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Abstract

We consider the equations describing the dynamics of radial motions for
isotropic elastic materials; these form a system of non-homogeneous con-
servation laws. We construct a variational approximation scheme that de-
creases the total mechanical energy and at the same time leads to physically
realizable motions that avoid interpenetration of matter.
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1 Introduction

The equations describing radial motions of nonlinear, isotropic, elastic ma-
terials take the form

wtt =
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)
. (1)

Here, y stands for a radial motion y(x, t) = w(R, t) xR , R = |x|, x ∈ R3, and
(1) monitors the evolution of its amplitude w(R, t). A necessary condition
for y to represent a physically realizable motion is detF > 0 with F = ∇y.
In the radial case, it dictates

wR(w/R)2 > 0 , (2)
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and is also a sufficient condition for avoiding interpenetration of matter.
The constitutive properties of hyperelastic materials are completely de-

termined by the stored energy function W (F ) : M3×3
+ → [0,∞), which -

due to frame indifference - has to be invariant under rotations. For isotropic
elastic materials W (F ) = Φ(v1, v2, v2), where Φ is a symmetric function of
the principal stretches v1, v2, v3 of F , see [14]. Convexity of the stored en-
ergy is, in general, incompatible with certain physical requirements and is
not a natural assumption. For instance, in order to avoid interpenetration
of matter the stored energy should increase without bound as detF → 0+ so
that compression of a finite volume down to a point would cost infinite en-
ergy. This behavior is inconsistent with simultaneously requiring convexity
and invariance of the stored energy under rotations. As an alternative, the
assumption of polyconvexity [1] is often employed, which postulates that

W (F ) = σ(F, cof F,detF )

with σ a convex function of the null-Lagrangian vector (F, cof F,detF ), and
encompasses certain physically realistic models (e.g.[5, Sec 4.9, 4.10] ). In
this work, we employ a specific form of polyconvex stored energy,

W (F ) = Φ(v1, v2, v3)
= φ(v1) + φ(v2) + φ(v3) + g(v2v3) + g(v1v3) + g(v1v2) + h(v1v2v3) ,

(3)

where φ, g and h are convex functions and h(δ)→ +∞ as δ → 0+.

Equation (1) may be recast as a system of inhomogeneous balance laws,

vt =
1
R2

∂

∂R
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w
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R

)
.

ut = vR

wt = v

(4)

where u = wR, and v = wt. The system admits the entropy-entropy flux
pair

R2∂t

(
v2

2
+ Φ

(
u,
w

R
,
w

R

))
− ∂R

(
R2 v

∂Φ
∂v1

(
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R
,
w

R

))
= 0 (5)

which expresses the conservation of mechanical energy along smooth solu-
tions. For polyconvex stored energies, the ”entropy”

η =
1
2
v2 + Φ

(
u,
w

R
,
w

R

)
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is not convex, what causes various difficulties in applying the general theory
of conservation laws. Nevertheless, for three-dimensional elastodynamics,
there are available nonlinear transport identities for the null-Lagrangians
[11], which allow to view the equations of elasticity as constrained evolution
of an enlarged symmetrizable system [8, 6] equipped with a relative entropy
identity [10]. The enlarged system suggests a variational approximation
scheme for polyconvex elasticity that dissipates the mechanical energy [8],
and which, in the one-dimensional case, produces entropy weak solutions [7].
Conceptually similar structures are available in models of electromagnetism
leading to augmented symmetrizable hyperbolic systems [4, 12, 13].

The above results do not take into account the constraint of positive
determinant, necessary to interpret y as a physically realizable motion. In
this article, we consider the equations of radial elasticity (1) and proceed to
devise a variational approximation scheme that on one hand preserves the
positivity of determinants (2) and on the other produces a time-discretized
variant of entropy dissipation. As in [8], the scheme is based on transport
identities for the null-Lagrangians. Null-Lagrangians are potential energies
Ψ(v1, v2, v3;R) for which the functional

I[w] =
∫ 1

0
Ψ
((
wR,

w

R
,
w

R

)
;R
)
dR (6)

has variational derivative zero. They satisfy

−∂R (Ψ,1) +R−1 (Ψ,2 + Ψ,3) = 0 for all functions w(R) . (7)

and are computed to be the functions v1, v1v2R, v1v3R or v1v2v3R
2. Along

solutions of the dynamical problem, each null-Lagrangian satisfies the trans-
port identity

∂tΨ = ∂R (Ψ,1 v) , (8)

with Ψ and Ψ,i are evaluated at Γ = (wR, w/R,w/R,R). The identities (8)
allow to embed the system (4) into the symmetrizable first-order evolution
(40) in Section 3.2.

The enlarged system, in the form (40), cannot handle the positivity of
determinants constraint. For this reason we follow an alternative strategy,
combining a change of variables suggested in Ball [3] (for the equilibrium
problem) with the idea of extensions based on null-Lagrangians, and carry
out an alternative extended system. We set ρ = R3, α = w3, β = wR/R

2,
γ = w2 and let

Ξ =
(
βρ2/3,

α

ρ
,
α

ρ
,
γ

ρ1/3
,
3γρ
2
ρ2/3,

3γρ
2
ρ2/3, αρρ

2/3

)
. (9)
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The second extension has four actual unknowns v, α, β and γ, and is the
symmetrizable system listed in (59) of Section 3.3 endowed with the entropy
pair

∂t

(
v2

2
+G(Ξ)

)
− ∂ρ

(
3ρ2/3G,i(Ξ) Ωi

,1(Γ) v
)

= 0 , (10)

where G is defined in (46) and is (assumed) convex and Γ is as in (48).
The extended system (59) is discretized in time using an implicit-explicit

scheme. It is the Euler-Lagrange equations of the variational problem: given
v0 and Ξ0 defined via α0, β0 and γ0 as in (9), minimize

I(α, β, γ, v) =
∫ 1

0

1
2

(v − v0)2 +G(Ξ) dρ (11)

over the set of admissible functions

Aλ =
{

(α, β, γ, v) ∈ X :α(0) > 0, α(1) = λ, α′ > 0 a.e. and

I(α, β, γ, v) <∞, (β − β0)
h

= 3v′,

(α− α0)
h

= 3α0
2/3v,

(γ − γ0)
h

= 2α0
1/3v

}
.

(12)

The differential constraints in (12) are affine, the condition α(1) = λ cor-
responds to the imposed boundary condition y(x) = λx, x ∈ ∂B, while
α′ > 0 secures the positivity of determinants (2). We prove the existence
and uniqueness of a minimizer for the functional I over Aλ and that the
minimizer is a weak solution to the corresponding Euler-Lagrange equations,
that is, a solution of the time-discrete scheme. The analysis of the minimiza-
tion problem (11)-(12) uses direct methods of the calculus of variations, in
the spirit of [3], with the novel element of accounting for the evolutionary
constraints in (12).

In continuum physics, weak solutions of a system of conservation laws
are required to satisfy entropy inequalities of the form

∂tη + ∂αqα ≤ 0 (13)

Such inequalities reflect irreversibility and originate from the second law of
thermodynamics. For instance, admissible shocks of the elasticity equations
are required to dissipate the mechanical energy. Accordingly, approximating
schemes are expected to respect such behaviors and produce entropy dissi-
pating solutions in the limit. The variational scheme studied here turns out
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to satisfy a discrete version of the entropy inequality(
v2

2 +G(Ξ)
)
−
(
v02

2 +G(Ξ0)
)

h
− d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ0)v
)

6 0 (14)

(see Section 4). In addition, the approximants satisfy αρ > 0 the trans-
formed version of (2). Finally, if the constructed approximants converge
pointwise as the time-step h→ 0, then the limit will satisfy the mechanical
energy dissipation inequality

∂t

(
v2

2
+G(Ξ)

)
− ∂ρ

(
3ρ2/3G,i(Ξ) Ωi

,1(Γ) v
)

6 0. (15)

The paper is organized as follows. In Section 2 we outline the derivation
of the equations of radial elasticity and list various mechanical considerations
relevant to this work. Section 3 contains a discussion of null-Lagrangians
and the properties of the two symmetrizable extensions of (4) pursued. Sec-
tion 4 introduces the time-discrete scheme and its relation to a variational
problem. In Section 5 we consider the minimization problem (11) and prove
Theorems 2 and 3 regarding existence and uniqueness of minimizers. The
Euler-Lagrange equations associated to the minimization problem are de-
rived in Theorem 4 of Section 6, and the regularity of minimizers is discussed
in Section 7. The fact that minimizers satisfy the time-discretized version
of the entropy dissipation inequality (14) is proved in Section 4.

2 Preliminaries

We consider the equations of nonlinear elasticity
ytt = divS(∇y) in B × (0,∞)

y(x, t) = λx, on ∂B × [0,∞)
det∇y > 0, (x, t) ∈ B × [0,∞)

(16)

on the unit ball B = {x ∈ Rn : |x| < 1}, subject to uniform stretching at the
boundary and initial conditions

y(x, 0) = y0(x) , yt(x, 0) = v0(x) x ∈ B (17)

In order for the geometric mapping y : B × [0,∞)→ Rn to correspond to a
physically realizable motion we have to exlude interpenetration of matter.
As a minimum requirement the condition det∇y > 0 is imposed.
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Let Mn×n be the real n× n matrices, Mn×n
+ = {F ∈Mn×n : detF > 0},

and let SO(n) denote the set of proper rotations. The Piola-Kirchhoff stress
is a mapping S : Mn×n

+ →Mn×n and for hyperelastic materials it is defined
by the formula

S(F ) = ∂W (F )/∂F. (18)

where W : Mn×n
+ → Rn is the stored-energy function of the elastic body.

