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Abstract. We study a Fokker-Planck equation with linear diffusion and
super-linear drift introduced by Kaniadakis and Quarati [11, 12] to describe
the evolution of a gas of Bose-Einstein particles. For kinetic equation of this
type it is well-known that, in the physical space R3, the structure of the
equilibrium Bose-Einstein distribution depends upon a parameter m∗, the
critical mass. We are able to describe the time-evolution of the solution in two
different situations, which correspond to m ≪ m∗ and m ≫ m∗ respectively.
In the former case, it is shown that the solution remains regular, while in the
latter we prove that the solution starts to blow up at some finite time tc, for
which we give an upper bound in terms of the initial mass. The results are
in favour of the validation of the model, which, in the supercritical regime,
could produce in finite time a transition from a normal fluid to one with a
condensate component.
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1 Introduction
The application of quantum assumptions to molecular dynamics encounters leads
to some divergences from the classical kinetic theory. From Chapman and Cowl-
ing [5] one can learn that the Boltzmann Bose-Einstein equation is established by
imposing that, for a gas composed of Bose-Einstein identical particles, according to
quantum theory, the presence of a like particle in the velocity-range dv increases the
probability that a particle will enter that range; the presence of f(v)dv particles per
unit volume increases this probability in the ratio 1 + δf(v). The basic assumption
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which leads to the correction in the Boltzmann collision operator, has been recently
used by Kaniadakis and Quarati [11, 12] to introduce a modification of the drift
term of the standard Fokker-Planck equation in presence of quantum indistinguish-
able particles, bosons or fermions. For Bose-Einstein particles, this model equation
reads

∂f

∂t
= ∇ · [∇f + vf(1 + δf)] . (1)

By a direct inspection, one can easily verify that equation (1) admits the Bose-
Einstein distribution as stationary state. Indeed, the Bose-Einstein distribution

f∞(v) =
1

δ

[
ev

2/2+λ − 1
]−1

(2)

satisfies the equation

∇f∞(v) + vf∞(v)(1 + δf∞(v)) = 0

for any fixed positive constant λ. The constant λ is related to the mass of Bose-
Einstein distribution

mλ =

∫
R3

1

δ

[
ev

2/2+λ − 1
]−1

dv,

and, since the mass is decreasing as soon as λ increase, the maximum value of mλ

is attained at λ = 0. The value

mc = m0 =

∫
R3

1

δ

[
ev

2/2 − 1
]−1

dv < +∞ (3)

defines the critical mass.
One of the fundamental problems related to kinetic equations that relax towards

a stationary state characterized by the existence of a critical mass, is to show how,
starting from an initial distribution with a supercritical mass m > mc, the solu-
tion develops a singular part (the condensate). We remark that in general this
phenomenon is heavily dependent of the dimension of the physical space. In di-
mension d ≤ 2, in fact, the maximal mass m0 of the Bose-Einstein distribution (2)
is unbounded, and the eventual formation of a condensate is lost. The kinetics of
Bose–Einstein condensation, namely the way in which the Bose fluid undergoes a
transition from a normal fluid to one with a condensate component has been ob-
ject of various investigations [10, 14, 20, 21, 22]. These results are mainly based on
study of the Boltzmann–Nordheim kinetic equation, which describes the dynamics
of weakly interacting quantum fluids. At the level of the Boltzmann–Nordheim ki-
netic equation, the most general and exhaustive results have been obtained by Spohn
[22], who describes the precise mechanism of how the condensate is generated and
annihilated.
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Also, the mathematical analysis of the quantum Boltzmann equation in the space
homogeneous isotropic case has shown some progresses [7, 17, 8, 9]. In dimension
three of the velocity space already the issue of giving mathematical sense to the
collision operator is highly non-trivial (particularly if positive measure solutions
are allowed, as required by a careful analysis of the equilibrium states). All the
mathematical results, however, require very strong cut-off assumptions on the cross-
section [17, 9].

