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A detailed derivation of the Lattice Boltzmann (LB) scheme for relativistic fluids recently proposed
in Ref. [1], is presented. The method is numerically validated and applied to the case of two quite
different relativistic fluid dynamic problems, namely shock-wave propagation in quark-gluon plasmas
and the impact of a supernova blast-wave on massive interstellar clouds. Close to second order
convergence with the grid resolution, as well as linear dependence of computational time on the
number of grid points and time-steps, are reported.
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I. INTRODUCTION

Relativistic fluid dynamics plays a major role in many
fields of modern physics, e.g. astrophysics, nuclear and
high-energy physics and, lately, also in condensed mat-
ter. The dynamics of such systems requires solving
highly nonlinear equations, rendering the analytic treat-
ment of practical problems extremely difficult. There-
fore, several numerical methods have been developed,
based on macroscopic continuum description [2–4] and
kinetic theory[5]. Very recently, a new Lattice Boltzmann
(LB) scheme for relativistic fluids has been proposed, and
numerically validated for two rather different relativistic
applications, shock waves in quark-gluon plasmas and
blast waves from supernova explosions impinging against
dense interstellar clouds [1]. This fills a missing entry
in the remarkably broad spectrum of LB applications
across most areas of fluid-dynamics, including quantum
fluids [6]. While a quantitative assessment of its practi-
cal impact on relativistic fluid dynamics must necessarily
await for a long and thorough validation activity, work in
Ref. [1] provides robust indications that the relativistic
LB (RLB) stands concrete chances of carrying the recog-
nized advantages of LB schemes for classical fluids, over
to the relativistic context. We refer primarily to mathe-
matical simplicity/computational efficiency, especially on
parallel computers [7], and easy handling of complex ge-
ometries.

In this paper, we present an extended version of our
previous work [1]. First, we provide full details of the
analytical and numerical formulation leading to the rela-
tivistic LB scheme, including the asymptotic (Chapman-
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Enskog) analysis of the continuum fluid-dynamic limit,
starting from the kinetic level. The numerical validation
for the case of quark-gluon plasmas is also extended in
such a way as to probe the convergence/accuracy of the
RLB schemes as a function of grid resolution. Like for
classical fluids, second-order convergence and linear scal-
ing of CPU time with number of grid points and time-
steps is found. Moreover, the application to supernova
blast waves is explored in more detail, by investigating
the effect of increasing Lorentz factors on the space-time
distribution of the density and pressure fields. Here, the
numerical simulation of the relativistic flow past a dense
inter-stellar medium (massive clouds) provides a clear in-
dication that sweeping of interstellar matter across the
cloud becomes appreciable only for relativistic beta fac-
tors β > 0.5.

II. THE BASIC IDEA

The procedure developed [1] was prompted by two sim-
ple observations, i) the kinetic formalism is naturally co-
variant/hyperbolic, ii) being based on a finite-velocity,
discrete (beam) representation of the kinetic distribution
function, standard lattice Boltzmann methods naturally
feature relativistic-like equations of state, whereby the
sound speed, cs is a sizeable fraction of the speed of
light c, i.e. the maximum velocity of mass transport
(cs/c = K, with 0.1 < K < 1). Based on the above,
and choosing the lattice speed close to the value of the
actual light-speed (at variance with standard LB appli-
cations) cl≡δx/δt ∼ c, the LB mathematical framework
allows the relativistic extension developed in our previous
work. The standard LB reads as follows:

fi(~x + ~ciδt; t + δt) − fi(~x; t) = −ωδt (fi − feq
i ) , (1)

where fi(~x; t) denotes the probability of finding a particle
at lattice site ~x and time t, moving along the direction
pointed by the discrete velocity ~ci. The left-hand side
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is readily recognized as an exact lattice transcription of
the free-streaming term (∂t + va∇a)f of the continuum
Boltzmann equation, where Latin index a labels the spa-
tial coordinates and repeated indices are summed upon.
Being naturally covariant, this term goes virtually un-
changed over to the relativistic context.

The right-hand-side, on the other hand, is a discrete
version of the collision operator, here taking the form of
a simple relaxation around a local equilibrium feq

i , on
a timescale τ = 1/ω. The local equilibrium encodes
the symmetries/conservation laws governing the ideal
(non-dissipative) fluid regime, namely mass-momentum-
energy conservation and Galilean invariance. While
molecular details of the collisional processes can be safely
foregone, these conservation properties must necessarily
be preserved in the lattice formulation.

The discrete local equilibrium is usually expressed as a
local Maxwellian, expanded to second order in the local
Mach number Ma = u/cs, u being the local flow speed.
For the case of athermal flows, this takes the form

feq
i = wiρ

(

1 +
ciaua

c2
s

+
Qiabuaub

2c4
s

)

, (2)

where (particle mass is taken to unity for simplicity):

ρ =
∑

i

fi ,

ρua =
∑

i

ficia ,

are the fluid density and mass current density, respec-
tively. In the above, wi is a set of weights, obey-
ing the sum-rules

∑

i wi = 1 and
∑

i wic
2
ia = c2

s, and
Qiab = ciacib−c2

sδab is the projector along the i-th spatial
direction. It is readily checked that the local equilibria
fulfill the following conservation rules

∑

i

feq
i =

∑

i

fi = ρ ,

∑

i

feq
i cia =

∑

i

ficia = ρua ,

∑

i

feq
i ciacib = ρ(uaub + c2

sδab) .

(3)

The first two are the usual mass-momentum conserva-
tions laws, whereas the latter ensures the isotropy of the
equilibrium momentum-flux. The latter is crucial to se-
cure the proper non-linear structure of the Navier-Stokes
equations, and indeed only specific classes of discrete lat-
tices fulfill the aforementioned conservation constraints.
As previously noted, lattice equilibria can be obtained
by local expansion of the continuum expression of lo-
cal Maxwell equilibria. In a more empirical way, they
could also be obtained by matching the local equilibria
in parametric form, Ae−Bciaua , to the conservation rules
[8], thereby fixing the Lagrangian parameters A and B
in terms of the conserved hydrodynamic fields ρ and ua.

The possibility of fixing local equilibria by simply ex-
panding the local continuum Maxwellian, which is more
elegant than empirical matching [9], is by no means evi-
dent.

In fact, it is strictly related to the well-known property
of the local Maxwellian to serve as the generating func-
tion of Hermite’s polynomials Hn (here v = v/cs and
u = u/cs);

e−
(v−u)2

2 = e−
v2

2

∞
∑

n=0

Hn(v)un . (4)

Note that the Galilean invariance manifestly encoded
at the right-hand side through the dependence on the
magnitude of the relative speed (va − ua), can only be
preserved by including all terms in the Mach-number ex-
pansion at the right hand side. It is quite fortunate that
the Navier-Stokes equations only involve quadratic non-
linearities in the flow field, because this allows to develop
a consistent lattice hydrodynamic theory by retaining
only second order terms in the Mach-number expansion.
A similar line of thinking can also be applied to the rela-
tivistic equations, with due changes in the mathematical-
physical details, to be discussed shortly.

