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Abstract

We address the early universe reconstruction (EUR) problem (as considered by Frisch
and coauthors in [26]), and the related Zeldovich approximate model [45]. By substi-
tuting the fully nonlinear Monge-Ampère equation for the linear Poisson equation to
model gravitation, we introduce a modified mathematical model (”Monge-Ampère gravi-
tation/MAG”), for which the Zeldovich approximation becomes exact. The MAG model
enjoys a least action principle in which we can input mass concentration effects in a
canonical way, based on the theory of gradient flows with convex potentials and some-
what related to the concept of self-dual Lagrangians developped by Ghoussoub [29]. A
fully discrete algorithm is introduced for the EUR problem in one space dimension.

Introduction

This paper addresses the early universe reconstruction (EUR) problem discussed by
Frisch and coauthors in [26, 18], following Peebles’ seminal paper [38]. In these references,
gravitation is not modelled according to the full Einstein equations, but rather to a semi-
Newtonian approximation, where classical Newtonian interactions just take place in an
Einstein-de Sitter space, corresponding to a big bang scenario. In suitable coordinates,
the model can be described as follows. Let us denote, for each gravitating body, its label
by a and its position at time t by X(t, a) ∈ R3. The density field ρ is defined by

(0.1) ρ(t, x) =

∫

a

δ(x−X(t, a))

and the gravitational potential ϕ(t, x) satisfies

(0.2) ρ = 1 + t∆ϕ.

The Newton law for each gravitating bodies is just

(0.3) ∂t(α(t)
2∂tX(t, a)) = −t−1β(t)2(∇ϕ)(t, X(t, a)),

where α and β are time-dependent scaling parameters provided by general relativity (GR).
Following [26, 18] (case of an Einstein-de Sitter universe), we set:

(0.4) α(t) = t3/4, β(t) = t3/4
√

3/2 .

In the case of coefficients (0.4), we find

(0.5)
2t

3
∂2ttX(t, a) + ∂tX(t, a) = −(∇ϕ)(t, X(t, a)).

Notice that, in this model, which we call SNS (as semi-Newtonian system), friction domi-
nates at early times. (In some sense, Newton modified by Einstein returns to Aristoteles.)
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Remarkably enough, at t = 0, the density field must be uniformly equal to 1 (otherwise
solutions get unbounded) and the velocity is enslaved by the gravity potential term. Thus,
we can write

(0.6) ρ(0, x) = 1, X(0, a) = a, ∂tX(0, a) = −∇ϕ0(a), ∆ϕ0 = lim
t↓0

ρ(t, x)− 1

t
.

So, at time t = 0, the gravitational matter behaves as a continuum, with a definite (and
potential) velocity field. Consistently with the SNS, such a continuum may keep, at least
for a while, a potential velocity field v = v(t, x) = ∇θ(t, x) such that

∂tX(t, a) = v(t, X(t, a)),

for all labels a. Then, Newton’s law (0.3) can be expressed in terms of θ and ϕ as:

(0.7) ∂t(α
2θ) + α2 |∇θ|2

2
+ t−1β2ϕ = 0, ∂tX(t, a) = (∇θ)(t, X(t, a)).

There is no room for a discrete repartition of gravitational matter at this early stage and
only the time evolution is able to progressively produce discrete structures such as isolated
particles (or, more generally, concentrated matter on sheets or filaments), as the density
field ρ becomes singular with respect to the Lebesgue measure. As a matter of fact, the
SNS (0.1,0.2,0.7) may (and usually does) produce collisions in finite time, as will be seen
later on, which generate such concentrations. Another remarkable feature of the SNS is
that, at time t = 0, the only possible initial condition is the density fluctuation field ρ′0
(or, equivalently, the initial gravitational potential ϕ0) defined by

(0.8) ρ′0(x) = lim
t↓0

ρ(t, x)− 1

t
= ∆ϕ0(x) .

This fluctuation field is of paramount importance in the study of the very early universe
[30], which is of great interest in high energy physics and quantum gravity theory. Since
the evolution in time of the model depends only on ρ′0, it is plausible that one could recover
this field from the simple observation of a comparable scalar field at our present time,
say t = T . A natural candidate is obviously the present density field ρT = ρ(t = T, ·).
This is precisely the early universe reconstruction (EUR) problem. To solve the EUR,
a remarkable fact can be used. The SNS enjoys a least action principle, with a strictly
convex action! (This is a very exceptional situation, in physics and mechanics, where
action principles generally correspond to saddle points of functionals of indefinite type
[22].) More precisely:

Proposition 0.1. Any smooth solution (ρ, v = ∇θ, ϕ) of the SNS (0.1,0.2,0.7), on some
time interval 0 < t0 < t < t1, is characterized by the following least action principle:
as ρ is fixed at time t = t0 and t = t1, (ρ, ρv) is the unique minimizer (with respect to
compactly supported perturbations) of the strictly CONVEX action

(0.9)

∫ t1

t0

dt

∫

(α(t)2ρ(t, x)|v(t, x)|2 + β(t)2|∇ϕ(t, x)|2) dx ,

under the linear constraimts

(0.10) ∂tρ+∇ · (ρv) = 0 , t∆ϕ = ρ− 1 .
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This results extends to the limit case t0 = 0, t1 = T , with ρ given at time T and
ρ(t = 0, ·) = 1. Thus, the reconstruction of the early universe looks easy: knowing ρT
we just have to minimize a striclty convex action and we recover the whole solution of
the SNS for t ∈ [0, T ]! (Mathematically speaking, this problem has been addressed by
Loeper in [33].) Unfortunately, this reasoning does not take into account that smooth
solutions to the SNS may break down in finite, due to the concentration of the den-
sity field which may become singular with respect to the Lebesgue measure. The goal
of the present paper is to investigate how the action can be modified so that its min-
imizers are not necessarily concentration-free. A similar problem, in the framework of
adhesion-fragmentation processes, has been recently solved by Wolansky [44]. (See also
the pioneering work of Shnirelman [40] for sticky particles and adhesion dynamics.) Our
approach is different and more reminiscent of the recent theory of self-dual lagrangians
by Ghoussoub [29]. Unfortunately, our method does not apply to the desired SNS, but
rather to the modified system obtained by substituting the fully nonlinear Monge-Ampère
equation ρ = det(I + tD2

