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1 Introduction

Stochastic partial differential equations arise as models for various complex systems under

random influences. There have been recent rapid progresses in this area (see [2, 6, 9, 14, 17]).

For stochastic partial differential equations, random invariant manifolds play an important role

in the study of dynamics because they provide a geometric structure to understand or reduce

stochastic dynamics. Although the existence for such random invariant manifolds is established

for certain stochastic partial differential equations (e.g., [4, 5, 7, 8, 11, 12]), the geometric shape

of these manifolds is largely unclear. The purpose of the present paper is to try to describe the

geometric shape of invariant manifolds for a class of stochastic partial differential equations.

We consider a class of stochastic partial differential equations in the following form

du

dt
+ Lu− up = σu ◦ Ẇ , (1.1)

subject to the homogeneous Dirichlet boundary conditions on a bounded domain with scalar

white noise Ẇ of Stratonovich type. The linear operator −L generates a C0-semigroup, which

is given in detail in the next section. The nonlinear power exponent p belongs to (1,+∞), and

σ is a real parameter in (0,+∞).

It is well known that the theory of invariant manifolds has been developed well for determin-

istic dynamical systems. However, for the stochastic dynamical systems generated by stochastic

partial differential equations, due to their nonclassical fluctuation of driving noise and infinite

dimensionality, the theory of invariant manifolds, together with their approximation and com-

putation, is still in its infancy.

For stochastic partial differential equation, a random invariant manifold has various samples

in an infinite dimensional space. Therefore it is difficult in general to describe or “visualize”

random invariant manifolds, let alone the reduction of dynamics on them. Blomker and Wang

[3], and Sun et al [15] have done some work on describing such invariant manifolds. In this paper,

we will consider an approximate local geometric shape of invariant manifolds for Equation (1.1).

More precisely, for Equation (1.1), we first construct a local invariant manifold. Then by

approximating the invariant manifold step by step, we establish an approximate local geometric
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shape of the invariant manifold, which holds with probabilistic significance. Next, we study the

corresponding deterministic system of Equation (1.1) (i.e., Equation (1.1) with σ = 0). Using

the same method, we drive the invariant manifold and its approximating local geometric shape,

which always holds.

This paper is organized as follows. In the next section, we present the assumptions of the

linear operator L, introduce the basic concepts on random dynamical systems and the random

evolutionary equation induced by Equation (1.1). In the third section, we show Theorem 3.1 on

the existence of the local random invariant manifold for Equation (1.1). In the fourth section, we

prove Theorem 4.1 on the local geometric shape of the random invariant manifold. Furthermore,

we give an example to explain the local geometric shape in Remark 4.1. In the fifth section, we

discuss the local geometric shape of the invariant manifold for the corresponding deterministic

system of Equation (1.1). We comment on the results in the final section. We consider only

unstable invariant manifolds, as stable invariant manifolds may be discussed similarly.

2 Preliminaries

2.1. Assumption of the linear operator L

Let E be a separable Hilbert space with norm ‖·‖ and scalar product 〈·, ·〉, and L be a closed

self-adjoint linear operator with dense domain D(L) in E. Let id be the identity operator on E.

Hypothesis There exists a constant a ≥ 0 such that (L+a · id) is positive and (L+a · id)−1

is compact.

This assumption implies that the spectrum of L consists of only eigenvalues with finite

multiplicities,

−a < λ1 ≤ λ2 ≤ · · · , lim
n→+∞

λn = +∞, (2.1)

and the associated eigenfunctions {en}n∈N, ei ∈ D(L) ⊂ E form an othonormal basis of E.

An example of the linear operator L is L = −∂xx − 3 · id on H1
0 ([0, π]), whose eigenvalues are

λk = k2 − 3 with the corresponding eigenfunctions ek = sin kx , k = 1, 2, 3, · · ·.

Furthermore, the positivity of (L+a·id) allows one to define the fractional power of (L+a·id),
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which we denote by (L + a · id)α for α ∈ [0, 1), see Henry [10] or Temam [16]. The domain of

(L + a · id)α, which we denote by Eα, is a Hilbert space with the scalar product 〈u, ũ〉α =

〈(L+ a · id)αu, (L+ a · id)αũ〉 and corresponding norm | · |α.

From (2.1), there exists λN < 0 such that −a < λ1 ≤ λ2 ≤ · · · ≤ λN < 0 and λN+1 ≥ 0.

Denote λu := λN (< 0) and λs := λN+1 (≥ 0). Put Eu := span{e1, · · · , eN}. Let Pu be the

orthogonal projection from E to Eu and Ps = I − Pu. Put Lu = PuL and Ls = PsL. In the

following, we use the subscript “u” always for projection onto Eu and the subscript “s” for

projection onto Es. Then E = Eu⊕Es and Eα = Eu⊕Eαs , where Eαs = Es
⋂
Eα and Eu ⊂ Eα

with α ∈ [0, 1).

