € N and v € {1,..., N} by Corollary 7.7 and (7.3), thus the
result follows from Lemma 7.14. 0

8. RELATIONS BETWEEN INTRINSIC AND EXTRINSIC EQUATIONS
Lemma 8.1. Let z = (u,v) be an adapted process with weakly continuous paths in H} . X

L} (TM) such that

loc

%@(-,w),s@ﬁ%m = (vl W) Pl

holds on R, for every w € Q and every compactly supported ¢ € L*(R), and let W be a
spatially homogeneous Wiener process with a finite spectral measure . Then the following

18 equivalent:
(1) (z,W) satisfies the equation (7.15) for everyt >0, m € N and vy € {1,...,N} P

almost surely.
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(i7) (z,W) satisfies the intrinsic equation (3.2).
(i13) (z, W) satisfies the extrinsic equation (3.3).

Proof. 1f (i) holds then (3.2) is satisfied IP almost surely. for everyt > 0,y € {1,..., N} and
every compactly supported ¢ € H'(R) by Proposition D.2. Let (b;) be smooth densities
on R with supports in (—1, 7) and define

h(t) = bix[v(t)- Z7(u(t))]

H(t) = [0.bi] * [0u(t) - Z7(u(t))] — by * [&Cu(t) . Vazu(t)Z’y|u(t):| + by * [v(t) . Vv(t)Z7|u(t)]
gl ()¢ = b= {[Y(ult),v(t), 0pu(t)) - Z7(u()] &}, £ € Hy

Since by Lemma 2.1,

sup |9, (O] z(r,, mm—rRr) < ey sup [Y(2(t),0u(t)) - 27 (u(t))| g, 12(—1-r, R+1))
t€[0,R) t€[0,R]
1
= oy [u(R)]? S[up] [Y'(2(t), Opul(t)) - Z7(u(t))|z2(-1-R.R41)
tel0,R

1+ sup [2(t)|m1(—1—R,R+1)x L2(—1—R,R+1)
te[0,R]

< Gy RpY

S Cl,'y,R,u,Y,z<w) < o0

we infer that . .
B0 =170+ [ Hs)ds+ [ gloaw. e p.7)
0 0

where the integrals converge in every H™(—R, R) for any R > 0, m € N. On the other
hand, as Z7 : R" — R" is a smooth compactly supported function, there is

Z7(u(t)) = Z7(u(0)) + /O (Z7) (u(s))v(s) ds
in every L*(—R, R) for every t > 0 and R > 0. The mapping
H'(—R,R) x L*((—R, R);R™) — R" : (u,v) /Ru(:z:)v(x)go(a:) dx

is C%-smooth for every compactly supported ¢ € H'(R) so, by the Itd formula (see for
instance Theorem 4.17 in [14]),

(R () Z7(u(t)), )2y = (B (t)Z7(u(0)), ¥)r2(w)

+ [ @ )s). ) 20 0
+ [ O7 W), o) ds

- /0 (l9/ (s) AW Z7(u(s)), ) r2(w) ds
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for every t > 0 and R > 0, P almost surely. Now h] converges in L2 . to v(t) - Z7(u(t)),

(0.0 * (0o 27 ()]} Z0(w), @iy = {0e (b (B 27(w)]} 20 () @) oy
= —{{bx [Oou - 20 ()]} (27 ()0, ) o)
— {bi *[0pu - Z7(u)]} Z7(u), 020) L2(r)

so (H'ZV(u), @) r2(r) converges to

—([Ozu - 27 ()] (27) () Outt, p) L2y — (0w - 27 ()] Z7 (1), 0up) 12wy

—([02u - Vo,uZ7u] Z7(u), 0) r2w) + (v - Vo 27| Z7 (1), ©) 12 (m)-

Finally,

i S5 [ s ls)6u] — w5065} 27U gy ds =0

i=1 jeJ;

where w = Y (u,v,0,u) - Z7(u) by the Lebesgue Dominated Convergence Theorem and
(7.14), hence, by for instance Proposition 4.1 in [35],