Accurate numerical discretizations of the quantum Boltzmann equation, which
maintain the basic analytical and physical features of the continuous problem,
namely, mass and energy conservation, entropy growth and equilibrium distribu-
tions have been introduced recently in [1, 18]. Related works [15, 19] in which
fast methods for Boltzmann equations were derived using different techniques like
multipole methods, multigrid methods and spectral methods, are relevant to quote.

The Fokker-Planck equation (1) of Kaniadakis and Quarati has been studied
only recently in [3], in dimension one of the velocity variable. In this case, indeed,
the equilibrium Bose-Einstein density is a smooth function, which makes it possi-
ble to prove exponential convergence to equilibrium resorting to standard entropy
methods. Other Fokker-Planck equations like the Kompaneets equation [13] have
been exhaustively studied in [6].

More in details, we will describe the time-evolution of the solution of (1) in two
different situations, which correspond to initial densities with a small mass m ≪ m∗

and a big mass m ≫ m∗ respectively. In the former case, it is shown that the
L2-norm of the solution remains uniformly bounded, excluding the formation of a
condensate, while in the latter we prove that the solution starts to nucleate the
condensate at some finite time tc, for which we give an upper bound in terms of the
initial mass. The results are based on various Nash-type inequalities which allow to
control the evolution of the L2-norm.

The results are in favor of the validation of the model, which, in the supercritical
regime, is able to produce in finite time a transition from a normal fluid to one with
a condensate component.

2 Global regularity estimates
In the rest of the paper, without loss of generality, we fix δ = 1 in equation (1).
Therefore we will consider the equation

∂f

∂t
= ∇ · [∇f + vf(1 + f)] . (4)

Indeed, if f(v, t) solves equation (1), g(v, t) = δf(v, t) solves equation (4), so that
any result valid for equation (4) translates into an equivalent result for (1). Local
existence and regularity of solutions for equation (4) have been proven in [4]. Let us
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briefly recall this result. We define Γ = L∞(R3)
∩
L1

1(R3)
∩

Lp
m(R3) and, for T > 0,

ΓT := C ([0, T ); Γ) with norms

∥f(t)∥Γ = max
{
∥f(t)∥L∞ , ∥f(t)∥L1

1
, ∥f(t)∥Lp

m

}
; ∥f(t)∥ΓT

= max
0≤t≤T

∥f(t)∥Γ,

where

∥f(t)∥Lp
m
= ∥(1 + |v|m)f(t)∥Lp , ∥f)∥Lp =

(∫
R3

|f |p
)1/p

.

Then it holds [4]:

Theorem 1. Let the initial density f0(v) ≥ 0 belong to Γ, with m ≥ 1 and p > 3.
Then there exists T > 0 depending only on the norm of the initial condition, such
that equation (4) has a unique nonnegative solution f(v, t) in ΓT := C ([0, T ); Γ)
with f(v, t = 0) = f0(v). Moreover ∇f(v, t) ∈ BC ((0, T ), (Lp

m

∩
L1)R3), and the

L1-norm of f(v, t) is conserved.

By virtue of the local existence and regularity of solutions briefly resumed in
Theorem 1, we can easily recover the evolution in time of the L2-norm of the solution,
provided this norm is bounded initially. Integration by parts gives

d

dt

∫
R3

f 2(v, t) dv = −2

∫
R3

|∇f(v, t)|2 dv + 3

∫
R3

f 2(v, t) dv + 2

∫
R3

f 3(v, t) dv. (5)

Therefore, the control of the boundedness in time of the L2-norm of requires the
control of L3-norm of the solution in terms of the square of the L2-norm of the
gradient. In the linear Fokker-Planck equation, where the last term is absent, the
standard Nash inequality[∫

Rd

|f(v)|2 dv
]1+2/d

≤ C∥f∥4/dL1 ∥∇f∥2L2 , (6)

due to the mass conservation, guarantees that the L2-norm of the solution is bounded
by a constant independent of time. In fact, in the linear case, inequality (6) implies

d

dt

∫
R3

f 2(v, t) dv ≤ − 2

C∥f∥4/3L1

(∫
R3

f(v, t)2 dv

)5/3

+ 3

∫
R3

f2(v, t) dv, (7)

and the L2-norm of the solution can not cross the value

max

{
∥f0∥L2 ,

(
3

2
C

)3/2

∥f∥2L1

}
.