On the other hand, we are not aware of any relativistic
analogue of the relation (4) for relativistic local equilib-
ria (Jüttner distribution). Because of this, the relativistic
LB scheme has been devised according to the moment-
matching procedure discussed above. That is, the local
kinetic equilibria are expressed as parametric polynomi-

als of the relativistic fluid velocity ~β = ~u/c, with the La-
grangian parameters fixed by the condition of matching
the analytic expression of the relevant relativistic mo-
ments, namely the number density, energy density and
energy-momentum. As anticipated, the possibility of a
successful matching stems directly from the fact that,
even in standard (non-relativistic) LB fluids, the sound
speed cs is of the same order of the speed of light, typ-
ically cs = c/

√
3, which is exactly the equation of state

of ideal relativistic fluids. As a result, |~β| = Ma/
√

3,

so that |~β| is of the same order as the Mach number
Ma = |~u|/cs. Thanks to this simple, and yet basic prop-
erty, it is possible to tackle weakly relativistic problems
in close analogy with the LB theory of classical low-Mach
fluids, the algebraic details being of course quite different
in the two cases.

This permits to carry most of the LB formalism over
to the context of weakly relativistic fluids, such as quark-
gluon plasmas generated by recent experiments on heavy-
ions and hadron jets [10–16], as well as astrophysical
flows, such as interstellar gas and supernova remnants
[17–20].

The RLB scheme is verified through quantitative com-
parison with recent one dimensional hydrodynamic sim-
ulations of relativistic shock wave propagation in viscous
quark-gluon plasmas [21], and also applied to the three
dimensional case of a blast-wave, produced by a super-
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nova explosion, colliding against interstellar massive mat-
ter, e.g. molecular gas [17].

Being based on a second-order moment-matching pro-
cedure, rather than on a high-order systematic expan-

sion in ~β of the local relativistic equilibrium (Jüttner)
distribution[5], the RLB is limited to weakly relativis-

tic problems, with |~β| ∼ 0.1. Note in fact that, un-
like the continuum Maxwellian, polynomial expansions
are positive-definite only for Mach-number (relativis-
tic β) below a given threshold, typically Ma ∼ 0.3.
However, by introducing artificial faster-than-light par-
ticles (numerical “tachyons”), the RLB scheme can be

taken up to |~β| ∼ 0.6, corresponding to Lorentz’s fac-
tors γ = 1√

1−|~β|2
∼ 1.4 [1]. Although still far from

strongly relativistic regimes, with γ ≫ 10 and higher,
this Lorentz factor is nevertheless relevant to a host of
important relativistic fluid problems at wildly disparate
scales, such as quark-gluon plasmas and relativistic out-
flows in supernova explosions and possibly even Dirac
fluids in graphene [22].

III. MODEL DESCRIPTION

We begin our model description by considering the
relativistic fluid equations associated with the conser-
vation of number of particles and momentum-energy.
The energy-momentum tensor reads as follows[23, 24]:
Tµν = Pηµν + (ǫ + P )uµuν + πµν , ǫ being the energy
density, P the hydrostatic pressure and πµν the dissipa-
tive component of the stress-energy tensor, to be specified

later. The velocity 4-vector is defined by uµ = (γ, γ~β)µ,

where ~β = ~u/c is the velocity of the fluid in units of
the speed of light and γ= 1√

1−|~β|2
. The tensor ηµν de-

notes the Minkowski metric. Additionally, we define the

particle 4-flow, Nµ = nγ(1, ~β)µ, with n the number of
particles per volume. Applying the conservation rule to
energy and momentum, ∂µTµν = 0, and to the 4-flow,
∂µNµ = 0, we obtain the hydrodynamic equations,

∂t

(

(ǫ + P )γ2 − P
)

+ ∂a

(

(ǫ + P )γ2ua

)

+ ∂tπ
00 + ∂aπa0 = 0 ,

(5a)

∂t

(

(ǫ + P )γ2ub

)

+ ∂bP + ∂a

(

(ǫ + P )γ2uaub

)

+ ∂tπ
0b + ∂aπab = 0 ,

(5b)

for the energy momentum conservation, and

∂t(nγ) + ∂a (nγua) = 0 , (6)

for the conservation of particle number. Note that, un-
like the case of non-relativistic fluids, we have two scalar
equations, one for the particle number and one for the en-
ergy (in classical hydrodynamics energy appears as the
trace of a second-order moment, namely the momentum-
flux) . To complete the set of equations, we need to
define a state equation relating at least two of the three
quantities: n, P and ǫ.

A. Relativistic Boltzmann Equation

The above hydrodynamic equations can be derived as a
macroscopic limit of the relativistic Boltzmann equation.
For the case of a single non-degenerated gas, and in the
absence of external forces, this reads as follows[23]:

∂µ(pµf) =

∫

(f ′
∗f

′ − f∗f)ΦσdΩ
d3p∗
p∗0

, (7)

where pµ =
(

E(p)
c , ~p

)

is the particle 4-momentum with

E(p) the relativistic energy as function of the momen-
tum magnitude p=|~p|, E(p) = (p2c2 + m2c4)1/2. In the
above, f∗≡f(~x, ~p∗, t) and f≡f(~x, ~p, t) denote the distri-
bution functions before the collision, while f ′

∗≡f(~x, ~p′∗, t)
and f ′≡f(~x, ~p′, t) are the resulting ones after the colli-
sion. The base of the so-called collision cylinder is de-
scribed by σdΩ, with σ the differential cross section, Ω
is the solid angle, and

Φ =
p0p0

∗

c

√

(~v − ~v∗)2 −
1

c2
(~v × ~v∗)2

=
√

(pµ
∗pµ)2 − m2c4

(8)

is the Lorentz invariant flux [23], with ~v and ~v∗ the veloc-
ity of the particles with momentum ~p and ~p∗, respectively.
The right-hand-side of Eq. (7) is the collision term, whose
details fix the value of the transport coefficients in the
macroscopic equations. Although the collision integral
can be expressed in terms of the second kind modified
Bessel functions and numerical integrations [23], simpler
expressions have been proposed, along the lines of the
BGK (Bhatnagar-Gross-Krook) approximation for non-
relativistic fluids. The first relativistic BGK (RBGK), as
proposed by Marle[25], reads as follows:

∂µ(pµf) =
m

τM
(feq − f) , (9)

where feq is a local relativistic equilibrium, m is the par-
ticle rest mass, and τM represents a characteristic time
between subsequent collisions. This can be regarded as
the relaxation time only in a local rest frame where the
momentum of the particles is zero[23]. It is well-known
that in a general inertial frame, the relaxation time τ̂M

can be written as follows:

τ̂M =
p0

mc
τM . (10)

Although, in the Marle model, the transport coefficients
are expressed usually as functions of the characteristic
time τM , they cannot be described as functions of the
relaxation time τ̂M because it depends on the micro-
scopic momentum component p0, which means on mi-
croscopic γv= 1

q

1−
|~v|2

c2

, and therefore it cannot appear

in any macroscopic description. To avoid this problem,
Takamoto and Inutsuka [26] proposed a modified Marle
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model, in which the relaxation time τ is taken as the
weighted average, i.e. 1

τ =〈 1
τ̂M

〉. With this approxima-

tion, the following relation can be obtained [23, 26]

τM =
K1(χ)

K2(χ)
τ , (11)

where χ≡mc2

kT and Kn is the second kind modified Bessel

function of order n. The correction K1(χ)
K2(χ) tends to 1 at

low temperatures, i.e. χ→∞, and to χ
2 in the limit of

high temperatures, i.e. χ→0. In this modified approach,
the characteristic time in the transport coefficient can be
replaced by the relaxation time τ using Eq. (11) as an
approximation.

The Marle model provides a good approximation of the
full collision term at low temperatures.

A more general RBGK model, which provides a reason-
able approximation of the transport coefficients at both
low and high temperatures, was subsequently proposed
by Anderson and Witting [27], and it reads as follows:

∂µ(pµf) =
uµpµ

c2τA
(feq − f) , (12)

τA being the relaxation time.
Both models can reproduce on the macroscopic level

the conservation equations given by ∂µTµν = 0, and
∂µNµ = 0, although with different expressions for the
dissipative terms and transport coefficients. For in-
stance, the shear viscosity using the Marle model is given
by ηM≃ 4P eqτM

χ for high temperatures (ultra-relativistic

case), with P eq the equilibrium pressure, while with the

Anderson-Witting model yields ηA≃ 4P eqτA

5 .
In general, the dissipation parameters, like the bulk

viscosity, thermal conductivity and shear viscosity, are
only approximations of the values obtained by lineariza-
tion of the full collision term in the relativistic Boltzmann
equation, Eq.7.

Having discussed the BGK formulation in the relativis-
tic context, we next proceed to map it within the Lattice
Boltzmann framework.

B. Lattice Boltzmann Model

The Lattice Boltzmann theory for classical fluids shows
that it may prove more convenient to solve fluid problems
by numerically integrating the underlying kinetic equa-
tion rather than the macroscopic fluid equation them-
selves. The main condition for this to happen is that a
sufficiently economic representation of the velocity de-
grees of freedom be available. Following upon con-
solidated experience with non-relativistic fluids, such a
representation is indeed provided by discrete lattices,
whereby the particle velocity (momentum) is constrained
to a handful of constant discrete velocities, with sufficient
symmetry to secure isotropy and the fundamental con-
servations of fluid flows, namely mass-momentum-energy

conservation and rotational invariance. The main ad-
vantages of the kinetic representation of classical fluids
have been discussed at length[28], and they amount basi-
cally to the fact that the information is transported along
straight-streamlines (the discrete velocities are constant
in space and time) rather than along space-time depen-
dent trajectories generated by the flow itself, as it is case
for hydrodynamic equations. Moreover, diffusive trans-
port is not described by second-order spatial derivatives,
but rather emerges as a collective property from the adia-
batic relaxation of the momentum flux tensor to its local
equilibrium value. This is crucial in securing a balance
between first-order derivatives in both space and time,
which is essential for relativistic equations.

In order to reproduce the relativistic hydrodynamic
equations, an LB model with the D3Q19 (19 speeds in 3
spatial dimensions) cell configuration, as shown in Fig. 1,
was proposed in Ref. [1]. From Fig. 1 it is readily appre-

ciated that the highest D3Q19 speed is
√

2cl, cl=
δx
δt be-

ing the limiting lattice speed along each direction. The
velocity units are rescaled such that the speed of light
becomes c=1.

As noted above, relativistic hydrodynamics evolves two
scalars, number and energy density. It is therefore con-
venient to introduce two separate distribution functions
fi and gi for each velocity vector ~ci, representing, so to
say, “fluons” and “phonons”, respectively.

The hydrodynamic variables are calculated by using
the following five macroscopic constraints,

nγ =

18
∑

i=0

fi , (13a)

(ǫ + P )γ2 − P =

18
∑

i=0

gi , (13b)

(ǫ + P )γ2~u =
18
∑

i=0

gi~ci , (13c)

From these equations, we need to extract six physical
quantities, namely n, ~u, ǫ and P . With five equations
for six unknowns, the problem is closed by choosing an
equation of state, which we take of the form ǫ=3P [23].
We wish to emphasize that the present LB scheme is by
no means limited to this choice.

Both distribution functions fi and gi are postulated
to evolve according to the relativistic Boltzmann-BGK
equation based on the low-temperature Marle model,
Eq. (9).

To obtain the lattice analogue of the Marle model, we
first write explicitly Eq. (9) as follows:

∂0(p
0f) + ∂a(paf) =

m

τM
(f eq − f) . (14)

Replacing the value of the four-momentum, we obtain

∂0(mγvf) + ∂a(mcaγvf) =
m

τM
(f eq − f) , (15)
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with γv the Lorentz factor for the microscopic velocities
ca. Due to the fact that the velocity and spatial coordi-
nates are linearly independent, we can further write:

γv∂0f + γvca∂af =
f eq − f

τM
. (16)

Dividing by γv on both sides of Eq. (16), we obtain

∂0f + ca∂af =
mc

τMp0
(f eq − f) , (17)

and replacing Eq. (10), we obtain

∂0f + ca∂af =
1

τ̂M
(f eq − f) . (18)

According to the modified Marle model [26], we can write
Eq. (18) as

∂0f + ca∂af =

(

1

τ
− ϑ

)

(f eq − f), (19)

where the correction term ϑ, using Eq. (11), is given by

ϑ =

[〈

1

τM∗

〉

− 1

τM∗

]

=
1

τM

[

K1(χ)

K2(χ)
− 1

γv

]

.

(20)

For low temperatures, K1(χ)
K2(χ) ∼ 1 and γv ∼ 1, so that the

correction term ϑ tends to zero, thereby renstituting the
non-relativistic Boltzmann equation. At high tempera-
tures, this term can be approximated by

ϑ ∼ χ

2

1

τM
, (21)

which also tends to vanish as temperature is made higher.
As noted above, Eq. (19), without the term ϑ, is just

the Boltzmann equation for the case of non-relativistic
fluids, with the collision time τ representing a realistic
relaxation time of the system.

Therefore, for the purpose of this work, we postulate
the discrete distribution functions to evolve according to
the following pair of BGK Boltzmann equations [29],

fi(~x + ~ciδt, t + δt) − fi(~x, t) = − δt
τ (fi − f eq

i ) , (22)

and,

gi(~x + ~ciδt, t + δt) − gi(~x, t) = − δt
τ (gi − geq

i ) , (23)

where f eq
i and geq

i are the equilibrium distribution func-
tions.

