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Abstract

There is wide evidence and acceptation that ice age cycles are paced by changes in the seasonal
and spatial distributions of insolation, induced by variations in the astronomical elements of planet
Earth. However, the usual concept of phase-locking is reserved for periodic forcings. Here, we in-
troduce the cardinality of the pullback attractor as a useful measure of synchronisation in the context
of a quasi-periodic forcing, such as the astronomical forcing. The concept is illustrated with a small
palaeoclimate model akin of the celebrated Van der Pol oscillator. At low forcing amplitude the
system may lock on the individual components of the astronomical forcing in a way that is similar
to phase-locking on periodic forcing, but as the amplitude is increased the combined effects of pre-
cession and obliquity restrict the number of possible climate histories. We describe a phenomenon
similar to the ‘phase-slip’ encountered in periodic-forced systems subject to additive fluctuations
and comment on its relevance and consequences at palaeoclimate time scales. Keywords: Climate,
Milankovitch, synchronisation, AUTO, Lyapunov exponent, pullback attractor.

1 Introduction

The present contribution focuses on the slow variations of climate over the last million years. This

includes the phenomenon of ice ages, that is, the repeated growth and decay of ice sheets in the Northern
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Hemisphere of a total mass as big as modern Antarctica’s. The four most recent cycles cover the last

400,000 years and have distinctive saw-tooth dynamics, with slow growths of ice followed by abrupt

‘deglaciations’. The previous cycles are more symmetric but conserve the average periodicity of 100,000

years (e.g. Lisiecki and Raymo, 2005). The numerous natural archives of climate sampled since the

1950’s have made it clear that ice ages involve all the components of the climate system (e.g. Petit et al.,

1999).

Modelling and understanding ice ages is a vast and not well-defined problem. We believe that a good

model should be consistent with as many climate records as possible, it should be compatible with

constraints deduced from experiments with complex numerical models of the the climate system, and it

should be mathematically tractable. Such a model may naturally be expressed as a stochastic dynamical

system in which account is made of unresolved processes and uncertainties.

Catherine Nicolis was among the first ones the study ice ages using theories of deterministic and stochas-

tic dynamical systems. Nicolis and Nicolis (1984) and Nicolis and Nicolis (1986) questionned whether

palaeoclimate time series contain an underlying low-dimensional structure. Application and analysis of

the Grassberger and Procaccia (1983) algorithm to a deep-sea record lead them to suggest a positive

answer to that question. Unfortunately, the attractor dimension estimates provided by the algorithm later

appeared to lack robustness due to short time-series length, dating uncertainties and non-stationarity ef-

fects Grassberger (1986); Mudelsee and Stattegger (1994). Two other articles Nicolis and Nicolis (1981);

Nicolis (1982) address more specifically the distribution of climatic states subject to the combined ef-

fects of a climatic potential and additive fluctuations. The work relies on the resolution of Fokker-Plank

equations and lent theoretical support to the notion of stochastic resonance then just introduced by Benzi

et al. (1982). Specifically, it was proposed that the transitions between glacial and interglacial states are

noise-assisted amplifications of the slow and slight variations in total incoming solar radiation related

to changes in Earth’s orbital eccentricity. Although our understanding of palaeoclimate dynamics has

considerably evolved since then, these contributions have successfully seeded the fertile field of palaeo-

climate dynamics theory. It justified the development and application of more advanced time-series

analysis methods (e.g.: singular spectrum analysis Vautard and Ghil (1989)), as well as the development

of other dynamical models of palaeclimates, notably by Ghil and Le Treut (1981), Saltzman et al. (1984)

and many others (further references in the sequel). Palaeoclimate dynamics theory is today an active

research field.

Here we concentrate on the influence of the astronomical forcing of Earth’s climate. This forcing is

induced by the slow variations in the spatial and seasonal distributions of incoming solar radiation (in-

solation) at the top of the atmosphere, associated with the slow variations of the Earth’s eccentricity (e),
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true solar longitude of the perihelion measured with respect to the moving vernal equinox (ϖ), and Earth

obliquity (ε). These quantities are now accurately known over several tens of millions of years Laskar

et al. (2004), but analytical approximations of e, esinϖ and ε valid back to one million years have been

known since Berger (1978). They take the form of d’Alembert series ( ∑ai sin[ωit +φi]). Most insolation

quantities relevant for understanding ice ages are well approximated as a linear combination of esinϖ,

ecosϖ and ε. Thanks to Berger’s formulæ, estimating the spectrum decomposition of any insolation

measure reduces to a simple linear regression problem of insolation on astronomical parameters.