From Henry [10], there exists M > 0 such that

‖e−LstPs‖L(Eα,Eα) ≤Me−λst, t ≥ 0;

‖e−LstPs‖L(Eα,E) ≤ M
tα e
−λst, t ≥ 0;

‖e−LutPu‖L(Eα,Eα) ≤Me−λut, t ≤ 0;

‖e−LutPu‖L(Eα,E) ≤Me−λut, t ≤ 0,

(2.2)

where L(X,Y ) is the usual space of bounded linear operator from Banach space X to Banach

space Y .

2.2. Random dynamical systems

Let us recall some basic concepts in random dynamical systems as in [7]. Let (Ω,F ,P) be a

probability space. A flow θ of mappings {θt}t∈R is defined on the sample space Ω such that

θ : R× Ω→ Ω, θ0 = id, θt1θt2 = θt1+t2 , (2.3)

for t1, t2 ∈ R. This flow is supposed to be (B(R)⊗F ,F)-measurable, where B(R) is the σ-algebra

of Borel sets on the real line R. To have this measurability, it is not allowed to replace F by its

P-completion FP; see Arnold [1] p. 547. In addition, the measure P is assumed to be ergodic

with respect to {θt}t∈R. Then (Ω,F ,P,R, θ) is called a metric dynamical system.

For our applications, we will consider a special but very important metric dynamical system

induced by the Brownian motion. Let W (t) be a two-sided Wiener process with trajectories

in the space C0(R,R) of real continuous functions defined on R, taking zero value at t = 0.

This set is equipped with the compact open topology. On this set we consider the measurable
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flow θ = {θt}t∈R, defined by θtω = ω(·+ t)− ω(t). The distribution of this process generates a

measure on B(C0(R,R)) which is called the Wiener measure. Note that this measure is ergodic

with respect to the above flow; see the Appendix in Arnold [1]. Later on we will consider, instead

of the whole C0(R,R), a {θt}t∈R-invariant subset Ω ⊂ C0(R,R)) of P-measure one and the trace

σ-algebra F of B(C0(R,R)) with respect to Ω. A set Ω is called {θt}t∈R-invariant if θtΩ = Ω for

t ∈ R. On F , we consider the restriction of the Wiener measure also denoted by P.

The dynamics of the system on the state space E over the flow θ is described by a cocycle.

For our applications it is sufficient to assume that (E, dE) is a complete metric space. A cocycle

φ is a mapping:

φ : R+ × Ω× E → E,

which is (B(R)⊗F ⊗ B(E),F)-measurable such that

φ(0, ω, x) = x ∈ E,
φ(t1 + t2, ω, x) = φ(t2, θt1ω, φ(t1, ω, x)),

for t1, t2 ∈ R+, ω ∈ Ω and x ∈ E. Then φ together with the metric dynamical system θ forms a

random dynamical system.

2.3. Random evolutionary equation

We consider a linear stochastic differential equation

dz + zdt = σdW. (2.4)

A solution of this equation is called an Ornstein-Uhlenbeck process. We have the following

results, see Duan, Lu and Schmalfuss [7, 8].

Lemma 2.1 (i) There exists a {θt}t∈R-invariant set Ω ∈ B(C0(R,R)) of full measure

with sublinear growth

lim
t→±∞

|ω(t)|
|t|

= 0, ω ∈ Ω

of P-measure one.

(ii) For ω ∈ Ω, the random variable

z(ω) = −σ
∫ 0

−∞
eτω(τ)dτ
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exists and generates a unique stationary solution of Equation (2.4) given by

z(θtω) = −σ
∫ 0

−∞
eτθtω(τ)dτ = −σ

∫ 0

−∞
eτω(τ + t)dτ + σω(t).

The mapping t→ z(θtω) is continuous.

(iii) In particular,

lim
t→±∞

|z(θtω)|
|t|

= 0, for ω ∈ Ω.

(iv) In addition,

lim
t→±∞

1

t

∫ t

0
z(θτω)dτ = 0, for ω ∈ Ω.

We now replace B(C0(R,R)) by F = {Ω
⋂
F | F ∈ B(C0(R,R))} for Ω given in Lemma 2.1.

The probability measure is the restriction of the Wiener measure to this new σ-algebra, which is

also denoted by P. In the following we will consider the metric dynamical system (Ω,F ,P,R, θ).

Now we show that the solution of Equation (1.1) defines a random dynamical. Firstly, the

equivalent Itô equation of Equation (1.1) is given by

du = −Ludt+ updt+
u

2
dt+ σudW (2.5)

with the initial data u(0) = u0 ∈ Eα being F0-measurable. Equation (2.5) can be written in the

following mild integral form

u(t) = e−Ltu0 +

∫ t

0
e−L(t−r)(up(r) +

u(r)

2
)dr + σ

∫ t

0
e−L(t−r)u(r)dW (r)

almost surely for arbitrary u0 ∈ Eα, in which the stochastic integral is to interpret in the sense

of Itô.

