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Universidad de Granada, Spain

E-Mail: calogero@ugr.es

Abstract

A class of linear kinetic Fokker-Planck equations with a non-trivial dif-
fusion matrix and with periodic boundary conditions in the spatial vari-
able is considered. After formulating the problem in a geometric setting,
the question of the rate of convergence to equilibrium is studied within
the formalism of differential calculus on Riemannian manifolds. Under
explicit geometric assumptions on the velocity field, the energy function
and the diffusion matrix, it is shown that global regular solutions converge
in time to equilibrium with exponential rate. The result is proved by es-
timating the time derivative of a modified entropy functional, as recently
proposed by Villani. For spatially homogeneous solutions the assump-
tions of the main theorem reduce to the curvature bound condition for
the validity of logarithmic Sobolev inequalities discovered by Bakry and
Emery.

1 Introduction

The evolution of many physical or biological systems is characterized by two
kinds of driving mechanism: diffusion and friction. The competition between
these two types of dynamics may lead the system to a thermodynamical equilib-
rium. The purpose of this paper is to study the rate of convergence to equilib-
rium for a class of linear models that exhibit this kind of behavior. The simplest
model in this class is the Fokker-Planck equation [13] on the density function of
the system:

∂tρ = ∆ρ+∇ · (ξρ) , t > 0 , ξ ∈ RN . (1)
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In this model, the density function ρ depends on the variables (t, ξ), the dif-
fusion term is given by ∆ρ and the friction term by ∇ · (ξρ). All sufficiently
regular solutions of (1) converge in time to a Maxwellian type distribution, with
exponential rate of convergence [4]. The convergence holds for instance in the
L1-norm.

An important generalization of (1), often considered in the mathematical and
in the physical literature [1, 13], is

∂tρ = ∇ · (D(∇ρ+ ρ∇E)) , (2)

where D = D(ξ) is the diffusion matrix and E = E(ξ) is the energy function
(E = |ξ|2/2 for (1)). It is assumed that D is positive definite and that

Θ−1 =

∫
RN

e−E dξ

is bounded. Equation (2) admits an unique invariant probability measure, which
is given by dµ = ρ∞(ξ) dξ, where ρ∞ = Θ e−E . Non-negative solutions of (2)
with unit mass converge to the equilibrium state ρ∞ with exponential rate if
the matrix D and the function E satisfy an inequality known as the curvature
bound condition [2, 3]. Let us briefly recall the argument of the proof. In terms
of h(t, ξ) = ρ(t, ξ)/ρ∞(ξ), equation (2) takes the form

∂th = ∇ · (D∇h)−D∇E · ∇h ,

or, equivalently,
∂th = ∆Gh+Qh , (3)

where ∆G denotes the Laplace-Beltrami operator associated to the Riemannian
metric G = D−1 and Q is the vector field

Qh = D∇ log u · ∇h , u =
√

detDe−E .

The entropy functional associated to (3) is given by

D[h] =

∫
RN

h log h dµ , (4)

and satisfies

d

dt
D[h] = −I[h] , where I[h] =

∫
RN

D∇h · ∇h
h

dµ (5)

is the entropy dissipation functional. Let RicG and ∇G denote the Ricci cur-
vature and the Levi-Civita connection of G. Bakry and Emery proved in [2, 3]
that if the curvature bound condition

RicG −∇GQ ≥ αG , for some α > 0 , (6)
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is satisfied, then the logarithmic Sobolev inequality D[f ] ≤ (2α)−1I[f ] holds for
all sufficiently regular probability densities f . Replacing in (5) we obtain

d

dt
D[h] ≤ −2αD[h] ,

whence the entropy functional decays exponentially as O(e−2αt). The classical
Csiszár-Kullback inequality [6],

‖h− 1‖L1(dµ) ≤
√

2D , (7)

implies that h converges to 1 as t → ∞ in L1(dµ) with exponential rate or,
equivalently, the solution ρ of (2) converges to ρ∞ in L1(dξ) with exponential
rate.

Fokker-Planck type equations appear also in kinetic theory and these are the
subject of the present investigation. Assuming periodic boundary conditions in
space, the simplest kinetic Fokker-Planck (or Kramers) equation is given by [13]

∂tf + p · ∇xf = ∆pf +∇p · (pf) , t > 0 , x ∈ TN , p ∈ RN . (8)

Here f = f(t, x, p) ≥ 0 is the particles distribution in phase-space, with (t, x)
denoting the space-time variables and p the momentum variable. Equation (8)
describes the kinetic motion of a system of particles undergoing stochastic col-
lisions with the molecules of a homogeneous fluid in thermal equilibrium. From
a mathematical point of view, (8) is more complicated than (1), due to the
presence of the transport derivative p · ∇x and the fact that the diffusion oper-
ator ∆p is degenerate, i.e., it acts only on the momentum variables. Moreover
equation (1) can be seen as the spatially homogeneous version of (8).

The problem of how fast the solutions of (8) converge to equilibrium was solved
only quite recently by Hérau and Nier [9] and by Villani [14]. Both references
establish exponential convergence to equilibrium, however by completely differ-
ent methods. In [9] the problem is tackled by spectral analysis techniques—
exponential rate of convergence is implied by the existence of a spectral gap
in the spectrum of the Fokker-Planck operator—, while the proof given in [14,
Th. 28] is based on the study of the evolution of a properly modified entropy
functional. (See [7] for an earlier study of the trend to equilibrium for (8). In
the latter reference the authors prove that convergence to equilibrium occurs as
fast as O(t−1/ε), for any ε > 0.)

In this paper the entropy method is applied to study the trend to equilibrium
for the following generalization of (8):

∂tf + v(p) · ∇xf = ∇p(D(∇pf + f∇pE)) , (9)

where D = D(p) is the diffusion matrix and E = E(p) is the energy function.
Equation (9) reduces to (2) in the spatially homogeneous case. The vector field
v in the transport term is the velocity field; the two most important examples
for the applications are the classical velocity field

v(p) = p
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and the relativistic velocity field

v(p) =
p√

1 + |p|2
.

Setting h = f/e−E , we may rewrite (9) in the form

∂th+ v(p) · ∇xh = ∆ph+Wh , t > 0 , x ∈ TN , p ∈ RN , (10)

where ∆p is the Laplace-Beltrami operator associated to the metric g = D−1

and
Wh = D∇p log u · ∇ph , u =

√
detDe−E .

The main result of this paper is presented in Section 3. It is proved that under
suitable assumptions on the functions v,D,E , which take the form of geo-
metric inequalities involving v, g and W , smooth solutions of (10) with unit
mass converge in time to the equilibrium state h∞ ≡ 1 with exponential rate of
convergence. The proof follows the argument previously outlined to establish
exponential convergence for spatially homogeneous solutions, the main differ-
ence being that the entropy functional (4) is replaced by a properly modified
entropy functional, as proposed recently by Villani [14].