Figure 1 shows a spectrum decomposition of insolation at 65◦N latitude on the day of the summer sol-

stice. This quantity is commonly related to the Milankovitch hypothesis because it is thought to be a

measure of how much ice may melt over summer. The spectrum is somewhat complex. Precession is

dominated by two harmonics around 19 and 23 ka (1ka = 1,000years) and obliquity is dominated by a

harmonic with a period of 41 ka but it bears periods as long as 1,200 ka.

There is ample evidence that the astronomical forcing influences the climate system. The phrase ‘pace-

maker of ice ages’ was coined in a seminal paper Hays et al. (1976) to express the idea that the timing

of ice ages is controlled by the astronomical forcing, while the ice age cycle itself is shaped by internal

system dynamics. The paradigm has prevailed since then and is it still supported by the most recent

analyses of palaeoclimate records Lisiecki and Raymo (2007); Huybers (2007).

The notion of ‘pacemaker’ naturally evokes synchronisation and ‘phase locking’ in dynamical system

theory. However, the very concept of phase locking cannot be applied straightforwardly because it is not

possible to define an instantaneous phase of the astronomical forcing because it is dominated by several

distinct harmonics. We will therefore focus on another concept: the cardinality of the pullback attractor.

The article is structured as follows. Section 2 introduces a slightly modified version of the Van der

Pol oscillator as a suitable model for the purpose of studying synchronisation of ice ages. In Section 3

we briefly review the well-known synchronisation properties of this oscillator on a periodic forcing, and

highlights the correspondence between the bifurcation diagram and numerical estimates of the cardinality

of the pullback attractor. We then introduce the astronomical forcing. Section 4 tentatively explores the

role of additive fluctuations to the system, by reference to the greatest Lyapunov exponent and geometry

of basins of attractions. To be clear, all the treatment below is deterministic, except for Figure 7.
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Figure 1: Visualisation of the d’Alembert decomposition of incoming solar insolation (insolation) at 65◦N on the
day of summer solstice. The d’Alembert decomposition is a sum of the form ∑ai sin(ωi +φi). The decomposition
is obtained first by calculating insolation according to Berger (1978), and then regress on the climatic astronomical
parameters esinϖ, ecosϖ and ε, and using the d’Alembert decompositions of these three quantities available as
tables in Berger (1978). This insolation is the forcing used to construct Figures 2, 4, 6 and 7.

2 The Van der Pol oscillator as a model of ice ages

The hypothesis at the basis of Milankovitch’s works [1941] is that changes in total amount of continental

ice (say: x) are driven by summer insolation (say: F(t)). One straightforward expression of this hypoth-

esis in the form of a dynamical system would be ẋ = −φ′(x)− γF(t), where φ′(x) is the derivative of a

climatic potential and γ a forcing ‘efficacy’. However, models of this form fail in practice to correctly

capture the rapid deglaciation phenomenon. We therefore propose a model resembling the Van der Pol

oscillator:

τẋ = −(y+β+ γF(t)) (1a)

τẏ = −α(ψ′(y)− x), ψ
′(y) = y3/3− y (1b)
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Figure 2: Forcing (corresponding to the decomposition shown on Figure 1, scaled as explained in section 3.2), X

and Y trajectories obtained using system (1) with α = 30, β = 0.75, γ = 0.4 and τ = 36ka. With these parameters
ωε1 = 2.5ωN , were ωε1 is the angular velocity associated with the dominant harmonic of obliquity and ωN is the
angular velocity associated with the unforced system’s periodic orbit. Blue dots are an authoritative natural archive
thought to mainly represent ice volume inferred from the oxygen isotopic ratio of foraminifera sampled in the deep
seas of the different oceans, and compiled by Lisiecki and Raymo (2005). Time= 0 corresponds conventionally to
the year 1950 AC.

Its physical interpretation is as follows: x (ice volume) integrates the external forcing over time but with

a drift y+β; y is a faster variable (assuming α� 1), the dynamics of which is controlled by a two-well

potential ψ(y). For example, there are arguments that the dynamics of the Atlantic ocean circulation

may respond to an equation of the form of (1b) Rahmstorf et al. (2005); Dijkstra and Weijer (2005).