Under the transformation of Ornstein-Uhlenbeck process (2.4), Equation (2.5) becomes a

random evolutionary equation (i.e., an evolutionary equation with random coefficients)

dv

dt
= −Lv + zv + e−zF (ezv) (2.6)

with v(0) = u0e
−z(0) := x ∈ Eα, where v = ue−z and F (v) = vp with z = z(t) := z(θtω). In

contrast to the original stochastic differential equation (1.1), no stochastic integral appears here.
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Then the mild integral form of (2.6) is

v(t) = e−Lt+
∫ t
0 z(τ)dτx+

∫ t

0
e−L(t−r)+

∫ t
r z(τ)dτe−z(r)F (ez(r)v(r))dr

almost surely for any x ∈ Eα.

Since our purpose is to consider the dynamical behavior of solution of Equation (2.6) in a

neighborhood of the fixed point v = 0 in this paper, now we introduce a truncated equation of

Equation (2.6) such that its nonlinear term has a small Lipschitz constant.

Let χ : Eα → R be a C∞0 function, a cut-off function, such that

χ(v) =

{
1, if |v|α ≤ 1,
0, if |v|α ≥ 2.

For any positive parameter R, we define χR(v) = χ( vR) for all v ∈ Eα. Let F (R)(v) = χR(v)F (v).

For every lF > 0 and every ω ∈ Ω, there must exist a positive random variable R such that

‖F (R)(v)− F (R)(ṽ)‖ ≤ lF |v − ṽ|α. (2.7)

Then the truncated equation of Equation (2.6) is as follows

dv

dt
= −Lv + zv + e−zF (R)(ezv). (2.8)

By the classical evolutionary equation theory, Equation (2.8) has a unique solution for every

ω ∈ Ω. No exceptional sets with respect to the initial conditions appear. Hence the solution

mapping

(t, ω, x) 7→ φ(t, ω)x := v(t, ω;x)

generates a continuous random dynamical system. Indeed, the mapping φ is (B(R) ⊗ F ⊗

B(Eα),F)-measurable.

Introduce the transform

T (ω, x) = xe−z(ω)

and its inverse transform

T−1(ω, x) = xez(ω)
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for x ∈ Eα and ω ∈ Ω. Then for the random dynamical system v(t, ω;x) generated by Equation

(2.6),

(t, ω, x) 7→ T−1(θtω, v(t, ω;T (w, x))) := u(t, ω;x)

is the random dynamical system generated by Equation (1.1). For more about the relation

between (1.1) and (2.6), we refer to Duan, Lu and Schmalfuss [7].

3 Existence of local invariant manifolds

In this section, we shall use the method of Duan, Lu and Schmalfuss [8] to establish the

local invariant manifold of Equation (1.1).

Define a Banach space for each β ∈ (λu, λs) as follows

C−β = {f(·) ∈ C((−∞, 0];Eα)| sup
t≤0

eβt−
∫ t
0 z(τ)dτ |f |α <∞}

with the norm

‖f‖C−β = sup
t≤0

eβt−
∫ t
0 z(τ)dτ |f |α.

Since that

|e−Ls(t−r)+
∫ t
r z(τ)dτPsu(r)|α ≤Me−βr+

∫ r
0 z(τ)dτe−λs(t−r)+

∫ t
r z(τ)dτ |u(r)|C−β

≤Me(λs−β)re−λst+
∫ t
0 z(τ)dτ |u(r)|C−β

−→ 0, as r → −∞,

we have that

Psv(t) =

∫ t

−∞
e−Ls(t−r)+

∫ t
r z(τ)dτe−z(r)F (R)

s (ez(r)v(r))dr.

Then we have the following result. For the detailed proof, please see Duan, Lu and Schmalfuss

[8].

Lemma 3.1 Suppose that v(·) is in C−β . Then v(t) is the solution of Equation (2.8) with

the initial datum v(0) = x if and only if v(t) satisfies

v(t) = e−Lut+
∫ t
0 z(τ)dτξ +

∫ t
0 e
−Lu(t−r)+

∫ t
r z(τ)dτe−z(r)F

(R)
u (ez(r)v(r))dr

+
∫ t
−∞ e

−Ls(t−r)+
∫ t
r z(τ)dτe−z(r)F

(R)
s (ez(r)v(r))dr,

(3.1)

where ξ = Pux ∈ Eu.
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Define

J(v, ξ) = e−Lut+
∫ t
0 z(τ)dτξ +

∫ t
0 e
−Lu(t−r)+

∫ t
r z(τ)dτe−z(r)F

(R)
u (ez(r)v(r))dr

+
∫ t
−∞ e

−Ls(t−r)+
∫ t
r z(τ)dτe−z(r)F

(R)
s (ez(r)v(r))dr,

(3.2)

and also denote

SC := MlF [
1

β − λu
+

Γ(1− α)

(λs − β)1−α ], (3.3)

where M is the positive constant in (2.2), lF is the Lipschitz constant in (2.7), Γ(·) is the Gamma

function, α ∈ [0, 1) and β ∈ (λu, λs).