We assume that the stored energy function W satisfies the physical re-
quirement of frame-indifference and that the elastic material is isotropic.
Then,

W (QF ) = W (F ) = W (FQ) ∀F ∈Mn×n
+ , Q ∈ SO(n) (19)

and (see Truesdell and Noll [14, pp 28, 317]) there exists a symmetric
function

Φ : Rn
+ = {x ∈ Rn : xi > 0 ∀i} → R

such that
W (F ) = Φ(v1, . . . , vn) ∀F ∈Mn×n

+ , (20)

where v1, . . . , vn are the singular values of F , i.e. the eigenvalues of (FTF )1/2.
We note that the symmetry of Φ implies

∂Φ
∂vi

(a, b, . . . , b) =
∂Φ
∂vj

(a, b, . . . , b), i, j > 2, a, b ∈ R+. (21)

It is easy to check that for hyperelastic, isotropic materials, frame-indifference
implies

S(QFQT) = QS(F )QT for all Q ∈ SO(n). (22)

2.1 Radial Elasticity

A function f : B\{0} → Rn is called radial if

f(x) = w(R)
x

R
, R = |x|, (23)

where w : [0,∞)→ [0,∞). The space of deformations of B is denoted by

Def p(B) = {f ∈W p
1 (B,Rn) : det∇f > 0 a.e. } .
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Lemma 1 (J. Ball [3]). Let f be a radial function defined by (23). Then
f ∈ Def p(B) if and only if w is absolutely continuous on (0, 1) and satisfies
wR(w/R)n−1 > 0 almost everywhere, and

1∫
0

(∣∣w′∣∣p + |w/R|p
)
Rn−1dR < ∞.

In this case the weak derivatives of f are given by

∇f =
w

R
I +

(
w′ − w

R

) x⊗ x
R2

a.e. x ∈ B. (24)

Our next goal is to consider the problem (16) and to recast it for radial
motions

y(x, t) = w(R, t)
x

R
for x 6= 0,

where w : [0, 1)× [0,∞)→ R satisfies w(R, t) > 0. Lemma 1 implies

∇y =
w

R
I +

(
wR −

w

R

) x⊗ x
R2

a.e. x ∈ B

and hence the eigenvalues of ∇y are expressed by

v1 = wR, v2 = ... = vn = w/R

The requirement

det∇y = wR(w/R)n−1 > 0 and (25)

dictates wR, wR > 0. We recall that v1, . . . , vn are actually the singular
values of ∇y. Then (see e.g. J.Ball [3]) the property (22) implies that the
Piola-Kirchhoff stress can be expressed as

S(∇y) = Φ,2 (wR, w/R, . . . , w/R) I +

[Φ,1 (wR, w/R, . . . , w/R)− Φ,2 (wR, w/R, . . . , w/R)]
x⊗ x
R2

.

The system (16) for radial motions takes the form

Rn−1∂ttw =
∂

∂R

(
Rn−1Φ,1(wR, . . . , w/R)

)
−Rn−2

n∑
i=2

Φ,i(wR, . . . , w/R)

w(1) = λ, w > 0, wR (w/R)n−1 > 0, (R, t) ∈ (0, 1)× [0,∞).
(26)

of a second order equation describing the evolution of w(R, t) subject to
the constraint (26)2, that expresses the requirement that matter cannot
interpenetrate unto itself.
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2.2 Polyconvex Stored Energy for n = 3

From now on we fix the number of dimensions to n = 3 and assume that
the stored energy W : M3×3

+ → R3 is polyconvex , that is

W (F ) = ¯̄G (F, cof F,detF )

for some convex function ¯̄G : M3×3
+ ×M3×3

+ × R+ → R.
By the polar decomposition theorem any matrix F ∈M3×3

+ is expressed
in the form F = RU with R ∈ SO(3) and U = +

√
F TF . Further, U =

QTdiag(v1, v2, v3)Q where Q is the orthogonal matrix of eigenvectors and
v1, v2, v3 are the eigenvalues of U . The properties (19) of isotropy and frame-
indifference imply

W (F ) = ¯̄G

v1

v2

v3

 ,
v2v3

v1v3

v1v2

 , v1v2v3


=: Ḡ (v1, v2, v3, v2v3, v1v3, v1v2, v1v2v3)

where Ḡ(Ξ) is a convex function of Ξ = (ξ)i=1...7 ∈ R7.
For reasons related to the null-Lagrangian structure of an associated

variational problem (outlined in the following section) the stored energy
will be expressed in the form

W (∇y) = Φ
(
wR,

w

R
,
w

R

)
= Ḡ

(
wR,

w

R
,
w

R
,
(w
R

)2
, wR

(w
R

)
, wR

(w
R

)
, wR

(w
R

)2)
= G

(
Ω
((
wR,

w

R
,
w

R

)
;R
)

;R
) (27)

where Ω and G are inhomogeneous functions defined by

Ω(V ;R) :=
(
v1, v2, v3, v2v3R, v1v3R, v1v2R, v1v2v3R

2
)
. (28)

G(Ξ;R) := Ḡ
(
ξ1, ξ2, ξ3, ξ4/R, ξ5/R, ξ6/R, ξ7/R

2
)
. (29)

with V = (vi)i=1...3 ∈ R3 and Ξ = (ξ)i=1...7 ∈ R7. The convexity hypothesis
on ¯̄G implies that G(Ξ;R) is convex as a function of Ξ ∈ R7. In summary,
we write

W (∇y) = Φ
(
wR,

w

R
,
w

R

)
= G(Ω(Γ;R);R), (30)

where Γ =
(
wR,

w

R
,
w

R

)
. (31)
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For simplicity of notation, we henceforth suppress the dependence on R and
write Ω(V ) = Ω(V ;R) and G(Ξ) = G(Ξ;R).

For three dimensional motions, (26) is rewritten as a first order system

R2∂tv =
∂

∂R

(
R2Φ,1

(
wR,

w

R
,
w

R

))
−R (Φ,2 + Φ,3)

(
wR,

w

R
,
w

R

)
∂tw = v

(32)

which formally satisfies the conservation of mechanical energy identity

∂t

(
R2
(v2

2
+ Φ (wR, w/R,w/R)

))
= ∂R

(
R2vΦ,1 (wR, w/R,w/R)

)
. (33)

The mechanical energy provides an entropy-entropy flux pair for (32) but
the entropy is not in general convex. Using (30)-(31), the derivatives Φj ,
j = 1, 2, 3, are expressed as

Φ,j(v1, v2, v3) =
∂

∂vj
G(Ω(V )) =

∂G

∂ξi
(Ω(V ))

∂Ωi

∂vj
(V ),

and (32)1 is written as

R2 ∂tv = ∂R

(
R2∂G

∂ξi
(Ω(Γ))

∂Ωi

∂v1
(Γ)
)

−R ∂G

∂ξi
(Ω(Γ))

(
∂Ωi

∂v2
(Γ) +

∂Ωi

∂v3
(Γ)
) (34)

3 Null-Lagrangians and extensions of polyconvex
radial elasticity

3.1 Null-Lagrangians

An alternative approach to derive (33) proceeds by considering the extrema
of the action functional

J [y] =
∫ T

0

∫ 1

0

(
1
2
w2
t − Φ

(
wR,

w

R
,
w

R

))
R2 dRdt

and deriving (26) (for n = 3) as the associated Euler-Lagrange equations.
This provides a connection with the calculus of variations.

Consider the functional associated to the equilibrium problem

I[w] =

1∫
0

Ψ (wR, w/R,w/R ;R) dR

9



We ask for which functions Ψ (v1, v2, v3;R) : R4 → R the functional I admits
variational derivative δI

δw = 0; such integrands are called null Lagrangians
and they satisfy the Euler-Lagrange equation

−∂R (Ψ,1) +R−1 (Ψ,2 + Ψ,3) = 0 for all functions w(R) . (35)

If w = w(R, t) also depends on time, the evolution of a null Lagrangian Ψ
is described by

∂tΨ = ∂R (Ψ,1 ∂tw) . (36)

where Ψ and Ψ,i are evaluated at (wR, w/R,w/R,R).

It is easily verified that Ψ(v1, v2, v3;R) selected by

v1, v1v2R, v1v3R, or v1v2v3R
2

are null-Lagrangians. Applying (35) to Ωi, i = 1, 5, 6, 7, defined by (28) we
get

−∂R
(
Ωi
,1(Γ)

)
+R−1

(
Ωi
,2(Γ) + Ωi

,3(Γ)
)

= 0, i = 1, 5, 6, 7, (37)

with Γ = (wR, w/R,w/R) defined by (31).

3.2 A symmetrizable extension

The null-Lagrangian structure is used in [8] to embed the equations of 3-
d elastodynamics to a hyperbolic system endowed with a convex entropy,
and to construct a variational approximation scheme for the problem. We
follow this procedure in order to achieve an augmented system for radial
elastodynamics. The evolution in time of

Ω(Γ) =
(
wR, w/R,w/R,w

2/R,wRw,wRw,wRw
2
)
, (38)

gives

∂t Ω1(Γ) = ∂t (wR) = ∂Rv = ∂R
(
Ω1
,1(Γ)v

)
∂t Ωi(Γ) = ∂t (w/R) = v/R = R−1

(
Ωi
,2(Γ) + Ωi

,3(Γ)
)
v for i = 2, 3

∂t Ω4(Γ) = ∂t
(
w2/R

)
= 2(w/R)v = R−1

(
Ω4
,2(Γ) + Ω4

,3(Γ)
)
v

∂t Ωi(Γ) = ∂t (wRw) = ∂R(wv) = ∂R
(
Ωi
,1(Γ)v

)
for i = 5, 6

∂t Ω7(Γ) = ∂t
(
wRw

2
)

= ∂R(w2v) = ∂R
(
Ω7
,1(Γ)v

)
.