Saltzman et al. (1984); Tziperman and Gildor (2003); Paillard and Parrenin (2004); Tziperman et al.

(2006) provide further interpretation and discussion of what the fast variable could be in this context.

Parameter τ sets the time scale. The coupled system (1) has one stable solution for |β| > 1 and a stable

periodic orbit for |β|< 1. The ratio of times spent near the two branches of the slow manifold ψ′(y) = x is
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then set by β. In the sequel we note TN the time of the periodic orbit, and ωN := 2π/TN the corresponding

mean angular velocity.

We acknowledge that the potential function associated to x is flat and hence unphysical, but we adopted

this form because it is very close to the well studied Van der Pol oscillator, and a good agreement with

ice volume proxies was easily found for well chosen values of α, β, γ and τ (Figure 2). We note, though,

that small changes in parameters or additive fluctuations can easily shift the timing of terminations for

reasons that will be clarified in the sequel.

3 Synchronisation of the palaeoclimate model

3.1 Periodic forcing

The case of periodic forcing [F(t) = sin(ωt)] with β = 0 was extensively studied, analytically assuming

some approximations (Guckenheimer and Holmes, 1983, pp. 70-75), and using numerical algorithms for

pseudo-arc length continuation Mettin et al. (1993). The classical approach consists in embedding the

forcing as a third variable, and then explore the parameter space (ω,γ). The case α = 11.1, β = 0.25 is

succinctly analysed here using the AUTO continuation software Doedel and Oldeman (2009) (Figure 3).

The pattern is reminiscent of Arnol’d tongues. Periodic solutions are found in tongues (shaded) which

originate at ω = m/n ·ωN . In practice they are identified by the fact that the Poincaré sections along a

given phase of the forcing have a countable set of m stable fixed points impressed in n rotations in the

(x,y) plane. Tongues boundaries are fold bifurcations of these solutions. Outside the tongues there are

different possibilities: between the tongues at low forcing amplitude the system lives on an invariant

torus: trajectories are quasi periodic and Poincaré sections are closed curves; at higher forcing amplitude

and in particular above the 1:1 tongue the system enters a suppression regime via a fold or a Neimark-

Sacker bifurcation (Balanov et al., 2009, pp. 56-62). Trajectories have then the same period as the

forcing. Chaotic solutions appear at yet higher forcing amplitude Mettin et al. (1993) but this case is

beyond our focus.

Regions where tongues overlap are notoriously complex and several stable synchronised solutions may

co-exist. The asymmetry introduced here with the parameter β causes some additional complications.

In particular there are two stable 3:2 synchronisation regimes (shaded in red and green on Figure 3).

Furthermore, at least one of the two 3:2 tongues as well as the 2:1 tongue can be continued for ω/ωN
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Figure 3: Partial bifuraction diagram of the forced system (1) with F(t) = γsin(ωt) obtained as follows: synchro-
nised solutions are first found empirically. They are then continued using AUTO-07P at fixed γ until limit points,
and the latter are continued in the γ,ω space. The graphics were produced using the PyPLAUT utility made avail-
able with AUTO-07P, but shading and annotations were made manually. In particular, solutions within the 3:2 and
2:2 tongues were found to continue to low values of ωN in the form of very weakly stable 3:3 and 2:2 periodic
solutions, but the tongues could not be closed and the shading is tentative. Fixed parameters are α = 11.11 and
β = 0.25 (the graph as presented here is invariant to choices of τ because we are interested in ω/ωN).

ratios approaching 1. The 3:2 and 2:1 periodic solutions are then continuously transformed into what we

call ‘2:2’ or ‘3:3’ solutions, in the sense that the oscillator revolves 2 or 3 times around the origin within

2 or 3 forcing periods. These solutions are very weakly stable and the tongues could not be closed with

AUTO. (Schilder and Peckham (2007) proposed an algorithm for identification of higher-order tongues

and which may be implemented in AUTO, but we did not use this algorithm here.)