xϕ), for the Poisson equation ρ = 1 + t∆ϕ. We call this new
model “Monge-Ampère gravitation” (MAG). There is no difference between SNS and
MAG for solutions depending only on one spatial coordinate (i.e. with sheet structure)
and they are formally asymptotically close for t → 0. Of course, changing the model
is not a satisfactory approach, without further justification. Our main argument is the
following remarkable property of the MAG system: it admits as exact solutions some
approximate solutions to the SNS, suggested by Zeldovich [45] (and (1.11) below). As a
secondary justification, let us recall that the SNS is, after all, itself an approximation of
the full Einstein equations and it might be, from this viewpoint, equally good to use the
Monge-Ampère equation and the Poisson equation. [A similar situation occurs in fluid me-
chanics when comparing the quasi-geostrophic and the semi-geostrophic approximations
of the Euler equations for ocean and atmosphere dynamics, as discussed in [23]. See also
[19].] However, there will be no attempt in the present paper to justify this last statement.

The structure of the paper is as follows:
In the first section, we review Zeldovich’ approximation to the SNS. Then, in the second
section, we introduce the MAG action and the corresponding MAG equations.
In section 3, we observe that the potential part of the MAG action has the very special
property to be a squared distance function. This allows a rewriting of the action as an
exact square and we find as special minimizers all the solutions of the gradient flow equa-
tion associated to the potential, with, among them, all the Zeldovich solutions. [These
special solutions play more or less the same role as ”instantons” in Yang-Mills theory
[29].] It turns out that this gradient flow belongs to a very well-studied class of evolution
equations with ”maximal monotone operators” [20]. This suggests a somewhat canonical
modification of the action.
In section 4, we introduce a fully discrete algorithm for the numerical minimization of the
MAG action.
In section 5, we introduce a numerical scheme for the initial value problem and, finally,
in section 6, we provide numerical results in the very special case of one space variable.
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1. Zeldovich approximations to the SNS

An amazingly simple approximate formula was proposed for solutions of the SNS
(0.1,0.2,0.7) by Zeldovich [45]:

(1.11) X(t, a) = a− t∇ϕ0(a),

with

ρ(0, x) = 1, ∆ϕ0 = ρ′0(x) = lim
t↓0

ρ(t, x)− 1

t
.

This formula turns out to be exact for small time and initial conditions depending only
on one space coordinate (this will be seen below). The Zeldovich approximate formula
predicts mass concentrations in finite time. Indeed, denoting by Λ the largest eigenvalue of
the Hessian matrix D2ϕ0(a), for all a, we see that, whenever Λ > 0, the map a→ X(t, a)
is no longer invertible at t = Λ−1. Beyond the concentration time, there are many
possibilities of extending the formula and this is still a controversial issue from the physical
viewpoint. It depends very much on whether or not we want to prevent interpenetration
of particles. If we do so, we are naturally lead to the model of adhesion dynamics, where
particles merge after collisions, which is the most possible dissipative behavior beyond
concentrations. (See [42, 8, 5, 25, 41, 17, 39].) This issue can be simply addressed in
terms of nonlinear hyperbolic PDEs [24]. Indeed, given a Zeldovich solution X defined
by (1.11), let us introduce the field u(t, x) implicitly defined by:

(1.12) u(t, X(t, a)) =
a−X(t, a)

t
= ∇ϕ0(a),

as long as a → X(t, a) stays smooth and invertible. Then, we see that u solves the
multidimensional ”invisicid Burgers” equation

(1.13) ∂tu+ (u · ∇)u = 0.

In one space dimension, if we want a global solution for all times, the monotonicity
condition ∂aX(t, a) ≥ 0 exactly corresponds to “Oleinik’s entropy condition” ∂xu ≤ 1/t,
which guarantees both global existence and uniqueness for solutions of the inviscid Burgers
equation (1.13), written in ”conservation form”

(1.14) ∂tu+ ∂x(
u2

2
) = 0.

2. Monge-Ampère gravitation

2.1. An abstract framework for Monge-Ampère gravitation. Let H be a (separa-
ble) Hilbert space H equipped with its norm denoted || · || and the corresponding inner
product ((·, ·)). We first consider the general dynamical system

(2.15)
d2X

dt2
= (∇HΦ)[X ],

where t→ X(t) is valued in H , ∇H denotes the gradient operator in H , and Φ is a given
”potential” defined on H . (Observe that we do not follow the usual sign convention for
the potential, for notational convenience.) As well known, such a system admits a least



5

action principle, at least at a formal level. Indeed, for a curve t → X(t) valued in the
Hilbert space H , we may define its action between times t0 and t1, t1 > t0 by:

(2.16) A[t0,t1][X ] =

∫ t1

t0

1

2
||dX
dt

||2 + Φ[X(t)] dt.

Then, the dynamical equation (2.15) can be seen as the formal optimality equation ob-
tained by minimizing the action (2.16) as the end points X(t0) and X(t1) are fixed.
Next, we crucially assume the potential to be of form:

(2.17) Φ[X ] = inf{||X − s||2
2

; s ∈ S},

where S is a given bounded subset of H . Then, when it makes sense, X−∇HΦ[X ] is just
the closest point π[X ] to X in the set S. (Clearly this definition is ambiguous whenever
X has several distinct closest points, which may happen unless S is a convex set. In some
cases, X may have no closest point in S!) As a consequence, (2.15) formally means:

(2.18)
d2X

dt2
= X − π[X ],

where π[X ] is the closest point to X on S. With this formulation, we can guess a large
class of explicit solutions. Indeed, let us assume that X(0) = X0 has a unique closest
point π[X0] = π0 on S. Then the linear (but not convex) combination of X0 and π0 given
by:

(2.19) X(t) = π0 + et(X0 − π0)

solves (2.18) as long as π0 stays the unique projection of X(t). Intuitively, X(t) gets
repelled from its initial position in the opposite direction of its closest point on S, keeping
for a while π0 as its closest point on S until a new point in S gets even closer. Whenever
S is a convex set, this repulsion mechanism provides an obvious global solution. Indeed,
all points contained in the infinite segment {π0 + r(X0 − π0), r ≥ 0} admits π0 as their
unique closest point on S. In the case of a non-convex set S, this is not true in general
and formula (2.19) is able to provide no more than a local solution. The situation is very
clear in the elementary case when S is the unit sphere in H . Then, 0 is the unique point
where Φ is not differentiable. We get as special solution

X(t) = r−1
0 (1 + (r0 − 1)et)X0,

where X0 6= 0 and r0 = ||X0||. We see that, if r0 < 1, then the solution reaches 0 at time
T = − log(1− r0) and its continuation beyond T gets ambiguous.

Miscellaneous mathematical remarks. 1) The potential Φ given by (2.17) is a smooth
perturbation of a Lipschitz concave function; indeed:

(2.20) Φ[X ] =
||X||2
2

− Π[X ],

where Π is the Lipschitz convex functional defined by:

(2.21) Π[X ] = sup{((X, s))− ||s||2
2

; s ∈ S}.

A classical result of convex analysis [4] asserts that, for every Lipschitz convex function

defined on a Hilbert space, the set H̃ where the function is differentiable is always ”fat”



6

in the topological sense of Baire: namely H̃ is dense and contains a countable intersection
of dense open subsets of H [4]. In the particular case of Π, the set of differentiabliity

H̃ is contained in the set of all points X in H for which there is a unique closest point
s = π[X ] on S. Thus, the potential Φ defined by (2.17) is everywhere differentiable on H̃
and its gradient in H is given by:

(2.22) ∇HΦ[X ] = X − π[X ], ∀X ∈ H̃.

2) In the case when H is the finite-dimensional Hilbert space Rn, for such a poten-
tial (namely a smooth perturbation of a concave Lipschitz function), the dynamical
system (2.15) has a unique global solution for Lebesgue almost every initial condition
(X(0), X ′(0)) ∈ R2n and is, therefore, well-posed in the sense of Bouchut and Ambrosio
[9, 1]. To the best of our knowledge, there is no similar theory in infinite dimension and
the well-posedness of (2.15) is then a challenging open. (A somewhat related attempt is
the theory developed by Ambrosio and Gangbo for some infinite dimensional hamiltonian
systems [2]. See also [19, 27, 28].)

2.2. Monge-Ampère gravitation.

Definition. Since the dimension 3 does not matter in the definition of the MAG model, we
consider a smooth bounded closed domain D ⊂ Rd. We assume D to be of unit Lebesgue
measure. The MAG model is defined by choosing for H the Hilbert space of all Lebesgue
square-integrable maps from D to Rd,

(2.23) H = L2(D,Rd),

and for S the subset of all Lebesgue measure-preserving maps s of D:

(2.24) S = { s ∈ H ,

∫

D

f(s(a))da =

∫

D

f(a)da, ∀f ∈ C(Rd) } .

In addition, with respect to the abstract framework, we input coefficients α, β given by
(0.4) and substitute

(2.25)

∫ t1

t0

1

2
α2(t)||dX

dt
||2 + t−2β2(t)Φ[X(t)] dt.

for (2.16). and get as optimality equations:

(2.26) t2β−2(t)
d

dt
(α2(t)

dX

dt
) = (∇HΦ)[X ] = X − π[X ].

Using tools of optimal transport theory (see apprendix), the right-hand side of this equa-
tion can be more concretely written

(2.27) X(t, a)− π[X(t, ·)](a) = −t∇ϕ(t, X(t, a)).

where ϕ = ϕ(t, x) solves a Monge-Ampère equation equation

(2.28) det(I + tD2
xϕ(t, x)) = ρ(t, x),

where ρ is the density field

(2.29) ρ(t, x) =

∫

D

δ(x−X(t, a))da.
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Thus, we have obtained the MAG system with

(2.30) tβ−2(t)
d

dt
(α2(t)

dX

dt
) = −(∇ϕ)(t, X(t, a).

3. A modified action taking into account concentrations

3.1. Modified action in the abstract framework. In this section, we go back to the
abstract framework of a potential Φ defined as the squared distance to a bounded subset
S of a general Hilbert space H , according to (2.18,2.20,2.21). Since potential Φ is a
squared distance to some subset S inside H , it solves, at least formally, the stationary
Hamilton-Jacobi equation:

(3.31) Φ =
||∇HΦ||2

2
,

where ∇H denotes the gradient operator in H . This suggest to rewrite, at least formally,
the action (2.25) as

∫ t1

t0

1

2
||dX
dt

||2 + ||∇HΦ[X(t)]||2
2

dt

=

∫ t1

t0

1

2
||dX
dt

−∇HΦ[X(t)]||2 + ((
dX

dt
,∇HΦ[X(t)])) dt

= Φ[X(t1)]− Φ[X(t0)] +

∫ t1

t0

1

2
||dX
dt

−∇HΦ[X(t)]||2 dt.

(3.32)

Under this ”self-dual” form (see [29] for a systematic study of ”self-dual lagrangians”), it
is obvious that any solution of

(3.33)
dX

dt
= (∇HΦ)[X ] = X − (∇HΠ)[X ]

is always a minimizer of the action as X(t0) and X(t1) are fixed (just like instantons in
euclidean Yang-Mills theory, cf.[29]).

As already mentioned, in spite of the rather nice structure (2.20) of Φ, as a quadratic per-
turbation of a convex Lipschitz function, the corresponding second-order equation (2.18)
is not so well understood. In sharp contrast, the first-order equation (3.33) is a standard
”gradient flow ” equation (GF), that can be solved by classical ”maximal monotone op-
erator” theory [20].

