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Steady behavior of a rarefied gas between parallel plates with sinusoidal temperature distribution
is investigated on the basis of the Boltzmann equation. The Cercignani–Lampis (CL) model or the
Lord model for diffuse scattering with incomplete energy accommodation is adopted as the boundary
condition on the plates. Most of the analysis is carried out numerically with special interest in the
free-molecular limit. In the case of the CL model, the non-uniform temperature distribution of
the plates may induce a steady free-molecular flow, which is in contrast to the earlier results for
the Maxwell-type model [Y. Sone, J. Méc. Théor. Appl. 3, 315 (1984); ibid. 4, 1 (1985)]. This
fact is confirmed through an accurate deterministic computation based on an integral equation. In
addition, computations for wide range of parameters by means of the direct simulation Monte Carlo
(DSMC) method reveal that the flow field changes according to the accommodation coefficients and
is classified into four types. The effect of intermolecular collisions on the flow is also examined. In
the case of the Lord model, no steady flow of the free-molecular gas is induced as in the case of the
Maxwell-type model. This result is extended to the case of a more general boundary condition that
gives the cosine law (Lambert’s law) for the reflected molecular flux.
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I. INTRODUCTION

Let us consider a gas around a solid body (or bodies) at
rest, whose surface temperature is time-independent but
spatially non-uniform. In the framework of continuum
gas dynamics (or the Navier–Stokes set of equations), no
steady flow is expected, if an external force, such as grav-
ity, is absent. In contrast, in the case of rarefied gases,
steady flows may be induced around the body even in
the absence of an external force. This type of flow, in-
duced solely by the effect of steady temperature field,
is peculiar to rarefied gases and has been an intriguing
research subject in rarefied (or molecular) gas dynamics
(see, e.g., Refs. 1–4). The most famous example would be
the thermal-creep flow5–8 of a slightly rarefied gas, which
is induced along a surface with non-uniform tempera-
ture in the direction of the temperature gradient. Some
other examples, such as the thermal-stress slip flow,9,10

nonlinear-thermal-stress flow,11 thermal-edge flow,12,13

and so on, also have been recognized and closely stud-
ied on the basis of the Boltzmann equation.
Meanwhile, Sone revealed in Refs. 14,15 (see also

Refs. 2,4,16) an interesting and nontrivial feature of the
above-mentioned type of steady flows in the limit of a
free-molecular gas (i.e., the gas so highly rarefied that
intermolecular collisions can be neglected). When the
gas-surface interaction on the bodies is described by the
so-called Maxwell-type boundary condition (i.e., a linear
combination of the diffuse-reflection and the specular-
reflection condition), the steady flow due to the ther-
mal effect vanishes in the free-molecular limit, irrespec-
tive of the temperature distribution of the bodies (if an

unbounded domain is considered, the state of the gas
at infinity must satisfy a certain condition detailed in
Refs. 4,14,15). This is not an obvious fact at all. This
discovery is based on an analytical solution that was ob-
tained by Sone and describes the effect of the boundary
temperature in a very general setting. The analytical
solution was then applied to obtain, analytically and nu-
merically, the forces acting on heated (or cooled) bodies
in a free-molecular gas in various geometries (see Ref. 4).
The results in Refs. 14,15 were revisited some time later
from the viewpoint of functional analysis in Ref. 17. It
should also be mentioned that the vanishing of a flow in
a similar situation was investigated in Ref. 18.

The present study is motivated by a natural question
whether or not a steady flow is induced by a steady tem-
perature field in the free-molecular limit, if a boundary
condition other than the Maxwell-type condition is em-
ployed. The Maxwell-type condition is one of the most
elemental models for gas-surface interaction and has been
widely used in the literature. At the same time, some
drawbacks have been pointed out and thus efforts to de-
vise a better model have been made, e.g., in Refs. 19–22.
In particular, the Cercignani–Lampis (CL) model22 suc-
cessfully overcomes one major drawback of the Maxwell-
type model: by adjusting the two accommodation coef-
ficients involved in it, the CL model can reproduce well
actual data for the distribution of scattered molecules
obtained in molecular beam scattering experiments (see
Refs. 23,24). This is mostly impossible for the Maxwell-
type model. The CL model has often been used as a
realistic boundary condition in the literature, especially
in recent years (see, e.g., Refs. 25–29).
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In the present study, we consider a rarefied gas be-
tween parallel plates with sinusoidal temperature distri-
bution and investigate the steady behavior of the gas on
the basis of the Boltzmann equation and the CL bound-
ary condition. As mentioned above, we are particularly
interested in the free-molecular limit. Therefore, we first
carry out an accurate deterministic computation using
an integral equation for the free-molecular limit derived
from the Boltzmann equation and the boundary condi-
tion. Unlike the case of the Maxwell-type condition, the
results for some typical cases demonstrate non-vanishing
gas flows in the free-molecular limit. Then we carry out
computations by means of the direct simulation Monte
Carlo (DSMC) method30,31 for a wide range of param-
eters, i.e., the Knudsen number [=(molecular mean free
path)/(distance between the plates)] as well as the ac-
commodation coefficients involved in the CL model. The
DSMC computation for the free-molecular limit comple-
ments the results obtained by the integral equation.

For comparison, we also investigate the case of the
Lord model for diffuse scattering with incomplete energy
accommodation32 and show that the flow vanishes in the
free-molecular limit, as in the case of the Maxwell-type
condition. As an extension of the Lord model, we con-
sider a more general boundary condition that gives the
cosine law (Lambert’s law) for the reflected molecular
flux (i.e., the case where the reflected molecular flux is
proportional to the cosine of the angle between flux’s di-
rection and the surface normal) in the general configura-
tion, as in Refs. 14,15, and show that, for such a bound-
ary condition, the flow due to a steady temperature field
vanishes in the free-molecular limit.

In the present paper, the above-mentioned type of
boundary condition, which gives the cosine law for the
reflected molecular flux, will be referred to as a Lam-
bertian condition. Equivalently the Lambertian con-
dition may also be defined as a condition which al-
ways yields the isotropic velocity distribution of reflected
molecules regardless of the incoming distribution (the
above “isotropic” means that the distribution is inde-
pendent of the direction of the molecular velocity). The
diffuse-reflection condition is, of course, a member of the
Lambertian conditions. To avoid confusion, it should
be noted here that the “isotropic surface” (or “isotropic
boundary condition”) appearing in the literature is a dif-
ferent and more general concept, which means that the
scattering properties of the surface are invariant under
the rotation around the normal.

This paper is dedicated to the memory of Carlo Cer-
cignani who deceased recently. He had been a leader in
the field of kinetic theory for almost a half century and
had made outstanding contributions to the field. It is
remarkable that his about 300 papers cover all aspects of
kinetic theory: mathematical, physical, engineering, and
numerical aspects. Several books he authored have been
a guideline and a fountain of knowledge for researchers
and students for a long time. He published, with Maria
Lampis, many important papers on physics of rarefied

gases. One of them is the celebrated Cercignani–Lampis
condition for gas-surface interaction, to which the present
paper is related.