The forced system (1) may also be addressed using the theory and vocabulary of non-autonomous dy-

namical systems. One is then interested in the pullback attractor in the sense given, e.g. by Kloeden

(2000) and Langa et al. (2002). In a nutshell, the pullback attractor at a time t is the set of system

solutions compatible with arbitrary initial conditions at time t− tb as tb→∞ 1. By reasoning on the prop-

erties of invariance to time shifts it is easily shown that the pullback attractor at any time is equivalent

1The terminology is still debated. Wiggins (2003, sect. 8.4) defines a pullback attracting set equivalent to the pullback

attractor of Kloeden (2000) and Langa et al. (2002) ; see also Marı́n-Rubio and Real (2009) for further comments.
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to the classical attracting set if the system is autonomous. If the system is periodically forced then the

pullback attractor at a time t is equivalent to the attracting set of the Poincaré section along the phase

of the forcing reached at this time t. It follows that the pullback attractor reduces to a set of points if

the system is synchronised on a periodic forcing. The global pullback attractor may then be viewed as a

collection of distinct local pullback attractors, where the word local is used here in the sense that nearby

points are attracted towards this attractor 2. The cardinality of the global pullback attractor is denoted

p. If there is only one possible synchronisation regime as is generally the case, p corresponds to the

number of forcing cycles associated with this synchronisation regime (p = 1 for 1:1; 2 for 2:1; 3 for

3:2, 3:1, etc.). The demonstration relies again on the system invariance with respect to a time-shift of

one forcing period (Tziperman et al. (2006) show a very nice illustration of this point). If distinct stable

(non-chaotic) synchronisation regimes co-exist, then p should be the sum of the cardinality associated

with each synchronisation regime, because all the stable solutions compatible with each synchronisation

regime correspond to distinct local pullback attractors. In practice, though, some of these solutions may

be very weakly stable and difficult to see.

To illustrate this point the cardinality of the pullback attractor at t0 = 0 is estimated as follows. We estab-

lish a uniform grid of 49 initial conditions with tI =−tb with tb large enough for convergence, and count

the number of distinct solutions found at t0. The resulting pattern (Figure 4) is, as expected, equivalent to

the bifurcation diagram. For exemple, p = 3 in the 3:1 tongue. This method allows one to visualise the

4:3 (p = 4) and even the 5:4 (p = 5) tongues to the left of the 3:2 tongue. It is also seen that p is generally

larger where different synchronisation regimes co-exist. This is the case between the 2:1 and 3:1 regimes

around γ = 4. The signature of the secondary 3:2 synchronisation (in red on Figure 3 within the main 3:2

tongue) is also seen on the full resolution figure (available at http://www.climate.be/ITOP (we note,

though, the 2:2 and 3:3 solutions mentioned above are too weakly stable for being captured).

3.2 Astronomical forcing

The above non-autonomous framework is naturally suited to address the astronomical forcing. This is

the insolation forcing used so far but scaled as follows: F(t) = (aε1)−1
∑ai sin(ωi + φi), were aε1 is

amplitude of the dominant harmonic associated with obliquity (cf. Figure 1). The purpose of the scaling

is simply to make F(t) adimensional.

The cardinality of the global pullback attractor (p) is plotted on Figure 4 (right). Synchronisation occurs

2To be precise, Langa et al. (2002) only define local pullback attracting sets.
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Figure 4: Numerical estimates of the cardinality of the pullback attractor at t0 = 0 for the periodic (left) and
astronomically-forced system (right). The cardinality is estimated as the number of different solutions at t0 consid-
ering a grid of 49 initial conditions covering x ∈ [−2.2;2.2] and y ∈ [−2.2;2.2] at time tI =−40T for the periodic
forcing (T is the period of the forcing), and −1600 ka of real time for the astronomical forcing. Two solutions
are estimated to be different if their Euclidean distance is greater than 0.1. The bifurcation diagram of Figure 3
is overlain on the left-hand-side plot to show the equivalence between synchronisation and small cardinality of
pullback attractor.

for most parameter configurations. Most frequently, there is one pullback attractor, which corresponds

to the strictest definition of the generalised synchronisation regime Rulkov et al. (1995). However, there

are also parameter sets compatible with p = 2, 3 or even more pullback attractors. This is a form of

generalised synchronisation where there are different possible stable relationships between the forcing

and the response. Three tongues with p=1,2,3 are rooted at ω/ωε1 = 1, 2 and 3, respectively, suggesting

a synchronisation on the main obliquity component of the astronomical forcing of the same nature as

synchronisation on a periodic forcing. A series of other synchronisation tongues with p > 1 appear; they

correspond to 3:1 (p = 3) and 4:1 (p = 4) and even 5:1 synchronisation on the three leading components

of precession, denoted p1, p2 and p3. Consequently, the richness of the astronomical forcing effectively

widens the parameter range for which synchronisation occurs, compared to a periodic forcing. Synchro-

nisations of lower cardinality above these tongues (p = 1 or p = 2) are then interpreted as a form of

combined synchronisation on both obliquity and precession.