In the framework of maximal monotone operator theory, equation (3.33) is usually written
as a sub-differential inclusion:

(3.34) −dX
dt

+X ∈ ∂Π[X ],

which is well-posed in H since Π is Lipschitz and convex. Here, we use standard notations
of convex analysis, for which ∂ denotes the sub-differential of a convex function [20]:

(3.35) ∂Π[X ] = {Z ∈ H ; Π[Y ] ≥ Π[X ] + ((Z, Y −X)), ∀Y ∈ H}.
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A remarkable property [20] of each solution X(t) ∈ H is to be not only a Lipschitz
continuous function of t but also right-differentiable at each t with

(3.36) −dX(t+ 0)

dt
+X(t) = d0Π[X(t)], ∀ t

where d0Π[X ], following [3], denotes the element of ∂Π[X ] with minimal norm (which is
uniquely defined):

(3.37) ||d0Π[X ]|| = min{||s|| ; s ∈ ∂Π[X ]}.

Finally, notice that X(t) is a locally Lipschitz function of t with values in the separable
Hilbert space H , X(t) is therefore almost everywhere differentiable in t by Rademacher
theorem. Since X(t) is right-differentiable everywhere, we conclude that:

(3.38) −dX
dt

+X(t) = d0Π[X(t)],

holds true both in the almost everywhere sense and in the sense of distributions.

Our main point is now to introduce a modified action. There are two possible ways
to do it. First, we may introduce the modified potential Φ̃:

(3.39) Φ̃[X ] =
1

2
||X − d0Π[X ]||2

and the corresponding modified action

(3.40) Ã[t0,t1][X ] =

∫ t1

t0

1

2
||dX
dt

||2 + Φ̃[X(t)] dt =

∫ t1

t0

1

2
||dX
dt

||2 + 1

2
||X − d0Π[X ]||2 dt.

Alternately, sticking more closely to the self-dual formulation, we may directly modify
the action by setting

(3.41) Â[t0,t1][X ] =

∫ t1

t0

1

2
||dX
dt

−X + d0Π[X ]||2 dt.

It is not clear to us that these modified actions coincide (up to boundary terms). Nev-
ertheless, we will take the second option, mostly for numerical purposes, because it leads
to simpler algorithms.

3.2. Modified action for the MAG model. We now consider the MAG model. This
means, with respect to the abstract framework, thatH and S are now defined by (2.23,2.24)
and (2.30) substitutes for (2.15).

In order to take into account coefficients (α, β) (given by (0.4)), we first rewrite the
action as:

(3.42) A =

∫ t1

t0

α(t)2||dX
dt

||2 + t−2β(t)2||∇HΦ[X(t)]||2 dt .

As in the homogeneous case α = β = 1, we keep in mind that

1

2
||∇HΦ[X(t)]||2 = Φ[X(t)]
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and look at the cross-term:

J =

∫ t1

t0

α(t)t−1β(t)((
dX

dt
,∇HΦ[X(t)]))dt =

∫ t1

t0

α(t)t−1β(t)
d

dt
(Φ[X(t)])dt

By integration by part, we get

J − α(t1)t
−1
1 β(t1)Φ[X(t1)] + α(t0)t

−1
0 β(t0)Φ[X(t0)] = −

∫ t1

t0

Φ[X(t)]
d

dt
(α(t)t−1β(t))dt

= −1

2

∫ t1

t0

||∇HΦ[X(t)]||2 d
dt
(α(t)t−1β(t))dt = −λ

2

∫ t1

t0

t−2β(t)2||∇HΦ[X(t)]||2,

provided we assume

(3.43)
d

dt
(α(t)t−1β(t)) = λt−2β(t)2,

for some constant λ, which is is consistent with data (0.4) if we choose λ = 1/
√
6. From

this calculation of the cross-term J , we deduce that the action A defined by (3.42) can
be written:

A = BT +

∫ t1

t0

||α(t)dX
dt

− µt−1β(t)∇HΦ[X(t)]||2 dt .

where BT is a boundary term depending only on X(t1) and X(t0), provided µ
2+µλ = 1.

For data (0.4), we get λ = 1/
√
6 and µ =

√

2/3. Therefore, all solutions of the gradient-
flow equation

(3.44) α(t)
dX

dt
= µt−1β(t)∇HΦ[X(t)]

automatically are minimizers of the action (3.42). For data (0.4), this gradient-flow equa-
tion reduces to:

(3.45) t
dX

dt
= ∇HΦ[X(t)] = X(t)−∇HΠ[X(t)].

The gradient-flow equation should be understood in the more precise sense:

(3.46) t
dX(t+ 0)

dt
= X(t)− d0Π[X(t)],

which takes concentration into account, globally in time. In some sense, formulation
(3.46) not only allows concentrations but guarantees the largest possible dissipation of
kinetic energy during the concentration process (which is of course questionable from the
physical viewpoint.) Accordingly, we suggest, for the MAG model, the following modified
action:

(3.47) Â =

∫ t1

t0

t−1/2||tdX
dt

−X + d0Π[X ]||2 dt.
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3.3. Zeldovich solutions. Special solutions of (3.45) can be obtained thanks to the
concept of ”rearrangements with convex potential” as follows. By definition, the MAG
model relies on the set S of all Lebesgue measure-preserving maps (2.24). This set contains
the identity map Id as an obvious element. The set K ⊂ H of all points X which admits
Id as a closest point on S plays a crucial role. It can be characterized (cf. Appendix
on optimal transportation theory), as the convex cone of all maps X ∈ H with a convex
potential, which means that there is a convex function ψ defined on Rd and valued in
]−∞,+∞] which is almost everywhere differentiable on D with ∇ψ(a) = X(a), a.e. on
D. It turns out that any map X ∈ H has a unique rearrangement X♯ in K, which means

∫

D

δ(x−X♯(a))da =

∫

D

δ(x−X(a))da

(cf. Appendix).