To find the equilibrium distribution functions recover-
ing the relativistic fluid equations, Eqs. (5) and (6), in
the continuum limit, we use the moment-matching pro-
cedure described earlier on in this paper.

More precisely, we write the equilibrium distribution
functions as,

f eq
i = wi[A + ~ci · ~B] , for i ≥ 0 , (24a)

FIG. 1: Set of discrete velocities for the relativistic lattice
Boltzmann model. The highest speed is

√
2cl.

geq
i = wi[C + ~ci · ~D + E

↔
: (~ci~ci − αI

↔
)] , for i > 0 ,

(24b)

geq
0 = w0[F ] , (24c)

where α, A, ~B, C, ~D, E
↔

and F are Lagrange parameters,
to be fixed by matching the discrete to the correct con-
tinuum equations. The weights wi for this set of discrete
speeds are defined by w0 = 1/3 for the rest particles,
wi = 1/18 for the velocities |~ci|=cl, and wi = 1/36 for

|~ci|=
√

2cl.

First, we find the values for A and ~B to obtain the
conservation of particle number, Eq. (6). To this purpose,
we impose

18
∑

i=0

f eq
i = nγ , (25)

and,

18
∑

i=0

f eq
i ~ci = nγ~u . (26)

Replacing the Eq. (24) into the sums, we arrive to

18
∑

i=0

f eq
i = A = nγ , (27)

and

18
∑

i=0

f eq
i ~ci =

3

c2
l

~B = nγ~u , (28)

where, we can see easily that A=nγ and ~B= 3
c2

l

γn~u. Next,

we have to obtain the Eq. (5) from the equilibrium dis-
tribution functions geq

i . To this end, we impose the fol-
lowing constraints:

18
∑

i=0

geq
i = γ2(ǫ + P ) − P , (29)



6

18
∑

i=0

geq
i ~ci = (ǫ + P )γ2~u . (30)

and additionally,

18
∑

i=0

geq
i ciaciβ = Pδab + (ǫ + P )γ2uaub . (31)

Using a similar procedure as before, we can find

the rest of the Lagrange parameters, α=
c2

l

3 , C= 3P
c2

l

,

~D= 3
c2

l

(ǫ + P )γ2~u, Eab=
9

2c4
l

(ǫ + P )γ2uaub, and F=(ǫ +

P )γ2
[

3 − 3
(2+c2

l )P

c2
l
(ǫ+P )γ2 − 3

2c2
l

(ǫ + P )γ2|~u|2
]

. These calcu-

lations are shown in detail in Appendix A.
The equilibrium distribution functions recovering the

relativistic fluid equations in the continuum limit, finally
read as follows:

f eq
i = winγ

[

1 + 3
(~ci · ~u)

c2
l

]

, (32)

for i≥0,

geq
i = wi(ǫ + P )γ2

[

3P

(P + ǫ)γ2c2
l

+ 3
(~ci · ~u)

c2
l

+
9

2

(~ci · ~u)2

c4
l

− 3

2

|~u|2
c2
l

]

,

(33)

for i>0, and

geq
0 = w0(ǫ + P )γ2

[

3 − 3P (2 + c2
l )

(P + ǫ)γ2c2
l

− 3

2

|~u|2
c2
l

]

, (34)

for the rest particles.
By Taylor expanding the Eqs. (22) and (23) to second

order in δt, and retaining terms only up to first order
in the Chapman-Enskog expansion f = feq + κf1 + . . . ,
where κ ∼ cτ∇ is the Knudsen number, the LB equations
can be shown to reproduce the following continuum fluid
equations as derived in detail in Appendix B:

∂t

[

(ǫ + P )γ2 − P
]

+ ∂a

[

(ǫ + P )γ2ua

]

= 0 , (35a)

∂t

[

(ǫ + P )γ2ub

]

+ ∂bP + ∂a

[

(ǫ + P )γ2uaub

]

= ∂a [∂b(ηγua) + ∂a(ηγub) + ∂l(ηγul)δab] ,
(35b)

for the energy momentum conservation, and

∂t(nγ) + ∂a (nγua) = 0 , (36)

for the conservation of particle number. The indices a,b
and l denote the spatial components.

The choice of the state equation, ǫ=3P , simplifies the
equilibrium functions as follows,

f eq
i = winγ

[

1 + 3
(~ci · ~u)

c2
l

]

, (37)
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FIG. 2: Comparison between the BAMPS simulations[21] and
the lattice Boltzmann results at t=3.2fm/c. Note that, in
both simulations, the value of β∼0.2 for the speed of prop-
agation of the shock wave is obtained. Pressure (top) and
velocity (bottom) of the fluid as function of the spatial coor-
dinate z.

for i≥0 and,

geq
i = wiǫγ

2

[

1

γ2c2
l

+ 4
(~ci · ~u)

c2
l

+ 6
(~ci · ~u)2

c4
l

− 2
|~u|2
c2
l

]

,(38)

for i>0 and,

geq
0 = w0ǫγ

2

[

4 − 2 + c2
l

γ2c2
l

− 2
|~u|2
c2
l

]

, (39)

for i=0. Then, the equations for the macroscopic vari-
ables take the form: nγ =

∑18
i=0 fi,

4
3ǫ

(

γ2 − 1
4

)

=
∑18

i=0 gp
i and 4

3ǫγ2~u =
∑18

i=0 gi~ci. The shear viscosity

is computed as η= 4
9γǫ(τ − δt/2)c2

l .
Also, it is worth noting that our scheme smoothly re-

covers the non-relativistic limit by simply letting β → 0.

IV. DISSIPATIVE HYDRODYNAMICS

According to kinetic theory, dissipative effects emerge
at the level of first order terms in the Knudsen number
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FIG. 3: Time evolution of the shock wave for BAMPS
simulations[21] and Lattice Boltzmann results. Here the
speed of propagation of the shock wave β ∼ 0.2 is obtained.
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FIG. 4: Lattice Boltzmann simulation of the shock wave for
different grid resolutions, β∼0.2 and η/s=0.05.

expansion of the kinetic equations. At a more fundamen-
tal level, dissipation is an emergent property resulting
from the finite-time relaxation of non-equilibrium kinetic
excitations on top of the hydrodynamic ”ground state”.
A detailed Chapman-Enskog analysis (see Appendix B),
shows that the lattice formulation needs to retain second
order terms in the lattice spacing, which means that the
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FIG. 5: Relative convergence error for different grid res-
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streaming operator needs to be expanded to second order
in the lattice time step δt and, by the light-cone rule, in
δx too. Straightforward but lengthy algebra, leads to the
following expression of the LB dynamic viscosity [30]

η = ρc2
s

(

τ − δt

2

)

≡ ρc2
sτ

(

1 − θ

2

)

, (40)

where we have defined

θ =
δt

τ
, (41)
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as the parameter measuring the time-granularity of the
LB scheme. Indeed, the limit θ → 0 reproduces the con-
tinuum value η = ρc2

sτ . Similar calculations for the rela-
tivistic case yield (see more details in Appendix B)

η = γc2
sτ(ǫ + P )(1 − θ/2)c2

l . (42)

A few comments are in order. First, we note that pos-
itivity of the kinematic viscosity implies

0 < θ < 2 (43)

This linear stability constraint for the discrete scheme, is
readily seen to associate with the second-principle (neg-
ative viscosity implies physical instability).