(39)

Note that (39)1,5,6,7 are precisely the equations (36) describing the evolution
of null Lagrangians. By contrast, (39)2,3,4 describe the evolution of lower-
order terms and do not have the structure of (36).
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Equations (39) and (34) motivate an extension of radial elasticity :

R2∂tv = ∂R

(
R2∂G

∂ξi
(Ξ)

∂Ωi

∂v1
(ξ)
)
−R∂G

∂ξi
(Ξ)

(
∂Ωi

∂v2
(ξ) +

∂Ωi

∂v3
(ξ)
)

∂tξi = ∂R
(
Ωi
,1(ξ)v

)
i = 1, 5, 6, 7

∂tξi = R−1
(
Ωi
,2(ξ) + Ωi

,3(ξ)
)
v i = 2, 3, 4

ξ1 = ∂R(Rξ2) , ξ2 = ξ3

(40)

ξ2(1) = ξ3(1) = λ, ξ2, ξ3 > 0, ξ7 > 0, (R, t) ∈ (0, 1)× [0,∞), (41)

System (40) describes the evolution of the vector (v,Ξ) where Ξ ∈ R7 and
ξ = (ξ1, ξ2, ξ3) are the first three components of Ξ.

The extension has the following properties:

(i) The constraint (40)4 enforces that ξ is of the form ξ = (wR, w/R,w/R)
for some function w(R, t) (similarly to Γ in (31)). Moreover, (40)4 is an
involution: if it is satisfied for the initial data, the constraint is propagated
and is satisfied for all times.
(ii) If Ξ(·, 0) = Ω(Γ0) where Γ0 = (f ′, f/R, f/R) for some f = f(R), then
Ξ(R, t) retains the same format for all times, i.e. there exists w such that
Ξ = Ω(Γ) where Γ = (wR, w/R,w/R). In other words, radial elasticity (32)
can be viewed as a constrained evolution of (40).
(iii) The enlarged system admits an entropy pair

∂t

(
R2

(
v2

2
+G(Ξ)

))
− ∂R

(
R2 ∂G

∂ξi
(Ξ)

∂Ωi

∂v1
(Z) v

)
= 0 (42)

with strictly convex entropy

η(v,Ξ) =
v2

2
+G(Ξ). (43)

Let us remark that η is not an entropy in the usual sense of the theory of
conservation laws: the identity (42) is based on the constraint (40)4 together
with the property (37) of null Lagrangians.

3.3 An alternative extension with a convex entropy

System (40) provides an extension of radial elasticity that is endowed with a
convex entropy. Concerning the objective of achieving a variational approx-
imation, it has the drawback that the constraint (41) of positivity for the
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variables ξ2, ξ3 and ξ7 is not preserved at the level of time-step approxima-
tions. Although one can control the positivity ξ7 (the augmented variable
standing for the determinant), it is not possible to control the positivity of
ξ2,ξ3. There are also difficulties in proving that minimizers satisfy the corre-
sponding Euler-Lagrange equations, the time-discretized system associated
to (40).

For this reason, we develop an alternative extension by combining the
evolution of null-Lagrangians with a change of variables used in Ball [3] for
the equilibrium problem. This extension induces a variational approxima-
tion scheme that preserves the positivity of determinants.

The stored energy Φ is expressed in the form

Φ (v1, v2, v3) = Ḡ (v1, v2, v3, v2v3, v1v3, v1v2, v1v2v3)
= G(Ω(V ; ρ) ; ρ)

(44)

where Ω and G are nonhomogeneous functions of ρ that are redefined so
that

Ω(V ; ρ) :=
(
v1, v

3
2, v

3
3, v2v3ρ

1/3, v1v3ρ
1/3, v1v2ρ

1/3, v1v2v3ρ
2/3
)

(45)

G(Ξ; ρ) := Ḡ
(
ξ1, ξ

1/3
2 , ξ

1/3
3 , ξ4/ρ

1/3, ξ5/ρ
1/3, ξ6/ρ

1/3, ξ7/ρ
2/3
)
. (46)

It is now assumed that G(Ξ; ρ) is a convex function of Ξ; this is a somewhat
stronger hypothesis than polyconvexity (which is convexity of Ḡ) because
of the defenition of Ωi(V ; ρ), i = 2, 3, in (45). In the sequel any explicit
ρ-dependence will be suppressed.

3.3.1 A change of variables

Following [3] we perform the change of variables

ρ = R3 and α = w3. (47)

Then Γ = (wR, w/R,w/R) is expressed as

Γ = (αρ(ρ/α)2/3, (α/ρ)1/3, (α/ρ)1/3) (48)

and the stored energy reads

W (∇y) = Φ
(
αρ(ρ/α)2/3, (α/ρ)1/3, (α/ρ)1/3

)
= G(Ω(Γ; ρ) ; ρ)

(49)
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where Ω and G are defined in (45), (46), and G(·; ρ) is convex.
The system (32) takes the form

∂tv = ∂ρ

(
3ρ2/3∂G

∂ξi
(Ω(Γ))

∂Ωi

∂v1
(Γ)
)

− ρ−1/3 ∂G

∂ξi
(Ω(Γ))

(
∂Ωi

∂v2
(Γ) +

∂Ωi

∂v3
(Γ)
)

∂t(α1/3) = v

α(1) = λ, α > 0, αρ > 0, (R, t) ∈ (0, 1)× [0,∞).

(50)

with the last inequalities encoding the constraints for solutions to represent
elastic motions. In the new variables, by (45),

Ω(Γ) =

(
αρ

α2/3
ρ2/3,

α

ρ
,
α

ρ
,
α2/3

ρ1/3
,
αρ

α1/3
ρ2/3,

αρ

α1/3
ρ2/3, αρρ

2/3

)
(51)

and, using (50)2 we compute

∂t Ω1(Γ) = ∂t

(
3ρ2/3∂ρ(α1/3)

)
= 3ρ2/3∂ρv

∂t Ωi(Γ) = ∂t (α/ρ) = 3α2/3v/ρ i = 2, 3

∂t Ω4(Γ) = ∂t

(
α2/3/ρ1/3

)
= 2α1/3v/ρ1/3

∂t Ωi(Γ) = ∂t

(
(3/2)ρ2/3∂ρ(α2/3)

)
= 3ρ2/3∂ρ

(
α1/3v

)
i = 5, 6

∂t Ω7(Γ) = ∂t

(
αρρ

2/3
)

= 3ρ2/3∂ρ(α2/3v)

(52)

These equations are summarized in two groups

∂tΩi(Γ) = 3ρ2/3∂ρ(Ωi
,1(Γ)v), i = 1, 5, 6, 7

∂tΩi(Γ) = ρ−1/3(Ωi
,2(Γ) + Ωi

,3(Γ))v , i = 2, 3, 4 ,
(53)

the former representing the evolution of null-Lagrangians and the latter
the evolution of lower order terms. The identities (37) satisfied by null-
Lagrangians become

−3ρ2/3∂ρ
(
Ωi
,1(Γ)

)
+ ρ−1/3

(
Ωi
,2(Γ) + Ωi

,3(Γ)
)

= 0, i = 1, 5, 6, 7. (54)
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3.3.2 The augmented system

Next, consider the augmented system

∂tv = ∂ρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ)
)
− ρ−1/3G,i(Ξ)

(
Ωi
,2(Γ) + Ωi

,3(Γ)
)

∂tα
1/3 = v

∂tξi = 3ρ2/3∂ρ
(
Ωi
,1(Γ)v

)
, i = 1, 5, 6, 7

∂tξi = ρ−1/3
(
Ωi
,2(Γ) + Ωi

,3(Γ)
)
v, i = 2, 3, 4

ξ1 = 3ρ2/3∂ρα
1/3

(55)

This is viewed as a first-order system (55)1-(55)4 describing the evolution
of the vector (v, α,Ξ) subject to the constraint (55)5. It has the following
properties:

(a) The constraint (55)5 is propagated by the evolution from the initial
data, since ∂t(ξ1− 3ρ2/3∂ρα

1/3) = 0. We may thus write Ω(Γ), with Γ
as in (48), and still think of (55) as a first order system.

(b) If Ξ(·, 0) = Ω(Γ0) with Γ0 =
(
f ′(ρ/f)2/3, (f/ρ)1/3, (f/ρ)1/3

)
for f =

f(ρ), it remains in this form ∀t, i.e. there exists α(ρ, t) such that Γ
defined by (48) satisfies Γ(., 0) = Γ0 and Ξ = Ω(Γ) ∀t. In other words,
radial elasticity (26) can be viewed as a constrained evolution of (55).

(c) The enlarged system admits an entropy pair

∂t

(
v2

2
+G(Ξ)

)
− ∂ρ

(
3ρ2/3G,i(Ξ) Ωi

,1(Γ) v
)

= 0 (56)

with (for convex G) strictly convex entropy η(v,Ξ) = v2

2 +G(Ξ).

At this point we set

β = αρ/α
2/3 and γ = α2/3

Ξ =
(
βρ2/3,

α

ρ
,
α

ρ
,
γ

ρ1/3
,
3γρ
2
ρ2/3,

3γρ
2
ρ2/3, αρρ

2/3

)
, (57)

and proceed to simplify the extended system working with α, β, γ, v as the
independent variables.

Taking a closer look at the extended system we see that ξ2 = ξ3 by
construction and hence equations (55)2, i = 2, 3 are identical. Moreover,

∂tξ2 = 3α2/3v/ρ ⇒ ∂tξ7 = ρ2/3∂ρ(ρ ∂tξ2),

∂tξ4 = 2α1/3v/ρ1/3 ⇒ ∂tξ5 = ∂tξ6 =
3
2
ρ2/3∂ρ

(
ρ1/3∂tξ4

)
.