Therefore, special solutions of (3.45) can be obtained, by looking for solutions X(t) valued
in the convex cone K of all maps with convex potential. Indeed, for such solutions, we
have:

∇HΦ[X(t)] = X(t)−∇HΠ[X(t)] = X(t)− π[X(t)] = X(t)− Id,

and (3.45) reduces to the linear ODE

(3.48) t
dX

dt
= X − Id

as long as X(t) belongs to K, i.e. X(t, a) = ∇ψ(t, a), with ψ(t, a) convex in a. This leads
to the explicit formula:

(3.49) X(t, a) = ∇ψ(t, a) = a +
t

t0
(∇ψ(t0, a)− a) = a+

t

t0
(X(t0, a)− a) ,

as long as ψ stays convex in a. This exactly coincides with Zeldovich formula (1.11) dis-
cussed in the introduction. Remarkably enough, for Monge-Ampère gravitation, Zeldovich
approximation (1.11) is just exact!

3.4. Modified action in one space dimension. Let us focus on the one space di-
mension case when: D = [−1/2, 1/2]. Then, the modified potential Φ̃ can be explicitly
computed in the case of a piecewise smooth map Y valued in K. Indeed, in one space
dimension, maps in K, with convex potential are just increasing maps. So, there is a
finite number of plateaux [aj , bj] on which Y is constant with values Yj and outside of
which Y is a piecewise smooth strictly increasing function.
Notice that the corresponding image-measure ρ(dx) defined by

ρ(dx) =

∫

D

δ(x− Y (a))da

has a singular part ρs given by:

ρs(dx) =
∑

j

(bj − aj)δ(x− Yj).

Then d0Π[Y ] (the element of the sub-differential ∂Π[Y ] with minimal L2 norm) coincides
with the identity map outside of the plateaux and takes value (aj + bj)/2 inside [aj, bj ].
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After elementary calculations, we find

||Y − d0Π[Y ]||2 = ||Y ||2 − 2((Y, Id)) + ||Id||2 −
∑

j

∫ bj

aj

(a− aj + bj
2

)2da

= ||Y − Id||2 − 1

12

∑

j

(bj − aj)
3.

Here we very clearly see the discrepancy between the original potential Φ and the modified
potential Φ̃:

(3.50) Φ̃[Y ] = Φ[Y ]− 1

24

∑

j

(bj − aj)
3.

Remark 1. Specialists of nonlinear hyperbolic conservation laws will recognize in the sec-
ond term of this expression the very expression of the so-called ”entropy production” term
for the inviscid Burgers equation (1.14), written in material coordinates [7, 24].

3.5. Eulerian version of the gradient flow equation. The gradient flow equation
(3.44) has an Eulerian version. Indeed, the corresponding measures (ρ, ρv), defined by

(3.51) ρ(t, x) =

∫

D

δ(x−X(t, a))da, ρv(t, x) =

∫

D

∂tX(t, a)δ(x−X(t, a))da,

are (formal) solutions of the following system of PDE:

(3.52) ∂tρ−∇ · (ρ∇ϕ) = 0, ρ = det(I + tD2
xϕ).

This model can be seen as a fully nonlinear counterpart of various models popular in
biology (chemotaxis) or astronomy, involving the Poisson equation -or other linear equa-
tions involving a singular Green function- rather than the Monge-Ampère equation. A
common feature of all these models is their ability at describing concentration phenomena
[32, 31, 36, 21].

4. A discrete action for tha MAG model

4.1. A time-discrete scheme for the gradient flow equation. In view of numerical
calculations, our first step is to get a time-discrete version of the modified action. Instead
of directly getting a discrete version of (3.47), it seems wiser to us to start from a time-
discrete version of the gradient flow equation (3.45).
A natural candidate is:

(4.53) Xn+1 = Xn + (Xn −∇HΠ[Xn])θn + ηn

where Xn is an approximation of X(t) at the nth time-step Tn, for n = 0, · · ·, N , T0 = t0,

TN = t1, with θn = Tn+1

Tn
− 1 ↓ 0. (In the special case t0 = 0, it is natural to set X0 = Id

and to provide X1 as the initial condition.) In formula (4.53), ηn is a small perturbation
added to the discrete solution so that, for every n, Xn is a point of differentiablity of Π.
Thus, ∇HΠ[Xn] is well defined and is also the closest point π[Xn] to Xn in S. Indeed,
as a smooth perturbation of a Lipschitz concave function on H , Π is differentiable on a
”fat” dense subset H̃ of H (i.e. containing a countable intersection of dense open sets).
Thus, we may choose a perturbation term ηn, arbitrarily small, so that Xn falls in the
”good” set H̃ where ∇HΠ is well defined. By doing so, we do not generate a big error.
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Indeed, we keep control on the cumulated error thanks to the following stability estimate
for two distinct solution Xn, X̃n of (4.53) (where we neglect the perturbation terms ηn,
η̃n for notational simplicity),

(4.54) ||Xn+1 − X̃n+1||2 ≤ (1 + θn)
2||Xn − X̃n||2 + c0θ

2
n,

where c0 is the squared diameter of S. [Indeed, we get form (4.53)

||Xn+1− X̃n+1||2 = (1+ θn)
2||Xn− X̃n||2− 2(1+ θn)θn((Xn − X̃n,∇HΠ[Xn]−∇HΠ[X̃n]))

+θ2n||π[Xn]− π[X̃n]||2

and observe that the second term in the right-hand side is less than zero since Π is convex,
and the third one is dominated by c0θ

2
n.]

As a matter of fact, this stability estimate is also essentially sufficient to prove the conver-
gence of the scheme as θn ↓ 0 to the continuous model (3.46), for the uniform convergence
in time with respect to the strong topology of H . (See [14, 15] for examples of similar
results for various nonlinear hyperbolic conservation laws.) Notice that concentration
phenomena, which are present at the continuous level, are correctly taken into account
by the time discrete scheme, in spite of the fact that the discrete scheme never involves
the computation of d0Π, which is a big advantage in practice!