In order to use a similar strategy in presence of the nonlinearity (the last integral in
equation (5)), in what follows we derive Nash–type inequalities which can be applied
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to our problem. The proof that follows is based on Beckner inequality [2], which
says that, for all 1 ≤ p ≤ 2∥∥∥f̂∥∥∥

p′
≤ (Ap)

d ∥f∥p , Ap = [p1/p/p′1/p
′
]1/2. (8)

In (8), f̂ is the Fourier transform of f ,

f̂(ξ) =

∫
Rd

f(v)e2πiξv dv

Taking f in L2(Rd) we can write inequality (8) for f ,

∥f∥p′ ≤ (Ap)
d
∥∥f̌∥∥

p
, (9)

where now f̌ denotes the inverse Fourier transform

f̌(ξ) =

∫
Rd

f(v)e−2πiξv dv.

Let us set p < 2. Then, for any constant R > 0,∫
Rd

|f̌(ξ)|p dξ =

∫
|ξ|≤R

|f̌(ξ)|p dξ +
∫
|ξ|>R

|f̌(ξ)|p dξ. (10)

Since f belongs to L1, so that |f̌(ξ)| ≤ ∥f∥L1 ,∫
|ξ|≤R

|f̌(ξ)|p dξ ≤ ∥f∥pL1

∫
|ξ|≤R

dξ ≤ ∥f∥L1

Bd

d
Rd. (11)

In (11) Bd denotes the measure of the surface of the unit ball in Rd. Moreover, by
Hölder inequality, provided

p >
2d

d+ 2
, (12)

it holds ∫
|ξ|>R

|f̌(ξ)|p dξ =

∫
|ξ|>R

1

|ξ|p
|ξ|p|f̌(ξ)|p dξ ≤

[∫
|ξ|>R

|ξ|2|f̌(ξ)|2
]p/2 [∫

|ξ|>R

1

|ξ|2p/(2−p)

]1−p/2

≤ cp,d

(
1

R

)p−(2−p)d/2

∥∇f∥pL2 . (13)

In (13) the constant cp,d is

cp,d =

[
Bd

(
2p

2− p
− d

)](2−p)/2

.
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Note that cp,d converges to B
(2−p)/2
d as p → 2. Substituting in (10) we obtain the

inequality ∫
Rd

|f̌(ξ)|p dξ ≤ Bd

d
Rd∥f∥pL1 + cp,d

(
1

R

)p−(2−p)d/2

∥∇f∥pL2 . (14)

Optimizing over R we get the estimate∫
Rd

|f̌(ξ)|p dξ ≤ Cd,p∥f∥[p(2+d)−2d]/(d+2)

L1 ∥∇f∥2d/(d+2)

L2 , (15)

where the explicitly computable constant Cd,p depends only on the dimension d and
the number 1 ≤ p ≤ 2 which satisfies condition (12). Using now Beckner inequality
(8), and using the fact that p/p′ = p− 1 we finally obtain the inequality[∫

Rd

|f(v)|p′ dv
](p−1)(d+2)/(2d)

≤ ΓB∥f∥p(d+2)/(2d)−1

L1 ∥∇f∥L2 .

The constant ΓB depends only on the dimension d and the number 1 ≤ p ≤ 2. If
p = 2, condition (12) is satisfied for all d ≥ 1, and inequality (16) is nothing but
Nash inequality (6).