It should be noticed that the trend to equilibrium for (9) is also studied in [14].
The main differences between Villani’s approach and the one used in this paper
are the following. In [14] the author exploits the fact that (9) can be written in
the form

∂th = (A∗A+B)h ,

where B = −v(p) · ∇x, A∗ is the adjoint of A in the Hilbert space L2(dµ) and
A = σ∇, σ =

√
D. The proof of [14, Th. 28] makes crucial use of the iterated

commutators

[A,B] , [B, [A,B]] , [B, [B, [A,B]]] , . . .

in the spirit of Hörmander’s hypoellipticity theory [10]. However the use of
commutators, while natural in the context of regularity theory, presents some
disadvantages for the problem of convergence to equilibrium. In particular it
leads to very heavy and sometimes obscure calculations, which, as pointed out by
Villani at the beginning of the proof of Lemma 32 in [14], “might be an indication
that a more appropriate formalism is still to be found”. The main theorem of
the present paper is proved using the formalism of differential geometry, which
helps to clarify the meaning of many long expressions that have to be controlled
in Villani’s work. Moreover, given a diffusion matrix D, a velocity field v and
an energy function E, one may check directly if our assumptions are verified.
As opposed to this, one has to find a suitable way to decompose the vector
fields A,B and the iterated commutators in order to verify the assumptions
of [14, Th. 28]. Apart from the different approach to the problem, several ideas
introduced by Villani in his important work will be adapted (and simplified) to
the present context, resulting in a less technical and more elegant proof.
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Finally, we remark that a natural and interesting extension of the results of this
paper would be to replace x ∈ TN with x ∈ RN and to introduce an external
confining potential in the equation. This generalization will be considered in a
separate paper.

2 Set-up

This section is devoted to introduce the transport-diffusive equation that will
be the subject of our study, as well as some geometric tools that are needed for
this purpose.

Let N be a N -dimensional smooth manifold and M a smooth M -dimensional
manifold with a C2 Riemannian metric g. It is assumed that N and M are
globally homeomorphic to the torus TN and to RM , respectively. Let

h : R×N ×M→ [0,∞)

satisfy an evolution equation of the following form:

∂th+ Th = ∆ph+Wh . (11)

Here h = h(t, x, p), where x = (x1, . . . , xN ), p = (p1, . . . , pM ) are global coordi-
nates on N and M respectively; ∂t denotes the partial derivative with respect
to t ∈ R, while ∂xI , ∂pi denote the partial derivatives in the coordinates (xI , pi).
Capital Latin indexes run from 1 to N , small Latin indexes run from 1 to M .
Denoting X(B), X∗(B) the set of smooth vector fields and one form fields on
a manifold B, then T ∈ X(N ×M), the transport field, whereas W ∈ X(M).
Finally, ∆p denotes the Laplace-Beltrami operator on (M, g). A subscript p is
attached to differential operators that act on the variables p1, . . . , pM only.

In order to specify the exact form of the fields T,W , some basic facts from
differential geometry are required. In the following discussion, which is based
mainly on [12], we consider only (smooth, time dependent) tensor fields defined
on M or N , possibly obtained by projecting tensor fields from N ×M. We
also remark that in the rest of the paper we do not distinguish between a tensor
field defined on N or M and its lift on N ×M. Let X(I), P(i) denote the
frame vector fields basis associated to the coordinates xI , pi (i.e., X(I)f = ∂xIf ,

P(i)f = ∂pif , for all smooth functions f on M) and X
(I)
∗ , P

(i)
∗ their dual one

form fields; clearly P(i) and P
(i)
∗ are metrically equivalent: g(P(i), Y ) = P

(i)
∗ (Y ),

for all Y ∈ X(M). Note that the indexes in round brackets are list indexes
and not component indexes, that is to say, for each fixed i, P(i) is a geometric

object of the same type (a vector field). Now let v(1), · · · v(M) denote a set of
C3 real valued functions on M. We assume that the transport vector field has
the following form:

T = v(I)(p)X(I) .
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We adopt the Einstein summation rule, whereby the sum over repeated index
is understood.

Remark. When N = M (or more generally when N ≤ M) the functions v(I)

can be thought of as the (non-zero) components of a vector field over M, the
velocity field. However this interpretation is not necessary and in general not
very useful, so we will refrain from adopting it. In particular, the use of the
list index (I) in v(I) reminds that this is a scalar function, which affects how
geometric differential operators act on it.

For any tensor field R over M, ∇pR denotes the covariant differential of R,
where ∇p is the Levi-Civita connection associated to g (i.e.,∇p is symmetric and
∇p g = 0). For a scalar function f onM, ∇pf is the one form ∇pf(Y ) = Y (f),
for all Y ∈ X(M). Any vector field Z ∈ X(M) is metrically equivalent to the
one form field Z∗ ∈ X∗(M) given by Z∗(Y ) = g(Y,Z), for all Y ∈ X(M). The
vector field metrically equivalent to ∇pf is the gradient of f , which we denote
∂pf :

g(∂pf, Y ) = ∇pf(Y ) , or ∇pf = (∂pf)∗ .

Using the components gij = g(P(i), P(j)) of the metric in the base P
(i)
∗ ⊗P (j)

∗ of
the space of type (2, 0) tensor fields, we may express the action of the Laplace-
Beltrami operator on scalar functions as

∆pf =
1√
|g|
∂pi
(√
|g| gij∂pjf

)
, (12)

where gij is the matrix inverse of gij , i.e., gikgkj = δij and |g| = det g. There
is however a more convenient way to express ∆pf . For this we recall that the
divergence of a vector field Z ∈ X(M) is the contraction of ∇pZ, i.e.,

divp Z = ∇pZ(P
(i)
∗ , P(i)) .

We have the well known formula

∆pf = divp (∂pf) .

Moreover by Stokes theorem∫
RM

divp Z
√
|g| dp = 0 , (13)

for all vector fields Z ∈ H1(RM ,
√
|g| dp).

Next the definitions of the gradient of a vector field and of the divergence of a
second order tensor will be recalled. Let ∇pZ : X∗(M) × X(M) → R be the
covariant differential of Z ∈ X(M). The metrically equivalent type (2, 0) tensor
field ∂pZ : X∗(M)× X∗(M)→ R given by

∂pZ(X∗, Y∗) = ∇pZ(X∗, Y )
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is called the gradient of Z. Moreover, given any type (2, 0) tensor field R, its
divergence is defined as the contraction of ∇pR in the second and third variable,
i.e.,

divpR(Y∗) = ∇pR(Y∗, P
(i)
∗ , P(i))

and thus it is a vector field on M. The following lemma collects some useful
identities on the geometric objects defined above.

Lemma 1. Let f, f1, f2 be smooth real valued functions on M and X,Y, Z ∈
X(M). Then

(i) ∂p(f1f2) = f1∂pf2 + f1∂pf2;

(ii) divp (fZ) = g(∂pf, Z) + f divp Z;

(iii) divp (∂pf1 ⊗ ∂pf2)(Y∗) = ∂2
pf1(∇pf2, Y∗) + ∆pf2 ∂pf1(Y∗);

(iv) g(X, ∂p(g(Y, Z))) = ∂pY (Z∗, X∗) + ∂pZ(Y∗, X∗);

(v) g(Y, divp ∂
2
pf) = g(Y, ∂p(∆pf)) + Ric(Y, ∂pf),

where Ric denotes the Ricci curvature tensor of g.