4.2. A time-discrete action for the MAG model. From the time-discrete scheme
(4.53) for the gradient-flow equation, we define a time discrete version of modified action
(3.47) just by setting:

(4.55)
N−1
∑

n=0

rn||Xn+1 −Xn − (Xn − π[Xn])θn||2,

with rn = T
3/2
n

Tn+1−Tn
. Nevertheless, in view of the EUR problem, it is more reasonable to

minimize the time-discrete action (4.55) when the data are not X0 and XN but rather
the corresponding probability measures ρ0 and ρN defined by:

ρ0(dx) =

∫

D

δ(x−X0(a))da, ρN(dx) =

∫

D

δ(x−XN(a))da.

So there is a big loss of information (since the same probability measure can be generated
by a continuum of maps). This problem can be addressed in terms of rearrangements
with convex potentials. As a matter of fact, fixing ρ0 and ρN is equivalent to fixing the
rearrangements with convex potentials X♯

0 and X♯
N , rather than X0 and XN themselves.

It is very fortunate that, one can rewrite the discrete scheme (4.53) as a self-consistent
scheme for the rearrangement Yn = X♯

n with convex potential. Indeed, let us assume,
for simplicity, that, at each n, the solution of the scheme Xn has a polar factorization
Xn = Yn ◦ sn (cf. Appendix), where Yn = X♯

n ∈ K is the unique rearrangement with
convex potential of Xn and sn = π[Xn] ∈ S is the closest point in S to Xn. Then, we can
rewrite (4.53) as:

Yn+1 ◦ sn+1 = (Yn + (Yn − Id)θn) ◦ sn.
But, this implies that Yn+1 is the unique rearrangement of Yn+(Yn− Id)θn with a convex
potential. In other words, we have a well defined self-consistent scheme for Yn ∈ K,
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namely:

(4.56) Yn+1 = (Yn + (Yn − Id)θn)
♯.

Accordingly, the minimization of the time discrete MAG action can be seen, in ”polar
coordinates” (Yn, sn) ∈ K × S, as the minimization of

(4.57)
N−1
∑

n=0

rn||Yn+1 ◦ sn+1 − (Yn + (Yn − Id)θn) ◦ sn||2,

with rn = T
3/2
n

Tn+1−Tn
, as Y0 and YN are fixed in K.

Following ”optimal transport” theory, we may introduce on H the quadratic Monge-
Kantorovich (MK2) (or ”Wasserstein”) distance,

(4.58) dMK2(X, X̃) = inf{||X ◦ s− X̃ ◦ s̃||, s, s̃ ∈ S },

which is nothing but the quotient distance in H with respect to the action of the semi-
group S. Then the minimization of the time-discrete MAG action is just the minimization
in Yn ∈ K of

(4.59)
N−1
∑

n=0

rn dMK2(Yn+1, Yn + (Yn − Id)θn)
2,

with rn = T
3/2
n

Tn+1−Tn
, as Y0 and YN are fixed in K.

(Equivalently, we could work on the so-called ”Wasserstein” or ”MK2” space as, for
instance, in [37, 3, 2].)

4.3. The fully discrete least action principle. Let us now introduce a fully discrete
scheme, for which not only the time variable but also the space variable is discrete. The
domain is divided into L disjoints subdomainsDi of Lebesgue measure 1/L, for i = 1, ···, L,
with barycenter ai and vanishing diameter as L → ∞. In our abstract framework, it is
enough to substitute for the spatial domain D, the discrete set {ai, i = 1, · · ·, L }.
Accordingly, H can be seen as the euclidean space (Rd)L of all finite sequences of L
points in Rd {X = (Xi ∈ Rd)i=1,L} with the natural euclidean norm || · || induced by Rd.
Meanwhile the set S can be viewed as the set of all permutations s of the L first integers
and K is the corresponding cone of all sequences Yi such that

∑

i

Yi · (ai − asi) ≥ 0,

for all permutations s. In one space dimension, K is just the convex cone of all increasing
sequences of L real numbers.

The time-discrete MAG action (4.57) makes sense at the fully discrete level without
modification. In this discrete setting, S is a group (which is untrue at the continuous
level) and each s can be inverted in S. Thanks to the group property of S and the invari-
ance of || · || with respect to S, the minimization problem can be further reduced to the
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minimization of

(4.60)
N−1
∑

n=0

rn||Yn+1 − (Yn + (Yn − Id)θn) ◦ σn+1||2,

in Yn ∈ K, σn ∈ S, as Y0 and YN are fixed in K (just by setting σn+1 = sn ◦ s−1
n+1 ∈ S).

To solve this minimization problem, a crude strategy is to use Gauss-Seidel type iterations.
We denote by (Y k

n , σ
k
n) the approximation of (Yn, σn) at iteration k and time step n. Let

us fix k and n. To get the updated values σk+1
n and Y k+1

n , we inductively suppose that
we already know (Y j

m, , σ
j
m) for all m if j ≤ k and for all m < n if j = k + 1. Then, we

perform the two following steps:
i) First step: we get s = σk+1

n by solving the combinatorial optimization problem

(4.61) inf
s∈S

||Y k
n+1 − (Y k

n + (Y k
n − Id)θn) ◦ s||.

This step is particularly simple in one space dimension and just amounts to sorting in
increasing order the finite sequence (Y k

n + (Y k
n − Id)θn)i, i = 1, · · ·, L. It is much more

challenging in higher dimensions. The best known optimization methods need 0(L3)
elementary operations, which is not satisfactory (see a related discussion in [18]).
ii) Second step: we get Y = Y k+1

n by minimizing in Y ∈ K:

rn||Y k
n+1 − (Y + (Y − Id)θn) ◦ σk

n+1||2 + rn−1||Y − (Y k+1
n−1 (1 + θn−1)− θn−1Id) ◦ σk+1

n ||2,
where the first term can also be written

rn||Y k
n+1 ◦ (σk

n+1)
−1 − (Y + (Y − Id)θn)||2,

using the inverse permutation (σk
n+1)

−1 and the invariance of || · || with respect to per-
mutations. After reorganizing squares, we see that Y is just the least-square projection
H → K of:

V =
rn(1 + θn)W + rn−1Z

rn(1 + θn)2 + rn−1

,

W = Y k
n+1 ◦ (σk

n+1)
−1 + θnId, Z = (Y k+1

n−1 + (Y k+1
n−1 − Id)θn−1) ◦ σk+1

n .