II. FORMULATION

A. Problem and assumptions

Consider a rarefied gas between two parallel plates lo-
cated at X2 = ±L/2, where Xi (i = 1, 2, 3) is the space
rectangular coordinate. Both of the plates are kept at
the same temperature Tw, where Tw is a sinusoidal func-
tion of X1 written as Tw = T0[1 + τ sin(2πX1/λL)] with
T0 being the reference temperature and τ and λ dimen-
sionless constants. We investigate steady behavior of the
gas under the following assumptions: (i) the behavior of
the gas is described by the Boltzmann equation; (ii) in-
termolecular collisions are elastic and are described by
the hard-sphere model; (iii) gas-surface interaction on
the plates is described by the Cercignani–Lampis (CL)
model or by the Lord model for diffuse scattering with
incomplete energy accommodation. For the sake of sim-
plicity, the accommodation coefficients involved in the
boundary condition [see Eqs. (6) and (8) below] are as-
sumed to be independent of Tw and uniform throughout
the boundaries.

Let us summarize the main notation used in the paper.
The symbols m and d denote the molecular mass and di-
ameter respectively; ρ0 is the average density of the gas,
and p0 the reference pressure defined as p0 = (k/m)ρ0T0,
where k is the Boltzmann constant; xi denotes the di-
mensionless space coordinate defined as xi = Xi/L, and
(2kT0/m)1/2ζi [or (2kT0/m)1/2ζ] the molecular velocity;
ρ0(2kT0/m)−3/2f(x1, x2, ζ) is the velocity distribution
function of the molecules. The macroscopic quantities
such as the density ρ0ρ̂, flow velocity (2kT0/m)1/2ui [or

(2kT0/m)1/2u], pressure p0p̂, and temperature T0T̂ are
defined in terms of the moment of f as follows:

ρ̂ =

∫
fdζ, ρ̂u =

∫
ζfdζ, (1a)

p̂ = ρ̂T̂ =
2

3

∫
|ζ − u|2fdζ, (1b)

where dζ = dζ1dζ2dζ3, and the domain of integration is
the whole space of ζ.

B. Basic equation and boundary condition

By the use of the notation introduced above, the Boltz-
mann equation for the present spatially two-dimensional
problem may be written in the following dimensionless
form (see, e.g., Ref. 4):

ζ1
∂f

∂x1
+ ζ2

∂f

∂x2
=

1

Kn
Q[f ]. (2)
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Here Q is the collision term for hard-sphere molecular
gases and is written as

Q[f ] =
1

2
√
2π

∫
(f ′f ′

∗ − ff∗)|e · V |dΩ(e)dζ∗, (3a)

f = f(x1, x2, ζ), f∗ = f(x1, x2, ζ∗), (3b)

f ′ = f(x1, x2, ζ
′), f ′

∗ = f(x1, x2, ζ
′
∗), (3c)

ζ′ = ζ + (e · V )e, ζ′
∗ = ζ∗ − (e · V )e, (3d)

V = ζ∗ − ζ, (3e)

where dζ∗ = dζ∗1dζ∗2dζ∗3, e is a unit vector, and dΩ(e)
is the solid-angle element in the direction of e. The inte-
gration in Eq. (3a) is carried out over the whole direction
of e and over the whole space of ζ∗. The Kn in Eq. (2)
is the Knudsen number defined as

Kn = l0/L, l0 = [
√
2πd2(ρ0/m)]−1, (4)

where l0 is the reference mean free path of the gas
molecules at an equilibrium state at rest at density ρ0.
The boundary condition on the plates may be written

in terms of the scattering kernel R as

f
(
x1,±

1

2
, ζ

)
=

∫
∓ζ∗2<0

∣∣∣∣ζ∗2ζ2
∣∣∣∣R(ζ∗, ζ, x1)

× f
(
x1,±

1

2
, ζ∗

)
dζ∗, for ∓ ζ2 > 0, (5)

where the upper and lower signs correspond to x2 = 1/2
and x2 = −1/2 respectively.
In the case of the CL model,22 the scattering kernel R

appearing in the boundary condition (5) is given by

R = Rn(ζ∗2, ζ2)Rt(ζ∗1, ζ1)Rt(ζ∗3, ζ3), (6a)

Rn(c∗, c) =
2

αnT̂w

|c|I0
(2(1− αn)

1/2

αnT̂w

c∗c
)

× exp
(
−c2 + (1− αn)c

2
∗

αnT̂w

)
, (6b)

Rt(c∗, c) =
1

[παt(2− αt)T̂w]1/2

× exp
(
− [c− (1− αt)c∗]

2

αt(2− αt)T̂w

)
, (6c)

I0(y) =
1

π

∫ π

0

exp(y cos θ)dθ, (6d)

where the argument x1 is omitted for simplicity. In
Eq. (6), I0 is the modified Bessel function33 of first kind

and zeroth order, T̂w (≡ Tw/T0) is the dimensionless sur-
face temperature, i.e.,

T̂w = 1 + τ sin(2πx1/λ), (7)

αn (0 ≤ αn ≤ 1) is the accommodation coefficient
for partial kinetic energy associated with a molecular
velocity component normal to the boundary, and αt

(0 ≤ αt ≤ 2) that for tangential momentum. Inciden-
tally, the accommodation coefficient for partial energy as-
sociated with the tangential velocity component is given

by αt(2 − αt); if αn = αt(2 − αt) (≡ σ), σ corresponds
to the accommodation coefficient for total kinetic energy.
The CL model reduces to the diffuse-reflection condition
when (αn, αt) = (1, 1) and to the specular-reflection con-
dition when (αn, αt) = (0, 0). When αt > 1, more than
half of impinging molecules experience the back scatter-
ing (the scattering where the change in the direction of
tangential velocity between before and after the reflection
is larger than π/2). The extreme case (αn, αt) = (0, 2)
corresponds to the reverse reflection, where an impinging
molecule with velocity ζ∗ is reemitted with velocity −ζ∗.

The Lord model for diffuse scattering with incomplete
accommodation was devised in Ref. 32 as one of impor-
tant variations of the CL model. The scattering kernel
for this model is given by

R =
2[σ(1− σ)1/2]−1

πT̂w

|ζ2|
ζ∗ζ

I1

(2(1− σ)1/2

σT̂w

ζ∗ζ
)

× exp
(
−ζ2 + (1− σ)ζ2∗

σT̂w

)
, (8a)

ζ = |ζ|, ζ∗ = |ζ∗|, (8b)

I1(y) =
1

π

∫ π

0

exp(y cos θ) cos θdθ, (8c)

where I1 is the modified Bessel function33 of first kind
and first order and σ (0 ≤ σ ≤ 1) is the (total) energy
accommodation coefficient. The case σ = 0 corresponds
to the elastic diffuse scattering, and the case σ = 1 to
the ordinary diffuse reflection (with perfect accommoda-
tion). In any case, the velocity distribution of reflected
molecules derived from Eqs. (5) and (8a) is isotropic (i.e.,
independent of the direction of ζ), and thus the reflected
molecular flux always satisfies the cosine law. Therefore
the Lord model is a member of the Lambertian conditions
(see the next-to-last paragraph in Sec. I).