We proved

Lemma 2. Let 1 ≤ p ≤ 2 satisfy condition (12). Then, there exists a constant ΓB

depending only on the dimension d and the number p such that, for all ∇f ∈ L2(Rd),
with f ∈ L1(Rd),[∫

Rd

|f(v)|p′ dv
](p−1)(d+2)/(2d)

≤ ΓB∥f∥p(d+2)/(2d)−1

L1 ∥∇f∥L2 . (16)

The result of lemma 2 can be rephrased in the following way. For any given
p′ > 2, ∫

Rd

|f(v)|p′ dv ≤ ΓB∥f∥[p(2+d)−2d]/[(p−1)(d+2)]

L1 ∥∇f∥2d/[(p−1)(d+2)]

L2 (17)

In dimension d = 3, however, the exponent of the quantity∫
R
|∇f(v)|2 dv

is smaller than 1 for p > 8/5, namely for p′ < 8/3 < 3. Hence, in dimension
3 inequality (2) is not enough to have a uniform control of the L2-norm of the
solution. On the other hand, p′ = 3 is in the range of exponents for which we
can have, for a supercritical mass, a steady state with a singular part. Since the
singularity in the Bose–Einstein distribution is not present in the subcritical case,
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we aim to be able to obtain the control in dependence of the smallness of the initial
mass. Let us take into account inequality (11). Instead of considering only a bound
in terms of the L1-norm of the solution, we introduce a bound in terms of both the
L1 and L2 norms as follows. Given a positive constant α < p,∫

|ξ|≤R

|f̌(ξ)|p dξ ≤ ∥f∥p−α
L1

∫
|ξ|≤R

|f̌(ξ)|α dξ ≤ ∥f∥p−α
L1 ∥f∥αL2

[∫
|ξ|≤R

dξ

](2−α)/2

≤ ∥f∥p−α
L1 ∥f∥αL2

(
Bd

d
Rd

)(2−α)/2

. (18)

Hence, we can substitute inequality (14) with∫
Rd

|f̌(ξ)|p dξ ≤ ∥f∥p−α
L1 ∥f∥αL2

(
Bd

d
Rd

)(2−α)/2

+ cp,d

(
1

R

)p−(2−p)d/2

∥∇f∥pL2 . (19)

Optimizing over R we get now the estimate∫
Rd

|f̌(ξ)|p dξ ≤ C̃d,p,α

[
∥f∥p−α

L1 ∥f∥αL2

][2p−(2−p)d]/[2p+(p−α)d] ∥∇f∥[pd(2−α)]/[2p+(p−α)d]

L2 ,

(20)
where, as before, the explicitly computable constant C̃d,p,α depends only on the
dimension d and the numbers α and p. Note that inequality (14) is a particular case
of (20) corresponding to α = 0. Hence we obtain

Lemma 3. Let 1 ≤ p ≤ 2 satisfy condition (12). Then, for all positive constants
α with α < p there exists a constant Γ depending only on the dimension d and the
numbers p and α such that, for all ∇f ∈ L2(Rd), with f ∈ L1(Rd),[∫

Rd

|f(v)|p′ dv
](p−1)

≤ Γ
[
∥f∥p−α

L1 ∥f∥αL2

][2p−(2−p)d]/[2p+(p−α)d] ∥∇f∥[pd(2−α)]/[2p+(p−α)d]

L2 .

(21)

The exponent of the term ∥∇f∥L2 in (21) is decreasing with respect to α for
p ≥ 2/3. Therefore, the minimum value of the exponent is reached for α = p. In
this case, if p = 3/2, in dimension d = 3 the inequality reduces to∫

R3

|f(v)|3 dv ≤ Γ2∥f∥L2∥∇f∥3/2L2 . (22)

Going back to (5), or
∫
R3 |f(v)|3 dv ≤ ∥∇f∥2L2 , so that

d

dt

∫
R3

f 2(v, t) dv ≤ 3

∫
R3

f2(v, t) dv (23)
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or
∫
R3 |f(v)|3 dv > ∥∇f∥2L2 , and by means of (22)∫

R3

|f(v)|3 dv ≤ Γ2∥f∥L2∥∇f∥3/2L2 ≤ Γ2∥f∥L2

(∫
R3

|f(v)|3 dv
)3/4

,

that implies ∫
R3

|f(v)|3 dv ≤ Γ8∥f∥4L2 . (24)

In this second case, we obtain from (5)

d

dt

∫
R3

f 2(v, t) dv = −2

∫
R3

|∇f(v, t)|2 dv+3

∫
R3

f 2(v, t) dv+2Γ8

(∫
R3

f 2(v, t) dv

)2

.