([v(t) - 27 (u(t ))] Z7(u(t), ) 12wy
([v(0) - 27 (u(0))] Z7(w(0)), ¥) L2(r)

/ ([o (27 (u())0(5), 9) 1oy s
= [H0s) - 2 (2 () 0(s) e
[ 0a(s) - 26 2005, e
[ 410ut) Vo7 hto] 27 ). e
T RITE R AvAIe PRy
b [ )., Du0ts) - 2 D) 2 AW

holds for every ¢ > 0 P almost surely. whenever ¢ € H!(R) is compactly supported. Now
(Z7) satisty

=z

=€ V2L, Z(p) + (- Z27(p))VeZ],),  peM, £€T,M

=1
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by the equality on p. 479 in [1], so
t
(v(?), 90>L2(R) = (v(0), 90>L2(R) - /0 (0pu(s), 0up) L2(w) ds
t
+ /0 <AU(S) (v(s),v(s)) — Au(s) (Oru(s), Opu(s)), 90>L2(]R) ds

" /0(y(u(s),v(s),&cU(S))dWa@LZ‘(R)

holds for every ¢t > 0 P almost surely. whenever ¢ € H'(R) is compactly supported and
(3.3) holds and (7) implies ().
To prove (ii7) implies (ii), we define processes

w(t) = byxu(t)

u(t) = bxo(t)

a(t) = b* [Aye (0(t),0(t)) — Auw) (Osu(t), Dpu(?))]
g€ = brx[Y(ut),v(t), hu))E], &€ Hy,

Proceeding analogously as in the first part of the proof, there is

v(t) = v,(0) —|—/O [0zzti(s) + ai(s)] ds —|—/0 ai(s)dW

P almost surely. for every ¢ > 0 in every H™(—R, R) whenever [;m € N, R > 0. Hence,
by the It6 formula,

(a(t) - Z(u(?)), p)2@ = (u(0)- Z(w(0)), ) r2(m)

+ /0 ([Oni(s) + ai(s)] - Z(u(s)), ) r2r) ds
+ /0 <UZ<S) . VU(S)Z|U(S)7 Q0>L2(R) ds

t
+ [t W) Z(s). b
0
holds P almost surely. for every ¢ > 0, I € N and compactly supported ¢ € H'(R). Since

(Opaty - Z(w), @) 12y = — (Ot - Vo,uZlu, ) 2(r) — (Ot - Z (1), 0x) 12(R)

vy(t) and 9,u;(t) converge in L? (R) to v(t) and d,u(t), ai(t) converges in L} (R) to

loc loc

Ay (0(8), (1)) = Augo (D5u(t), Dyu(t)) and

llggloz > gk = Y (2, 000835 - Z(u), 0) 12| a1, my = O,

i=1 jeJ;
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we get that
(0(t) - Z(u(®)), )2 = (v(0)- Z(u(0)),¥)r2m)

— [10) Voo Zht e ds

— [ @uats) 20l e s

b [ Ao (09.06)) = Auto0au(5). 005D - Z(u3). e s
+ A%@%VmﬂMw@mmﬁ

+ / (Y (uls), 0(s), Beus) - Z(u(s))] AW, @) 12z

holds P almost surely. for every ¢ > 0 and every compactly supported ¢ € H'(R) by the
Lebesgue Dominated Convergence Theorem and Proposition 4.1 in [35]. The result now
follows from perpendicularity A, - Z, =0, p € M. O

APPENDIX A. SOME USEFUL FACTS ABOUT RIEMANNIAN GEOMETRY

Lemma A.1. There exists a smooth compactly supported mapping P : R* — R" such that
P € M on a neighbourhood Up about M and P(p) = p for every p € M.