Let us consider the special case where the equality σ =
αn = αt(2 − αt) holds. Then, the CL model (6) and
the Lord model (8) give the same energy accommodation
coefficient. In addition, if the velocity distribution of
impinging molecules is the stationary Maxwellian (with
arbitrary temperature), the two models yield the same
distribution for reflected molecules. In this sense, the two
models satisfying the above equality are relatively close
to each other. However, the CL model is not Lambertian
in general even when the equality holds, unless αn =
αt = 1.

It is readily seen that the present boundary-value prob-
lem, i.e., Eqs. (2) and (5), is characterized by the follow-
ing five or four dimensionless parameters:{

Kn, τ, λ, αn, αt, for the CL model,

Kn, τ, λ, σ, for the Lord model.

As explained in Sec. I, our main interest is in the case of
the free-molecular gas (Kn → ∞), which will be consid-
ered in more detail in Sec. II C.

Finally we should note that the following relations hold
because of the mirror symmetry (with respect to x2 = 0
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and x1 = ±λ/4) of the problem:

f(x1, x2, ζ1, ζ2, ζ3) = f(x1,−x2, ζ1,−ζ2, ζ3), (9a)

f(x1, x2, ζ1, ζ2, ζ3) = f(
λ

2
− x1, x2,−ζ1, ζ2, ζ3), (9b)

f(x1, x2, ζ1, ζ2, ζ3) = f(−λ

2
− x1, x2,−ζ1, ζ2, ζ3). (9c)

Therefore we can solve the problem in a closed rectan-
gular domain |x1| ≤ λ/4 and 0 ≤ x2 ≤ 1/2, imposing
Eq. (5) with upper signs on x2 = 1/2 and the specular-
reflection condition at x2 = 0 [i.e., Eq. (9a) with x2 = 0
for ζ2 > 0] and at x1 = ±λ/4 [i.e., Eq. (9b) with x1 = λ/4
for ζ1 < 0 and Eq. (9c) with x1 = −λ/4 for ζ1 > 0].

C. Integral equation for the free-molecular gas

Let us consider the case when the gas is free molecular,
i.e., the limit where Kn → ∞. In this limit, the right-
hand side (RHS) of the Boltzmann equation (2) vanishes,
and thus the velocity distribution function f for fixed ζ
does not change along a flight path of a molecule with
velocity ζ [or along the characteristics of Eq. (2)]. Trac-
ing back the flight path to the boundaries and taking
account of Eq. (9), we can derive the following relation
for f : For |x1| ≤ λ/4 and 0 ≤ x2 ≤ 1/2,

f(x1, x2, ζ1, ζ2, ζ3)

=


f
(
(−1)n+

(
x+ − λ

2n+

)
, 1
2 , (−1)n+ζ1,−ζ2, ζ3

)
,

for ζ2 > 0,

f
(
(−1)n−

(
x− − λ

2n−
)
, 1
2 , (−1)n−ζ1, ζ2, ζ3

)
,

for ζ2 < 0,

(10)

with

x±(x1, x2, ζ1, ζ2) = x1 ∓
(1
2
± x2

)ζ1
ζ2

, (11a)

n±(x1, x2, ζ1, ζ2) =
⌊1
2
+

2

λ
x±

⌋
. (11b)

Here, the upper (lower) signs go together, and ⌊x⌋ is the
largest integer not greater than x (the floor function).
Since the inequality |x±−(λ/2)n±| ≤ λ/4 holds, Eq. (10)
means that the velocity distribution f at arbitrary point
(x1, x2) for arbitrary ζ (but ζ2 ̸= 0) is expressed in terms
of f for reflected molecules (ζ2 < 0) at the upper plate
(x2 = 1/2) in the interval |x1| ≤ λ/4.
The boundary condition (5) at x2 = 1/2 and Eq. (10)

yield

f
(
x1,

1

2
, ζ

)
=

∫
ζ∗2<0

∣∣∣∣ζ∗2ζ2
∣∣∣∣R(ζ∗, ζ, x1)

× f
(
(−1)n

(
x− λ

2
n
)
,
1

2
, (−1)nζ∗1, ζ∗2, ζ∗3

)
dζ∗,

for ζ2 < 0, (12a)

x = x1 +
ζ∗1
ζ∗2

, n =
⌊1
2
+

2

λ
x
⌋
. (12b)

Equation (12) is a linear homogeneous integral equation
for f for |x1| ≤ λ/4, x2 = 1/2, and ζ2 < 0. Once its
solution is obtained, the distribution f in the whole gas
region can be derived by the use of Eq. (10). Here we
should note that Eq. (12) determines the solution up to a
multiplicative constant. The unique solution is obtained
by specifying the amount of the gas contained in the do-
main (in the present problem, the average density ρ0 is
specified in Sec. II A).

In the case of the CL scattering kernel (6), one can
eliminate the independent variable ζ3 by considering the
following marginal distribution functions g and h:

g =

∫ ∞

−∞
fdζ3, h =

∫ ∞

−∞
ζ23fdζ3. (13)

The macroscopic quantities in Eq. (1) are rewritten in
terms of g and h as

ρ̂ =

∫
gdζ1dζ2, ρ̂

[
u1

u2

]
=

∫ [
ζ1
ζ2

]
gdζ1dζ2, (14a)

p̂ = ρ̂T̂ =
2

3

∫ [
(ζ21 + ζ22 )g + h

]
dζ1dζ2 −

2

3
ρ̂(u2

1 + u2
2),

(14b)

where u3 ≡ 0 is assumed. The integral equation for g or
h is obtained by integrating both sides of Eq. (12a) mul-
tiplied by 1 or ζ23 with respect to ζ3. As seen in Eq. (6),
the scattering kernel for the CL model is decomposed into
a product of three factors for each velocity component,
and the integration of the factor containing ζ3 is easy.
We readily obtain the following result: for ζ2 < 0,

g(x1,
1

2
, ζ1, ζ2) = J [g](x1, ζ1, ζ2), (15a)

h(x1,
1

2
, ζ1, ζ2) = (1− αt)

2J [h](x1, ζ1, ζ2)

+
1

2
αt(2− αt)T̂w(x1)g(x1,

1

2
, ζ1, ζ2). (15b)

The operator J [·] is defined as

J [g] =

∫
ζ∗2<0

∣∣∣∣ζ∗2ζ2
∣∣∣∣Rn(ζ∗2, ζ2, x1)Rt(ζ∗1, ζ1, x1)

× g
(
(−1)n

(
x− λ

2
n
)
,
1

2
, (−1)nζ∗1, ζ∗2

)
dζ∗1dζ∗2, (16)

with x and n being defined in Eq. (12b). Once the solu-
tion of Eq. (15) (i.e., g and h for |x1| ≤ λ/4, x2 = 1/2,
and ζ2 < 0) is obtained, we can derive g and h in the
whole gas region by using essentially the same relation
as Eq. (10) and can obtain the macroscopic quantities by
using Eq. (14).