(25)
Finally, Nash inequality (6) shows that the L2-norm of the solution to equation (4)
satisfies

d

dt
∥f∥2L2 ≤ − 2

C∥f∥4/31

∥f∥10/3L2 + 3∥f∥2L2 + 2Γ8∥f∥4L2 . (26)

By the L1 contraction property of equation (1) [3, 4], inequality (26) is enough to
guarantee that, for a given initial datum f0(v) ∈ L1(R3)

∩
L2(R3), there exists a

time T , which depends both on the L1 and L2 norms of the initial datum, such that
in the time interval (0, T ) equation (4) has a unique solution f(v, t) which conserves
the mass and belongs to L2(R3). Thus, we can weaken the local existence theorem
1. It holds

Theorem 4. Let the initial density f0(v) ≥ 0 belong to L1(R3)
∩

L2(R3). Then there
exists T > 0 depending only on the norm of the initial condition, such that equation
(4) has a unique nonnegative solution f(v, t) in L1(R3)

∩
L2(R3) with f(v, t = 0) =

f0(v). Moreover the L1-norm of f(v, t) is conserved.

A direct inspection of inequality (26) shows that the interval of existence is
inversely proportional to the L1-norm of the initial datum. This remark indicates
that, provided the initial L1-norm is sufficiently small, the local existence theorem
4 gives a global existence result. If p = 3/2 and d = 3, the choice α = 1 leads to∫

R3

|f(v)|3 dv ≤ Γ2∥f∥1/3L1 ∥f∥2/3L2 ∥∇f∥2L2 . (27)

Inequality (27) implies that the L3-norm of the solution can be bounded in terms of
the square of the L2-norm of the gradient.

Use the Nash–type inequality (27) into (5). The L2-norm of the solution satisfies

d

dt

∫
R3

f2 dv ≤ −2

∫
R3

|∇f |2 dv + 3

∫
R3

f 2 dv +
2

3
Γ2m1/3∥f∥2/3L2

∫
R3

|∇f |2 dv =
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−2

∫
R3

|∇f |2 dv
[
1− 1

3
Γ2m1/3

∫
R3

f2 dv

]
+ 3

∫
R3

f 2 dv. (28)

Clearly, m ≪ 1 enters to control the growth of the L2-norm. In fact, if at time t

1

3
Γ2m1/3

∫
R3

f 2(v, t) dv ≤ 1, (29)

the coefficient of the L2-norm of the gradient in (28) is nonnegative, and Nash
inequality (6) implies that

d

dt
∥f∥2L2 ≤ − 2

Cm4/3
∥f∥10/3L2

[
1− 1

3
Γ2m1/3∥f∥2/3L2

]
+ ∥f∥2L2 (30)

Look for the evolution of y(t)

d

dt
y(t) ≤ y

[
− 2

Cm4/3
y2/3 +

2Γ2

3Cm
y + 1

]
= y(t)z(y), (31)

with the constraint induced by (29)

y(0) < y(m) =
3

Γ2m1/3

Let m ≪ 1 such that z(ym) = 0. Note that this choice is always possible, due to the
fact that in the negative term in z(y(m)) the exponent of the mass m is bigger than in
the positive one. Since z(y) is nonincreasing in the interval 0 ≤ y ≤ ȳ = (2/Γ2)

3
m−1,

the choice y(m) < ȳ then implies y(t) ≤ y(m). The condition y(m) < ȳ is satisfied
provided

m <

(
8

3

)3/2
1

Γ6
. (32)

By the previous computations we get

Theorem 5. Let the initial mass m satisfy the smallness condition (32). Then, if
the initial density f0 further satisfies∫

R3

f2
0 dv <

3

Γ2m1/3
,

Kaniadakis-Quarati model has a unique global solution. This solution remain regular
for all times, and ∫

R3

f2(v, t) dv <
3

Γ2m1/3
.
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3 Blow up in the super-linear case
In addition to the hypotheses of Theorem 4, let us assume f0 ∈ L1

2(R3), so that

E(0) =

∫
R3

|v|2f0(v) dv = E0 < +∞. (33)