Proof. The proofs of (i)–(iii) follow by the chain rule. The identity (iv) is a
consequence of Koszul’s formula applied to the Levi-Civita connection; the proof
can be found in [12, Ch. 3, Th. 11]. The identity (v) is a direct consequence of the
definition of the Riemann tensor and is proved for instance in [5, Lemma 1.45].

We can now define the vector field W . Let E : RM → [0,∞), E ∈ C2, such that

Θ−1 =

∫
RM

e−E dp

is bounded. Let dµ = Θe−Edp, a probability measure on RM . Then

dµ = Θu
√
|g| dp , where u =

e−E√
|g|

. (14)

Let L be the operator in the r.h.s. of (11), that is

Lh = ∆ph+Wh .

We require the field W to be such that L is symmetric in the Hilbert space
L2(dµ) := L2(RM , dµ), i.e.,∫

RM

hLf dµ =

∫
RM

fLh dµ . (15)
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Lemma 2. The identity (15) is verified if and only if W = ∂p log u, or equiva-
lently, W∗ = ∇p log u.

Proof. We have∫
RM

hLf dµ = Θ

∫
RM

h (∆pf)u
√
|g| dp+

∫
RM

hWf dµ .

In the previous equation we use (i)-(ii) of Lemma 1 to get

divp (hu ∂pf) = hu∆pf + h g(∂pf, ∂pu) + u g(∂pf, ∂ph)

and so doing we obtain, by (13),∫
RM

hLf dµ =

∫
RM

h(Wf − g(∂pf, ∂p log u)) dµ−
∫
RM

g(∂pf, ∂ph) dµ . (16)

Again we use

divp (f u ∂ph) = f u∆ph+ f g(∂ph, ∂pu) + u g(∂pf, ∂ph)

and so we obtain∫
RM

hLf dµ =

∫
RN

h(W − ∂p log u)f dµ+

∫
RM

f(∆p + ∂p log u)h dµ ,

which implies the claim.

We conclude this section by proving some integration by parts formulas.

Lemma 3. The following identities hold true, for all smooth real valued func-
tions f, h on M: ∫

TN

hTf dx = −
∫
TN

fTh dx , (17)∫
RM

hLf dµ = −
∫
RM

g(∂pf, ∂ph) dµ . (18)

Proof. The proof of (17) is straightforward. The identity (18) follows by setting
W = ∂p log u in (16).

For the next result we need to recall the definition of inner product of second
order tensor fields. Given a type (2, 0) tensor field R and a type (0, 2) tensor
field S, the inner product R · S = S ·R is defined as

R · S = (R⊗ S)(P
(i)
∗ , P

(j)
∗ , P(i), P(j)) .

Componentwise this means R · S = RijSij .
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Lemma 4. For all type (2, 0) tensor fields A and Z ∈ X(M) we have∫
RM

g(Z,divpA) dµ = −
∫
RM

A · ∇pZ∗ dµ−
∫
RM

A(W∗, Z∗) dµ . (19)

Proof. Consider the vector field Y ∈ X(M) defined by Y (·) = A(uZ∗, ·). By the
chain rule

divp Y = g(uZ,divpA) +A · ∇p(uZ∗) .

Replacing in the l.h.s. of (19) we obtain∫
RM

g(Z,divpA) dµ = Θ

∫
RM

g(uZ,divpA)
√
|g| dp

=−Θ

∫
RM

A · ∇p(uZ∗)
√
|g| dp

=−
∫
RM

A ·W∗ ⊗ Z∗ dµ−
∫
RM

A · ∇pZ∗ dµ ,

which is the claim.

3 Main result

We begin by stating our assumptions on the functions v(I), E and the metric g.
Let us recall that the Bakry-Emery-Ricci tensor is defined by

R̃ic = Ric−∇pW∗ = Ric−∇2
p log u , (20)

where ∇2
pf denotes the Hessian of f and u is the function (14). As already

mentioned in the Introduction, Barky and Emery proved in [2, 3] that spatially
homogeneous solutions of (11) converge exponentially fast in time to the equi-
librium state h∞ ≡ 1 in the entropic sense (i.e., the entropy functional decays

exponentially) if the tensor R̃ic is bounded below by a constant times the met-

ric g. In the spatially inhomogeneous case, we also need a bound on R̃ic from
above.

Assumption 1. There exist two constants σ2 ≥ σ1 ≥ 0 such that

σ1g(X,X) ≤ R̃ic(X,X) ≤ σ2g(X,X) , for all X ∈ X(M) .

We denote
σ = σ2 − σ1 ≥ 0 . (21)

Before stating the next assumption, it is convenient to give the following defi-
nition.
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Definition 1. Given a real valued function f on N ×M, and a point x ∈ N ,
we denote Axf the vector field over M given by

Axf = (∂xIf)∂pv
(I) , evaluated at x ∈ N .

The metrically equivalent one form field is given by (Axf)∗ = (∂xIf)∇pv(I).

Remark. We emphasize that Axf ∈ X(M). (More precisely, Axf ∈ X({x} ×
M) ' X(M).) Its components in the vector fields basis P(i) are given by

(Axf)i = gij∂pjv
(I)∂xIf .

For the Fokker-Planck equation (9), the manifold M can be identified with the
tangent space at all points x ∈ N and Axf coincides with ∂xf , the gradient in
x of f .

Now let us define a symmetric bilinear form A on RN × RN by

A(ξ, η) = AIJξIηJ , AIJ = g(∂pv
(I), ∂pv

(J)) , ξ, η ∈ RN .

Note that
AIJ∂xIh∂xJh = g(Axh,Axh) . (22)

Assumption 2. We assume that A is positive definite,

A(ξ, ξ) > 0 , for all 0 6= ξ ∈ RN .

The next assumption is most conveniently expressed in terms of an auxiliary
metric G on M×N and the vector field Q ∈ X(M) defined as follows.

Definition 2. Let AIJ denote the matrix inverse of AIJ , i.e., AIJAJK = δIK .
We define the Riemannian metric G on M×N as

G = gijdp
i ⊗ dpj +AIJdx

I ⊗ dxJ . (23)

Moreover we define the vector field Q ∈ X(M) as

Q = W − ∂p log
√

det(AIJ) . (24)

Assumption 3. We assume that there exists a constant α ≥ 0 such that

RicG(Z,Z)− (∇GQ∗)(Z,Z) ≥ αG(Z,Z) , for all Z ∈ X(M×N ) ,

where RicG is the Ricci tensor of G and ∇G is the covariant differential asso-
ciated to G.

Remark. Using the relations between RicG,∇G and Ric,∇p, Assumption 3 can
be expressed in terms of inequalities on the quantities g,W . These inequalities
are in general very complicated, unless AIJ enjoys some simple structure, as in
the statement of Corollary 1 below.
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The previous assumptions suffice if the metric g and the velocity field v are such
that ∇2

pv
(I) = 0. If this is not the case we need more assumptions, which we

give after the following definitions.

Definition 3. Given a real valued function f on N ×M, and a point x ∈ N ,
we denote Bxf the vector field over M given by

Bxf = (∂xIf)divp ∂
2
pv

(I) , evaluated at x ∈ N .

Definition 4. Given a real valued function f on N ×M, and a point x ∈ N ,
we denote Cxf the type (2,0) tensor field over M given by

Cxf = (∂xIf)∂2
pv

(I) .