Then

‖J(v, ξ)− J(ṽ, ξ)‖C−β ≤ ‖
∫ t

0 e
−Lu(t−r)+

∫ t
r z(τ)dτe−z(r)[F

(R)
u (ez(r)v(r))− F (R)

u (ez(r)ṽ(r))]dr

+
∫ t
−∞ e

−Ls(t−r)+
∫ t
r z(τ)dτe−z(r)[F

(R)
s (ez(r)v(r))− F (R)

s (ez(r)ṽ(r))]dr‖C−β
≤ MlF · sup

t≤0
[
∫ t

0 e
(β−λu)(t−r)dr +

∫ t
−∞

1
(t−r)α e

(β−λs)(t−r)dr]‖v − ṽ‖C−β
≤ SC‖v − ṽ‖C−β .

(3.4)

Let SC < 1. Then by the uniform contraction mapping principle, for each ξ ∈ Eu, J(v, ξ)

has a unique fixed point v∗(t, ω; ξ) ∈ C−β . Put h(ω, ξ) = Psv
∗(0, ω; ξ). Thus

h(ω, ξ) =
∫ 0
−∞ e

Lsr+
∫ 0
r z(τ)dτe−z(r)F

(R)
s (ez(r)v(r))dr. (3.5)

Lemma 3.2 Let R be a positive random variable such that lF satisfies SC < 1. For the

unique fixed point v∗ = v∗(t, ω; ξ) = J(v∗) ∈ C−β of the operator J , there exists a positive constant

C such that

‖v∗(t, ω; ξ1)− v∗(t, ω; ξ2)‖C−β ≤ C|ξ1 − ξ2|α.

Moreover,

‖h(ω, ξ1)− h(ω, ξ2)‖C−β ≤ C|ξ1 − ξ2|α.

Lemma 3.3 Let R be a positive random variable such that lF satisfies SC < 1. Then

there exists a positive constant C such that

‖v∗(t, ω; ξ)‖C−β ≤ C|ξ|α,
‖v∗s(t, ω; ξ)‖C−β ≤ C|ξ|α,
‖v∗u(t, ω; ξ)‖C−β ≤ C|ξ|α,

(3.6)
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where v∗s = Psv
∗ and v∗u = Puv

∗.

Proof. Firstly, for t ≤ 0, since β ∈ (λu, λs), we have

‖J(0, ξ)‖C−β = ‖e−Lut+
∫ t
0 z(τ)dτξ‖C−β ≤ sup

t∈(−∞,0]
eβt−

∫ t
0 z(τ)dτe−Lut+

∫ t
0 z(τ)dτ |ξ|α

≤ sup
t∈(−∞,0]

Me(β−λu)t|ξ|α ≤ C|ξ|α.
(3.7)

It follows from Lemma 3.2, (3.4) and (3.7) that

‖v∗(t, ω; ξ)‖C−β ≤ ‖J(v∗, ξ)− J(0, ξ)‖C−β + ‖J(0, ξ)‖C−β ≤ SC‖v
∗(t, ξ)‖C−β + C|ξ|α,

which implies that ‖v∗(t, ω; ξ)‖C−β ≤
C

1−SC |ξ|α.

Meanwhile,

‖v∗s(t, ω; ξ)‖C−β = ‖Psv∗(t, ω; ξ)‖C−β
= ‖

∫ t
−∞ e

−Ls(t−r)+
∫ t
r z(τ)dτe−z(r)F

(R)
s (ez(r)v(r))dr‖C−β

≤
∫ t
−∞ e

βt−
∫ t
0 z(τ)dτ M

(t−r)α e
−λs(t−r)e

∫ t
r z(τ)dτe−βr+

∫ r
0 z(τ)dτ lF ‖v(r)‖C−β dr

≤MlF ‖v(r)‖C−β
∫ t
−∞ e

(β−λs)(t−r) 1
(t−r)αdr

≤ C‖v(r)‖C−β
≤ C|ξ|α.

Therefore

‖v∗u(t, ω; ξ)‖C−β = ‖v∗(t, ω; ξ)− v∗s(t, ω; ξ)‖C−β ≤ ‖v
∗(t, ω; ξ)‖C−β + ‖v∗s(t, ω; ξ)‖C−β ≤ C|ξ|α.

The proof is complete. �

Lemma 3.4 Let R be a positive random variable such that lF satisfies SC < 1. Then

M(ω) = {ξ + h(ω, ξ)| ξ ∈ Eu} (3.8)

is a local invariant manifold for Equation (2.6).

Theorem 3.1 (Existence of local random invariant manifold)

Let R be a positive random variable such that lF satisfies SC < 1 as in the inequality (3.3).

Then

M̃(ω) = T−1M(ω) = {ξ + ez(ω)h(ω, e−z(ω)ξ)| ξ ∈ Eu} (3.9)

is a local invariant manifold for Equation (1.1). Namely, the graph of ez(ω)h(ω, e−z(ω)ξ) is the

local random invariant manifold M̃(ω) for Equation (1.1).

Lemma 3.2, Lemma 3.4 and Theorem 3.1 can be proved as in Duan, Lu and Schmalfuss [8].
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4 Local geometric shape of invariant manifolds

In this section, we approximate the random invariant manifold M(ω) step by step to derive

the local geometric shape of the invariant manifold, as inspired by Blomker and Wang [3].