It is crucial to appreciate that synchronised solutions are not periodic, and unlike the periodic-forcing
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case, the different synchronised solutions for a given set of parameters are not time-shifted versions of

each other.

In practice, the idea that different synchronised solutions co-exist is of practical relevance for palaeocli-

mate theory. Namely, the set of parameters used to obtain the fit shown on Figure 2 give two distinct

solutions at t = 0 when started from a grid of initial conditions at tI =−700 ka. Sensitivity studies show

that that the choice of tb is sometimes important for estimating p. However, tests with tb as large as

200,000 ka of astronomical time suggest that several local pullback attractors may co-exist at the asymp-

totic limit of tb = ∞ for certain parameter sets. This would contradict the conjecture of Tziperman et al.

(2006).

4 Sensitivity to fluctuations : preliminary results

The stability of a solution to infinitesimal perturbations may be measured by the value of the greatest

Lyapunov exponent (λM) along the solution, averaged over time. Specifically, we consider the greatest

Lyapunov exponent characterising the growth of perturbations in the (x,y) phase space. Pecora and

Carroll (1990) call this the sub-Lyapunov exponent in a similar context. Wolf et al. (1985, sect. 3)

provide a practical numerical algorithm to estimate the greatest Lyapunov exponent from the differential

equations.

Figure 5 shows numerical estimates of λM for the periodic-forced system (eq. 1) as a function of γ

and ω/ωN . λM is strictly zero for solutions of the autonomous system, as well as for non-synchronised,

quasi-periodic solutions. These solutions are indeed neutrally stable against perturbations along the phase

direction, and stable against perturbations in the radial direction. λM is strictly negative for synchronised

solutions, including the suppression regime, because such solutions are stable against fluctuations of the

phase Nicolis (1987). It follows that λM < 0 may be used as a criteria to detect synchronisation.

In practice, though, we need to quantify to stability of solutions against fluctuations of finite ampli-

tude. The normal form of the fold bifurcation help us here to outline a connexion between the greatest

Lyapunov exponent (measuring the sensitivity to infinitesimal perturbations) and the probability of a

phase-slip (sensitivity to finite perturbations). This normal form is ẋ = x2− µ2. The greatest Lyapunov

exponent is −2µ on the stable solution. As µ decreases towards zero (equivalent to approaching the edge

of the tongue from within the tongue), the stable and unstable solutions are increasingly close to each

other. Furthermore, the height of the potential barrier that the stable solution must overcome to leave
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Figure 5: Numerical estimates of the greatest numerical Lyapunov exponent in the periodic-forced system (1). A
spin-up procedure starts at tI =−150T (T = forcing period) in order to find one attractor as well as the direction of
the greatest Lyapunov exponent at tI′ =−120T . The average greatest Lyapunov exponent is then estimated using
the procedure described by Wolf et al. (1985) over the interval [tI′ ;0]. The greatest Lyapunov exponent is here
expressed by the adimensional number λMT . Bifurcation curves as shown on Figure 3 where overlain in order to
highlight the correspondence between negative Lyapunov coefficient and synchronisation.

its basin of attraction is decreased as well. Consequently, the probability of jumping over the boundary

of the basin of attraction of the stable solution in response to a finite perturbation is increased as one

approaches the edge of the tongue. The phenomenon of jumping from one stable phase to another one in

response to a fluctuation is called phase slip by Pikovski et al. (2001, p. 238).

Consider the astronomical forcing again. To enlighten the discussion we focus on one particular pa-

rameter set for which 3 local pullback attractors were found, and we introduce the notion of basins of

attraction associated to each local pullback attractor at some time t0. These basins are defined as the

sets of initial conditions at t0 due to converge to the three respective local pullback attractors (Kloeden

(2000) provides a more formal definition). The basins are plotted on Figure 6, and on this plot are super-

imposed the sections of the three attractors at t0—they naturally lie within each of their respective basins
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of attraction.

Suppose now that the system is subject to additive fluctuations. The latter may cause a form of phase

slip by displacing the trajectory out of its basin of attraction, just as in the periodic forcing case. As a

further illustration of this idea we show on Figure 7 two sample trajectories subject to the same system

parameters as those used for Figure 2, but with additive fluctuations added to the fast variable (see

legend for details). Two phase slips are identified within 800,000 years. A trajectory which follows a

local pullback attractor is then expected to be the more stable against fluctuations as it stay away of the

limits of the basin of attraction of this attractor.