Proof. We will use a suitable smooth projection of the ambient space on the manifold.
There exists an open neighbourhood V' of the set {(p,0) : p € M} in the normal bundle
NM such that the mapping £ : V. — O CR" : (p,&) — p+¢ is a diffeomorphism between
open sets V and O (see Proposition 7.26, p. 200 in [33]). We define a smooth mapping
P : 0O — M as a composition of NM — M : (p,&) — p and £71. Derived from P, there
apparently exists a smooth compactly supported mapping P : R® — R" such that P € M
on a neighbourhood U C O of M (where P coincides with P), hence P(p) = p for every
pE M. U

Lemma A.2. There exists a sequence of Borel measurable mappings ©y : HL X L (TM) —

HE.x H. (TM) and a finite constant Cy; depending on M such that
kIEEO |@k(2) — Z|HLIOC(R)XLZ20(;(R) = O, z e Hlloc X leoc(TM)
and

1
’@k(z)’Hl(—R,R)xLz(—R,R) < Cu(R? + |Z\Hl(—R—l,RH)xL2(—R—1,R+1))
holds for every R >0, k € N and z € H, x L}, .(TM).

loc loc

Proof. The mappings O, are constructed as follows. Let (b;) be a sequence of smooth
symmetric densities on R with supports in (-4, ¢), let z = (u,v) € H. x L} (T'M) and

L loc loc
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set
u(—k), < -k
ug(z) = wlz), |r] <k
uwk), x>k

which is M-valued and belongs to Hj. .(R). Let € > 0 be such that p + z € Up whenever
p € M and |z| < e where Up is the same as in Lemma A.1. We set

my(u) =min{j > k:j > 5_2|a:cu|%2(—k,k)}> Wk = Uk * by () -

Since Ot = 1(—p k)0, u we infer that

sup — T | < |Opu|L2(—kp)-

Therefore,

_ _1
sup (W (7) — ()| < [me(u)]”2]0pulp2—rp < e
S

Hence we infer that wy,, is a smooth function taking values in a compact set M +B. C Up.
We set u, = P(wg,) and Og(u) = (ug, my, (bx % v)) where 7, : R" — T,,M is the orthogonal
projection at p € M. O

Proposition A.3. There exist smooth vector fields Z', ..., ZN on M such that

é‘:Z(S?Zi(p))Zi(p), £eT,M, pe M. (A1)

Proof. Every point on M has a neighbourhood where some vector fields are an ONB in the
tangent space, hence we may assume existence of open sets Oy, ...,0,, covering M and
smooth vector fields (E : i < m, j < d) such that Ei(p),..., Ej(p) is an ONB in T, M for
every p € O° whenever ¢ < m. Let ¢1,..., ¢ is a decomposition of unity on M and each
¢y is a smooth function with support in some O%. If we set

k
. i 1
le:,lvz)lEjla ¢l:L 2, L= § SOZQ
=1

then
d

YEp)E =D Ui Z ) Zip), €T, peM

j=1

holds for every | < k since either ¢?(p) = 0 or p € O". Summing the above formula over
the range [ € {1,...,k} leads to the conclusion. O
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APPENDIX B. SOME USEFUL FACTS ABOUT FUNCTION SPACES

Let us denote by L* = C,(Ry; HF (R;R™)), for k € N, the vector space of all weakly
continuous functions h : Ry — HFE (R;R"). The space L* becomes a locally convex
topological vector space when equipped with the locally convex topology generated by the

seminorms

8Jh
e = 500 320,63} (B.1)

t[m]0

where m € N* and ¢ € H?:o L*(R;R"™). By L we denote the following locally convex
topological vector space

L=L'aL° (B.2)
Proposition B.1. Let a = (a,,) be a sequence of positive real numbers and k € N. Then
the set
LF(a) = {h eL*: sup |h(t)|armm) < am, m € N} (B.3)
te[0,m]

is conver and closed in IL*. Moreover, the trace topology of L* on 1L¥(a) is metrizable.