In the case of the Lord scattering kernel (8), the above
elimination of ζ3 is impossible. Instead, it is possible to
prove the absence of any steady free-molecular flow as
will be discussed later in Sec. III B.
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FIG. 1: Behavior of the free-molecular gas (Kn → ∞) in
the case of the Cercignani–Lampis model with (αn, αt) =

(0.5, 0.5). (a) Isolines of the (dimensionless) temperature T̂ ,
(b) those of the density ρ̂, and (c) the flow velocity (u1, u2).

III. NUMERICAL ANALYSIS AND RESULTS

In this section, we carry out the direct numerical anal-
ysis of the problem formulated in Sec. II and show its
results. The temperature distribution of the plates is
fixed as

τ = 0.5, λ = 2,

throughout the whole analysis.
In the case of the CL model (6), two different meth-

ods are used in the numerical analysis: a determin-
istic computation for the integral equation (15) for
the free-molecular gas (Kn → ∞) and a stochastic
computation using the direct simulation Monte Carlo
(DSMC) method30,31 for the boundary-value problem
[i.e., Eqs. (2) and (5)] for wide range of Kn (including
Kn → ∞). The former is more precise but needs much
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FIG. 2: Behavior of the free-molecular gas (Kn → ∞) in
the case of the Cercignani–Lampis model with (αn, αt) =
(0.7, 0.5). See the caption of Fig. 1.

more CPU time. Thus the former is performed only for
several values of αn and αt to confirm the occurrence of
a steady free-molecular flow with higher accuracy. Then
the latter is performed for more diverse values of αn and
αt and also for finite Kn to examine the transition of the
flow field depending on those parameters. In the case of
the Lord model (8), we only carry out the computation
for the free-molecular gas by the DSMC method.

In the following, we will show the results for the CL
model in Sec. IIIA and those for the Lord model in
Sec. III B. A brief description of the computation of the
integral equation (15) will be given in Sec. III C, whereas
that of the DSMC method will be omitted because we
simply follow the standard procedure explained in Ap-
pendix B. 1 in Ref. 4 (see also Refs. 32,34 for incorpora-
tion of the boundary condition into the DSMC). Data
concerning the computational condition (such as the
number of cells or simulation particles in the DSMC, etc.)
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FIG. 3: Behavior of the free-molecular gas (Kn → ∞) in
the case of the Cercignani–Lampis model with (αn, αt) =
(1, 0.25). See the caption of Fig. 1.

and the numerical error will also be given in Sec. III C.

A. Results for the Cercignani–Lampis (CL) model

1. Behavior of the free-molecular gas (Kn → ∞)

Figures 1–5 show typical behavior of the free-molecular
gas in the case of the CL model with (αn, αt) = (0.5, 0.5),
(0.7, 0.5), (1, 0.25), (1, 1.75), and (1, 1) obtained by com-
putations based on the integral equation (15). Recall
that the back scattering is dominant for αt > 1.
The temperature of the boundary (at x2 = 0.5) takes

its maximum T̂w = 1.5 at x1 = 0.5 and minimum T̂w =
0.5 at x1 = −0.5. Accordingly the gas temperature has a
gradient in the rightward (positive x1) direction on each
cross section x2 = const., which is steepest on the plate
and becomes more gradual as the centerline x2 = 0 is
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FIG. 4: Behavior of the free-molecular gas (Kn → ∞) in
the case of the Cercignani–Lampis model with (αn, αt) =
(1, 1.75). See the caption of Fig. 1.

approached [see panel (a) of Figs. 1–5]. The temperature
of the gas near the plate is best accommodated to that of
the plate in Fig. 5(a), i.e., in the case of (αn, αt) = (1, 1)
corresponding to the diffuse reflection.

The density distributions in Figs. 1(b), 2(b), and 5(b)
are dissimilar to those in Figs. 3(b) and 4(b). In the for-
mer figures, the density gradient along x2 = const. is in
the leftward (negative x1) direction, which is opposite to
the direction of the temperature gradient. In the latter
figures, the density gradient along x2 = const. changes
its direction in the gas because of the presence of a saddle
point. In this way, the patterns of the isodensity lines ex-
hibit larger variations than the patterns of the isothermal
lines depending on the accommodation coefficients.

As seen in panel (c) of Figs. 1–4, steady free-molecular
flows are induced by the effect of non-uniform tempera-
ture of the boundary, contrary to the case of (αn, αt) =
(1, 1) corresponding to the diffuse reflection (i.e., Fig. 5).
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which is equivalent to the diffuse reflection. (a) Isolines of the

(dimensionless) temperature T̂ and (b) those of the density
ρ̂.

Note that the magnitude of the reference vector is dif-
ferent in each figure. The pattern of the flow field varies
according to the accommodation coefficients and may be
classified into four types illustrated in the above four fig-
ures. In Figs. 1(c) and 2(c), the flow field is dominated
by a vortex rotating counterclockwise around (x1, x2) =
(−0.15, 0.25). The gas on the plate (at x2 = 0.5) flows
rightward (from colder part to hotter part) in Fig. 1(c),
whereas a leftward flow is dominant in Fig. 2(c) (except
for a week rightward flow seen at x1 ≃ −0.35). In the
former figure, the direction of the flow on the plate is op-
posite to that induced by the central vortex, so that there
exists a thin clockwise vortex in the neighborhood of the
plate. The patterns of the flow field seen in Figs. 3(c)
and 4(c) are just the reverse of those in Figs. 1(c) and
2(c). That is, the flow field is dominated by a clockwise
vortex, and the gas on the plate flows leftward (from hot-
ter part to colder part) in Fig. 3(c) and flows rightward
in Fig. 4(c). In the following, we shall call the above four
types of the flow field illustrated in Figs. 1(c)–4(c) the I-,
II-, III-, and IV-type, respectively, i.e.,

• I-type: A dominant counterclockwise vortex in the
gas and a dominant rightward flow on the plate.

• II-type: A dominant counterclockwise vortex in the
gas and a dominant leftward flow on the plate.

• III-type: A dominant clockwise vortex in the gas
and a dominant leftward flow on the plate.

0 0.5 1 1.5 2

0

0.5

1

0 0.5 1 1.5 2

0

0.5

1

0 0.5 1 1.5 2

0

0.5

1

FIG. 6: Type of the flow field in the case of the Cercignani–
Lampis model with various αn and αt. (a) Kn → ∞, (b)
Kn = 1, and (c) Kn = 0.1. Here, △, ◦, N, and • indicate
the I-, II-, III-, and IV-type flow respectively. The symbol
size indicates the maximum flow speed U [≡ max(u2

1+u2
2)

1/2];
small symbols are used for 1× 10−3 ≤ U < 8× 10−3, middle
symbols for 8×10−3 ≤ U < 1.6×10−2, and large symbols for
U ≥ 1.6× 10−2. � indicates the case where U < 1× 10−3 or
the flow field is not classified into any of the four types. The
solid line is the parabola αn = αt(2− αt).