Define

~1(t) =

∫ t

−∞
e−Ls(t−r)+

∫ t
r z(τ)dτe−z(r)F (R)

s (ez(r)vu(r))dr. (4.1)

Lemma 4.1 There exists a positive constant C such that

‖v∗s(t)− ~1(t)‖C−β ≤ C|ξ|α, for arbitray t ≤ 0. (4.2)

Proof. Note that v∗s = Psv
∗. Then it follows from Lemma 3.3 that

‖v∗s(t)− ~1(t)‖C−β
= ‖

∫ t
−∞ e

−Ls(t−r)+
∫ t
r z(τ)dτ [e−z(r)F

(R)
s (ez(r)v∗(r))− e−z(r)F (R)

s (ez(r)v∗u(r))]dr‖C−β
≤

∫ t
−∞ e

βt−
∫ t
0 z(τ)dτ M

(t−r)α e
−λs(t−r)e

∫ t
r z(τ)dτe−βr+

∫ r
0 z(τ)dτ lF ‖v∗(r)− v∗u(r)‖C−β dr

= MlF ‖v∗s(r)‖C−β
∫ t
−∞

1
(t−r)α e

(β−λs)(t−r)dr

= MlF ‖v∗s(r)‖C−β
Γ(1−α)

(λs−β)1−α

≤ C|ξ|α.

The proof is complete. �

Lemma 4.2 There exists a positive constant C such that

‖v∗u(t)− e−Lut+
∫ t
0 z(τ)dτξ‖C−β ≤ C|ξ|α, for arbitrary t ≤ 0. (4.3)

Proof. Firstly, we note that

v∗u = Puv
∗ = e−Lut+

∫ t
0 z(τ)dτξ +

∫ t

0
e−Lu(t−r)+

∫ t
r z(τ)dτe−z(r)F (R)

u (ez(r)v(r))dr. (4.4)

Then for t ≤ 0, from Lemma 3.3, we have

‖v∗u(t)− e−Lut+
∫ t
0 z(τ)dτξ‖C−β = ‖

∫ t
0 e
−Lu(t−r)+

∫ t
r z(τ)dτe−z(r)F

(R)
u (ez(r)v(r))dr‖C−β

≤
∫ t

0 e
βt−

∫ t
0 z(τ)dτe−λu(t−r)e

∫ t
r z(τ)dτe−βr+

∫ r
0 z(τ)dτ lF ‖v(r)‖C−β dr

≤MlFC|ξ|α
∫ t

0 e
βte−λu(t−r)e−βrdr

≤MlFC · 1
β−λu · |ξ|α

≤ C|ξ|α.
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This completes the proof. �

Define

~2 =

∫ 0

−∞
eLsr+

∫ 0
r z(τ)dτe−z(r)F (R)

s (ez(r)e−Lur+
∫ r
0 z(τ)dτξ)dr. (4.5)

Lemma 4.3 There exists a positive constant C such that

‖~1(0)− ~2‖ ≤ C|ξ|α. (4.6)

Proof. It follows from (4.1), (4.5) and Lemma 4.2 that

‖~1(0)− ~2‖ = ‖
∫ 0
−∞ e

Lsr+
∫ 0
r z(τ)dτ [e−z(r)F

(R)
s (ez(r)v∗u(r))− e−z(r)F (R)

s (ez(r)e−Lur+
∫ r
0 z(τ)dτξ)]dr‖

≤
∫ 0
−∞

M
(−r)α e

−λs(−r)e
∫ 0
r z(τ)dτe−βr+

∫ r
0 z(τ)dτ lF ‖v∗u(r)− e−Lur+

∫ r
0 z(τ)dτξ‖C−β dr

≤MlFC|ξ|α
∫ 0
−∞

1
(−r)α e

(λs−β)rdr

≤MlFC · Γ(1−α)
(λs−β)1−α |ξ|α

≤ C|ξ|α.

The proof is thus complete. �

Lemma 4.4[3] There is a random variable K1(ω) such that K1(ω) − 1 has a standard

exponential distribution and∫ t

0
z(τ)dτ + z(t) = z(0) + σω(t) ≤ σ(K1(ω) + |t|), for arbitrary t ≤ 0,

where z satisfies Equation (2.4). Also,

|ω(t)| ≤ max{ω(t),−ω(t)} ≤ K±(ω) + |t|, for arbitrary t ≤ 0,

where K±(ω) = K1(ω) + K1(−ω) and K1(−ω) has the same law as K1(ω). Furthermore, for

|z(0)| a similar estimate is true.

Define

K2(ω) = sup
τ≤0
|1− e

−λuτ+σω(τ)

γeδ|τ |
|,

where γ and δ are the positive constants.