The above expressions seem to suggest that ideal hy-
drodynamics, i.e. strictly zero dissipation, could be
achieved in the limit δt → 2τ , i.e. θ → 2. Actual
practice, though, shows that this limit is an illusory
one, since, whenever the viscosity falls below a given
(flow-dependent) threshold, the stability of the scheme
is compromised. Physically, the reason is that below a
given threshold, the system is no longer capable of dissi-
pating short-scale gradients, thereby allowing the non-
equilibrium component of the distribution function to
grow wildly, and finally ruin the simulation. This is
in line with the so-called “numerical uncertainty prin-
ciple” (NUP) for transport advection equations, accord-
ing to which a minimum non-zero viscosity is required to
secure the positivity of the positive-definite quantities,
such as the fluid density [31]. In a nutshell, the point is
that, in order to reach zero viscosity with a positive def-
inite distribution, wavelengths at all scales are needed,
including those below the lattice spacing δx. Since -
by construction- the latter are missing from a discrete
lattice representation, positivity can only be maintained
through a finite amount of dissipation, typically of the

order of the inherent lattice viscosity δx2

δt . Incidentally,
we note that viscosity has the same physical dimension
as δxδv ∼ ~/m, whence the notion of “uncertainty prin-
ciple”.

For LB equations, the NUP can be formulated in
terms of an inequality involving the equilibrium and non-
equilibrium components of the discrete distribution func-
tion. To appreciate this point, let us first recast the stan-
dard LB in the following collide-stream form:

fi(~x+~ciδt; t+δt) = f ′
i(~x; t) ≡ (1−θ)fi(~x; t)+θfeq

i (44)

where f ′ denotes the so-called post-collisional distribu-
tion function.

From the above, it is seen that positivity of the post-
collisional distribution at time t guarantees positivity of
the distribution at the subsequent time t + δt. Simple
algebra yields:

θ < θNUP [f ] ≡ min
i

{ |feq
i |

|fneq
i |

}

This informative expression suggests the definition of
three distinct non-equilibrium regimes:

1. Weak non-equilibrium (θNUP > 2)

2. Strong non-equilibrium (1 < θNUP < 2)

3. Extreme non-equilibrium (θNUP < 1)

In the weak non-equilibrium regime (often referred to
as strong-coupling regime), the one relevant to hydrody-
namics, the NUP does not set any additional constraint
to linear stability. In the strong non-equilibrium regime,
however, non-linear stability may in principle set the
most stringent constraint. Clearly, this is even more so
in the extreme non-equilibrium region, where the non-
equilibrium component exceeds the equilibrium one, in
total defiance of hydrodynamics.

Remarkably, LB proves capable of stable operation in
this “linearly-forbidden” region. In fact, the negative
shift −δt/2, (“propagation viscosity” in LB jargon) which
stems directly from the light-cone structure of the LB
streaming operator, permits to attain very small viscosi-
ties, of order, say, 10−3 in lattice units, while still keeping
δt = 1, and θ ∼ 2 − O(10−3). This allows for the simu-
lation of very-low viscous flows (such as the quark-gluon
plasma) with time-steps of order O(1), which proves very
beneficial for computational purposes.

The ultimate reason for such favorable behavior in the
strong non-equilibrium regime can be traced to the exis-
tence of lattice versions of the H-theorem [32, 33].

Another remarkable property of the LB formulation
is that, in contrast to hydrodynamic formulations, dis-
sipation is not represented explicitly through second-
order spatial derivatives, but emerges instead from a
first-order, covariant propagation-relaxation dynamics,
through adiabatic enslaving of the momentum-flux tensor
to its equilibrium (ideal-hydrodynamic) expression. As a
result of this first-order dynamics, the CFL (Courant-
Friedrichs-Lewy) stability condition of the LB scheme
reads simply as uδt ≤ δx, instead of νδt < δx2, the latter
being much more demanding on the time-step δt, as the
grid is refined (δx → 0). In the above, ν = µ

ρ is the fluid

kinematic viscosity.
Also to be noted, built-in causality is secured by the

hyperbolic structure of the underlying kinetic theory.
Before closing this section, we wish to emphasize that

the structure of the dissipative terms could be enriched
by turning to a multi-time relaxation version of the colli-
sion operator, whereby different moments relax with dif-
ferent rates to their equilibrium expression [34, 35]. This
allows to enlarge the list of transport coefficients, includ-
ing bulk viscosity, thermal conductivity and anisotropic
transport parameters.

V. VALIDATION AND APPLICATIONS

Having discussed the basic aspects of the relativistic
Lattice Boltzmann theory, we next move on to its numeri-
cal validation and application to two different problems of
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modern relativistic hydrodynamics, namely shock prop-
agation in viscous quark-gluon plasmas and blast-waves
from supernova explosions in interstellar media.

A. Quark-Gluon Plasma

To test the model, we solve the Riemann problem in
viscous gluon matter[21] with a ultra-relativistic equation
of state ǫ=3P , as before, and the relation between energy
density and particle number density, ǫ=3nT , T being the
temperature[23]. The initial configuration consists of two
regions, divided by a membrane located at z=0. Both
regions are thermodynamically equilibrated, at different
constant pressure, P0 for z<0 and P1 for z>0. At t=0,
the membrane is removed and the fluid starts expanding.

We implement a one-dimensional simulation with an
array of size 1×1×800 using open boundary conditions
at the two ends of this 1D chain. In this case, the 4-
velocity is given by uµ=(γ, 0, 0, γβ)µ. The velocity of the
lattice is chosen cl=1.0, so that the cell size δx and time
step δt are both fixed to unity. This corresponds in IS
units to δx=0.008fm and δt=0.008fm/c. The viscosity is
calculated as η= 4

9γǫ(τ−1/2), and the entropy density by
the approximation s=4n − n lnλ, with λ= n

neq the gluon
fugacity. The equilibrium particle density neq is given

by, neq=dGT 3

π2 with dG=16 for gluons. Next, we calculate
the ratio between the viscosity and entropy density, η/s,
that is used as a parameter to characterize the conditions
for the onset of shock-waves. The pressures were chosen
as P0=5.43GeVfm−3 and P1=2.22GeVfm−3, correspond-
ing to 7.9433×10−6 and 3.2567×10−6 in numerical units,
respectively. The initial temperature is T0=350MeV, cor-
responding to T0=0.0287 in numerical units. With these
parameters, the conversion between physical and numer-
ical units for the energy, is 1MeV=8.2×10−5.