• IV-type: A dominant clockwise vortex in the gas
and a dominant rightward flow on the plate.

By the way, the CL model was compared with data
of molecular beam scattering experiments conducted for
smooth metal surfaces and noble gases, and appropri-
ate values of the accommodation coefficients were de-
termined in Ref. 23. All the values of the accommo-
dation coefficient αt for tangential momentum reported
in the above reference, which differ depending on surface
materials, gases, and temperature, are less than unity
(0.06 . αt . 0.9). Physical intuition as well as the result
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FIG. 7: Flow velocity (u1, u2) in the case of the Cercignani–
Lampis model with (αn, αt) = (0.5, 0.5). (a) Kn = 1 and (b)
Kn = 0.1.

of the above reference may suggest that αt would be less
than unity for ordinary smooth surfaces, and a sort of
rough surface should be considered to realize the situa-
tion where αt > 1 (or the back scattering is dominant;
see the third paragraph in Sec. II B). Incidentally, the
CL model with αt ≃ 1.045 was found to approximate well
some feature of the conical rough surface model (with 66◦

opening angle) in Ref. 35 (a similar example was reported
also in Ref. 36). To the best of the authors’ knowledge,
however, no example of a surface whose αt is well over
unity as in Fig. 4 has been reported in the literature so
far. This point should be kept in mind also in the next
Sec. III A 2.

2. Transition of the flow field

Here, we carry out the DSMC computations chang-
ing the Knudsen number as well as the accommodation
coefficients and classify the results into the four types in-
troduced in the previous section according to the pattern
of the flow field. The classification is implemented objec-
tively on the basis of quantitative criteria, the detail of
which will be given later in Sec. III C. Figure 6 shows
the results of the classification, where the size of symbols
indicates the strength of the flow (i.e, the maximum flow
speed).

The classification in the case of the free-molecular gas

is shown in panel (a) of Fig. 6 [i.e., panel (a) includes the
cases corresponding to Figs. 1–5]. The solid line in the
figure indicates a parabola defined by αn = αt(2 − αt).
The figure shows a strong correlation between which of
αn and αt(2 − αt) is larger and in which direction the
main vortex in the flow field rotates. Except for a few
points near the parabola, points under the parabola [i.e.,
αn < αt(2 − αt)] are classified into the I- or II-type,
each of which contains a dominant counterclockwise vor-
tex in the flow field. On the other hand, points above
the parabola [i.e., αn > αt(2−αt)] are classified into the
III-type in the case of αt < 1 or the IV-type in the case
of αt > 1, and the dominant vortex rotates in the clock-
wise direction. As mentioned in the third paragraph in
Sec. II B, αn is the accommodation coefficient for partial
kinetic energy associated with the normal velocity com-
ponent ζ2 and αt(2−αt) is that associated with the tan-
gential velocity component ζ1 and ζ3. If αn > αt(2−αt),
therefore, the distribution of ζ2 of reflected molecules on
the plate is accommodated to plate’s temperature bet-
ter than the distribution of ζ1 and ζ3, and vice versa.
Another important feature of Fig. 6(a) is that the sym-
bols become larger with the increase of the distance from
the parabola, irrespective of the type of the flow field.
This means that faster flows are induced as the velocity
distribution of reflected molecles on the plate becomes
more anisotropic (with growing discrepancy between the
distribution of ζ2 and that of ζ1 and ζ3) or, in other
words, as the boundary condition becomes more non-
Lambertian (see the next-to-last paragraph in Sec. I).
However, it should be noted that even at a point on the
parabola [except (αn, αt) = (1, 1)], the CL model is still
non-Lambertian, and the flow is induced in general as
shown in the next Sec. III B.

The effect of intermolecular collisions on the flow pat-
tern is shown in panel (b) and (c) of Fig. 6. Contrary
to the case of the free-molecular gas, flows are induced
also at (αn, αt) = (1, 1). The classification in the case
of Kn = 1 [Fig. 6(b)], where the reference mean free
path is equal to the gap between the plates, is almost
the same as that for the free-molecular flow [Fig. 6(a)].
Conversely, it seems that the flow pattern of the free-
molecular gas in Fig. 6(a) is determined mainly by the
contribution of molecules coming directly from the neigh-
boring area on the plates (within a distance comparable
to the gap between the plates), and is less affected by
the far field. However, the classification in the case of
Kn = 0.1 [Fig. 6(c)] is quite different. That is, only the
II- and IV-type are seen in the small- and large-αn re-
gion respectively. The I- and III-type, which involve, in
the neighborhood of the plate, a strong shear due to the
discrepancy between the flow direction on the plate and
the direction of the main vortex, disappear because of an
increasing effect of molecular collisions. Figure 7 shows
the transition of flow field for (αn, αt) = (0.5, 0.5) with
decreasing Kn. The flow field for Kn = 1 is classified into
the I-type, which is the same as in the free-molecular gas
[see Fig. 1(c)], while that for Kn = 0.1 exhibits the cen-
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FIG. 8: Comparison of behavior of the free-molecular gas
(Kn → ∞) under the different boundary conditions. The
solid lines indicate results of the Cercignani–Lampis model
with (αn, αt) = (0.75, 0.5) and the dashed lines in panel (a)
and (b) those of the Lord model with σ = 0.75. (a) Isolines of

the (dimensionless) temperature T̂ , (b) those of the density
ρ̂, and (c) the flow velocity (u1, u2).

tral vortex in the opposite direction and thus belongs to
the IV-type.

B. Result for the Lord model and extension to
general Lambertian conditions

As indicated by Fig. 6(a) in the previous section, the
main cause of the free-molecular flow seems to be the
anisotropic velocity distribution of reflected molecules
produced by the non-Lambertian boundary condition.
In this section, we consider the case of a Lambertian
boundary condition: firstly numerical results for the
Lord model (the diffuse reflection with incomplete en-
ergy accommodation) will be compared to those of the

CL model, and then a more general case will be consid-
ered.

1. Numerical results for the Lord model

Behavior of the free-molecular gas in the case of the
CL model with (αn, αt) = (0.75, 0.5) and that in the
case of the Lord model with σ = 0.75 are compared in
Fig. 8, where the former was obtained by the computa-
tion of the integral equation (15) and the latter by the
DSMC method. The total energy accommodation co-
efficient (= 0.75) is common to both models (see the
fifth paragraph in Sec. II B). The former model is non-
Lambertian, though the anisotropy in the velocity dis-
tribution of reflected molecules is relatively weak since
the accommodation coefficients are taken at a point on
the parabola in Fig. 6(a). On the other hand, the latter
model is Lambertian. As shown in panel (a) and (b),
both models yield quite similar temperature and density
fields. However, the flow field is different: a relatively
weak flow shown in panel (c) is induced in the case of the
CL model, whereas no flow is induced in the case of the
Lord model.