Lemma 4.5 Choose two positive real parameters γ and δ satisfying γ ≥ max{−λu, σ} and

δ > −λu + σ. Then there is a constant C such that

K2(ω) ≤ CeσK±(ω)(1 +K±(ω)).
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Proof. Using |1− ex| ≤ |x|e|x| and Lemma 4.4, we get

K2(ω) = sup
τ≤0
|1−e−λuτ+σω(τ)

γeδ|τ |
|

≤ sup
τ≤0

|λu||τ |+|σ||ω(τ)|
γ e|λu||τ |+|σ||ω(τ)|e−δ|τ |

≤ eσK±(ω) sup
τ≤0

(|τ |+ |ω(τ)|)e(−λu+σ−δ)|τ |

≤ CeσK±(ω) sup
τ≤0

(|τ |e(−λu+σ−δ)|τ | +K±(ω)e(−λu+σ−δ)|τ |)

≤ CeσK±(ω)(1 +K±(ω)).

The proof is complete. �

Lemma 4.6 Let ez(0)|ξ|α ≤ R. Then there exists a positive constant C such that

|χR(ez(r)e−Lur+
∫ r
0 z(τ)dτξ)− 1| ≤ C

R
ez(0)K2(ω)γe−δr|ξ|α, for arbitrary r ≤ 0. (4.7)

Proof. Note that ez(0)|ξ|α ≤ R. Then χR(ez(0)ξ) = 1. Therefore, for r ≤ 0, it follows from

Lemma 4.4 that

|χR(ez(r)e−Lur+
∫ r
0 z(τ)dτξ)− 1| ≤ |χR(ez(r)e−λur+

∫ r
0 z(τ)dτξ)− χR(ez(0)ξ)|

≤ C
R |e
−λur+z(r)+

∫ r
0 z(τ)dτξ − ez(0)ξ|α

≤ C
R |ξ|α · |e

−λur+z(0)+σω(r) − ez(0)|
≤ C

Re
z(0)|ξ|α · |1− e−λur+σω(r)|

≤ C
Re

z(0)K2(ω)γe−δr|ξ|α.

(4.8)

The proof is complete. �

We further define

~3 =

∫ 0

−∞
eLsr+

∫ 0
r z(τ)dτe−z(r)Fs(e

z(r)e−Lur+
∫ r
0 z(τ)dτξ)dr. (4.9)

Lemma 4.7 Let 0 < σ < λs−(p−1)λu
p and ez(0)|ξ|α ≤ R. Then there exists a positive

constant C such that

‖~2 − ~3‖ ≤ Cez(0)K2(ω)e(p−1)σK1(ω)|ξ|2α. (4.10)

Proof. Firstly, from the condition σ < λs−(p−1)λu
p , we know that

λs − pλu − (p− 1)σ > −λu + σ,
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which implies that there must exist a constant δ satisfying

λs − pλu − (p− 1)σ > δ > −λu + σ. (4.11)

Also, we note that F (u) = up, F (R)(u) = χR(u)F (u), ez(0)|ξ|α ≤ R and (2.7). Therefore,

from Lemma 4.7 and Lemma 4.4, we get

‖~2 − ~3‖
≤ ‖

∫ 0
−∞ e

Lsr+
∫ 0
r z(τ)dτe−z(r)[F

(R)
s (ez(r)e−Lur+

∫ r
0 z(τ)dτξ)− Fs(ez(r)e−Lur+

∫ r
0 z(τ)dτξ)]dr‖

≤ ‖
∫ 0
−∞ e

Lsr+
∫ 0
r z(τ)dτe(p−1)z(r)e−pLur+p

∫ r
0 z(τ)dτξps [χR(ez(r)e−Lur+

∫ r
0 z(τ)dτξ)− 1]dr‖

≤ C
Re
−(p−1)z(0)K2(ω)γ|ξ|α

∫ 0
−∞ e

−δreLsr+
∫ 0
r z(τ)dτe(p−1)z(r)e−pLur+p

∫ r
0 z(τ)dτ‖(ez(0)ξs)

p‖dr
≤ C

Re
−(p−2)z(0)K2(ω)γ|ξ|2αM2lF

∫ 0
−∞

1
(−r)α e

(p−1)[z(r)+
∫ r
0 z(τ)dτ ]e(λs−pλu−δ)rdr

≤ C
Re
−(p−2)z(0)K2(ω)γ|ξ|2αM2lF e

(p−1)σK1(ω)
∫ 0
−∞

1
(−r)α e

(λs−pλu−δ−(p−1)σ)rdr,

which, from (4.11), immediately implies that

‖~2 − ~3‖ ≤ C
Re
−(p−2)z(0)K2(ω)γ|ξ|p+1

α M2lF e
(p−1)σK1(ω) Γ(1−α)

(λs−pλu−δ−(p−1)σ)1−α

≤ CK2(ω)e(p−1)σK1(ω)−(p−2)z(0)|ξ|2α.

The proof is complete. �

Lemma 4.8 Let

K3(ω) = sup
r≤0
|1− e

(p−1)σω(r)

γ1e(p−1)δ1|r|
|. (4.12)

If γ1 > σ and δ1 > σ, then

K3(ω) ≤ Ce(p−1)σK±(ω)(1 +K±(ω)).