The metrically equivalent type (0,2) tensor field is (Cxf)∗ = (∂xIf)∇2
pv

(I).

Next let B,C denote the symmetric bilinear forms on RN × RN given by

B(ξ, η) = BIJξIηJ , BIJ = g(divp ∂
2
pv

(I),divp ∂
2
pv

(J)) ,

C(ξ, η) = CIJξIηJ , CIJ = ∂2
pv

(I) · ∇2
pv

(J) ,

and observe that

BIJ∂xIh∂xJh = g(Bxh,Bxh) , CIJ∂xIh∂xJh = Cxh · (Cxh)∗ (25)

Assumption 4. We assume that there exist two constants β, γ ≥ 0 such that

B(ξ, ξ) ≤ βA(ξ, ξ) , C(ξ, ξ) ≤ γA(ξ, ξ) , for all ξ ∈ RN .

The previous assumptions suffice if W lies in the kernel of the Hessian matrix
of v(I), i.e., ∇2

pv
(I)(W, ·) = 0, for all I = 1, . . . , N . If this is not the case, we

need a last assumption.

Assumption 5. If ∇2
pv

(I)(W, ·) = 0, for all I = 1, . . . , N does not hold, then
we assume that there exists a constant ω > 0 such that

g(W,W ) ≤ ω . (26)

Remark. For instance, the bound (26) does not hold for the classical Fokker-
Planck equation (8), but ∇2

pv
(I) = 0 and therefore we need only Assumptions 1–

3 in this case.

Remark. For the Fokker-Planck equation (9) we have the following identifica-
tions: All indexes (small and capital) run from 1 to N = M and

gij = δij , v(I)(p) = pI , E = |p|2/2 ;

W i = −pi , R̃icij = δij ;

∂2
pv

(I) = Bxf = Cxf = 0 , for all functions f ;

AIJ = δIJ , Q = W .

The constants in the assumptions can be chosen as σ1 = σ2 = α = 1, β = γ = 0.
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Before any claim on the asymptotic time behavior of solutions could be made,
one has to ensure that the Cauchy problem for (11) is globally well-posed. In
the Appendix we prove that the closure of the operator A = −L+T , defined for
instance in the space of C∞ functions with compact support in the p variable,
generates a contraction semigroup in L2(dxdµ), provided the dimensions of N
and M are the same, i.e. N = M , which is the interesting case anyway. In
the general case, it will be assumed that the equation (11) admits a unique
probability density solution, which is smooth and rapidly decreasing in the p
variable, corresponding to a non-negative initial datum with the same regularity
and normalized to a probability distribution, i.e.,

‖hin‖L1(dxdµ) :=

∫
TN×RM

hin dx dµ = 1 . (27)

Our main result is the following.

Theorem 1. Let the Assumptions 1–5 be verified (Assumptions 1–4 suffice
when ∇2

pv
(I)(W, ·) ≡ 0 and Assumptions 1–3 suffice when ∇2

pv
(I) ≡ 0) and

let the initial datum satisfy (27). There exists a constant C > 0, depending
on suitable norms of hin, and a constant λ > 0, depending on the constants
σ1, σ2, ω, α, β, γ, and which can be explicitly computed, such that the entropy
functional

D[h] =

∫
TN×RM

h log h dx dµ

satisfies
D[h](t) ≤ Ce−λt .

Remark. Using (7) we have

‖h− 1‖L1(dxdµ) = O(e−λ t/2) , as t→∞ .

Equivalently, the solution of (9) converges to the steady state f∞ ∼ e−E with
exponential rate in the L1 norm.

Remark. Of course there is no loss of generality in restricting to initial data
that satisfy (27), since (11) preserves the L1(dxdµ)-norm and is invariant by
the rescaling h → Mh. Positive solutions with mass M > 0 converge to the
equilibrium state h∞ = M .

We complement Theorem 1 with a result that simplifies Assumption 3 in some
interesting applications.

Corollary 1. Let Assumptions 1 and 4-5 (if necessary) hold and assume further
that there exists a function ζ :M→ (0,∞) such that

AIJ = ζ(p)δIJ , (28)

where AIJ is the matrix inverse of AIJ = g(∂pv
(I), ∂pv

(J)). If there exists a
constant κ1 < σ1 such that

∇2
pζ(X,Y ) ≤ ζ

N
κ1 g(X,Y ) , for all X,Y ∈ X(M) (29)
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and in addition

κ2 = sup
p∈M

(
∆pζ

ζ
+ (N − 1)

g(∂pζ, ∂pζ)

ζ2

)
< 0 , (30)

then the same conclusion of Theorem 1 holds.

An example that is covered by Corollary 1 is the Fokker-Planck equation (9)
with the classical velocity field v(p) = p and an isotropic diffusion matrix, i.e.

Dij(p) = Π(p)δij ,

where Π is a positive function. In particular gij = Π(p)δij . Thus, since v(I) = pI

(all indexes run from 1 to N in this example), we have

AIJ = gij∂piv
(I)∂pjv

(J) = gijδIi δ
J
j = gIJ = Π(p)δIJ ,

and so (28) holds with ζ(p) = 1/Π(p).

4 Evolution of the modified Entropy

In the rest of the paper the following abbreviations will be used:∫
· · · dx dµ =

∫
TN×RM

· · · dx dµ

and
h̄ = log h .

Moreover the measure dx dµ will be omitted in the proofs.

Recall that

D[h] =

∫
h h̄ dx dµ

and define

Ipp[h] =

∫
g(∂ph, ∂ph̄) dx dµ ,

Ixp[h] =

∫
g(Axh, ∂ph̄) dx dµ ,

Ixx[h] =

∫
g(Axh,Axh̄) dx dµ .

Given four constants a, b, c, k > 0, we define the modified entropy as

E [h] = kD[h] + a Ipp[h] + 2b Ixp[h] + c Ixx[h] .

The purpose of the rest of the present section is to study the time evolution of
the modified entropy, by computing the time derivative of D, Ixx, Ixp and Ipp.
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Lemma 5. The following holds:

d

dt
D = −Ipp ,

Proof. We compute

d

dt
D =

∫
∂th(1 + h̄) = −

∫
(1 + h̄)Th+

∫
Lhdx dµ+

∫
h̄Lh .

By (17) and (18), the first two terms vanish and∫
h̄Lh = −

∫
g(∂ph, ∂ph̄) .

Lemma 6. The following holds:

d

dt
Ipp =− 2Ixp − 2

∫
h R̃ic(∂ph̄, ∂ph̄) dx dµ

− 2

∫
h ∂2

p h̄ · ∇2
ph̄ dx dµ .

where R̃ic is the Bakry-Emery-Ricci tensor (20).

Proof. We compute

d

dt
Ipp = 2

∫
g(∂ph̄, ∂p∂th)−

∫
g(∂ph̄, ∂ph̄)∂th

=−2

∫
g(∂ph̄, ∂p(Th))︸ ︷︷ ︸
♥

+

∫
g(∂ph̄, ∂ph̄)Th︸ ︷︷ ︸

♦

+2

∫
g(∂ph̄, ∂p(Lh))︸ ︷︷ ︸
♣

−
∫
g(∂ph̄, ∂ph̄)Lh︸ ︷︷ ︸

♠

.