2. General Lambertian conditions

The above result, i.e., the absence of a steady free-
molecular flow in the case of the Lord model, can be
understood as one specific example of the following gen-
eral consideration. Let us consider a free-molecular gas
around one or several bodies at rest which have arbi-
trary shapes and distributions of surface temperature.
The configuration and number of the bodies are also ar-
bitrary. In this subsection, we use the same notations
as in the previous sections. However, they should be in-
terpreted appropriately. For instance, L should be the
characteristic length of the system, T0 the reference tem-
perature, Lx the position vector in the three-dimensional
physical space, T0T̂w the temperature of the surfaces of
the bodies depending on the position x, etc.

For the moment we assume that the gas and the bodies
are confined in a large closed vessel. Furthermore, we
assume a Lambertian boundary condition on surfaces of
the bodies and vessel expressed as follows: for x ∈ S and
ζ · n > 0,

f(x, ζ) =

∫
ζ∗·n<0

|ζ∗ · n|K(ζ∗, ζ; x)f(x, ζ∗)dζ∗, (17)

where S denotes the surfaces and n the unit normal vec-
tor at the point x ∈ S pointing to the gas. It should be
noted that the arguments ζ∗ and ζ of the kernelK are the
absolute values of ζ∗ and ζ, respectively [see Eq. (8b)].
Thus, the kernel K is independent of the direction of
ζ and so is f in the left-hand side (LHS) of Eq. (17).
It is well-known that any scattering kernel for ordinary
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non-absorbing surfaces should satisfy three fundamental
properties, i.e., (i) non-negativity, (ii) normality, and (iii)
reciprocity (see, e.g., Ref. 1). These properties may be
expressed as the following relations for K:

K(ζ∗, ζ; x) ≥ 0, (18a)

π

∫ ∞

0

ζ3K(ζ∗, ζ; x)dζ = 1, (18b)

exp
(
− ζ2∗

T̂w

)
K(ζ∗, ζ; x) = exp

(
− ζ2

T̂w

)
K(ζ, ζ∗; x).

(18c)

Now let us introduce a unit vector ℓ ≡ ζ/ζ and define
the marginal distribution function ĝ as

ĝ(x, ℓ) =

∫ ∞

0

ζ3f(x, ζℓ)dζ. (19)

Since molecular collisions are absent, the Boltzmann
equation for ĝ is written simply as

ℓ · ∂ĝ
∂x

= 0. (20)

The boundary condition for ĝ is derived from Eqs. (17)
and (18b): for x ∈ S and ℓ · n > 0,

ĝ(x, ℓ) =
1

π

∫
ℓ∗·n<0

|ℓ∗ · n|ĝ(x, ℓ∗)dΩ(ℓ∗), (21)

with ℓ∗ being a unit vector. Here we should note that
ĝ in the LHS of Eq. (21) is, in fact, independent of ℓ
and also of surface properties, such as temperature and
accommodation coefficients, because the kernel K has
been eliminated by the use of Eq. (18b). Therefore it is
immediately seen that ĝ = const. can be a solution for
the boundary-value problem, i.e., Eqs. (20) and (21). The
flow velocity corresponding to such a constant solution is
given by

ρ̂u =

∫
ζfdζ = ĝ

∫
ℓdΩ(ℓ) = 0. (22)

The conclusion is that no steady free-molecular flow is
induced around the bodies irrespective of the distribution
of surface temperature and accommodation coefficients,
when the boundary condition can be written in the form
of Eq. (17) and the kernel K satisfies Eq. (18). The Lord
model is included in this case.
The above discussion may be extended to the case of

an infinite domain, if the gas at infinity is in a state which
gives the same constant ĝ [e.g., f = Cβ2 exp(−βζ2) in
Ref. 15]. In the case of a closed domain, uniqueness of the
solution for the boundary-value problem, i.e., Eqs. (20)
and (21), (up to a multiplicative constant) can be verified
through essentially the same argument as in Ref. 15 un-
der the same assumptions: (i) any two points on S can be
connected by a chain of straight lines (or a zigzag line)
passing through the gas whose joints are on S and (ii)

ĝ(x, ℓ) for x ∈ S and ℓ ·n > 0 is nonnegative and contin-
uous on S. Furthermore, the absence of the flow can be
verified also for the boundary condition of the form of a
linear combination of the Lambertian and the specular-
reflection condition [i.e., the Maxwell-type model with its
diffuse-reflection part being replaced by the condition ex-
pressed in Eq. (17)] under the assumption that the gas at
infinity gives ĝ = const. in the case of an infinite domain
(see Appendix A).

C. Data for the computations

1. Computation of the integral equation for the
free-molecular gas in the case of the CL model

We first explain the numerical computation of the in-
tegral equation (15) briefly. In the actual computation,
the following z and s instead of ζ1 and ζ2 were introduced
as independent variables:

z = (ζ21 + ζ22 )
1/2, s = ζ1/|ζ2|. (23)

They were restricted within finite intervals, i.e., 0 ≤ z ≤
zmax and −Nλ ≤ s ≤ Nλ. We used uniform grids for all

the independent variables: x
(i)
1 (i = −M, . . . , 0, . . . ,M ;

x
(0)
1 = 0, x

(±M)
1 = ±λ/4), z(j) (j = 0, . . . , Z; z(0) = 0,

z(Z) = zmax), and s(k) (k = −4NM, . . . , 0, . . . , 4NM ;
s(0) = 0, s(±4NM) = ±Nλ). The solution g and h of
Eq. (15) was obtained by the method of successive ap-
proximations starting with appropriate initial distribu-
tion; Eq. (15a) was solved first and the resulting g was
then substituted into the last term on RHS of Eq. (15b).
To obtain a unique solution of Eq. (15a), we adjusted g
by multiplying a constant at the end of each iteration
step so that the total amount of the gas involved was
fixed during the computation (see the second paragraph
in Sec. II C). The numerical integration with respect to z
and s was carried out by Simpson’s rule. Since the grid
size for x1 and that for s are equal, Simpson’s rule for
Eq. (16) can be carried out by referring only to g or h
at the grid points. On the other hand, values of g and
h at points not on the grids are necessary in general to
perform Simpson’s rule for Eq. (14) for the macroscopic
quantities at arbitrary (x1, x2). We used the third-degree
Lagrange polynomial for interpolation in such a case.

We prepared the following four grid systems:

(M1) M = 5, N = 200, zmax = 8, Z = 40,

(M2) M = 5, N = 50, zmax = 8, Z = 40,

(M3) M = 5, N = 50, zmax = 8, Z = 80,

(M4) M = 10, N = 50, zmax = 8, Z = 40.