(58)
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Hence (55) is overdetermined and extra equations (55)2, i = 5, 6, 7 and (55)3,
i = 3 can be excluded. In explicit form the extension is written as

∂t v = ∂ρ

(
3ρ2/3G,i(Ξ) Ωi

,1(Γ)
)
− ρ−1/3G,i(Ξ)

(
Ωi
,2(Γ) + Ωi

,3(Γ)
)

∂tβ = ∂ρ(3v)

∂tα = 3α2/3v

∂tγ = 2α1/3v

α(1) = λ, α > 0, αρ > 0, (ρ, t) ∈ (0, 1)× [0,∞),

(59)

where from (59)3 and (59)4 we can derive the excluded equations

∂tαρ = ∂ρ(3α2/3v)

∂tγρ = ∂ρ(2α1/3v).
(60)

4 Variational Approximation Scheme

In this section we introduce a variational approximation scheme for the
radial equation of elastodynamics. The general approach is to discretize the
extended system by use of implicit-explicit scheme.

Successive iterates are constructed by discretizing (55) as follows: given
the (j − 1)th iterate (α0, β0, γ0, v0) with α0(ρ) > 0 and α′0(ρ) > 0, ρ ∈ (0, 1)
we define Ξ0 = (ξ0

i )7
i=1 by

Ξ0(ρ) =
(
β0ρ

2/3,
α0

ρ
,
α0

ρ
,
γ0

ρ1/3
,
3γ′0
2
ρ2/3,

3γ′0
2
ρ2/3, α′0ρ

2/3

)
(61)

and construct the jth iterate (α, β, γ, v) with corresponding Ξ = (ξi)7
i=1

defined by

Ξ(ρ) =
(
βρ2/3,

α

ρ
,
α

ρ
,
γ

ρ1/3
,
3γ′

2
ρ2/3,

3γ′

2
ρ2/3, α′ρ2/3

)
(62)

by solving

(v − v0)/h =
d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ0)
)

− ρ−1/3G,i(Ξ)
(
Ωi
,2(Γ0) + Ωi

,3(Γ0)
)

(ξi − ξ0
i )/h = 3ρ2/3 d

dρ

(
Ωi
,1(Γ0)v

)
, i = 1, 5, 6, 7

(ξi − ξ0
i )/h = ρ−1/3

(
Ωi
,2(Γ0) + Ωi

,3(Γ0)
)
v, i = 2, 3, 4

ξ2(1) = ξ3(1) = λ, ξ2, ξ3 > 0, ξ7 > 0, ρ ∈ (0, 1),

(63)
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where,
Γ = (α′(ρ/α)2/3, (α/ρ)1/3, (α/ρ)1/3) (64)

and
Γ0 = (α′0(ρ/α0)2/3, (α0/ρ)1/3, (α0/ρ)1/3). (65)

As in the continuous case the discrete system (63) is over determined
with extra equations (

αρ − α0ρ

)
/h =

d

dρ

(
3α0

2/3v
)

(
γρ − γ0ρ

)
/h =

d

dρ

(
2α0

1/3v
) (66)

corresponding to (63)2, i = 5, 6, 7. Excluding them from the system above
we get 

(v − v0) /h =
d

dρ

(
3ρ2/3G,i(Ξ) Ωi

,1(Γ0)
)

− ρ−1/3G,i(Ξ)
(
Ωi
,2(Γ0) + Ωi

,3(Γ0)
)

(β − β0) /h =
d

dρ
(3v)

(α− α0) /h = 3α0
2/3v

(γ − γ0) /h = 2α0
1/3v

α(1) = λ, α > 0, α′ > 0, ρ ∈ (0, 1),

(67)

where we note that equations (66) could be obtained from (67)3,4.

Time-step approximations capture a subtle form of dissipation associated
with the undelying variational structure and the convexity of the entropy,
[7, 8]. Indeed, solutions of (67) satisfy a discrete entropy inequality: To see
that, consider a smooth solution (Ξ, v) of (63) associated to smooth data
(Ξ0, v0) given by (61). Multiplying (63)1 by v we get

v(v − v0)
h

+G,i(Ξ)
(

3ρ2/3Ωi
,1(Γ0)

dv

dρ
+ ρ−1/3

(
Ωi
,2(Γ0) + Ωi

,3(Γ0)
)
v

)
=

d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ0)v
)
.

(68)

Then denoting

Ai = 3ρ2/3Ωi
,1(Γ0)

dv

dρ
+ ρ−1/3

(
Ωi
,2(Γ0) + Ωi

,3(Γ0)
)
v, i = 1, . . . , 7 (69)
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we claim

Ai =
ξi − ξ0

i

h
. (70)

Indeed, for i = 2, 3, 4 we have Ωi
,1 = 0 and hence (63)3 and (69) imply (70).

For i = 1, 5, 6, 7 by the properties (54) of null Lagrangians and (63)2 we get

Ai = v

(
−3ρ2/3 d

dρ

(
Ωi
,1(Γ0)

)
+ ρ−1/3

(
Ωi
,2(Γ0) + Ωi

,3(Γ0)
))

+ 3ρ2/3 d

dρ

(
Ωi
,1(Γ0)v

)
=
(
ξi − ξ0

i

)
/h, i = 1, 5, 6, 7.

(71)

Thus (68) and (70) imply

1
h

(
v(v − v0) +G,i(Ξ)

(
ξi − ξ0

i

))
=

d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ0)v
)
.

Now, we denote Θ = (v,Ξ) and Θ0 = (v0,Ξ0). Then η = 1/2v2 + G(Ξ)
satisfies

1
h
Dη ·

(
Θ−Θ0

)
− d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ0)v
)

= 0.

For G convex the following identity holds

η(Θ)− η(Θ0)
h

− d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ0)v
)

6 0. (72)

Remark 1. The second extension (59) has the property that the associated
discretized system (67) propagates the relation

ξ7 = ∂ρ (ξ2ρ) ρ2/3 (73)

provided that ξ0
7 = ∂ρ

(
ξ0

2ρ
)
ρ2/3. This property is essential in showing that

a minimizer associated with the functional

I(α, β, γ, v) =
∫ 1

0

1
2

(v − v0)2 +G(Ξ) dρ

solves the discrete system (63).

Remark 2. We have not studied in this article the convergence as the
time-step h→ 0. For the three-dimensional elasticity equations this process
produces measure-valued solutions [8] while for one-dimensional elasticity
it gives entropy weak solutions [7]. In the present case we would expect
to obtain weak solutions, but the compactness properties of (4) are not at
present sufficiently understood to have such a result. Nevertheless, if the
iterates uh, vh converge strongly, the discrete entropy inequality (72) gives
a weak solution dissipating the mechanical energy.
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5 Existence of minimizers

Henceforth, we consider stored-energy functions (44) of the form

Φ(v1, v2, v3) = Ḡ(v1, v2, v3,2 v3, v1v3, v1v2, v1v2v3)
= ϕ(v1) + ϕ(v2) + ϕ(v3) + g(v2v3) + g(v1v3) + g(v1v2) + h(v1v2v3).

(74)

Then, the function G defined in (46) reads

G(Ξ; ρ) = ϕ(ξ1) + ϕ
(
ξ

1/3
2

)
+ ϕ

(
ξ

1/3
3

)
+ g

(
ξ4ρ

1/3
)

+ g
(
ξ5ρ

1/3
)

+ g
(
ξ6ρ

1/3
)

+ h(ξ7ρ
2/3).

(75)

Now, define ψ(x) = ϕ(x1/3). Then, with Ξ defined in (62), the above is
expressed by

G(Ξ) = ϕ(βρ2/3) + 2ψ (α/ρ) + g
(
γ/ρ2/3

)
+ 2g

(
3γ′ρ1/3/2

)
+ h(α′). (76)

We place the following assumptions on the functions ϕ, ψ, g, h appearing
above:

(A1) limδ→0+ h(δ) = limδ→+∞ h(δ)/δ = +∞;

(A2) ϕ,ψ, g ∈ C2(R) and h ∈ C2(R+) satisfy

ϕ,ψ, g, h, ϕ′′, ψ′′, g′′ > 0 and h′′ > 0; (77)

(A3) For 1 < p, q <∞ and some constants c1, c2 > 0

lim
x→∞

ϕ(x)
|x|3p

= lim
x→∞

ψ(x)
|x|p

= c1 , lim
x→∞

g(x)
|x|q

= c2; (78)

(A4) For 1 < p, q <∞ as in (A3) and C1, C2, C3 > 0

lim sup
x→∞

|ϕ′(x)|
|x|3p−1

≤ C1 lim sup
x→∞

|ψ′(x)|
|x|p−1

≤ C2 , lim sup
x→∞

|g′(x)|
|x|q

≤ C3;

(79)

In particular, G is convex.
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We define spaces of functions on the interval ρ ∈ (0, 1)

X1 =
{
f(ρ) ∈W 1,1(0, 1) : f/ρ ∈ Lp(0, 1)

}
,

X2 =
{
f(ρ) ∈ L1

loc(0, 1) : fρ2/3 ∈ L3p(0, 1)
}
,

X3 =
{
f(ρ) ∈W 1,1

loc (0, 1) : f/ρ2/3 ∈ Lq, f ′ρ1/3 ∈ Lq(0, 1)
}
,

Y =
{
f(ρ) ∈W 1,1

loc (0, 1) : f ∈ L2, f ′ρ2/3 ∈ L3p(0, 1)
}
,

and

X = X1 ⊗X2 ⊗X3 ⊗ Y.