So, we have obtained an effective algorithm. It is particularly simple in one space dimen-
sion (and much more challenging in higher dimensions!). Let us observe that, in one space
dimension, computing the least-square projection Y = PK [V ] is different from sorting the
sequence V in increasing order. However, still in one space dimension, this projection can
be approximately computed after a sequence of sorting steps, according to the asymptotic
formula (which is a byproduct of the ”transport-collapse method” [11]):

(4.62) PK [V ] = lim
M→∞

V M
M , V M

m = (V M
m−1 +

1

M
V )♯, V M

0 = 0, m = 1, · · ·M.

In practice, we already get a good accuracy for moderate values of M (say M = 10).

5. Solution of the initial value problem

In order to validate the reconstruction scheme, we would like to solve the initial value
problem (IVP) consistently with the modified least action problem, and get a discrete
scheme for the IVP. Ideally, such a scheme should be derived directly from the modified
discrete least action principle. Unfortunately, we have not been able to do so, and we are



15

just going to suggest a simple scheme for the IVP which seems, in practice, consistent
with the modified action, at least in one space dimension.

5.1. A time-discrete scheme for the IVP. Our suggestion to get a time-discrete
solution of the IVP is to alternate the solution of the linear ODE

(5.63)
d

dt
(α2(t)V ) = t−2β2(t)(Y − Id),

dY

dt
= V, Y (Tn) = Yn, V (Tn) = Vn,

with coefficients (α, β) given by (0.4), on each time interval [Tn, Tn+1[ and the rearrange-
ment of the result at time step Tn+1:

Yn+1 = Y (Tn+1)
♯, Vn+1 = V (Tn+1).

Using a plain explicit discretization of (5.63), we get:

Yn+1 = (Yn + (Tn+1 − Tn)Vn)
♯,

α2(Tn+1)Vn+1 = α2(Tn)Vn + T−2
n β2(Tn)(Tn+1 − Tn)(Yn − Id)

(5.64)

The convergence analysis of this time-discrete scheme can be done in two different ways.

5.2. The multidimensional case. In the multidimensional case, our strategy for the
convergence analysis of scheme (5.64) is inspired by our recent work [16], where a similar
scheme is analyzed. We essentially use the fact that all maps with convex potential are
of locally bounded variations, which provides enough compactness with respect to space
variables. Time compactness is, as usual, directly obtained from the evolution scheme.
We notice that V can be easily integrated out from Y by ODE (5.63).

Theorem 5.1. For every fixed initial condition (Y0, V0) ∈ Y ×H, the approximate solution
(Yn) admits at least a limit t→ Y (t) ∈ K valued in C0([t0,+∞[, H) as the time step goes
to zero. This limit satisfies:

V (t, a)α2(t) = V0(a)α
2(t0) +

∫ t

t0

τ−2β2(τ)(Y (τ, a)− a)dτ,

d

dt

∫

D

f(Y (t, a))da =

∫

D

(∇f)(Y (t, a)) · V (t, a)da,

(5.65)

for all C1 function f on Rd (with |∇f | growing at most linearly at infinity).

Notice that, since Y is valued in K, the knowledge of ”observables”
∫

D
f(Y (t, a))da

for all test-functions f is enough to determine Y (t) which makes formulation (5.65) self-
consistent. (However this does not guarantee uniqueness of solutions to the IVP.) So, we
have a proposal to solve the IVP, and a corresponding discrete scheme, but we are not
able to prove that formulation (5.65) is actually consistent with our modified least action
principle.

5.3. The one-dimensional case. In the special case of one space variable, we get a much
more precise information, following the analysis developed in [14] for similar problems (see
also [15]):
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Theorem 5.2. For every fixed initial condition (Y0, V0) ∈ Y × H, as the time step goes
to zero, the approximate solution (Yn) converges to the unique solution t → Y (t) ∈ K,
valued in C0([t0,+∞, H), of the mixed integral-sub-differential system:

−∂tY + V ∈ ∂Θ[Y ],

V (t, a)α2(t) = V0(a)α
2(t0) +

∫ t

t0

τ−2β2(τ)(Y (τ, a)− a)dτ,
(5.66)

where Θ[Y ] = 0 whenever Y = Y (t, a) is monotonically increasing in a and Θ[Y ] = +∞
otherwise.

System (5.66) is well-posed in the L2 sense and can be shown (as in [14]) to be the limit
(in the sense of maximal monotone operator theory) as ǫ ↓ 0 of the perturbed system

(5.67) −∂tY + V = −ǫ∂a(log(∂aY )), ∂t(α
2(t)V ) = t−2β2(t)(Y − Id),

which, in Eulerian variables (2.29), reduces to:

∂tρ+ ∂x(ρv) = 0,

∂t(α
2(t)ρv) + ∂x(α

2(t)ρv2) = −t−1β2(t)ρ∂xϕ+ ǫ∂xxv,

ρ = 1 + t∂2xϕ,

(5.68)

and is just a pressure-less Navier-Stokes-Poisson system with vanishing viscosity (as in
[10, 41]). As mentioned above, an interesting open question is to show that this approach
(vanishing viscosity (5.68), subdifferential formulation (5.66) or scheme (5.64)) is actually
consistent with the modified least action principle!

6. Numerical simulations in one space dimension

Our data are

t0 = 1/2, t1 = 5/2, N = 60, L = 51, ai = −1 + (2i− 1)/L, i = 1, · · ·L,
Y0 = X♯

0, (X0)i = aiωi, ,

where ωi is a random number uniformly distributed between 1 and 2. Thus, Y0 looks like
a devil’s staircase.
Concerning the final data YN ∈ K, either:
(Case 1) the associate probability ρN is the barycenter of four Dirac’s measures:

ρN(dx) =
δ(x+ 0.7) + 4 δ(x− 0.2) + 3 δ(x− 0.9) + δ(x− 1.1)

9
.

or (Case 2) YN is the solution at time t1 of the initial value problem generated by the

discrete gradient flow equation starting from Y0 = X♯
0 at time t0.