All the results shown in Figs. 1–5 and 8 were obtained
with the grid (M1). The number of x1 grids M may
seem to be small, but it was sufficient in the present
analysis because g and h vary smoothly as a function
of x1 in accordance with sinusoidal temperature of the
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plate. Rather than M , the number of s grids N had
more influence on numerical error in some cases. In the
case of (αn, αt) = (1, 1), the maximum flow speed U
[≡ max(u2

1 + u2
2)

1/2], which is theoretically zero in this
case, can be a measure of numerical error: U ≃ 1.2×10−9

in the (M1) system and U . 2.2× 10−9 in the other sys-
tems. For other pairs of (αn, αt), the maximum value
of |u2| on the plate (x2 = 0.5), which is also theo-
retically zero, can be used as a measure of the error:
|u2(x2 = 0.5)| . 4.6 × 10−7 for (αn, αt) = (0.5, 0.5),
(1, 0.25), and (1, 1.75), and |u2(x2 = 0.5)| . 2.0 × 10−8

for (αn, αt) = (0.7, 0.5) and (0.75, 0.5) in the (M1) sys-
tem, and |u2(x2 = 0.5)| . 6.9 × 10−6 for (αn, αt) =
(0.5, 0.5) and (1, 0.25) in the other systems. The differ-
ence between the density or temperature distribution for
(αn, αt) = (0.5, 0.5), (1, 0.25), and (1, 1) obtained in the
(M1) system and that obtained in the other systems is
less than 0.2%.

2. Computation by the DSMC method

All the results of the DSMC shown in Sec. III (i.e.,
Figs. 6 and 7 and the result of the Lord model in Fig. 8)
were obtained under the same computational conditions.
We prepared 201× 61 rectangular cells along the x1 and
x2 directions in an extended domain |x1| ≤ λ/2 (instead
of |x1| ≤ λ/4) and 0 ≤ x2 ≤ 1/2, and imposed the pe-
riodic boundary condition at x1 = ±λ/2 instead of the
specular-reflection condition at x1 = ±λ/4 (see the last
paragraph in Sec. II B). The cells were uniform in size
except on the edge of the computational domain: cells
adjacent to the boundaries were half the size of the stan-
dard cell (cells in the four corners were quarter the size).
The number of simulation particles was 4 000 000 (about
333 per standard cell) and the time step was 0.001t0
[t0 ≡ L/(2kT0/m)1/2]. After the steady state was es-
tablished, we took the time average of 20 000 snapshots
taken at every 10 steps (i.e., at intervals of 0.01t0). The
results obtained in the extended domain satisfy the mir-
ror symmetry with respect to x1 = ±λ/4 [see Eqs. (9b)
and (9c)] within the computational accuracy. For ex-
ample, the flow velocities u1 and u2 satisfy the mirror
symmetry within an average error of 7.4× 10−4 (average
taken over the cells). Thus, to obtain smoother final re-
sults in |x1| ≤ λ/4, we took the average of macroscopic
quantities in two cells located at the symmetrical posi-
tions.
In the case of the free-molecular gas, we sometimes

took the ensemble average of 10 independent trials to
further reduce the statistical fluctuation. To be more
specific, we took the ensemble average in the representa-
tive cases as shown in Figs. 1–5 or in the case of weak flow
where the average flow speed ū [the average of (u2

1+u2
2)

1/2

over all the cells] was less than 1 × 10−3. The ū for the
CL model with (αn, αt) = (1, 1) and for the Lord model,
which are zero theoretically, give a measure of the fluc-
tuation: ū . 2.5×10−4 in a single trial and . 7.9×10−5

in the ensemble average of 10 trials. The flow veloc-
ity u3 along the x3 direction, which also should be zero,
can be another measure of the fluctuation [for arbitrary
(αn, αt)]: the average ū3 (taken over all the cells) is less
than 2.7×10−4 in a single trial and less than 7.3×10−5 in
the ensemble average of 10 trials. In the case of Kn = 1
or 0.1, the ensemble average was taken only in a few rep-
resentative cases including the case shown in Fig. 7.

In the classification of the flow field shown in Fig. 6, we
first computed the following two quantities: (i) the cir-
culation of the 2-D vector (u1, u2) along the rectangular
closed path [(x1, x2) =] (0.4, 0.4)–(0.4, 0.1)–(−0.4, 0.1)–
(−0.4, 0.4)–(0.4, 0.4) and (ii) the line integral of u1 along
the line (−0.4, 0.497917)–(0.4, 0.497917) near the plate.
Here we denote the (i) and (ii) divided by the length of
each integration path as J1 and J2 respectively. If J1 > 0,
the flow field contains a dominant vortex rotating in the
clockwise direction; if J2 > 0, the gas on the plate flows
toward the right (the direction from the colder part to
the hotter part). Then, the flow field was classified into
the I-type if J1 < −4 × 10−4 and J2 > 0, the II-type if
J1 < −4×10−4 and J2 < 0, the III-type if J1 > 4×10−4

and J2 < 0, and the IV-type if J1 > 4×10−4 and J2 > 0.

IV. CONCLUDING REMARKS

In the present study, we have considered a rarefied gas
between two parallel plates with sinusoidal temperature
distribution. We have investigated the steady behavior
of the gas on the basis of the Boltzmann equation and
the Cercignani–Lampis (CL) model or the Lord model
(diffuse reflection with incomplete energy accommoda-
tion) as a boundary condition on the plates, with special
interest in the free-molecular limit.

For the CL model, an accurate deterministic computa-
tion based on the integral equation for the free-molecular
gas has been performed. The result demonstrates clearly
that a steady flow is induced by the non-uniform temper-
ature distribution of the plates even in the free-molecular
limit. This is in contrast to the fact that such a flow
vanishes in the free-molecular limit for the Maxwell-type
model. In addition, the DSMC computation has been
performed for wide range of the accommodation coef-
ficients to illustrate the transition of the flow pattern
between the four typical types defined in the present
study. It is particularly interesting that the dominant
vortex in the flow field rotates counterclockwise in the
region αn . αt(2 − αt) and clockwise in the region
αn & αt(2 − αt). The results also indicate correlation
between the strength of the induced free-molecular flow
and the degree of anisotropy in the velocity distribution
of molecules reflected from the boundary.

We have also carried out the DSMC computation for
finite Knudsen numbers in order to see the effect of inter-
molecular collisions on the flow field. The result shows
that the flow pattern for Kn = 1 is roughly the same
as that for the free-molecular limit, whereas that for
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Kn = 0.1 is quite dissimilar.
Furthermore, the behavior of the free-molecular gas

has been investigated for the Lord model, and the result
has been compared with the corresponding result for the
CL model with the common energy accommodation co-
efficient. The temperature and density fields obtained by
the two models are quite similar to each other. However,
no steady flow is induced for the Lord model, as in the
case of the Maxwell-type model.
Finally, we have considered, as a generalization of the

Lord model, the boundary condition that gives the cosine
law (Lambert’s law) for the reflected molecular flux in its
general form. We have investigated the steady behavior
of a free-molecular gas under such a boundary condition
in an arbitrary configuration and showed that the flow
due to a steady temperature field vanishes. Then, it was
shown that the same is true for the boundary condition
consisting of the general Lambertian condition and the
specular reflection.
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APPENDIX A: COMBINATION OF
LAMBERTIAN CONDITION AND SPECULAR