We claim that ♥ + ♦ = −2Ixp. We prove this using the coordinates represen-
tation. From one hand

g(∂ph̄, ∂p(Th)) = gij∂pi h̄(∂pjv
(I))∂xIh+ gij∂pi h̄ v

(I)∂pj∂xIh ;

on the other hand, integrating by parts in the x variable,

♦ = −2

∫
gij∂pjh∂pi∂xI h̄ v(I) = 2

∫
gij∂pj∂xIh v(I)∂pi h̄ .

Thus

♥+♦ = −2

∫
gij∂pi h̄(∂pjv

(I))∂xIh = −2

∫
g(Axh, ∂ph̄) . (31)
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The term ♣ is

♣ = 2

∫
g(∂ph̄, ∂p(∆ph)) + 2

∫
g(∂ph̄, ∂p(Wh)) = ♣1 +♣2 .

By (v) of Lemma 1 and (19) we have

♣1 =− 2

∫
Ric(∂ph̄, ∂ph) + 2

∫
g(∂ph̄,divp ∂

2
ph)

=− 2

∫
Ric(∂ph̄, ∂ph)− 2

∫
∂2
ph · ∇2

ph̄− 2

∫
∂2
ph(W∗,∇ph̄) .

Moreover by (iv) of Lemma 1,

♣2 = 2

∫
g(∂ph̄, ∂p(g(∂ph,W ))) = 2

∫
∂2
ph(W∗,∇ph̄) + 2

∫
∂pW (∇ph,∇ph̄) .

Summing up and using the identity

∂2
ph = h ∂2

p h̄+ ∂ph̄⊗ ∂ph

we obtain

♣ = −2

∫
h R̃ic(∂ph̄, ∂ph̄)− 2

∫
h ∂2

p h̄ · ∇2
ph̄− 2

∫
∇2
ph̄(∂ph̄, ∂ph) . (32)

Finally, by (18) and (iv) of Lemma 1,

♠ =

∫
g(∂ph, ∂p(g(∂ph̄, ∂ph̄))) = 2

∫
∂2
p h̄(∇ph̄,∇ph) , (33)

which cancels out with the last term of (32). The claim follows summing
up (31)–(33).

Lemma 7. The following holds:

d

dt
Ixp =− Ixx −

∫
h R̃ic(Axh̄, ∂ph̄) dx dµ

− 2

∫
h ∂2

p h̄ · ∇p(Axh̄)∗ dx dµ+

∫
g(∂ph̄,Bxh) dx dµ

+ 2

∫
h ∂2

p h̄ · (Cxh̄)∗ dx dµ+

∫
∂2
pv

(I)(W∗, ∂xIh∇ph̄) dx dµ .

Proof. We have

d

dt
Ixp =

∫
g(Ax∂th, ∂ph̄)−

∫
g(Axh̄, ∂ph̄)∂th+

∫
g(Axh̄, ∂p∂th))

=−
∫
g(Axh̄, ∂p(Th))︸ ︷︷ ︸

♥1

−
∫
g(Ax(Th), ∂ph̄)︸ ︷︷ ︸

♥2

+

∫
g(Axh̄, ∂ph̄)Th︸ ︷︷ ︸

♥3

−
∫
g(Axh̄, ∂ph̄)Lh︸ ︷︷ ︸

♦

+

∫
g(Axh̄, ∂p(Lh))︸ ︷︷ ︸

♣

+

∫
g(Ax(Lh), ∂ph̄)︸ ︷︷ ︸

♠

.
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Now we claim that
♥ = ♥1 +♥2 +♥3 = −Ixx . (34)

In fact, using the coordinates representation the first term of ♥ can be rewritten
as

♥1 = −
∫
gij∂piv

(I)∂xI h̄ ∂pjv
(J)∂xJh−

∫
gij∂piv

(I)∂xI h̄ v(J)∂pj∂xJh

= ♥1A +♥1B .

It is clear that ♥1A = −Ixx. Integrating by parts in the x variable we obtain

♥1B =

∫
gij∂piv

(I)∂xI∂xJ h̄ v(J)∂pjh .

In the previous expression we use the identity

∂xI∂xJ h̄ = h−1∂xI∂xJh− h−2∂xIh∂xJh

and so doing we obtain

♥1B =

∫
gij∂piv

(I)∂xI∂xJh v(J)∂pj h̄−
∫
gij∂piv

(I)∂xI h̄ v(J)∂xJh∂pj h̄

=

∫
g(Ax(Th), ∂ph̄)−

∫
g(Axh̄, ∂ph̄)Th = −♥2 −♥3 .

This proves (34). It remains to study the integrals ♦,♣,♠. We begin by
applying (18) and (iv) of Lemma 1 to ♦:

♦ =

∫
g(∂ph, ∂p(g(Axh̄, ∂ph̄))) =

∫
∂p(Axh̄)(∇ph̄,∇ph) +

∫
∂2
p h̄((Axh̄)∗,∇ph) .

(35)
As to ♣, we first split it as

♣ =

∫
g(Axh̄, ∂p(∆ph)) +

∫
g(Axh̄, ∂p(Wh)) = ♣1 +♣2 .

By (v) of Lemma 1 and (19) we have

♣1 =

∫
g(Axh̄,divp ∂

2
ph)−

∫
Ric(Axh̄, ∂ph)

=−
∫
∂2
ph · ∇p(Axh̄)∗ −

∫
∂2
ph(W∗, (Axh̄)∗)−

∫
Ric(Axh̄, ∂ph) .

Likewise

♣2 =

∫
g(Axh̄, ∂p(g(∂ph,W ))) =

∫
∂2
ph(W∗, (Axh̄)∗) +

∫
∇pW∗(∂ph,Axh̄) .

Summing up,

♣ = −
∫

R̃ic(Axh̄, ∂ph)−
∫
∂2
ph · ∇p(Axh̄)∗ .
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In the second integral we replace

∂2
ph = h ∂2

p h̄+ ∂ph̄⊗ ∂ph

and we get

♣ = −
∫
h R̃ic(Axh̄, ∂ph̄)−

∫
h ∂2

p h̄ ·∇p(Axh̄)∗−
∫
∂p(Axh̄)(∇ph̄,∇ph) . (36)

Note the the last term in the r.h.s. of (36) cancels out with the first term in the
r.h.s. of (35). We now work out the term ♠. First by means of an integration
by parts in the x variable we can rewrite it as

♠ = −
∫

(Lh)g(∂pv
(I), ∂p(∂xI h̄)) .