Fig. 2 shows the results for different values of η/s and
the comparison with the BAMPS[36] (Boltzmann Ap-
proach of Multiparton Scattering) microscopic transport
model simulations[21] at time 3.2fm/c. Fig. 3, shows
the time evolution of the system for η/s=0.1 for the two
numerical models. In both cases, excellent agreement
with BAMPS is observed. Fluids moving at higher speed,
β∼0.6, were also considered in Ref. [1], where numerical
“tachyons” with cl=10 were used.

Indeed, from Eqs. (32) and (33), we see that the pos-

itivity condition, f eq
i >0, implies ~ci · ~u<

c2
l

3 . As a result,
by raising cl, e.g. by reducing the time-step accordingly,
positivity can be preserved for higher values of β.

To check the convergence of the model, we implement
simulations taking η/s=0.05 and η/s=0.01 for different
grid resolutions. Fig. 4 reports the pressure profile at
time 3.2fm/c and shows very small differences between
the results when the resolution is changed from 50 to
3200 grid points with η/s=0.05. To obtain a more quan-
titative measure of the convergence we use the Richard-
son extrapolation method [37, 38]. In this method, given
any quantity A(δx) that depends on a size step δx, we

Grid points Total time steps CPU time (ms)
50 25 0.94
100 50 3.5
200 100 17.1
400 200 68.4
800 400 272
1600 800 1095
3200 1600 4396

TABLE I: Computational time required for the simulation of
the shock waves in quark-gluon plasma as a function of the
grid resolution.

can make an estimation of order n of the exact solution
A by using

A = lim
δx→0

A(δx) ≈ 2nA
(

δx
2

)

− A(δx)

2n − 1
+ O(δxn+1) ,

(45)
with errors O(δxn+1) of order n + 1. Thus the relative
error between the value A(δx) and the “exact” solution
A can be calculated by

Er(δx) =

∣

∣

∣

∣

A(δx) − A

A

∣

∣

∣

∣

. (46)

In our case, the quantity A is the pressure P (z) and we
set up n = 2. We can estimate the relative error as shown
in Fig. 5 for η/s=0.01 using Eqs. (45) and (46), at every
grid point. Indeed, the relative error with respect to the
“exact solution” decreases rapidly with increasing grid
resolution. More precisely, Fig. 6 shows that the present
scheme exhibits a near second-order convergence. This is
basically in line with the convergence properties of non-
relativistic LB schemes.

However, we can see that for higher viscosity, i.e. larger
values of the relaxation time τ , and higher grid reso-
lution (smaller δx), the order of convergence decreases
due to the lack of adiabaticity associated with increasing
Knudsen number. Nevertheless, the model is still able to
reproduce shock waves, at low resolution, hence with a
very modest computational time. For instance, using a
resolution of 50 grid points, the simulation took 0.94ms
in a standard PC. Other values are shown in Table I.
From this table, it is readily appreciated that the com-
putational cost scales linearly with the number of grid
points and time-steps.

B. Supernova explosion simulation

Several important astrophysical phenomena involve
strongly-relativistic hydrodynamics, and some of them
fall in the region of γ ∼ 1.4, covered by our scheme. This
is the case, for instance, of blastwaves produced by super-
nova explosions [20]. In this section, we simulate a shock
wave, generated by, say, a GRB (γ-ray burst) or XRF (X-
ray flash) supernova explosion [19, 20], colliding against
an interstellar cloud composed by massive matter, e.g.
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(a)

(b)

(c)

FIG. 7: Relativistic shock wave, generated by a γ-ray burst
or X-ray flash supernova explosion [19, 20], impacting on a

massive interstellar cloud at |~β| = 0.5 at t = 1350 time steps
which is equivalent to 4280 years. Here the streamlines repre-
sent the velocity field, and the colors (a) the pressure, (b) the
particles density, and (c) the temperature. The simulation
was implemented on a grid of 200 × 100 × 100 cells.

molecular gas[17]. The ejecta from the explosion of such
supernovae are known to sweep the interstellar material
along, up to relativistic velocities (relativistic outflows)
[18–20].

The simulation is implemented in a box of size 6×3×3
×1016 Km in a coordinate system (x, y, z), using a lat-
tice of 200 × 100 × 100 cells, which gives a cell length
δx=δy=δz=3 × 1014 Km, using numerical “tachyons”
with cl=10, and a time step δt=3.17 years. The simula-
tion region is divided in two zones by the plane x = 50.
The interstellar medium, located at x > 50, is character-

ized by a particle density n1=0.6 cm−3 and temperature
T1=104 K. The massive cloud is modeled as a spheri-
cal obstacle, with a radius of 10 cells, centered at loca-
tion (100, 50, 50). The boundary condition on the sur-
face of the obstacle is implemented forcing the obstacle
cells to evolve to the equilibrium distribution function
with the constant values, n = n1, ~u = 0, and T = T1.
Open boundary condition was implemented at right, left,
top, bottom and front of the simulation zone according
to the shock wave propagation direction (x-direction),
which consists on copying the information of the distri-
bution functions from the second last cells to the last
ones of the boundary. At back boundary we set an in-
let flow boundary condition fixing the distribution func-
tions of the boundary cells with the equilibrium distri-
bution function evaluated with the initial conditions n0

and T0 [30, 39]. In order to obtain a shock wave moving

at |~β| ≃ 0.5 along the x-direction, we set T0=6T1 and
n0=2n1 for the region x ≤ 50. The simulation, span-
ning 1350 time steps, takes about 1900 CPU seconds on
a standard PC. Fig. 7 shows the simulation results for
the velocity, pressure, particle density, and temperature
fields of the supernova remnant, during the impact of
the shock wave on the massive interstellar cloud, red and
blue denoting high and low values, respectively.

Here, we can see that the density n is higher in the
shock front, due to sweeping of interstellar material by
the shock-wave, which is compressing the fluid. On the
other hand, the temperature of the fluid is higher in the
zone of x ≤ 50, as a consequence of the initial configu-
ration. The temperature is seen to increase in the zone
where the collision takes place (see Fig. 8), and so does
the temperature. This is due to conversion of kinetic en-
ergy to pressure/temperature caused by the momentum
lost on the solid boundary of the massive cloud.