The hope is that the averaged value of λM over this solution is a suitable measure of average stability

against finite perturbations, as it is the case with the periodic forcing. We estimated here the average λM

over a same interval for the three attractors considered on Figure 6. Values for each attractor differ. This

suggests that the three attractors are not equally stable and this is a reasonable statement because they

are all different. Unfortunately, we found that estimates of the average λM depend strongly on the time

interval considered for averaging. Robustly ranking the different attractors according to their stability did

not prove to be straighforward in this particular case. A complementary article (De Saedeleer et al., to

be submitted) focuses on more time-localised measures of stability as well as on the evolving geometry

of the basins of attraction.

5 Conclusion

The cardinality of the pullback attractor is a convenient concept to diagnose and understand synchroni-

sation of a system on a quasi-periodic forcing such as the astronomical forcing. Here, we considered

a simple palaeoclimate model akin of the Van der Pol oscillator. The relevant feature of this oscillator

for palaeoclimate theory is the principle of relaxation, in which a fast responding variable (for example,

the North Atlantic overturning stream function) is coupled with a slow, time-integrating process, like the

growth of ice sheets. One seemingly robust conclusion is that the richness of the astronomical forcing

effectively widens the parameter range for which synchronisation occurs compared to a periodic forcing.

This is because synchronisation tongues originate at the harmonics of the different components of the

forcing. For low forcing amplitude the regime within these tongues is similar to a response to a periodic

forcing. As this amplitude is increased the different components of the forcing (precession and obliquity)

interact and the number of possible synchronised solutions is reduced. It is therefore conceivable that

the climate system wandered throughout preferential synchronisation regimes on obliquity, precession,
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Figure 6: Basins of attractions for astronomically-forced system at time t0 = 0 estimated as follows. Three pullback
attractors are identified at t0 based on a grid of initial conditions at tI=-1600 ka of astronomical time. The attractors
at t0 = 0 are represented as dots in the x,y phase space. Color shades represent the three sets of initial conditions
at t0 due to converge to the three pullback attractors in the future (in practice we waited until t1 = +1600 ka to
attribute each initial condition to a given attractor). Numbers are the greatest Lyapunov exponents expressed in
the adimensional form λM2π/ωε1, averaged along the three pullback attractors over the time [t0; t1]. Note that this
measure differs for each attractor, but it is also sensitive to the exact time interval considered for averaging. We
used α = 11.1, β = 0.25, γ = 0.5 and τ = 42ka, corresponding to ωε1 = 2.92ωN .

or combinations of both, as environmental parameters varied throughout the history of the Pleistocene.

The second conclusion is related: as long as the forcing is not too large different synchronised solutions

may co-exist and moderate fluctuations may effectively induce jumps between these different solutions,

equivalent to phase slips described for periodic forcing. These jumps effectively restrict the prediction

horizon of the exact course of climate evolution at theses time scales.

Throughout this study appeared a tension between the theory—concepts and theorems are valid at the

asymptotic limit t or tb→ ∞—and the practical needs of palaeoclimate theory. Indeed, it does not make

much sense to consider prediction horizons much beyond 1,000 ka in this context because the system

can no longer be assumed to be stationary. For this reason, we encourage to continue the development of

more time-local concepts, for example ’episodic’ synchronisation.
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Figure 7: The solution of eq. (1) as in Figure 2 is plotted (black) along with one sample trajectory of the same
system (red), but with dy = −τa−1(α(ψ′(y)− x))dt + bdω, with b = 0.5/

√
ωε1 and ω a Wiener-process. Arrows

show the times of the two phase slips.

Note on parameters

The reader may have noted that different parameter sets where used to produce Figures 2 and 7 than

for the other figures. α = 30 and β = 0.75 indeed give the best fit to data, but the system is then very

stiff and exploring its bifurcation structure requires algorithms specifically designed for slow-fast sys-

tems (e.g. Desroches et al., 2010) that fall beyond the focus of the present contribution. The main

conclusions are generally unchanged, but it was seen that regimes for which different pullback attrac-

tors co-exist under astronomical forcing are less frequent when β is increased. The increase in α has

little impact. The reader is encouraged to produce further diagrams using the source code available at

http://www.climate.be/ITOP..
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