Then by (18) and (iv) of Lemma 1 we have

♠ =

∫
∂2
pv

(I)(∇p∂xI h̄,∇ph) +

∫
∂2
p(∂xI h̄)(∇pv(I),∇ph) = ♠1 +♠2 . (37a)

In ♠1 we integrate by parts in x, apply the identity

∇ph̄⊗∇p∂xIh = ∇p(∇ph̄∂xIh)−∇2
ph̄∂xIh

and (19) to obtain

♠1 = −
∫
∂2
pv

(I)(∇ph̄,∇p∂xIh) = −
∫
∂2
pv

(I) · ∇ph̄⊗∇p∂xIh

=

∫
∂2
pv

(I)∂xIh · ∇2
ph̄−

∫
∂2
pv

(I) · ∇p(∇ph̄∂xIh)

=

∫
h ∂2

p h̄ · (Cxh̄)∗ +

∫
g(∂ph̄,Bxh) +

∫
∂2
pv

(I)(W∗, ∂xIh∇ph̄) . (37b)

In ♠2 we integrate by parts in the x variable and apply the identity

∇p∂xIh = h∇p∂xI h̄+ ∂xI h̄∇ph

to obtain

♠2 = −
∫
∂2
p h̄(∇pv(I),∇p∂xIh)

= −
∫
∂2
p h̄(∇pv(I), ∂xI h̄∇ph)−

∫
h ∂2

p h̄(∇pv(I),∇p∂xI h̄)

= −
∫
∂2
p h̄((Axh̄)∗,∇ph)−

∫
h ∂2

p h̄ · ∇pv(I) ⊗∇p∂xI h̄ = ♠2A +♠2B .

(37c)

Note that ♠2A cancels out with the second term in the r.h.s. of (35). In ♠2B

we use
∇pv(I) ⊗∇p∂xI h̄ = ∇p(Axh̄)∗ −∇2

pv
(I)∂xI h̄
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to finally obtain

♠2B = −
∫
h ∂2

p h̄ · ∇p(Axh̄)∗ +

∫
h ∂2

p h̄ · (Cxh̄)∗ . (37d)

The claim follows by (34)–(37).

Lemma 8. The following holds:

d

dt
Ixx =− 2

∫
h ∂p(Axh̄) · ∇p(Axh̄)∗ dx dµ+ 2

∫
g(Axh̄,Bxh) dx dµ

+ 4

∫
h ∂p(Axh̄) · (Cxh)∗ dx dµ+ 2

∫
∂2
pv

(I)(W∗, ∂xIh (Axh̄)∗) dx dµ .

Proof. The proof is very similar to that of Lemma 7. First we compute

d

dt
Ixx =2

∫
g(Ax∂th,Axh̄)−

∫
g(Axh̄,Axh̄)∂th

=−2

∫
g(Ax(Th),Axh̄)︸ ︷︷ ︸

♥

+

∫
Th g(Axh̄,Axh̄)︸ ︷︷ ︸

♦

−
∫
Lh g(Axh̄,Axh̄)︸ ︷︷ ︸

♣

+2

∫
g(Ax(Lh),Axh̄)︸ ︷︷ ︸

♠

We claim that
♥+♦ = 0 . (38)

In fact, by (17)

♦ = −
∫
hT (g(Axh̄,Axh̄)) = −2

∫
hg(Ax(T h̄),Axh̄)

= −2

∫
g(Ax(Th),Axh̄) + 2

∫
(Th) g(Axh̄,Axh̄)⇒ ♦ = −♥ .

By (18) and (iv) of Lemma 1 the term ♣ can be rewritten as

♣ = 2

∫
∂p(Axh̄)((Axh̄)∗,∇ph) . (39)

Likewise,

♠ = −2

∫
Lh g(∂pv

(I),Ax(∂xI h̄)) = 2

∫
g(∂ph, ∂p(g(∂pv

(I),Ax(∂xI h̄))))

= 2

∫
∂2
pv

(I)(Ax(∂xI h̄)∗,∇ph) + 2

∫
∂p(Ax(∂xI h̄))(∇pv(I),∇ph)

= ♠1 +♠2 . (40a)
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Integrating by parts in x and using the identity

(Axh̄)∗ ⊗∇p∂xIh = ∇p((Axh̄)∗∂xIh)− ∂xIh∇p(Axh̄)∗ ,

we may rewrite ♠1 as

♠1 = −2

∫
∂2
pv

(I)((Axh̄)∗,∇p∂xIh) = −2

∫
∂2
pv

(I) · (Axh̄)∗ ⊗∇p∂xIh

= −2

∫
∂2
pv

(I) · ∇p((Axh̄)∗∂xIh) + 2

∫
∂2
pv

(I) · ∇p(Axh̄)∗∂xIh .

Applying (19) to the first term in the last line we get

♠1 = 2

∫
g(Axh̄,Bxh) + 2

∫
∂2
pv

(I)(W∗, (Axh̄)∗∂xIh) + 2

∫
h ∂p(Axh̄) · (Cxh̄)∗ .

(40b)
Integrating by parts in the x variable and using the identity

∇p∂xIh = h∇p∂xI h̄+ ∂xI h̄∇ph

the term ♠2 becomes

♠2 = −2

∫
h ∂p(Axh̄)(∇pv(I),∇p∂xI h̄)− 2

∫
∂p(Axh̄)(∇pv(I), ∂xI h̄∇ph)

= ♠2A +♠2B . (40c)

Note that ♠2B cancels out with ♣. In ♠2A we use

∂p(Axh̄)(∇pv(I),∇p∂xI h̄) = ∂p(Axh̄) · ∇pv(I) ⊗∇p∂xI h̄

and
∇pv(I) ⊗∇p∂xI h̄ = ∇p(Axh̄)∗ −∇2

pv
(I)∂xI h̄

to obtain

♠2A = −2

∫
h ∂p(Axh̄) · ∇p(Axh̄∗) + 2

∫
h ∂p(Axh̄) · (Cxh)∗ . (40d)

Summing up (38)–(40) concludes the proof.

Remark. If ∇2
pv

(I)(W, ·) = 0, cf. Assumption 5, the last terms in dIxp/dt and
dIxx/dt vanish. If this is not the case, we use that

∂2
pv

(I)(W∗, ∂xIh∇ph̄) = Cxh(W∗,∇ph̄)

in Lemma 7 and

∂2
pv

(I)(W∗, ∂xIh(Axh̄)∗) = Cxh(W∗, (Axh̄)∗)

in Lemma 8. We shall continue the proof assuming that these two terms do not
vanish, which is the most difficult case anyway.
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5 A differential inequality for the modified en-
tropy

Recall that
E [h] = kD[h] + a Ipp[h] + 2b Ixp[h] + c Ixx[h] .

In this section we prove that, under suitable conditions on the constants a, b, c, k,
the modified entropy satisfies

E [h] ≥ kD[h] ,
d

dt
E [h] ≤ −d(a Ixx + 2b Ixp + c Ipp) , (41)

where d is a positive constant. In particular, the first bound shows that expo-
nential decay of the modified entropy implies exponential decay of the entropy.

The bound from below is easily established.

Lemma 9. Assume b ≤
√
ac. Then E [h] ≥ kD[h].

Proof. By Young’s inequality, for all ε > 0 we have

g(Axh, ∂ph̄) ≥ −εg(∂ph, ∂ph̄)− 1

4ε
g(Axh,Axh̄) ,

whence 2bIxp ≥ −2bεIpp − (b/2ε)Ixx and so

E [h] ≥ kD[h] +

(
c− b

2ε

)
Ixx[h] + (a− 2εb)Ipp[h] ≥ kD[h] ,

provided b/c ≤ 2ε ≤ a/b.

The bound from above, which requires the assumptions of the main theorem
(except Assumption 3), is more complicated. Since

a Ixx + 2b Ixp + c Ipp ≤ max(a+ b, b+ c)(Ixx + Ipp) ,

it suffices to prove the following.