In our plots, we draw the trajectories of the 51 particles during the 60 time steps of
the time interval (the vertical axis corresponding to time and the horizontal one to space).

Case 1: we first plot the reconstructed solution (fig. 1). Then, with the reconstructed
initial velocity we solve the initial value problem for the MAG equations with scheme
(5.64) and plot the result (fig.2). We observe a nearly perfect match between figures 1
and 2.
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Case 2: we first solve the IVP for the gradient flow equation with scheme (5.64) (fig.
3). Then, we reconstruct the solution from the initial and final data of the gradient flow
solution (fig 4). (Here we observe some limited discrepancy.) Finally, with the recon-
structed initial velocity we solve the initial value problem for the MAG equations (fig.5),
again with scheme (5.64) and get a nearly perfect match.

7. Discussion

We have revisited the early universe reconstruction problem and suggested a modifica-
tion of classical Newton gravitation by what we called Monge-Ampère gravitation. The
main drawback of our approach is the lack of physical justification for such a modification.
The main mathematical advantage is the obtention of a modified least action principle
in which we can easily include mass concentration effects in an almost canonical way,
using ideas from gradient flow theory. In addition, the well-known Zeldovich approximate
solutions turn out to be exact solutions of the modified model, which provides an indirect
validation of the model as a reasonable approximation for the early universe reconstruc-
tion (EUR) problem. According to these ideas, an algorithm has been designed in the 1D
case. Our plan for the future includes: i) analysis of the initial value problem, consistently
with the modified least action principle; ii) design of an efficient multidimensional algo-
rithm; iii) study of the relative accuracy of the Newton and Monge-Ampère gravitation
models with respect to general relativity.

8. Appendix

8.1. Some useful results from optimal transport theory. The set S defined by
(2.24) has a semi-group structure for the composition rule and has the identity map Id
as neutral element. It is, in some sense, in duality with its ”polar cone” K ⊂ H :

(8.69) K = {Y ∈ H ; ((Y, Id− s)) ≥ 0, ∀s ∈ S} .

Let us recall few basic results of optimal transport theory [12, 13, 43] concerning S and
K. First, the set K can be characterized as the closed convex cone of all maps Y with a
convex potential, which means that there is a convex function ψ defined on Rd and valued
in ] −∞,+∞] which is almost everywhere differentiable on D with ∇ψ(x) = Y (x), a.e.
on D.
Next, every map admits a unique rearrangement in K. More precisely

Theorem 8.1. ([12]) Every X ∈ H admits a unique ”rearrangement” X♯ in K, which
means:

∫

D

f(X♯(a))da =

∫

D

f(X(a))da, ∀f ∈ C(Rd), sup
x

|f(x)|(1 + |x|2)−1 < +∞.

In addition, X → X♯ is continuous in H (for the strong topology).

Moreover, there is a ”polar factorization” of the Hilbert space H by S and K. More
precisely:
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Theorem 8.2. ([12]) Let X ∈ H be a non degenerate map, in the sense that the measure
ρ(dx) =

∫

D
δ(x−X(a))da has no singular part with respect to the Lebesgue measure.

Then X admits a unique ”polar factorization”

(8.70) X = Y ◦ s, Y ∈ K, s ∈ S.

In addition, the second factor s is characterized as the unique closest point π[X ] to X in
S and can be written

(8.71) π[X ] = ∇ψ ◦X,
where ∇ψ is the unique map T : Rd → D with convex Lipschitz potential such that the
Lebesgue measure restricted to D is the image of ρ by T :

(8.72)

∫

Rd

f(∇ψ(x))ρ(dx) =
∫

D

f(a)da, ∀f ∈ C(Rd).

Let us finally observe as in [12, 13] that (8.72) can be seen as a ”weak formulation” (not
in the sense of distributions!) of the Monge-Ampère problem on Rd with range condition:

(8.73) ρ = det(D2
xψ), (∇ψ)(Rd) = D.
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[20] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de
Hilbert, North-Holland Mathematics Studies, No. 5. 1973.

[21] J.Carrillo, M.Di Francesco, A. Figalli, T. Laurent, D. Slepcev, Global-in-time weak measure solu-
tions and finite-time aggregation for nonlocal interaction equations, to appear in Duke Math. J.,
CVGMT preprint 2010.

[22] D. Christodoulou, The action principle and PDEs, Annals of Maths Studies, 146, Princeton Uni-
versity Press, 2000.

[23] M.Cullen, J. Purser, An extended Lagrangian theory of semigeostrophic frontogenesis, J. Atmo-
spheric Sci. 41 (1984) 1477-1497.

[24] C. Dafermos, Hyperbolic conservation laws in continuum physics, Springer, Berlin, 2000.
[25] W. E, Y.Rykov,Y. Sinai, Generalized variational principles, global weak solutions and behavior

with random initial data for systems of conservation laws arising in adhesion particle dynamics
Comm. Math. Phys. 177:2 (1996) 349-380.

[26] U. Frisch, S. Matarrese, R. Mohayaee, A. Sobolevski, A reconstruction of the initial conditions of
the Universe by optimal mass transportation, Nature 417 (2002) 260-262.

[27] W. Gangbo, T. Nguyen, A. Tudorascu, Hamilton-Jacobi equations in the Wasserstein space, Meth-
ods Appl. Anal. 15 (2008) 155-183.

[28] W. Gangbo, T. Nguyen, A. Tudorascu, Euler-Poisson systems as action-minimizing paths in the
Wasserstein space, Arch. Ration. Mech. Anal. 192 (2009) 419-452.

[29] N. Ghoussoub, Self-dual partial differential systems and their variational principles, Springer,
New York, 2009

[30] G. Gibbons, S. Hawking, the very early universe, Cambridge University Press, 1983
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