Furthermore,

|1− e(p−1)σω(r)| ≤ K3(ω)γ1e
−(p−1)δ1r, for arbitrary r ≤ 0. (4.13)

Proof. Using |1− ex| ≤ |x|e|x| and Lemma 4.4, we get

K3(ω) = sup
r≤0
|1−e(p−1)σω(r)

γ1e(p−1)δ1|r|
|

≤ sup
r≤0

(p−1)σ|ω(r)|
γ1

e(p−1)σ|ω(r)|e−(p−1)δ1|r|

≤ (p− 1)e(p−1)σK±(ω) sup
r≤0

(|r|+K±(ω))e(p−1)(σ−δ1)|r|

≤ (p− 1)e(p−1)σK±(ω) sup
r≤0

(|r|e(p−1)(σ−δ1)|r| +K±(ω)e(p−1)(σ−δ1)|r|)

≤ CeσK±(ω)(1 +K±(ω)).
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The proof is complete. �

Lemma 4.9 Let 0 < σ < −λu and ez(0)|ξ|α ≤ R. Then there exists a positive constant C

such that

‖~3 − e(p−1)z(0)(Ls − pLu)−1ξps‖ ≤ Ce(p−1)z(0)K3(ω)|ξ|α. (4.14)

Proof. It follows from (4.9) and Lemma 4.4 that

~3 = e(p−1)z(0)ξps

∫ 0

−∞
eLsre−pLure(p−1)σω(r)dr.

From the condition σ < −λu, there must exist a parameter δ1 satisfying σ < δ1 < −λu,

which implies that

λs − pλu − (p− 1)δ1 > 0. (4.15)

Also note that

e(p−1)z(0)ξps

∫ 0

−∞
eLsre−pLurdr = e(p−1)z(0)(Ls − pLu)−1ξps .

Therefore, it follows from Lemma 4.8 and (4.15) that

‖~3 − e(p−1)z(0)(Ls − pLu)−1ξps‖
= ‖e−z(0)(ez(0)ξs)

p
∫ 0
−∞ e

Lsre−pLur[e(p−1)σω(r) − 1]dr‖
≤ |ξ|αK3(ω)γ1M

2lF
∫ 0
−∞

1
(−r)α e

(λs−pλu−(p−1)δ1)rdr

≤ |ξ|αK3(ω)γ1M
2lF

Γ(1−α)
(λs−pλu−(p−1)δ1)1−α

≤ CK3(ω)|ξ|α.

The proof is complete. �

Lemma 4.10 Let 0 < σ < min{λs−(p−1)λu
p ,−λu} and ez(0)|ξ|α ≤ R. Then there exists a

positive constant C such that

‖h(ω, ξ)−e(p−1)z(0)(Ls−pLu)−1ξps‖ ≤ C[1+K3(ω)+e(p−1)σK1(ω)−(p−2)z(0)K2(ω)|ξ|α]·|ξ|α. (4.16)

This lemma is directly from Lemma 4.1, Lemma 4.3, Lemma 4.7 and Lemma 4.9.

Finally we have the following main result.
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Theorem 4.1 (Local geometric shape of random invariant manifold)

Let 0 < σ < min{λs−(p−1)λu
p ,−λu} and |ξ|α ≤ R. Then there exists a positive constant C

such that

‖ez(ω)h(ω, e−z(ω)ξ)− (Ls − pLu)−1ξps‖ ≤ C(|ξ|α + |ξ|2α) (4.17)

holds with probability larger than 1 − Ce−
1
σ . Therefore in a neighborhood of zero for Equation

(1.1), the graph (ξ, ez(ω)h(ω, e−z(ω)ξ)) of the invariant manifold M̃(ω) is approximately given

by (ξ, (Ls − pLu)−1ξps ) with probability larger than 1− Ce−
1
σ .

Proof. Define ΩK = {ω ∈ Ω| K±(ω) > 1
σ}. By Lemma 4.4 this set has probability less

than Ce−
1
σ . Therefore, on the complement ΩC

K , there must exist a positive constant C such that

K1(ω) ≤ C,K2(ω) ≤ C,K3(ω) ≤ C.

Therefore, it follows from Lemma 4.10 that Theorem 4.1 holds. The proof is complete. �

Remark 4.1 Here we present an example to explain Theorem 4.1. Consider Equation

(1.1) with the line operator L = −∂xx− 3 · id on [0, π] with the homogeneous Dirichlet boundary

condition. Then the eigenvalues of L are

λ1 = −2, λ2 = 1, λ3 = 6, · · · , λk = k2 − 3, · · ·

with the corresponding eigenfunctions

e1 = sinx, e2 = sin 2x, e3 = sin 3x, · · · , ek = sin kx, · · ·

Therefore, Theorem 4.1 affords a local unstable invariant manifold for Equation (1.1). In this

case, Lu = −2 · id and Eu = span{e1}. Then we can write ξ = r · e1 with r ∈ R. We denote

e⊥1 := (Ls + 2p · id)−1Pse
p
1. Then

(Ls − pLu)−1ξps = rp · (Ls + 2p · id)−1Pse
p
1 = rp · e⊥1 .

Therefore in the state space spanned by the coordinate variables e1 and e⊥1 , the geometric shape

of M̃(ω) is given by (r, rp).