Fig. 8 illustrates in more detail the density n, pres-
sure P and temperature T of the fluid during the col-
lision and compares the respective curves with the ones
obtained when the obstacle is absent. Note that the par-
ticle density, pressure, and temperature values, with and
without obstacle, present a small difference sufficiently
downstream the obstacle along the x-axis at y = z = 50
(see Fig. 8). During the collision, the shockwave sur-
rounds the obstacle and later the fluid meets again at the
x-axis and overlaps. Due to this, the x-component of the
shockwave propagation velocities are the same (because
of symmetry) for all the incoming fluid to the meeting
zone, the perturbations along this axis close to the shock
front are weak, contrary to the zone near the obstacle,
where the fluid fills up again, due to the low pressure.
However, the fluid moves slower than in the case without
obstacle because of the existence of flow moving outwards
off the axis. If we increase the ratio between the cross
section and the length of the obstacle, larger departures
between the velocity of the shock-fronts with and without
obstacle would be expected. Moreover, later in time after
the collision, differences in the pressure and other quanti-
ties, can generate turbulence. Transversal perturbations



11

0

2

4

6

8

10
P

/P
1

0

1

2

3

n
/n

1

0 50 100 150 200

0

5

10

x (cells)

T
/T

1

FIG. 8: Pressure P , number of particles density n, and tem-
perature T of the supernova remnant as a function of the x
coordinate at y = z = 50 and t = 1350 time steps equivalent
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ence of the obstacle, dotted line the region where the massive
interstellar cloud is located, and the dashed line the values
without obstacle.

in the variables, as one moves out from the x-axis, are
shown in Figs. 7, 9 and 10.

Shock waves form when the speed of injection of mass
exceeds the sound speed of the surrounding medium [17].
By changing the values of the temperature of the fluid in
the region x ≤ 50, in order to obtain speeds of mass in-

jection of |~β| = 0.5, |~β| = 0.2, and |~β| = 0.01, we can
see that the increment of the particle density due to the
sweeping of interstellar medium by the shock wave be-

comes appreciable only for |~β| = 0.5 (see Fig. 10). A sim-
ilar argument applies to the pressure cone (see Fig. 9(a)).
Indeed, in the other cases, the speed of mass injection is
lower than the sound speed, and therefore no shock-wave
can be formed.

(a)

(b)

(c)

FIG. 9: Fluid pressure after the collision of the shock wave,
produced by a supernova explosion, against the massive inter-

stellar cloud, at (a) |~β| = 0.5, (b) |~β| = 0.2, and (c) |~β| = 0.01
in a cut going through the center of the cloud. The stream-
lines represent the velocity field, and the colors the pressure.
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(a)

(b)

(c)

FIG. 10: Particles density of the fluid after the collision of
the shock wave, produced by a supernova explosion, against

the massive interstellar cloud, at (a) |~β| = 0.5, (b) |~β| = 0.2,

and (c) |~β| = 0.01 in a cut going through the center of the
cloud. The streamlines represent the velocity field, and the
colors the particles density.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have provided a detailed discussion of
the Lattice Boltzmann formulation for relativistic fluids.
In particular, details on the construction of the relevant
lattice equilibria are provided, emphasizing the common
aspects with standard Lattice Boltzmann theory.

The scheme is shown to exhibit excellent agreement
with previous numerical simulations of shock wave prop-
agation in quark-gluon plasmas, at a fraction of the cost
of hydrodynamic codes. Near-second order accuracy with
grid resolution and linear computational time with space-
time resolution, are evidenced.

As an example of relativistic hydrodynamics with non-
trivial geometries, we have also applied our scheme to
an astrophysical system, namely the collision of a shock
wave, produced by a supernova explosion, against a cold
molecular cloud. The numerical simulations show good
qualitative results yielding information, that can be com-
pared with experimental results and other numerical
methods.

For the case of quark-gluon plasma simulations, the
present lattice-kinetic algorithm appears to be nearly an
order of magnitude faster than corresponding hydrody-
namic codes. This is due to the fact that, at variance
with any hydrodynamic representation, LB moves infor-
mation along constant light-cones rather than space-time
changing material fluid streamlines [40]. This trivializes
the Riemann problem to a mere shift of the distribution
function along the corresponding lightcone, a floating-

point free, exact operation, which is way more convenient
than propagating hydrodynamic fields along space-time
changing streamlines. Such an advantage, key in ordi-
nary lattice Boltzmann fluids, might be even accrued in
the relativistic context.

Several issues remain open for future research. First,
extensions of the present scheme to higher-order lattices
are worth being considered, for they should give access
to higher values of β, by use of correspondingly higher-
order lattice equilibria. This strategy has indeed proved
very effective for the case of compressible and thermal
non-relativistic fluids [41–44].

Another important question concerns the existence of
a relativistic lattice H-theorem. Apart from the theoret-
ical interest on its own, this has major implications on
the numerical stability of the scheme at high Reynolds
number, i.e. for the simulation of relativistic turbulence
[45].

Yet another interesting research direction is the simu-
lation of relativistic flows with a non-ideal equation of
state, which may find applications in relativistic cos-
mology and high-energy theories of the early universe
[46, 47].

These are just but a few of the many exciting develop-
ments and applications which may currently be envisaged
for the relativistic Lattice Boltzmann equation presented
in this paper.
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Appendix A: Moment Matching Procedure

To obtain the equilibrium distribution functions f eq
i

and geq
i that reproduce in the continuum limit the hy-

drodynamic equations, Eqs. (5) and (6), we use the
moment-matching procedure. In section III B, we de-
scribe the procedure and calculate the equilibrium distri-
bution functions f eq

i in order to obtain the conservation
of particle number, Eq. (6). Following a similar proce-
dure, to find the equilibrium distributions geq

i , first we
can write it, as before, as

geq
i = wi[C + ~ci · ~D + E

↔
: (~ci~ci − αI

↔
)] , for i > 0 ,

(A1a)

geq
0 = w0[F ] , (A1b)

with C, ~D, α, and E
↔

the Lagrange multipliers. Then, we
impose the following constraints:

18
∑

i=0

geq
i = γ2(ǫ + P ) − P , (A2)

18
∑

i=0

geq
i ~ci = (ǫ + P )γ2~u . (A3)

and additionally,

18
∑

i=0

geq
i ciaciβ = Pδab + (ǫ + P )γ2uaub . (A4)

Replacing Eq. (A1) into Eq. (A2), (A3), and (A4), and
summing up over the index i, we obtain

1

3

(

2C + F + Tr(E
↔

)(c2
l − 2α)

)

= γ2(ǫ+P )−P , (A5)

c2
l

3
~D = (ǫ + P )γ2~u , (A6)

and

c2
l

9

(

3C + (c2
l − 3α)Tr(E

↔
)
)

δab +
2c4

l

9
Eab = Pδab

+ (ǫ + P )γ2uaub ,
(A7)

where we have defined Tr(E
↔

) as the trace of the tensor E
↔

.