Proposition 1. Let the Assumptions 1, 2, 4, 5 hold. There exists a region
Ω ⊂ R3 such that Ω ⊂ {(a, b, c) : b ≤

√
ac} and, for all (a, b, c) ∈ Ω, there exists

d > 0 such that
d

dt
E [h] ≤ −d

(
Ixx[h] + Ipp[h]

)
. (42)

Remark. The best constant in the inequality (42) may be written as d̄ = supΩ̄ d,
where Ω̄ is the largest region for which Proposition 1 holds. We refrain from
computing it explicitly, since the method we use is anyway unsuitable to obtain
the optimal rate of decay of the entropy.

The proof of the proposition is based on the following lemma.

20



Lemma 10. For all constants ε1, . . . , ε10 > 0 we have

d

dt
Ipp ≤ 2ε1Ixx +

(
1

2ε1
− 2σ1

)
Ipp − 2Q2

pp , (43)

d

dt
Ixp ≤

[
ε2σ + ε3σ1 + (2ε5 + ε7)γ + ε6β − 1

]
Ixx

+
1

4

(
σ

ε2
+
σ1

ε3
+

1

ε6
+
ω

ε7

)
Ipp +

(
2ε4 +

1

2ε5

)
Q2
pp +

1

2ε4
Q2
xp , (44)

d

dt
Ixx ≤

(
4ε8γ +

1

2ε9
+ 2ε9β + 2ε10γ +

ω

2ε10

)
Ixx +

(
1

ε8
− 2

)
Q2
xp , (45)

where

Q2
pp =

∫
h ∂2

p h̄ · ∇2
ph̄ , Q2

xp =

∫
h ∂p(Axh̄) · ∇p(Axh̄∗) .

Proof. The inequality (43) is a straightforward consequence of Lemma 6, the
inequality Ixp ≥ −ε1Ixx − (4ε1)−1Ipp, and Assumption 1. We now prove (44).
Using the identity

R̃ic(Axh̄, ∂ph̄) =R̃ic

(
√
ε2Axh̄+

1√
4ε2

∂ph̄,
√
ε2Axh̄+

1√
4ε2

∂ph̄,

)
− ε2R̃ic(Axh̄,Axh̄)− 1

4ε2
R̃ic(∂ph̄, ∂ph̄) ,

together with Assumption 1 and Ixp ≥ −ε3Ixx − (4ε3)−1Ipp, we get

−
∫
h R̃ic(Axh̄, ∂ph̄) ≤ (ε2σ + ε3σ1)Ixx +

(
σ

4ε2
+

σ1

4ε3

)
Ipp . (46)

By Young’s inequality

−2

∫
h ∂2

p h̄·∇p(Axh̄)∗ ≤ 2ε4

∫
h ∂2

p h̄·∇2
ph̄+

1

2ε4

∫
h ∂p(Axh̄)·∇p(Axh̄)∗ . (47)

By Young’s inequality, (25), Assumption 4 and (22)

2

∫
h ∂2

p h̄ · (Cxh̄)∗ ≤ 2ε5

∫
hCxh̄ · (Cxh̄)∗ +

1

2ε5

∫
h ∂2

p h̄ · ∇2
ph̄

≤ 2ε5γIxx +
1

2ε5

∫
h ∂2

p h̄ · ∇2
ph̄ . (48)

Likewise∫
g(∂ph̄,Bxh) ≤ ε6

∫
h g(Bxh̄,Bxh̄) +

1

4ε6
Ipp ≤ ε6βIxx +

1

4ε6
Ipp . (49)
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Finally by (26) and the remark at the end of Section 4,∫
∂2
pv

(I)(W∗, ∂xIh∇ph̄) =

∫
Cxh(W∗,∇ph̄) =

∫
hCxh̄ ·W∗ ⊗∇ph̄

≤ ε7

∫
hCxh̄ · (Cxh̄)∗ +

1

4ε7

∫
hW ⊗ ∂ph̄ ·W∗ ⊗∇ph̄

= ε7

∫
hCxh̄ · (Cxh̄)∗ +

1

4ε7

∫
g(W,W )g(∂ph, ∂ph̄)

≤ ε7γIxx +
ω

4ε7
Ipp . (50)

Using the inequalities (46)–(50) in Lemma 7 concludes the proof of (44). The
proof of (45) is similar. Reasoning as before one can prove that

4

∫
h ∂p(Axh̄) · (Cxh)∗ ≤ 4ε8γIxx +

1

ε8
Q2
xp ,

2

∫
g(Axh̄,Bxh) ≤

(
2ε9β +

1

2ε9

)
Ixx ,

2

∫
∂2
pv

(I)(W∗, ∂xIh(Axh̄)∗) = 2

∫
hCxh̄ ·W∗ ⊗ (Axh̄)∗ ≤

(
2ε10γ +

ω

2ε10

)
Ixx

and substituting in Lemma 8 completes the proof.

Remark. We are going to apply Lemma 10 for special values of the constants
ε1, . . . , ε10. In its generality, Lemma 10 could be useful to improve the constant
d in (42).

Proof of Proposition 1. In the inequalities (43)–(45) we set

ε1 = (2a)−1 , ε2 = ε3 = ε6 = ε7 =
1

4
(σ2 + β + γ)−1 ,

ε4 =
8

7
(1 + β + 17γ + ω) , ε5 = (8γ)−1 , ε8 = 4 , ε9 = ε10 =

1

2
.

So doing we obtain

İpp ≤ a−1Ixx + (a− 2σ1)Ipp − 2Q2
pp ,

İxp ≤ −
1

2
Ixx + s1s2Ipp +

(
16s

7
+ 4γ

)
Q2
pp +

7

16s
Q2
xp ,

İxx ≤ sIxx −
7

4
Q2
xp ,

where
s1 = σ2 + β + γ , s2 = 1 + σ2 + ω , s = 1 + β + 17γ + ω .
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Therefore

d

dt
E [h] = k

d

dt
D[h] + a

d

dt
Ipp + 2b

d

dt
Ixp + c

d

dt
Ixx

≤ [−k + a(a− 2σ1) + 2bs1s2] Ipp + (1 + cs− b) Ixx

+ 2

[
b

(
16

7
s+ 4γ

)
− a
]
Q2
pp +

7

4

(
b

2s
− c
)
Q2
xp .

It is clear that the coefficient of Ipp can be made negative by choosing k suffi-
ciently large, for all values of the other constants. To make the coefficients of
Ixx, Q2

pp, Q
2
xp negative we require that

b > 1 + cs , b <
a

16
7 s+ 4γ

, b < 2cs .

This is possible as soon as

a > (1 + cs)(
16

7
s+ 4γ) and c > s−1 .

If we further require that a > 4s2c, then 2cs <
√
ac and therefore b < 2cs

implies b <
√
ac as well. This completes the proof of the proposition.

6 The Log-Sobolev inequality and decay of the
entropy

We shall now prove that the following logarithmic Sobolev inequality holds:

D[h] ≤ 1

2α

(
Ixx[h] + Ipp[h]

)
, (51)

for all smooth probability densities h, not necessarily solutions of (11), where α
is the constant in Assumption 3. Replacing in (42) we obtain

d

dt
E [h] ≤ −(2dα)D[h]

and combining with the second inequality in (41) we infer that there exists a
constant λ > 0 such that

d

dt
E [h] ≤ −λE [h] .