We fix a parameter λ > 0 and for the initial data (α0, β0, γ0, v0) ∈ X we
require 

α0(1) = λ and α0 > 0, α′0 > 0 a.e. ρ ∈ (0, 1)

and

1∫
0

1
2
v0

2 +G(Ξ0) dρ < ∞
(80)

Consider the problem of minimizing the functional

I(α, β, γ, v) =

1∫
0

1
2

(v − v0)2 +G(Ξ) dρ

=

1∫
0

1
2

(v − v0)2 + ϕ(βρ2/3) + 2ψ (α/ρ)

+ g
(
γ/ρ2/3

)
+ 2g

(
3γ′ρ1/3/2

)
+ h(α′) dρ

(81)

over the admissible set

Aλ = {(α, β, γ, v) ∈ X :α(0) > 0, α(1) = λ, α′ > 0 a.e. and

I(α, β, γ, v) <∞, (β − β0)
h

= 3v′,

(α− α0)
h

= 3α0
2/3v,

(γ − γ0)
h

= 2α0
1/3v}.

(82)

We note that I is well-defined for (α, β, γ, v) ∈ X with α′ > 0 a.e. ρ ∈ (0, 1)
though might be equal to ∞.

Lemma 2. The admissible set Aλ is nonempty.

19



Proof. Take (α, β, γ, v) = (α0, β0, γ0, 0) ∈ X. Then (80) implies α(0) > 0,
α(1) = λ, α′ > 0 a.e. and

I(α, β, γ, v) =

1∫
0

1
2
v0

2 +G(Ξ0) dρ < ∞.

Moreover the following holds: (β − β0)/h = 0 = 3v′, (α − α0)/h = 0 =
3α0

2/3v, and (γ − γ0)/h = 0 = 2α0
1/3v. Hence (α, β, γ, v) ∈ Aλ.

Lemma 3 (I-bounded sequences). Let {(αn, βn, γn, vn)}n∈N ⊂ Aλ and

M = sup
n∈N

I(αn, βn, γn, vn) < ∞. (83)

Then ∃ (α, β, γ, v) ∈ X and a subsequence {(αµ, βµ, γµ, vµ)} s.t.

αµ ⇀ α in W 1,1, αµ/ρ ⇀ α/ρ in Lp,

γµ/ρ
2/3 ⇀ γ/ρ2/3 in Lq, γ′µρ

1/3 ⇀ γ′ρ1/3 in Lq,

vµ ⇀ v in L2, v′µρ
2/3 ⇀ v′ρ2/3 in L3p,

βµρ
2/3 ⇀ βρ2/3 in L3p.

(84)

Proof. First, αn > 0, α′n > 0 a.e. and αn(1) = λ imply that |αn| 6 λ.
Second, from (83) it follows

∫ 1
0 h(α′n) dρ < M, ∀n. In this case by de la

Vallée Poussin criterion there exist α ∈ W 1,1 and a subsequence {αs} of
{αn} such that αs ⇀ α weakly in W 1,1.

Further, by (A3) there exist constants C1, C2 s.t. ϕ(x) > C1|x|3p − C2,
ψ(x) > C1|x|p − C2 and g(x) > C1|x|q − C2 and hence

M > I(αs, βs, γs, vs) >

1∫
0

1
2

(vs − v0)2 dρ

+ C1

1∫
0

|βsρ2/3|3p + 2|αs/ρ|p + |γs/ρ2/3|q +
3
2
|γ′sρ1/3|q dρ− 4C2

(85)

for all indices s. Then 1 < p, q < ∞ and inequality above imply that
α/ρ ∈ Lp and there exist β ∈ X2, γ ∈ X3, and v ∈ L2 and a subsequence
{αµ, βµ, γµ, vµ} of {αs, βs, γs, vs} such that (84)2,3,4,5,6 hold.

20



Finally, as (αµ, βµ, γµ, vµ) ∈ Aλ we have 3v′µρ
2/3 = (βµ − β0)ρ2/3/h.

Then by (84)3 we get 3v′µρ
2/3 ⇀ (β − β0)ρ2/3/h in L3p. Then by (84)6 for

each f ∈ C∞0 (0, 1)∫ 1

0
vf ′ dρ = lim

µ→∞

∫ 1

0
vµf

′ dρ

= − lim
µ→∞

∫ 1

0
v′µf dρ = −

∫ 1

0

1
3h

(β − β0)f dρ
(86)

and hence v′ = (β − β0)/3h. Therefore v ∈ Y and v′µρ
2/3 ⇀ v′ρ2/3.

Theorem 1 (Lower semi-continuity). Let {(αn, βn, γn, vn)}n∈N ⊂ Aλ,
(α, β, γ, v) ∈ X satisfy (83) and (84). Then (α, β, γ, v) ∈ Aλ and

I(α, β, γ, v) 6 lim inf
n→∞

I(αn, βn, γn, vn) = s <∞. (87)

Proof. By hypothesis 0 6 In = I(αn, βn, γn, vn) 6 M , ∀n ∈ N and thus
s < ∞. Recall that αn ⇀ α weakly in W 1,1 and along a subsequence
uniformly on C[0, 1]. Since αn(1) = λ we obtain that α(1) = λ. Moreover,

lim
n→∞

∫ 1

0
α′nχ{α′<0} dρ =

∫ 1

0
α′χ{α′<0} dρ. (88)

Since α′n > 0 a.e. we obtain
∫ 1

0 α′χ{α′<0} dρ > 0, and thus m {α′ < 0} = 0.

Now, denote A = {ρ ∈ (0, 1) : α′ = 0} and show that m(A) = 0. We will
argue by contradiction. Assume that m(A) = ε > 0. Then (84) implies

lim
n→∞

∫ 1

0
α′nχA dρ =

∫ 1

0
α′χA dρ = 0. (89)

Then, as α′n > 0 a.e., limn→∞
∫ 1

0 |α
′
nχA| dρ = 0. Hence α′nχA → 0 in L1.

We extract a subsequence
{
α′nk
}

such that α′nkχA → 0 a.e. ρ ∈ (0, 1).
Now, by Egoroff’s theorem there exists a measurable set B ⊂ A such that
m (B) > ε/2 and α′nk → 0 uniformly on B. Next, observe that∫ 1

0
h(α′nk)dρ ≥

∫
B
h(α′nk)dρ ≥ m(B)

(
inf
ρ∈B

h(α′nk)
)

=: m(B)µnk

Since µnk →∞ this contradicts (83). We conclude that m(A) = 0.
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Next we prove α > 0 a.e. ρ ∈ (0, 1). Again (84)1 implies

lim
n→∞

∫ 1

0
αnχ{α<0} dρ =

∫ 1

0
αχ{α<0} dρ ≥ 0 , (90)

and thus m {α < 0} = 0. This concludes that α satisfies all restrictions of
membership in Aλ.

Next, by (A2) we get

ϕ(βnρ2/3) > ϕ(βρ2/3) + ϕ′(βρ2/3)(βn − β)ρ2/3,

ψ (αn/ρ) > ψ (α/ρ) + ψ′ (α/ρ) (αn − α)/ρ,

g
(
γn/ρ

2/3
)

> g
(
γ/ρ2/3

)
+ g′

(
γ/ρ2/3

)
(γn − γ)/ρ2/3,

g
(

3γ′nρ
1/3/2

)
> g

(
3γ′ρ1/3/2

)
+ g′

(
3γ′ρ1/3/2

)
(γ′n − γ)3ρ1/3/2

(91)

a.e. ρ ∈ (0, 1). As (α, β, γ, v), (αn, βn, γn, vn) ∈ X, from (A3) it follows that
the right hand side of each of the inequalities in (91) are integrable and

ϕ′(βρ2/3) ∈ L
3p

3p−1 , ψ′ (α/ρ) ∈ L
p
p−1 ,

and g′
(
γ/ρ2/3

)
, g′
(

3γ′nρ
1/3/2

)
∈ L

q
q−1 .

(92)

Take an arbitrary 0 < δ < 1 and set Aδ = {ρ ∈ (0, 1) : δ 6 α′ 6 1/δ}.
Then by (A2)

h(α′n) > h(α′)χAδ + h′(α′)(α′n − α′)χAδ a.e. ρ ∈ (0, 1). (93)

Moreover, (A1) and (A2) together imply

0 6 h(α′)χAδ + |h′(α′)|χAδ
6 2 max(h(δ), h(1/δ), |h′(δ)|, |h′(1/δ)|).

Hence
h(α′)χAδ , h

′(α′)χAδ ∈ L
∞. (94)

and we conclude that the right hand side of (93) is integrable.

Finally,

(vn − v0)2 > (v − v0)2 + 2(v − v0)(vn − v) a.e. ρ ∈ (0, 1), (95)

where right hand side is integrable as v, vn, v0 ∈ L2.
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Following the discussion above, (91)-(95) imply

In >
∫ 1

0

1
2

(v − v0)2 + ϕ(βρ2/3) + 2ψ (α/ρ)

+ g
(
γ/ρ2/3

)
+ 2g

(
3γ′ρ1/3/2

)
dρ+

∫ 1

0
h(α′)χAδ dρ

+
∫ 1

0
(v − v0)(vn − v) + ϕ′(βρ2/3)(βn − β)ρ2/3

+ 2ψ′ (α/ρ) (αn − α)/ρ+ g′
(
γ/ρ2/3

)
(γn − γ)/ρ2/3

+ g′
(

3γ′ρ1/3/2
)

(γ′n − γ)3ρ1/3 + h′(α′)χAδ(α
′
n − α′) dρ

= J + Jδ + Jn.