Then, in its interval of existence, the second moment of the solution remains bounded,
and it satisfies

d

dt

∫
R3

|v|2f(v, t) dv ≤ 6

∫
R3

f(v, t) dv−2

∫
R3

|v|2f(v, t) dv−2

∫
R3

|v|2f 2(v, t) dv. (34)

Following [4], let us introduce a sequence (ϑn)n≥1 of smooth cut-off functions such
that 0 ≤ ϑn ≤ 1, ϑn(v) = 1 if |v| ≤ n, ϑn(v) = 0 if |v| ≥ 2n, while |∇ϑn| ≤ 1/n and
|∆ϑn| ≤ 1/n2. By multiplying equation (4) times |v|2ϑn(v) and integrating over R3

we get

d

dt

∫
R3

|v|2ϑn(v)f(t) dv =

∫
R3

|v|2ϑn(v)∇f(t) dv+

∫
R3

|v|2ϑn(v)∆·(vf(t)(1 + f(t)) dv =

∫
R3

[
∇ϑn|v|2 + 4∆ϑn · v + 6ϑn

]
f(t) dv +

∫
R3

∇ϑn · v|v|2f(t)(1 + f(t)) dv

−2

∫
R3

|v|2ϑn(v)f(t)(1 + f(t)) dv

≤ 6

∫
R3

f(v, t) dv − 2

∫
R3

|v|2f(v, t) (1 + f(t)) dv

+5

∫
n<|v|<2n

f(t) dv +

∫
n<|v|<2n

|v|2f(t) dv. (35)

Let n → ∞. Since the sequences (fχn<|v|<2n)n≥1 and (|v|2fχn<|v|<2n)n≥1 converge
pointwise to zero and are bounded by f and |v|2f respectively, with f ∈ ΓT , we
conclude via the Lebesgue dominated convergence theorem that the last two integrals
in (35) converge to zero, and the differential inequality (34) holds true.

Let us examine in more details the last integral on the right-hand side of (34).
Let us set

hϵ(v) =

(
1

2ϵ

)d d∏
i=1

χ(−ϵ ≤ vi ≤ ϵ),

where χ(E) denotes the characteristic function of the set E. Then∫
Rd

hϵ(v) dv = 1,
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and the function hϵ(v) collapses into a mass concentrated in v = 0 as ϵ → 0.
Consequently,

lim
ϵ→0

∫
Rd

v2hϵ(v) dv = 0.

On the other hand , since∫
Rd

v2hp+1
ϵ (v) dv = ϵ2+d−d(p+1)

∫
Rd

v2h1(v) dv

the behavior of the integral as ϵ → 0 depends upon the sign of the exponent of ϵ.
In case p > 2/d,

lim
ϵ→0

∫
Rd

v2hp+1
ϵ (v) dv = +∞. (36)

The previous example indicates that in (34), which corresponds to p = 1 and d = 3,
so that p > 2/d, the last integral dominates in presence of a mass concentrating in
v = 0. This suggests to look for a lower bound on the last integral in (34) in terms
of the second moment. We prove

Lemma 6. Let f(v) be a nonnegative function in L1(Rd), d ≥ 1, of finite second
moment. Then, if p > 2/d, the following inequality holds∫

Rd

v2fp+1(v) dv ≥ Bp,d

(∫
Rd f(v) dv

)[p(d+2)]/2(∫
Rd v2f(v) dv

)(pd−2)/2
. (37)

Proof
For a given positive constant R, one has∫

Rd

f(v) dv ≤
∫
|v|≤R

f(v) dv +
1

R2

∫
Rd

v2f(v) dv. (38)

On the other hand Hölder inequality implies∫
|v|≤R

f(v) dv =

∫
|v|≤R

|v|−2/(p+1)
(
|v|2/(p+1)f(v)

)
dv ≤

(∫
|v|≤R

v2fp+1(v) dv

)1/(p+1) (∫
|v|≤R

|v|−2/p dv

)p/(p+1)

. (39)

Since p > 2/d, denoting by Sd the measure of the unit ball in Rd, we obtain∫
|v|≤R

|v|−2/p dv = Sd

∫
ρ≤R

ρ−2/p+d−1 dρ =
pSd

pd− 2
Rd−2/p.
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Substituting into (38) gives∫
Rd

f(v) dv ≤
(∫

Rd

v2fp+1(v) dv

)1/(p+1) (
pSd

pd− 2

)p/(p+1)

R
pd−2
p+1 +

1

R2

∫
Rd

v2f(v) dv.