Whence E [h] = O(e−λt) and by the lower bound E [h] ≥ kD[h], see Lemma 9,
the entropy decays exponentially as well, which is the main claim of Theorem 1.

Proposition 2. Let Assumption 3 be satisfied. Then (51) holds.

23



Proof. Consider the non-degenerate Fokker-Planck equation

∂tf = ∆Gf +Qf (52)

on M×N . The entropy functional and entropy dissipation functional associ-
ated to (52) are exactly D and I = Ipp + Ixx. Assumption 3 asserts that the
metric G and the vector field Q verify the curvature bound condition. Thus the
logarithmic Sobolev inequality (51) holds, as proved in [2].

The proof of Theorem 1 is complete. In the rest of this section we prove Corol-
lary 1. Clearly (28) entails that Assumption 2 holds. We shall now prove that
under the bounds (29)-(30), Assumption 3 is satisfied as well. To see this, we
observe that when AIJ has the form (28), the Riemannian manifold (M×N , G)
is the warped product of the manifolds (RM , g) and (TN , δ), where δ is the flat
Euclidean metric on the torus. See [12, Ch. 14] for an introduction to the ge-
ometry of warped product manifolds. In particular, by Corollary 43 of [12,
Ch. 14] we have that, for all horizontal (i.e., tangent to M) vector fields X,Y
and vertical (i.e. tangent to N ) vector fields V,W , the following identities hold:

RicG(X,Y ) = Ric(X,Y )− N

ζ
∇2
pζ(X,Y ) ,

RicG(X,V ) = 0 ,

RicG(V,W ) = −
(

∆pζ

ζ
+ (N − 1)

g(∂pζ, ∂pζ)

ζ2

)
G(V,W ) .

Thus from the condition (30) we have

RicG(V,W ) ≥ |κ2|G(V,W ) .

Moreover, by Assumption 1 and (29), we also have

RicG(X,Y ) ≥ (σ1 − κ1)G(X,Y ) .

The conclusion of Corollary 1 follows.

A Appendix: Global regularity of solutions

In this appendix we discuss the global regularity of solutions to the equation (11)
in the case when the dimensions of the spaces N andM coincide, i.e., N = M .
The argument below generalizes immediately to the case N ≤M ; when N > M
the problem is a bit more tricky and will not be considered here. The following
discussion is based on [8, Ch. 5], except that we work in a different functions
space. To adhere with the conventions used in [8], we rewrite (11) as

∂th+Ah = 0 ,
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where
A = −∆p −W + v(p) · ∇x = −L+ T .

The domain D(A) of the operator A is chosen as the space of C∞ functions
on TN × RN with compact support in the p ∈ RN variable, which is dense in
H := L2(dxdµ). Our purpose is to prove that the closure of A generates a
C∞-regularizing contraction semigroup in H. To this end we need to assume
that the quantities g, v, E are C∞, but using a simple iteration scheme and
the argument below, one can prove existence of global regular solutions under
milder regularity conditions on g, v, E , such as those imposed in the main body
of the paper. Furthermore we assume that

gij(p)

|p|2
→ 0 , as |p| → ∞ ∀ i, j = 1, . . . N . (53)

We divide the proof in three steps.

Step 1: A is accretive.

By (18),

<h|Ah>H= − <h|Lh>H + <h|Th>H=

∫
g(∂ph, ∂ph) ≥ 0 .

Recall that all integrals are extended over TN × RN with measure dxdµ.

Step 2: A is hypoelliptic.

Let a =
√
g−1 (i.e., the positive definite matrix such that a2 = g−1). A straight-

forward calculation shows that the operator −A can be written in Hörmander’s
form:

−A =

N∑
i=1

Y 2
(i) + Y0 ,

where

Y0h = (divp a) · a∇ph− g(∂pE, ∂ph)− Th ,
Y(i)h = aki ∂pkh .

To prove that the operator A is hypoelliptic, we will show that −A satisfies a
rank 2 Hormander’s condition, namely that the vector fields

Y(i) , Z(i) := [Y0, Y(i)]

form a basis of R2N . To this purpose we observe that

Z(i) = Bki ∂pk + CIi ∂xI = Bki P(k) + CIiX(I) ,
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where
CIi = aki ∂pkv

(I)

and B is a p−dependent N ×N matrix, whose exact form is irrelevant for what
follows. Thus the linear transformation {X(I), P(i)} → {Y(i), Z(i)} is represented
by the matrix

F =

(
0 a
C B

)
.

The determinant of F is given by

|detF | = det a|detC | = det g|det(∂pkv
(I)) | ,

which is positive because det g > 0 and, by Assumption 2, the determinant of the
matrix ∂pkv

(I) is non-zero. Thus {Y(i), Z(i)} is a new basis of R2N , concluding
the proof.

Step 3: The closure of A is maximally accretive.

By [8, Th. 5.4] (see also [11]), it is enough to prove that the range of λ + A is
dense in H, for some λ > 0. We need to show that if h ∈ H is such that

<h|(λ+A)f >H= 0 , for all f ∈ D(A) , (54)

then h = 0. Note that (54) implies that h is a distributional solution of

(λ− L− T )h = 0 .

Since the operator in the left hand side of the latter equation is hypoelliptic,
which is proved as in the previous step, then we may assume that h ∈ C∞. Let
us begin by proving that the following identity holds:

λ

∫
φ2h2 +

∫
g(∂p(φh), ∂p(φh)) =

∫
h2g(∂pφ, ∂pφ)−

∫
h2φTφ , (55)

for all φ ∈ D(A). To prove (55), we use that, by (i)-(ii) of Lemma 1,

(λ+A)(f1f2) = f1(λ+A)f2 + f2Af1 − 2g(∂pf1, ∂pf2) , for all f1, f2 ∈ C∞ .

Setting f1 = φ, f2 = φh and multiplying by h the resulting identity we get

φh(λ+A)(φh) = h(λ+A)(φ2h)− h2φAφ+ 2hg(∂pφ, ∂p(φh)) .

Integrating and using that <h|(λ+A)(φ2h)>H= 0, by (54), we have∫
φh(λ+A)(φh) =

∫
h2φLφ−

∫
h2φTφ+ 2

∫
hg(∂pφ, ∂p(φh)) .

Using (18) in the l.h.s. and in the first term in the r.h.s. of the previous identity
completes the proof of (55). Now let k ∈ N and choose a family of test functions
φk of the form

φk(x, p) = ψ(p/k) ,
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where ψ ∈ C∞c , 0 ≤ ψ ≤ 1, ψ = 1 for p ∈ B(0, 1/2) and suppψ ⊂ B(0, 1).
Whence Tφk = 0. Substituting in (55) we obtain

λ

∫
φ2
kh

2 ≤ 1

k2

∫
h2gij∂piψ∂pjψ χ|p|≤k .

Having assumed (53), we obtain

λ

∫
φ2
kh

2 ≤ ε(k) ,

where ε(k)→ 0 as k →∞. This finally entails that h ≡ 0.
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