Then, letting n→∞ in the inequality above, we obtain

∞ > s = lim inf
n→∞

In > J + Jδ + lim inf
n→∞

Jn.

Now from (84), (92), (94), and v − v0 ∈ L2 it follows that limn→∞ Jn = 0
and hence

∞ > s = lim inf
n→∞

In > J +
∫ 1

0
h(α′)χAδ dρ. (96)

Now, as α′ > 0 a.e. ρ ∈ (0, 1) and α′ ∈ L1, the set {α′ = 0}
⋃
{α′ =∞} is

of measure zero and hence

lim
δ→0+

h(α′)χAδ = h(α′)χ{0<α′<∞} = h(α′) a.e. ρ ∈ (0, 1). (97)

Finally, let δ → 0+. Then from (96), (97) and Monotone Convergence
Theorem it follows

∞ > s = lim inf
n→∞

In > J +
∫ 1

0
h(α′) dρ = I(α, β, γ, v)

and hence (87) holds. Since (αn, βn, γn, vn) ∈ Aλ, and the other constraints
are linear, one easily checks that the limiting (α, β, γ, v) ∈ Aλ.

Theorem 2 (Existence). There exists (α, β, γ, v) ∈ Aλ satisfying

I(α, β, γ, v) = inf
Aλ
I(ᾱ, β̄, γ̄, v̄). (98)
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Proof. As Aλ is nonempty, we can set s = infAλ I(ᾱ, β̄, γ̄, v̄). Then by
definition of Aλ we have I(ᾱ, β̄, γ̄, v̄) < ∞ for each (ᾱ, β̄, γ̄, v̄) ∈ Aλ. This
implies that s is finite.

Next, by definition of s there exists {(αn, βn, γn, vn)}n∈N ∈ Aλ such
that limn→∞ In = s with In = I(αn, βn, γn, vn). Then, as {In}n∈N is
bounded, lemma 3 and Theorem 1 imply that ∃(α, β, γ, v) ∈ Aλ satisfy-
ing I(α, β, γ, v) 6 lim infn→∞ In = s. In this case the definition of s implies
I(α, β, γ, v) = s.

Theorem 3 (Uniqueness). A minimizer (α, β, γ, v) ∈ Aλ of I over Aλ is
unique.

Proof. We will argue by contradiction. Assume (α, β, γ, v), (ᾱ, β̄, γ̄, v̄) ∈ Aλ

are two distinct minimizers. Then we consider (α+ᾱ
2 , β+β̄

2 , γ+γ̄
2 , v+v̄

2 ) and
notice that it also belongs to Aλ.

Define A = {ρ ∈ (0, 1) : α′ 6= ᾱ′}. Then mA > 0. Indeed, if α′ = ᾱ′ a.e.,
then α(1) = ᾱ(1) = λ implies α = ᾱ. In turn, this implies v = v̄′, β = β̄ and
γ = γ̄, which contradicts to the assumption that (α, β, γ, v) and (ᾱ, β̄, γ̄, v̄)
are distinct.

Now, as h′′ > 0, we have

h(α′) + h(ᾱ′)
2

> h

(
α′ + ᾱ′

2

)
, ρ ∈ A.

and hence, as mA is positive, we must have∫ 1

0

h(α′) + h(ᾱ′)
2

dρ >

∫ 1

0
h

(
α′ + ᾱ′

2

)
dρ.

Let s = infAλ I(α̃, β̃, γ̃, ṽ). Then by the inequality above and convexity
of ϕ,ψ and g we obtain

s =
I(α, β, γ, v) + I(ᾱ, β̄, γ̄, v̄)

2
> I

(
α+ ᾱ

2
,
β + β̄

2
,
γ + γ̄

2
,
v + v̄

2

)
. (99)

which, since
(
α+ᾱ

2 , β+β̄
2 , γ+γ̄

2 , v+v̄
2

)
∈ Aλ, contradicts the definition of s.

Hence (α, β, γ, v) = (ᾱ, β̄, γ̄, v̄).
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6 Euler-Lagrange Equations

In this section we show that the minimizer of I satisfies the system (63)
a.e. ρ ∈ (0, 1). For this, in addition to (80) we assume that initial iterate
(α0, β0, γ0, v0) satisfies the following: for each δ ∈ (0, 1)

α′0 ∈ L3p(δ, 1)
⋂
Lq(δ, 1). (100)

Theorem 4 (Weak Form). Let (α, β, γ, v) ∈ Aλ be the minimizer of I
over Aλ and initial iterate (α0, β0, γ0, v0) satisfy (80) and (100). Let also

G1(ρ) = G,i(Ξ)Ωi
,1(Γ0) (101)

and
G2(ρ) = G,i(Ξ)

(
Ωi
,2(Γ0) + Ωi

,3(Γ0)
)

(102)

Then for each δ ∈ (0, 1)

ρ2/3G1(ρ) ∈W 1,1(δ, 1) and ρ−1/3G2(ρ) ∈ L1(δ, 1)

and a.e. ρ ∈ (0, 1)

3ρ2/3G1(ρ) =
∫ ρ

1

(
s−1/3G2(s) +

v(s)− v0(s)
h

)
ds+ const. (103)

Moreover, for each δ ∈ (0, 1)

α′ ∈ L3p(δ, 1)
⋂
Lq(δ, 1). (104)

Proof. Fix k ∈ N and define Sk = {ρ ∈ [1/k, 1) : 1/k < α′ < k}. Let also
take f ∈ L∞ with

∫
Sk
f dρ = 0. We denote χk = χSk , lk = α0(1/k) and set

µ(ρ) =
∫ ρ

0
χk(s)f(s) ds. (105)

Before proceeding further we make the following remark. Let t ∈ R and
F (x) = xt, x ∈ R+. Take δ ∈ (0, 1). Then, as α0 ∈W 1,1, α0 > 0 and α′0 > 0
a.e. ρ ∈ (0, 1) we must have 0 < α0(δ) 6 α0 6 λ for all ρ ∈ (δ, 1). Hence
|F ′(α0)| 6 t (α0(δ) + λ)t−1 for all ρ ∈ (δ, 1). Therefore we conclude that for
each t ∈ R and δ ∈ (0, 1)

α0
t ∈W 1,1(δ, 1) with

d

dρ

(
α0

t
)

= tα0
t−1α′0. (106)
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(i) Step 1. Definition of the variation. For |ε| < 1
6k(‖f‖∞+1) we define

(αε, βε, γε, vε) by

vε = v + ε
µ

hα0
2/3

αε = α0 + h
(

3vεα0
2/3
)

= α+ 3εµ

βε = β0 + h
(
3v′ε
)

= β + 3ε
(

µ

α0
2/3

)′
γε = γ0 + h

(
2vεα0

1/3
)

= γ + 2ε
µ

α0
1/3

(107)

Due to (106), (αε, βε, γε, vε) is well-defined. We next prove:

Lemma 4. The variation (αε, βε, γε, vε) ∈ Aλ.

Proof. First, we notice that

(αε, βε, γε, vε) = (α, β, γ, v) if ρ ∈ (0, 1/k). (108)

Then we check that

αε(1) = α(1) + 3ε
∫
Sk

f(s) ds = λ.

Next, we see that α′ε = α′ + 3εχkf and therefore

α′ε = α′, ρ /∈ Sk,
1
2k

6 α′ε 6 k + 1, ρ ∈ Sk.
(109)

This implies that αε > 0 a.e. ρ ∈ (0, 1) and hence (108) implies αε > 0.

Now we make the following estimates. First, we see that

|µ′|+
∣∣∣∣µρ
∣∣∣∣+
∣∣∣∣ µ

ρ2/3α0
1/3

∣∣∣∣+
∣∣∣∣ µ

hα0
2/3

∣∣∣∣ 6 ‖f‖∞
(

1 + k +
k2/3

l
1/3
k

+
1

hl
2/3
k

)
.

and for j = 1, 2∣∣∣∣( µ

α0
j/3

)′∣∣∣∣ 6 ‖f‖∞ (l−j/3k + l
−(1+j/3)
k

∣∣α′0∣∣) .
Thus we conclude that there exists C such that ∀ρ ∈ (1/k, 1)

|α′ε − α′|+ |αε/ρ− α/ρ|+ |γε/ρ2/3 − γ/ρ2/3|+ |v − vε| 6 εC (110)
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and
|βερ2/3 − βρ2/3|+ |γ′ερ1/3 − γ′ρ1/3| 6 εC

(
1 + |α′0|

)
. (111)

As (α, β, γ, v) ∈ X, last two inequalities imply (αε, βε, γε, vε) ∈ X.

Further, by (A3), (110) and (111) we conclude that there exists C such
that for all ρ ∈ (1/k, 1)

ψ(αε/ρ) 6 C (|α/ρ|p + 1)

ϕ(βερ2/3) 6 C
(
|βρ2/3|3p + |α′0|3p + 1

)
g(γε/ρ2/3) 6 C

(
|γ/ρ2/3|q + 1

)
g(3γ′ερ

1/3/2) 6 C
(
|γ′ρ1/3|q + |α′0|q + 1

)
.

By (109) we also have

h(α′ε) = h(α′), ρ /∈ Sk,
h(α′ε) 6 max

1
2k

6δ6k
|h(δ)| = Mk, ρ ∈ Sk (112)

and hence
h(α′ε) 6 h(α′) +Mk, ρ ∈ (0, 1). (113)

Now, similarly to (62), set

Ξε =
(
βερ

2/3,
αε
ρ
,
αε
ρ
,
γε

ρ1/3
,
3γ′ε
2
ρ2/3,

3γ′ε
2
ρ2/3, α′ερ

2/3

)
. (114)

Then, by the discussion above, it follows that

G(Ξε) +
(vε − v0)2

2
= G(Ξ) +

(v − v0)2

2
, ρ ∈ (0, 1/k) (115)

and there exists C such that for all ρ ∈ (1/k, 1)

G(Ξε) +
(vε − v0)2

2
6 C

(
1 + |βρ2/3|3p + |α′0|3p + |α/ρ|p + |γ/ρ2/3|q

+|γ′ρ1/3|q + |α′0|q + |v|2 + |v0|2 + h(α′)
)
.