(40)
Optimizing over R inequality (40) we finally get∫

Rd

f(v) dv ≤ cp,d

(∫
Rd

v2fp+1(v) dv

)2/[p(d+2)] (∫
Rd

v2f(v) dv

)(pd−2)/[p(d+2)]

. (41)

The explicitly computable constant cp,d reads

cp,d =

[(
2

α

)α/(2+α)

+
(α
2

)2/(2+α)
](

pSd

pd− 2

)2p/(pd−2)

,

where α = (pd− 2)/(p+ 1).

Setting d = 3 and p = 1 into (37) gives∫
R3

v2f 2(v) dv ≥ m5/2

b
(∫

R3 v2f(v) dv
)1/2 , (42)

where the constant b can be explicitly computed to give b = 2π(42/5 + 1).
From now on, let us suppose that the solution f(v, t) to (4) belongs to L1(R3)

in some time interval [0, T ). If this is the case, inserting the lower bound (42) into
(34) gives

d

dt
E(t) ≤ 6m− 2E(t)− m5/2

π(42/5 + 1)E(t)1/2
= Φ(E), (43)

where we denoted by m the initial (preserved in time) mass and by E(t) the second
moment at time t. The function Φ(E) attains the maximum value in

Ē =

[
m5/2

π(42/5 + 1)

]2/3
,

and in this point

Φ(Ē) = 6m−
(

2

(4π)2/3
+ 1

)
m5/3

π(42/5 + 1)2/3
. (44)

Since the exponent of the mass m in the negative term in (44) has the exponent
strictly bigger than 1, choosing m sufficiently large we obtain

Φ(Ē) = −ρ < 0,
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that implies, at time t > 0
E(t) ≤ E0 − ρt.

Therefore, if the initial mass m is sufficiently large, and the initial second moment
is bounded, the second moment of the solution to (4) decays to zero in finite time.
The critical value of m as given in consequence of inequality (42) can be obtained
from (44)

m̄ =
24π5/2

√
6(42/5 + 1)

((4π)2/3 + 2)
3/2

. (45)

The hypothesis which leads to the finite in time decay to zero of the second moment,
namely the complete condensation of the solution, is a consequence of the regularity
assumption. In other words, or the solution starts to blow up after a finite time t1,
or the solution f(v, t) belongs to L1(R3), for T > t1 and a complete condensation
occurs at some subsequent finite time t2.

It is interesting to remark that, independently of the size of the initial mass, blow
up in finite time also occurs when initially the initial second moment is suitably
small, compared to the mass

E
1/2
0 <

m3/2

6π(42/5 + 1)
. (46)

In this case, in fact, since inequality (43) implies the (weaker) inequality

d

dt
E(t) < 6m− m5/2

π(42/5 + 1)E(t)1/2
, (47)

if E0 satisfies (46), the right-hand side of (47) is strictly negative at time t = 0,
said −ρ, and the second moment start to decrease, decaying to zero in finite time.
Consequently, if the second moment is initially sufficiently small there is formation of
a condensate in finite time. The two situations describe nicely the physical picture,
in which a Bose fluid develops a condensate part not only when the initial density
is super-critical, but also in the case in which the initial temperature is sufficiently
low. We collect these results into the following

Theorem 7. Let f0(v) be the initial value of equation (4). If the initial mass is
sufficiently large, that is m0 > m̄, where

m̄ =
24π5/2

√
6(42/5 + 1)

((4π)2/3 + 2)
3/2

,

or the initial energy E0 sufficiently small, that is E0 < Ē, where

Ē <

[
m3/2

6π(42/5 + 1)

]2
,

the solution blows up in finite time.
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