Proof of Proposition B.1. Obviously the set L*(a ) is convex.

Since L(a) = N_,L,,(a), where form € N, Ly, (a) := {h € C(Ry, Xy) : |[Tmhllcom)x.m)
an} and each set Ly, (a) is closed in L, we infer that L( ) is closed as well.

Let us choose and fix a countable dense subset £ of H?:o L*(R;R™). Let us denote by 7
be the topology on LL* introduced before the Proposition B.1 was formulated. Let 72 be a
locally convex topology on L* generated by a family of seminorms {| |myp:meN @€ L’}.
The 72 topology is metrizable since it is generated by a countable number of seminorms,
see for instance [43, Theorem 1.24]. Hence, it is enough to show that on L*(a) the trace
topologies of 7! and 72 coincide.

Since the topology 72 is generated by a smaller family of seminorms than the topology
72 we infer that 72 is smaller than 7! and hence the trace of 72 is smaller than the trace
of 71,

In order to show that the trace of 7! is smaller that the trace of 72 we need to show that
an intersection of L¥(a) and an arbitrary neighborhood of 0 from 7! contains an intersection
of L¥(a) and some neighborhood of 0 from 72.

For simplicity let us put k£ = 0.

Let us choose ¢ € L?, m € N* and € > 0. Consider a set

Vi={heL’: |h|my <e}.

which is a neighborhood of 0 from 7.

We want to find ¢ € £ such that U N1L*(a) C V N1Lk(a), where

U:={hel’: |hlns <= }

IN
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For this aim we observe that since £ is dense in H°(R) = L*(R) we can find ¢ € £ such
that [¢) — ¢|r2(—mm) < 5o— Hence, if h € U N1L*(a),

Pl = sup  [(R(E),0) o < 8D |(R(E),0) 1oy
te[0,m] te[0,m]
+ sup ‘<h(t)7w - ¢>L2(—m,m)‘ < ’h|m,¢
te[0,m]
€ €
i ROzl = iz < 5+ g~ =

This proves, as required, that U N1L*(a) C V N1L*(a).
The proof of closedness of IL*(a) of is standard.

We will use the following family of Sobolev spaces,

Hy(—R,R) = {p€ H'(—R,R): o(—R) = ¢(R) =0},
H™'(-=R,R) = [Hy(-R,R)]’

where R > 0. We remark that all these spaces are separable Hilbert spaces.

Proposition B.2. Let a = (a,,) and b = (b,,) be two sequences of positive real numbers,
a € (0,1] and k € N. Then the set

Lk(a, b) = {h S ]Lk(a) . sup |h(t) — h(s)‘H—l(fm,m)

0<s<t<m (t —s)

} < by, me N} (B.4)

is a convex metrizable compact subset of L.

Proof. Since L*(a, ) is a subset of LL*(a), metrizability of the former follows from Propo-
sition B.1. Since L?(—m,m) is compactly embedded in H~!(—m,m) for every m € N one
can prove that the function

h(t) —h “mm
]Lk(a)ah»—> sup [ () ()l mm)

€ 10,00
0<s<t<m (t — )~ [ ]

is sequentially weakly lower semi-continuous, see [46], we infer that L*(a,b) is a closed
subset of IL*(a) and hence, by Proposition B.1, a closed subset of L*.

Hence it remains to prove the relative compactness IL*(a, b). For this aim let us consider
an IL*(a, b)-valued sequence (h;). Since [h;(t)] g (—mm) < bm for every t € [0,m] and m € N,
by employing the Helly’s diagonalisation procedure, we can find a subsequence j; and a
function h : Q; — HF (R) such that hj(q) converges weakly in H} (R) to h(q) for every
q € Qy.