(116)

Then, as I(α, β, γ, v) < ∞, (115) and (116) imply I(αε, βε, γε, vε) < ∞
and hence by construction and the above discussion we get (αε, βε, γε, vε) ∈
Aλ.
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Step 2. The next objective is to validate the formal identity

d

dε
I(αε, βε, γε, vε)

∣∣∣∣
ε=0

=
∫ 1

0

d

dε

(
(vε − v0)2

2
+G(Ξε)

)∣∣∣∣
ε=0

dρ = 0. (117)

This will require several detailed estimations presented below.

At this point, let us make estimates of the following difference quotients
on the interval ρ ∈ (1/k, 1). First, by (110) we get

1
ε
|(vε − v0)2 − (v − v0)2| =1

ε
|vε − v||vε + v − 2v0|

6 C (|v|+ |v0|+ 1) .
(118)

Further, by the Mean Value Theorem

1
ε
|ϕ(βερ2/3)− ϕ(βρ2/3)| = 1

ε
|ϕ′(τε)||βερ2/3 − βρ2/3|,

where min(β, βε)ρ2/3 6 τε 6 max(β, βε)ρ2/3. Hence from (111) it follows
|τε| 6 |βρ2/3|+ εC(|α′0|+ 1) and therefore (A4) implies

|ϕ′(τε)| 6 C
(
|βρ2/3|3p−1 + |α′0|3p−1 + 1

)
.

Thus

1
ε
|ϕ(βερ2/3)−ϕ(βρ2/3)|

6 C
(
|βρ2/3|3p−1 + |α′0|3p−1 + 1

) (
|α′0|+ 1

)
.

(119)

Similarly,
1
ε
|ψ(αε/ρ)− ψ(α/ρ)| = 1

ε
|ψ′(τε)||αε/ρ− α/ρ|,

where min(αε, α)/ρ 6 τε 6 max(αε, α)/ρ. Hence |τε| 6 |α/ρ|+ εC and (A4)
implies

|ψ′(τε)| 6 C
(
(|α/ρ|+ 1)p−1 + 1

)
and hence

1
ε
|ψ(αε/ρ)− ψ(α/ρ)| 6 C

(
(|α/ρ|+ 1)p−1 + 1

)
. (120)

Next,
1
ε
|g(γε/ρ2/3)− g(γ/ρ2/3)| = 1

ε
|g′(τε)||γε/ρ2/3 − γ/ρ2/3|,
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where min(γε, γ)/ρ2/3 6 |τε| 6 max(γε, γ)/ρ2/3 and hence |τε| 6 |γ/ρ2/3| +
εC. Then by (A4)

|g′(τε)| 6 C
(

(|γ/ρ2/3|+ 1)q−1 + 1
)

and hence

1
ε
|g(γε/ρ2/3)− g(γ/ρ2/3)| 6 C

(
(|γ/ρ2/3|+ 1)q−1 + 1

)
. (121)

Further,

1
ε
|g(3γ′ερ

1/3/2)− g(3γ′ρ1/3/2)| = 3
2ε
|g′(τε)||γ′ερ1/3 − γ′ρ1/3|,

where 3
2 min(γ′ε, γ

′)ρ1/3 6 |τε| 6 3
2 max(γ′ε, γ

′)ρ1/3. Hence we must have
|τε| 6 3

2

(
|γ′ρ1/3|+ εC(|α′0|+ 1)

)
. Then (A4) implies

|g′(τε)| 6 C
(

(|γ′ρ1/3|+ |α′0|+ 1)q−1 + 1
)

and hence

1
ε
|g(3γ′ερ

1/3/2)−g(3γ′ρ1/3/2)|

6 C
(

(|γ′ρ1/3|+ |α′0|+ 1)q−1 + 1
) (
|α′0|+ 1

)
.

(122)

Finally, if ρ /∈ Sk, then 1
ε |h(α′ε)− h(α′)| = 0 and if ρ ∈ Sk, we get

1
ε
|h(α′ε)− h(α′)| = 1

ε
|h′(τε)||α′ε − α′|,

where min(α′ε, α
′) 6 τε 6 max(α′ε, α). Then by (109)2 we get 1

2k 6 τε 6 k+1
and hence

|h′(τε)| 6 max
1
2k

6δ6k+1
|h′(δ)|.

Thus by (110) we conclude that for ρ ∈ (1/k, 1)

1
ε
|h(α′ε)− h(α′)| 6 C. (123)

Thus (115),(118)-(123) and the assumptions on the initial iterate (80)
and (100) imply that

1
ε

∣∣∣∣G(Ξε) +
(vε − v0)2

2
−G(Ξ)− (v − v0)2

2

∣∣∣∣
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is bounded on (0, 1) by an integrable function. Letting ε→ 0, and using the
Dominated Convergence theorem, (A2) and the fact that (α, β, γ, v) is the
minimizer, we obtain the identity (117).

Step 3. Conclusion of the computation. The last step is to compute the
right hand side of (117). Note first that

dΞ1
ε

dε
=

d

dε
βερ

2/3 = 3
(

µ

α0
2/3

)′
ρ2/3

dΞ2
ε

dε
=
dΞ3

ε

dε
=

d

dε

(
αε
ρ

)
=

3µ
ρ

dΞ4
ε

dε
=

d

dε

(
γε

ρ1/3

)
=

2µ
α0

1/3ρ1/3

dΞ5
ε

dε
=
dΞ6

ε

dε
=

d

dε

(
3
2
γ′ερ

2/3

)
= 3

(
µ

α0
1/3

)′
ρ2/3

dΞ7
ε

dε
=

d

dε

(
α′ερ

2/3
)

= 3µ′ρ2/3

and
dvε
dε

=
µ

hα0
2/3

.

Then the integrand in (117) is expressed by

(v − v0)
dvε
dε

∣∣∣∣
ε=0

+G,i(Ξ)
dΞiε
dε

∣∣∣∣
ε=0

= aµ+ bµ′,

where

a(ρ) = −G,1(Ξ)
2α′0
α0

5/3
ρ2/3 +G,2(Ξ)

3
ρ

+G,3(Ξ)
3
ρ

+G,4(Ξ)
2

α0
1/3ρ1/3

− (G,5(Ξ) +G,6(Ξ))
α′0
α0

4/3
ρ2/3 +

(v − v0)
hα0

2/3

(124)

and

b(ρ) =
3ρ2/3

α0
2/3

(
G,1(Ξ) +G,5(Ξ)α0

1/3 +G,6(Ξ)α0
1/3 +G,7(Ξ)α0

2/3
)
. (125)

Thus by (117) we have (aµ+ bµ′) ∈ L1 and∫ 1

1/k
(aµ+ bµ′) dρ = 0. (126)
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Now, we claim a ∈ L1(1/k, 1). By (A3) and definition (75) of G it follows
that for ρ ∈ (1/k, 1)

∣∣∣∣G,1(Ξ)
α′0
α0

5/3
ρ2/3

∣∣∣∣ 6
∣∣∣∣∣ϕ′(βρ2/3)α0

′

l
5/3
k

∣∣∣∣∣ 6 C
(
|βρ2/3|3p−1 + 1

)
|α′0|,

1
ρ
|G,2(Ξ) +G,3(Ξ)| 6 2k

∣∣ψ′(α/ρ)
∣∣ 6 C

(
|α/ρ|p−1 + 1

)
,

and ∣∣∣∣G,4(Ξ)
1

α0
1/3ρ1/3

∣∣∣∣ 6 k1/3

l
1/3
k

∣∣∣g′(γ/ρ2/3)
∣∣∣ 6 C

(
|γ/ρ2/3|q−1 + 1

)
.

As the right hand sides of the inequalities above are integrable on (1/k, 1)
we have a ∈ L1(1/k, 1) and this, in turn, implies b µ′ ∈ L1(1/k, 1). Now, we
set z(ρ) =

∫ ρ
1 a(s) ds for ρ ∈ (1/k, 1). Then z is absolutely continuous and

so is µz. As (µz)|ρ=1/k = (µz)|ρ=1 = 0 we get

0 =
∫ 1

1/k
(µz)′ dρ =

∫ 1

1/k

(
µ′
∫ ρ

1
a(s) ds+ µa

)
dρ.

Then (126) becomes ∫
Sk

(
−
∫ ρ

1
a(s) ds+ b

)
f dρ = 0. (127)

By the properties of f we obtain that for some constant ck

b−
∫ ρ

1
a(s) ds = ck a.e. ρ ∈ Sk.