16



5 Results for the corresponding deterministic system

In this section, we briefly comment on invariant manifolds for the corresponding determin-

istic system of Equation (1.1)(i.e. Equation (1.1) with σ = 0). We consider the local (unstable)

invariant manifold and its local geometric shape, for this deterministic system. Since we use the

same method as in Section 3 and in Section 4 above, we omit the proofs of the results but only

highlight some differences.

Consider the deterministic system

du

dt
+ Lu− up = 0. (5.1)

with the initial data u(x, 0) = u0 = x ∈ Eα.

Define a Banach space for each β ∈ (λu, λs) as follows

C−β = {f(·) ∈ C((−∞, 0];Eα)| sup
t≤0

eβt|f |α <∞}

with the norm

‖f‖C−β = sup
t≤0

eβt|f |α.

Lemma 5.1 Assume that u(·) is in C−β . Then u(t) is the local solution of Equation (5.1)

with the initial datum u(0) = x if and only if u(t) satisfies

u(t) = e−Lutξ +

∫ t

0
e−Lu(t−r)F (R)

u (u(r))dr +

∫ t

−∞
e−Ls(t−r)F (R)

s (u(r))dr, (5.2)

where ξ = Pux ∈ Eu.

Let J(u, ξ) denote the right hand side of (5.2), and h(ξ) =
∫ 0
−∞ e

−Ls(t−r)F
(R)
s (u(r))dr. Then

we have following results.

Lemma 5.2 Let R be a positive real number such that lF satisfies SC < 1. Then J(u, ξ)

has a unique fixed point u∗ = u∗(t; ξ) = J(u∗) ∈ C−β . Furthermore, there exist a positive constant

C such that

‖u∗(t; ξ1)− u∗(t; ξ2)‖C−β ≤ C|ξ1 − ξ2|α,

‖u∗(t; ξ)‖C−β ≤ C|ξ|α, ‖u∗s(t; ξ)‖C−β ≤ C|ξ|α, and ‖u∗u(t; ξ)‖C−β ≤ C|ξ|α,
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where u∗s = Psu
∗ and u∗u = Puu

∗. Moreover,

‖h(ξ1)− h(ξ2)‖C−β ≤ C|ξ1 − ξ2|α.

.

Theorem 5.1 (Existence of local invariant manifold for the corresponding deter-

ministic system)

Let R be a positive real number such that lF satisfies SC < 1 as in (3.3). Then

M̃ = {ξ + h(ξ)| ξ ∈ Eu} (5.3)

is a local invariant manifold for the deterministic Equation (5.1). Namely, the graph of h(ξ) is

the local deterministic invariant manifold M̃ for Equation (5.1).

In the following, we approximate the local invariant manifold M̃ for Equation (5.1). Define

~1(t) =

∫ t

−∞
e−Ls(t−r)F (R)

s (uu(r))dr, (5.4)

~2 =

∫ 0

−∞
eLsrF (R)

s (e−Lurξ)dr, (5.5)

and

~3 =

∫ 0

−∞
eLsrFs(e

−Lurξ)dr. (5.6)

Lemma 5.3 Let |ξ|α ≤ R. There exists a positive constant C such that

‖u∗s(t)− ~1(t)‖C−β ≤ C|ξ|α, for arbitray t ≤ 0,

‖u∗u(t)− e−Lut+
∫ t
0 z(τ)dτξ‖C−β ≤ C|ξ|α, for arbitrary t ≤ 0,

|χR(e−Lutξ)− 1| ≤ C

R
(1− e−λut)|ξ|α, for arbitrary t ≤ 0,

and

‖~1(0)− ~2‖ ≤ C|ξ|α, ‖~2 − ~3‖ ≤ C|ξ|2α.

Furthermore, noting that ~3 = (Ls− pLu)−1ξps and Lemma 5.3, we have the following result

about local geometric shape of invariant manifold for Equation (5.1).
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Theorem 5.2 (Local geometric shape of invariant manifold for the corresponding

deterministic system)

Let |ξ|α ≤ R. Then there exists a positive constant C such that

‖h(ξ)− (Ls − pLu)−1ξps‖ ≤ C(|ξ|α + |ξ|2α). (5.7)

Therefore in a neighborhood of zero for Equation (5.1), the graph (ξ, h(ξ)) of the invariant

manifold M̃ is approximately given by (ξ, (Ls − pLu)−1ξps ).

6 Conclusions

For a class of stochastic partial differential equations, after establishing the existence of the

local unstable random invariant manifold (see Theorem 3.1), we derive an approximation for the

local geometric shape of this random invariant manifold (see Theorem 4.1). The local geometric

shape approximation holds with significant probability. Furthermore, with the noise intensity

σ decreasing, this significant probability is increasing. In fact, as noise intensity σ ↘ 0, the

probability 1 − Ce−
1
σ ↗ 1. On the other hand, when σ = 0, Equation (1.1) is a deterministic

system, the local geometric shape approximation of the corresponding deterministic invariant

manifold is the same but holds surely (see Theorem 5.2).
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