REFLECTION

In this appendix, we consider a free-molecular gas
around a group of bodies at rest. We assume that the
shape and arrangement of the bodies, as well as their sur-
face temperature, are arbitrary. The gas may extend to
infinity (the condition at infinity will be specified later).
This situation is the same as in Refs. 15,16 and Sec. 2.5
in Ref. 4. To be consistent with these references, we use
dimensional variables in this appendix. That is, f̃(X, ξ)
is the velocity distribution function, X is the position
vector in space, ξ is the molecular velocity, ξ = |ξ|,
and l = ξ/ξ; Tw(X) and n(X) are, respectively, the
temperature and unit normal vector to the body surface
S, pointed toward the gas, at point X on the surface
(X ∈ S).
In this situation, the basic equation is

ξ · ∂f̃

∂X
= ξ l · ∂f̃

∂X
= 0. (A1)

We assume that the boundary condition is the convex
combination of the Lambertian condition [cf. Eq. (17)]

and specular reflection, which can be expressed in the
following form:

|ξ · n|f̃(X, ξ) =

∫
ξ∗·n<0

|ξ∗ · n|R(ξ∗ → ξ; X)

× f̃(X, ξ∗)dξ∗,

for ξ · n > 0, X ∈ S, (A2)

with

R(ξ∗ → ξ; X) = α(X)|ξ · n|K(ξ∗, ξ; X)

+ [1− α(X)]δ(ξ∗ − ξ + 2(ξ · n)n). (A3)

Here, α(X) is the accommodation coefficient that may
depend on the position on the surface (0 < α ≤ 1), and
δ is the (three-dimensional) Dirac delta function. The
function K is assumed to satisfy (i) non-negativity, (ii)
normality, and (iii) reciprocity, i.e.,

K(ξ∗, ξ; X) ≥ 0, (A4a)

π

∫ ∞

0

ξ3K(ξ∗, ξ; X)dξ = 1, (A4b)

exp

(
− mξ2∗
2kTw

)
K(ξ∗, ξ; X)

= exp

(
− mξ2

2kTw

)
K(ξ, ξ∗; X). (A4c)

In Refs. 4,14–16, the Maxwell-type condition is em-
ployed, i.e.,

K(ξ∗, ξ; X) =
1

2π(kTw/m)2
exp

(
− mξ2

2kTw

)
, (A5)

in Eqs. (A2) and (A3). In this case, we can obtain the
analytical solution, which shows that the flow vanishes.
We will show that the vanishing of the flow is also true for
a more general boundary condition, Eqs. (A2) and (A3),
though we cannot obtain an explicit solution in this case.

Now let us consider a molecule at point X in the gas
with velocity ξ = ξl. Assuming that the molecule has
reached X undergoing specular reflection on the surfaces
of the bodies, we trace back its trajectory. Let X(1)

be the first point on the boundary S that we encounter,
X(2) be the second point, and so on (see, e.g., Fig. 2.5 in
Ref. 4). If |X(N)| = ∞ for some N , the sequence {X(m)}
terminates at m = N . Then, we let n(m) = n(X(m)) and
α(m) = α(X(m)) (m = 1, 2, ...). Further, we denote by
l(m) the unit vector in the direction of incidence at X(m),
i.e.,

l(m) = l(m−1)−2(l(m−1) ·n(m))n(m), l(0) = l. (A6)

Note that l(m) · n(m) < 0 and l(m) · n(m+1) > 0. Then,
because of Eqs. (A1)–(A3), we can express f̃(X, ξ) =
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f̃(X, ξl) as follows:

f̃(X, ξl) = f̃(X(1), ξl(0))

= α(1)F (X(1), ξ) + (1− α(1))f̃(X(1), ξl(1))

= α(1)F (X(1), ξ) + (1− α(1))α(2)F (X(2), ξ)

+ (1− α(1))(1− α(2))f̃(X(2), ξl(2))

= · · ·

=
∞∑

m=1

m−1∏
h=1

(1− α(h))α(m)F (X(m), ξ), (A7)

where
∏0

h=1(1 − α(h)) = 1, and F (X, ξ) is defined for
X ∈ S as

F (X, ξ) =

∫
l∗·n(X)<0

∫ ∞

0

|l∗ · n(X)| ξ3∗K(ξ∗, ξ; X)

× f̃(X, ξ∗l∗)dξ∗dΩ(l∗). (A8)

In addition, if |X(N)| = ∞ for some N , then the series
terminates at the Nth term, which is replaced by

N−1∏
h=1

(1− α(h))f̃(∞, ξl(N−1)). (A9)

The truncation of the series can be made automatically
if we introduce the convention α(N) = 1.
Let us introduce the following quantities:

g̃(X, l) =

∫ ∞

0

ξ3f̃(X, ξl)dξ, (A10a)

σ̃(X) =

∫ ∞

0

ξ3F (X, ξ)dξ, (X ∈ S). (A10b)

By integrating Eq. (A7) multiplied by ξ3 with respect to
ξ from 0 to ∞, we obtain

g̃(X, l) =

∞∑
m=1

m−1∏
h=1

(1− α(h))α(m)σ̃(X(m)), (A11)

where, if |X(N)| = ∞, the series terminates at the Nth
term, which is to be replaced by

N−1∏
h=1

(1− α(h))g̃(∞, l(N−1)). (A12)

On the other hand, if we integrate Eq. (A8) multiplied
by ξ3 with respect to ξ from 0 to ∞ and make use of
Eq. (A4b), then we have

σ̃(X) =
1

π

∫
l∗·n(X)<0

|l∗ · n(X)| g̃(X, l∗)dΩ(l∗),

(X ∈ S). (A13)

The substitution of Eq. (A11) into Eq. (A13) gives the
integral equation for σ̃(X).

Suppose that the gas is confined in a closed domain.
Then, σ̃(X) = C, where C is an arbitrary constant, is
the solution of the integral equation for σ̃(X). In fact,
if we let σ̃(X) = C in Eq. (A11), we have g̃(X, l) =

C because
∑∞

m=1

∏m−1
h=1 (1 − α(h))α(m) = 1 holds (see

Refs. 4,15). Then, if we let g̃(X, l) = C in Eq. (A13),
we have σ̃(X) = C. This means that σ̃(X) = C is the
solution. The constant C is determined by the condition
on the mass of the gas contained in the system.

We next consider the case where the domain of the
gas extends to infinity. If we assume that g̃(∞, l) =
C with a constant C, then, as in the case of a closed
domain, we can show that σ̃(X) = C is the solution
of the integral equation for σ̃(X). Thus, the velocity

distribution function f̃(X, ξl) at infinity must be such
that g̃(∞, l) = C. This contains the velocity distribution

such as f̃ = Cβ2 exp(−βξ2) (cf. Refs. 4,15).

Let us denote by ρ the density and by v the flow ve-
locity of the gas. Since g̃(X, l) = C is the solution, we
have

ρv =

∫
ξf̃dξ =

∫
lg̃(X, l)dΩ(l) = 0, (A14)

where the domain of integration of the first integral is
the whole space of ξ and that of the second integral is
all directions of l. Therefore, no flow is induced in the
gas, as in the case of the Maxwell-type condition. It
should be noted that for the latter condition, the solu-
tion f̃(X, ξ) can be obtained explicitly in the form of an
infinite series.2,4,14,15
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