As k was arbitrary, the above equality is valid for all k ∈ N. In this case
Sk ⊂ Sk+1 implies that ck = ck+1. As

⋃
k Sk = {ρ ∈ (0, 1) : 0 < α′ < ∞}

and m ((0, 1)\
⋃
k Sk) = 0, we conclude

b−
∫ ρ

1
a(s) ds = const. a.e. ρ ∈ (0, 1). (128)

Now, let us fix δ ∈ (0, 1). By the above argument a ∈ L1(δ, 1) and (128)
implies b ∈ W 1,1(δ, 1) with the weak derivative b′ = a. Moreover, by (106)
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we have α0
2/3 ∈W 1,1(δ, 1) and hence bα0

2/3 ∈W 1,1(δ, 1). At this point, we
compute

DΩ(Γ0) =


1 0 0 0 α0

1/3 α0
1/3 α0

2/3

0 3
(
α0
ρ

)2/3
0 α0

1/3 0 α′0ρ

α0
2/3

α′0ρ

α0
1/3

0 0 3
(
α0
ρ

)2/3
α0

1/3 α′0ρ

α0
2/3 0 α′0ρ

α0
1/3


and notice that, definitions (124) and (125) of a and b respectively imply
that

bα0
2/3 = 3ρ2/3G,i(Ξ)Ωi

,1(Γ0) = 3ρ2/3G1(ρ)

and its weak derivative is expressed as

d

dρ
bα0

2/3 = aα0
2/3 + b

2α′0
3α0

1/3
=

= ρ−1/3G,i(Ξ)
(
Ωi
,2(Γ0) + Ωi

,3(Γ0)
)

+
v − v0

h

= ρ−1/3G2(ρ) +
v − v0

h
.

We conclude that for δ ∈ (0, 1)

ρ2/3G1(ρ) ∈W 1,1(δ, 1) and ρ−1/3G2(ρ) ∈ L1(δ, 1) (129)

and for almost every ρ ∈ (0, 1)

3ρ2/3G1(ρ) =
∫ ρ

1

(
s−1/3G2(s) +

v(s)− v0(s)
h

)
ds+ const. (130)

Finally, to prove (104), we compute

(α− α0)′ = h
(

3α0
2/3v

)′
= h

(
2α′0
α0

1/3
v + 3α0

2/3v′
)

= (α− α0)
2α′0
3α0

+ (β − β0)α0
2/3

and hence

α′ =
α′0
3

(
1 +

2α
α0

)
+ (β − β0)α0

2/3. (131)

Similarly,

(γ − γ0)′ = h
(

2α0
1/3v

)′
=

2
3

(
α− α0

α0
1/3

)′
=

2
3α0

1/3

(
α′ − α′0

3

(
2 +

α

α0

))
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and hence

α′ =
α′0
3

(
2 +

α

α0

)
+

3
2

(γ′ − γ0
′)α0

1/3. (132)

Now, take δ ∈ (0, 1). Then from (131) and (132) it follows that for all
ρ ∈ (δ, 1)

|α′| 6 |α
′
0|

3

(
1 +

2λ
α0(δ)

)
+ |β − β0|λ2/3 (133)

and

|α′| 6 |α
′
0|

3

(
2 +

λ

α0(δ)

)
+

3
2
|γ′ − γ0

′|λ1/3. (134)

Since δ is arbitrary and β−β0 ∈ L3p(δ, 1), γ′−γ′0 ∈ Lq(δ, 1), the assumption
(100) and last two inequalities imply that for each δ ∈ (0, 1)

α′ ∈ L3p(δ, 1)
⋂
Lq(δ, 1). (135)

This completes the proof.

7 Regularity

First, we claim that for each representative of the minimizer (α, β, γ, v) ∈ Aλ

in the theorem (4) we can alter α′ on a set of measure zero such that functions
G1 and G2 defined in (101) and (102) satisfy

3ρ2/3G1(ρ) =
∫ ρ

1
s−1/3G2(s) +

v(s)− v0(s)
h

ds+ C0, for all ρ ∈ (0, 1].

Indeed, let us fix representatives (α, β, γ, v) and (α0, β0, γ0, v0). Define

z(ρ) =
1

3ρ2/3

∫ ρ

1
s−1/3G2(s) +

v(s)− v0(s)
h

ds+ C0 (136)

and let A = {ρ ∈ (0, 1] : G1(ρ) 6= z(ρ)}. Take any ρ0 ∈ A and define

y0 =
(
z(ρ)− ϕ′(βρ2/3)− 2g′(3γ′ρ1/3)(α0/ρ)1/3

)∣∣∣
ρ=ρ0

.

Then by (A1) and (A2) it follows that there exists a unique x0 such that
h′(x0) = y0 (ρ0/α0(ρ0))2/3. Now, by definition of G1 we have for all ρ ∈ (0, 1]

G1(ρ) = ϕ′(βρ2/3) + 2g′(3γ′ρ1/3/2)(α0/ρ)1/3 + h′(α′)(α0/ρ)2/3. (137)
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Thus assigning α′(ρ0) = x0 we get G1(ρ0) = z(ρ0). In the end, after altering
this way α′ on the set A, we get that G1(ρ) = z(ρ) for all ρ ∈ (0, 1]. Moreover
by (103) we have mA = 0 and this finishes the proof.

Second, let us require smoother initial iterate than before. In particular

Lemma 5 (Regularity). Let (α, β, γ, v) ∈ Aλ be the minimizer of I over
Aλ. Assume that initial iterate (α0, β0, γ0, v0) satisfies (80) and

α0, γ0 ∈ C1(0, 1] and β0 ∈ C(0, 1]. (138)

Then
α, γ, v ∈ C1(0, 1] and β ∈ C(0, 1]. (139)

Proof. Clearly, we can pick a representative (α, β, γ, v) such that α, γ, v ∈
C(0, 1]. Then, proceeding as in (131) and (132), constrains α−α0

h = 3α0
2/3v,

γ−γ0
h = 2α0

1/3v and β−β0

h = 3v′ imply a.e. ρ ∈ (0, 1)

βρ2/3 = α′(ρ/α0)2/3 + f1(ρ) (140)

and
3
2
γ′ρ1/3 = α′(ρ/α0)1/3 + f2(ρ), (141)

where

f1(ρ) = β0ρ
2/3 − α′0ρ

2/3

3α0
2/3

(
1 +

2α
α0

)
f2(ρ) =

3
2
γ′0ρ

1/3 − ρ1/3

α
1/3
0

(
2 +

α

α0

)
.

We note that (138) implies that f1 and f2 are continuous on (0, 1] functions.

First, we alter β and γ′ so that equality in (140) and (141) holds for all
ρ ∈ (0, 1). Hence by (137) we have for all ρ ∈ (0, 1]

G1(ρ) = ϕ′
(
α′(ρ/α0)2/3 + f2(ρ)

)
+ 2g′

(
α′(ρ/α0)1/3 + f1(ρ)

)
(α0/ρ)1/3

+ h′(α′)(α0/ρ)2/3.

(142)

and this suggests to define f : R+ × (0, 1]→ R by

f(x, ρ) = ϕ′
(
x(ρ/α0)2/3 + f2(ρ)

)
+ 2g′

(
x(ρ/α0)1/3 + f1(ρ)

)
(α0/ρ)1/3

+ h′(x)(α0/ρ)2/3.

(143)
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Now, define A = {ρ ∈ (0, 1] : G1(ρ) 6= z(ρ)}. Clearly, mA = 0 and note
that from (142) it follows

G1(ρ) = f(α′, ρ) = z(ρ), ρ /∈ A. (144)

Take ρ0 ∈ A. Then, as ρ0 > 0 and α0(ρ0) > 0, properties (A1)-(A3) imply
that fx(x, ρ0) > 0 for all x ∈ R+; moreover, limx→0+ f(x, ρ0) = −∞ and
limx→+∞ f(x, ρ0) = +∞. Hence there exists unique x0 ∈ R+ such that
f(x0, ρ0) = z(ρ0).

At this point we are ready to assign new values for α′, β and γ′. Define

α′(ρ0) = x0, β(ρ0) =
x0

α0(ρ0)2/3
+
f1(ρ0)

ρ
2/3
0

and

γ′(ρ0) =
2
3

(
x0

α0(ρ0)1/3
+
f2(ρ0)

ρ
1/3
0

)
.

This implies that (140) and (141) hold at ρ = ρ0 and hence by (137)

G1(ρ0) = f(x0, ρ0) = f(α′(ρ0), ρ0) = z(ρ0). (145)

As ρ0 ∈ A was arbitrary (144) and (145) imply

G1(ρ) = f(α′, ρ) = z(ρ), ρ ∈ (0, 1]. (146)

Hence G1 is continuous on (0, 1] and therefore α′ > 0 for all ρ ∈ (0, 1].

Now, let us assume ρk → ρ0 and α′(ρk) → l ∈ [0,∞] with ρk, ρ0 ∈
(0, 1], k ∈ N. First, we claim that l ∈ (0,∞). Indeed, assume that l = 0
or l = +∞. Then by continuity of α0 we have α0(ρk) → α0(ρ0) > 0 and
hence properties (A1)-(A3), together with continuity of f1 and f2, imply
limk→∞ f(α′(ρk), ρk) = ∓∞ respectively. Thus by continuity of G1 and
(146) we have

G1(ρ0) = lim
k→∞

G1(ρk) = lim
k→∞

f(α′(ρk), ρk) = ∓∞ (147)

which is a contradiction. Therefore we assume l ∈ (0,∞). Then, as functions
f1 and f2 are continuous on (0, 1], we must have limk→∞ f(α′(ρk), ρk) =
f(l, ρ0) and therefore by (146) we get

f(α′(ρ0), ρ0) = G1(ρ0) = lim
k→∞

G1(ρk)

= lim
k→∞

f(α′(ρk), ρk) = f(l, ρ0).
(148)
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Then by strict monotonicity of f(·, ρ0) we get α0(ρ0) = l. Thus we conclude
that α′ must be continuous on (0, 1].

Finally, from the discussion above it follows that equalities (140) and
(141) hold for all ρ ∈ (0, 1]. In this case by the continuity of f1, f2 and α′ we
get β, γ′ ∈ C(0, 1]. Moreover, as α−α0

h = 3α0
2/3v for all ρ ∈ (0, 1], we obtain

v ∈ C1(0, 1]. This finishes the proof.
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