From Eq. (A6) we can see that ~D= 3
c2

l

(ǫ + P )γ2~u. If we

compare the left and right hand sides of Eq. (A7), we can

conclude that α=
c2

l

3 , and therefore Eq. (A7) is simplified
to

c2
l

3
Cδab +

2c4
l

9
Eab = Pδab + (ǫ + P )γ2uaub . (A8)

Comparing again both sides of this equation the La-
grange multipliers C= 3P

c2
l

and Eab=
9

2c4
l

(ǫ+P )γ2uaub are

obtained. Now, the only missing parameter to be deter-

mined is F . Replacing the values of C, α, and E
↔

into
Eq. (A5), it gives

2P

c2
l

+
F

3
+

c2
l

9
Tr(E

↔
) = γ2(ǫ + P ) − P . (A9)

From here, we can get the Lagrange parameter F and it
can be written as

F = (ǫ+P )γ2

[

3 − 3
(2 + c2

l )P

c2
l (ǫ + P )γ2

− 3

2c2
l

(ǫ + P )γ2|~u|2
]

.

(A10)
Summarizing, we have determined all the Lagrange pa-

rameters and therefore the equilibrium distribution func-
tions geq

i that recover in the continuum limit the conser-
vation equation for the momentum-energy.

Appendix B: Chapman-Enskog Expansion

The discrete Boltzmann equations, Eqs. (22) and (23),
determine the evolution of the lattice relativistic fluid.
In the continuum limit, these evolution rules must re-
produce the partial differential equations of relativistic
hydrodynamics. In order to accomplish this task, we
adopt a standard Chapman-Enskog expansion. We start
by taking the Taylor expansion of the Boltzmann equa-
tions, up to second order in spatial and temporal coordi-
nates,

via∂afi +
1

2

∑

a,b

∂a∂bfiviavib + ∂tfi

+ ∂tvia∂afi +
1

2
∂2

t fiδt
2 = −1

τ
(fi − f eq

i ) ,

(B1a)

via∂agi +
1

2

∑

a,b

∂a∂bgiviavib + ∂tgi

+ ∂tvia∂agi +
1

2
∂2

t giδt
2 = −1

τ
(gi − geq

i ) ,

(B1b)

where a, b=x, y, z denote the x, y and z components.
Next, we expand the distribution functions, and the
space-time derivatives in a power series of the Knudsen
number κ, as follows:

fi = f
(0)
i + κf

(1)
i + κ2f

(2)
i + ... , (B2a)
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gi = g
(0)
i + κg

(1)
i + κ2g

(2)
i + ... , (B2b)

∂t = κ∂t1 + κ2∂t2 + ... , (B2c)

∂a = κ∂1a + κ2∂2a... . (B2d)

It is assumed that only the 0th order terms of the distri-
bution functions contribute to the macroscopic conserved
variables. Therefore, for n > 0 we have

∑

i

f
(n)
i = 0 ,

∑

i

g
(n)
i = 0 , (B3a)

∑

i

f
(n)
i ~vi = 0 ,

∑

i

g
(n)
i ~vi = 0 . (B3b)

By inserting these results into Eqs.(B1a) and (B1b),
we obtain at 0th-order in κ

f eq
i = f

(0)
i , (B4)

geq
i = g

(0)
i , (B5)

to the first order in κ,

via∂1af
(0)
i + ∂t1f

(0)
i = −f

(1)
i

τ
, (B6a)

via∂1ag
(0)
i + ∂t1g

(0)
i = −g

(1)
i

τ
, (B6b)

and to the second order in κ,

(

1 − 1

2τ

)

(via∂1a + ∂t1) f
(1)
i

+ ∂t2f
(0)
i + via∂2af

(0)
i = −f

(2)
i

τ
.

(B7a)

(

1 − 1

2τ

)

(via∂1a + ∂t1) g
(1)
i

+ ∂t2g
(0)
i + via∂2ag

(0)
i = −g

(2)
i

τ
.

(B7b)

A this stage, all the ingredients required to deter-
mine the equations that the model satisfies in the con-
tinuum limit, are available. By summing up Eqs. (B6a),
(B6b), (B7a), and (B7b) over index i, taking into ac-
count Eqs. (B4), (B5), and the equilibrium distribution
functions defined by Eqs. (37), (38), and (39), we obtain

∂t1(nγ) + ∂1a(nγua) = 0 , (B8)

∂t1((ǫ + P )γ2 − P ) + ∂1a((ǫ + P )γ2ua) = 0 , (B9)

and

∂t2(nγ) + ∂2a(nγua) = 0 . (B10)

∂t2((ǫ + P )γ2 − P ) + ∂2a((ǫ + P )γ2ua) = 0 . (B11)

By adding these equations, the first and second scalar
equations, associated with the conservation of the num-
ber of particle and the first conservation equation for the
momentum-energy,

∂t(nγ) + ∂a(nγua) = 0 , (B12)

and

∂t((ǫ + P )γ2 − P ) + ∂a((ǫ + P )γ2ua) = 0 , (B13)

are obtained, which correspond to Eqs.(36) and (35a), re-
spectively. To derive the second conservation equation,
Eq.(35b), the equations (B6b) and (B7b) must be multi-
plied by ~vi and summed up over the index i, which leads
to

∂t1 [(ǫ + P )γ2ub] + ∂1bP

+ ∂1a

[

(ǫ + P )γ2uaub

]

= 0 ,
(B14)

and

∂t2 [(ǫ + P )γ2ub] + ∂2bP

+ ∂2a

[

(ǫ + P )γ2uaub

]

+ ∂1aΠ
(1)
ab = 0 ,

(B15)

where the first order tensor Π
(1)
ab =

(

1 − 1
2τ

)
∑

i g
(1)
i viavib

is defined. By replacing the distribution function f
(1)
i

from Eq.(B6b) into the tensor Π
(1)
ab , and the result into

Eq.(B15), we obtain

∂t2 [(ǫ + P )γ2ub] + ∂2bP + ∂2a

[

(ǫ + P )γ2uaub

]

− ∂1a [∂1b(ηγua) + ∂1a(ηγub) + ∂1l(ηγul)δab] = 0 ,
(B16)

with the viscosity η= 1
3γ(ǫ + P )(τ − δt/2)c2

l , l denoting
again the spatial components. To arrive to these re-
sults, we have assumed low-speed, |~u| ≪ c. The sec-
ond momentum-energy conservation equation, Eq.(35b),
is obtained by summing up Eqs.(B16) and (B14). It gives

∂t[(ǫ + P )γ2ub] + ∂bP + ∂a

[

(ǫ + P )γ2uaub

]

− ∂a [∂b(ηγua) + ∂a(ηγub) + ∂l(ηγul)δab] = 0 .
(B17)

The derivation of the dissipative term associated with the
viscosity η, in Eq. (B17), is obtained assuming low values
of β to neglect higher order terms (∼ |~u|3) contributions.

Summarizing, Eqs. (B12), (B13) and (B17) determine
the evolution of the fluid, according to the relativistic
hydrodynamics equations.
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