Let us fix m € N and write X = H*(—m,m), Y = H '(—=m,m). Then the Hilbert
space X is continuously embedded in the Hilbert space ¥ and hence the dual Y* is dense
in the dual X*. Let us notice that for all hy, hy € L*(a,b), ¢ € X*, ¢ € Y*, i,j € N and
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te[0,m], g€ [0,mNQ,

[p(ha(t)) — p(ha(t))] < Aam|e —p|x- (B.5)
+ 2bp|Yly+t —q|* + [0(ha(q)) — @(ha(q))]-

Hence, since the weak topology on By (0, a,,), the closed ball of radius b,, in the space Y, is
metrisable, we infer that for every ¢ € [0,m], the sequence (h;,(t)) is Cauchy in By (0, by,).
By the completeness of the the last set we infer that there exists h(t;m) € H*(—m, m) such
that the sequence (hj,(t)) is weakly convergent in H¥(—m,m) to h(t;m). Consequently,
by again employing the Helly’s diagonalisation procedure, we can find h : R, — Hf (R)

such that for every ¢ € R, the sequence (h;,(t)) is weakly convergent in HJ (R) to h(t).
Finally, in a classical way we can verify that h € L¥ and that hj, converges to h in the
topology of L. O

Y*

APPENDIX C. SKOROKHOD-JAKUBOWSKI REPRESENTATION THEOREM

Let X be a topological space such that here exists a sequence (f;) of real continuous
functions on X that separate points of X. Then, by [22], every compact set in X is
metrizable and a Borel probability measure is Radon iff it is supported by a o-compact
set. The following result has also been proved by Jakubowski in [22].

Theorem C.1. Let (v;) be a tight sequence of Borel probability measures on X. Then
there exist a subsequence (ji) and Borel measurable mappings 0,6, : [0,1] — X, k > 1 with
a o-compact range such that v;, is the law of 0y, k > 1 and 0x(t) converges in X to 6(t)
for every t € [0,1].

The following result claims, in particular, that Borel o-algebra of a Polish space Z
continuously embedded in X coincides with the trace o-algebra of X on Z.

Proposition C.2. If Z is a Polish space and b : Z — X is a continuous injection, then
b[B] is a Borel set whenever B is Borel in Z.

Proof. Since the map F = (f1, f2,...) : X — RN is a continuous injection, Fob: Z — RY
is also a continuous injection. Let us take a Borel set B C Z. Since both Z and RY are
Polish spaces, we infer that (F ob)[B] is a Borel set. Therefore b|B] = F~'[(Fob)[B]] € X
is Borel set too. O

APPENDIX D. A MEASURABILITY LEMMA

Proposition D.1. Let X be a separable Fréchet space (with a countable system of pseudonorms
(| - |x)ken, let Xy be separable Hilbert spaces and iy : X — Xy linear mappings such that
lig(x)|x, = |x|k, & > 1. Let pi; € Xj, j € N separate points of Xj,. Then the mappings
(Yk,j © U)K jen generate the Borel o-algebra on X.

Proof. Since the map (¢gj © k) jen : X — Hk’jeN X}, is injective, the result follows from

[50, Theorem 3] which for the convenience of the reader we formulate right now.
Theorem 3. Let X, (Y, )aes be Polish spaces equipped with their Borel o-algebras B(X),

(Ba)acr, respectively. Let f, : X — Y, a € I be functions. Then, o({f, : o € I}) = B(X)
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if and only if for each o € I the function f, is Borel measurable and there exists a countable

J C I such that the map [ ., fo : X — [[,c; Xa is injective. O

The next result is a direct consequence of the previous one.

Proposition D.2. There exists a countable system of compactly supported functions ¢y €
C*(R) such that, for every L € N, there is a subsequence k; such that oy, have support in
(=L, L) for every j € N, {¢y,} is dense in H™(—L, L) and the mappings

HZT:)LC(R) >h— <h7 @k)LQ €R, keN

generate the Borel o-algebra on H}'(R) whenever m > 0.
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