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Transport coefficients in the 2-dimensional Boltzmann

equation

A. V. Bobylev1 and R. Esposito2

Abstract

We show that a rarefied system of hard disks in a plane, described in the Boltzmann-Grad

limit by the 2-dimensional Boltzmann equation, has bounded transport coefficients. This is

proved by showing opportune compactness properties of the gain part of the linearized Boltz-

mann operator
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1 Introduction

The interest in low dimensional systems has recently increased because of their relevance in the

study of nano-structures. One of the questions arising in this context is whether of not the transport

coefficients are well defined. It is a common point of view, supported by experiments and numerical

results, (see for example [4, 7, 8]) that heat conductivity may become infinite. Theoretical argu-

ments, based on the Green-Kubo formula and the slow decay of time self-correlation of momentum

and energy fluxes, seem also to support such a conclusion. Examples where the (un)boundedness

is proved are provided by stochastic lattice particle systems (see [1] and references quoted therein).

The deterministic continuous systems are out of reach of the present mathematical techniques, but

for the case of rarefied gases. In this case, the Boltzmann equation has been proved to be a good

approximation of the time behavior of the system in the Boltzmann-Grad limit at least for short

times [5]. It is not obvious that the such a limiting procedure does not destroy the long time tails

in the correlations. In this short note we will discuss this question and show that the transport

coefficients are indeed bounded in the Boltzmann-Grad limit.

In low dimension the validity of the Boltzmann equation for hard spheres in a thin layer has

been proved in [3], by considering a three dimensional system with one side much smaller than the

others. It has been proved that, as long as the smaller side is still large compared to the interaction

length, the limit equation is the Boltzmann equation with two dimensional positions and three

dimensional velocities. In this case the transport coefficients, already computed by Maxwell [6], are

bounded. However, the argument in [3] does not apply when the small side is of size comparable
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2Dipartimento di Matematica, Università di L’Aquila, Coppito, 67100 AQ, Italy. e-mail: esposito@univaq.it

1



Bobylev-Esposito 2

with the interaction length. In this case, it is shown in [3] that, in the linear case (Lorentz gas),

the limiting behavior is not described by the linear Boltzmann equation. One can then consider

a strictly two dimensional system, with both two dimensional positions and velocities, namely a

system of hard disks moving on a plane. The Lanford proof [5] works also in this case and the

limiting equation is the Boltzman equations with positions and velocities in R2. Therefore one can

try to compute the transport coefficients for this system in the Boltzmann-Grad limit by means of

the Boltzmann equation.

The coefficient of transport are obtained by solving an integral equation of the form

Lf = g (1.1)

where L is the Boltzmann collision operator linearized around a Maxwellian and g are suitably

chosen functions of the velocities. The linearized Boltzmann operator has the form

L = K − ν,

where ν is a multiplication operator andK is an integral operator. Since there is no small parameter

in the equation, its solution is based on the Fredholm theory [9]. This is well known when the

velocities are in R3 (see for example [2]), while in dimension two, this requires some analysis. In

next section we present the explicit expression of the kernel of the operator K for hard disks, while

in Section 3 we show its compactnes in a suitable space. Then from the Fredhol alternative, we

conclude that the equation (1.1) can be solved in the suitable space and as a consequence the

transport coefficients are bounded.

2 Estimates on the kernels

The Boltzman equation for the probability density f(x, v, t) on the phase space Rd ×Rd is written

as

∂tf + v · ∇f = Q(f, f), (2.1)

In the following, the dimension of the position and velocity space d, will be eventually fixed to 2.

The Boltzmann collision operator Q is defined as:

Q(f, g)(v) =

∫

Rd×Sd−1

dwdω|u · ω|{f(v′)g(w′)− f(v)g(w)}, d ≥ 2, (2.2)

with

u = v − w, v′ = v − ω(ω · u), w′ = w + ω(ω · u).

Moreover, ω ∈ Sd−1, the surface of the unit sphere in Rd: Sd−1 = {ω ∈ Rd | |ω| = 1}. We will use

the following equivalent expression for Q:

Q(f, g)(v) =
1

2

∫

Rd×Rd

dwdk|k|3−dδ(k · u+
|k|2
2

)

{

f(v +
k

2
)g(w − k

2
)− f(v)g(w)

}

, (2.3)
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In fact, since for any ψ(k)

∫

Rd

dk|k|3−dδ(k · u+
|k|2
2

)ψ(k) =

∫ ∞

0
drrd−1r3−d

∫

Sd−1

dωδ(
r

2
[2ω · u+ r])ψ(rω) =

∫ ∞

0
drrd−1r3−d 2

r

∫

Sd−1

dωδ(2ω · u+ r)ψ(rω) =

2

∫

Sd−1

dωη(−ω · u)2|ω · u|ψ(−2(ω · u)ω) =

2

∫

Sd−1

dω|ω · u|ψ(−2(ω · u)ω),

with η(x) the Heaviside function, given by

η(x) =

{

1 x ≥ 0,

0 x < 0,
(2.4)

the equivalence is immediately checked.

Let

M(v) = (2π)−d/2e
−
|v|2
2 (2.5)

be the standard Maxwellian such that Q(M,M) = 0 and set

f =M(1 + ϕ). (2.6)

The linearized Boltzmann equation is obtained by plugging (2.6) into (2.1) and neglecting quadratic

terms. It reads:

∂tϕ+ v · ∇ϕ = L̂ϕ, (2.7)

with L̂ the linearized Boltzmann operator defined as

L̂ϕ =M−1[Q(Mf,M) +Q(M,Mf)]. (2.8)

The operator L̂ has the following structure:

L̂ϕ(v) = L̂1ϕ(v) + L̂2ϕ(v)− L̂3ϕ(v)− ν(|v|)ϕ(v) (2.9)

where

ν(|v|) =M ∗ p(v), (2.10)

L̂1ϕ(v) =
1

2

∫

Rd

dwM(w)

∫

Rd

dk|k|3−dδ(k · u+
|k|2
2

)ϕ(v +
k

2
) (2.11)

L̂2ϕ(v) =
1

2

∫

Rd

dwM(w)

∫

Rd

dk|k|3−dδ(k · u+
|k|2
2

)ϕ(w − k

2
) (2.12)

L̂3ϕ(v) = (Mφ) ∗ p(v), (2.13)

the ∗-product denotes the convolution product

(f ∗ g)(v) =
∫

Rd

dwf(w)g(v − w) (2.14)
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and

p(v) =

∫

Rd

dk|k|3−dδ(k · u− |k|2
2

) = |v|Ad,

Ad =

∫

Sd−1

dω|ω · ω1| =
2

d− 1
|Sd−2|, (2.15)

ω1 being any fixed unit vector and |Sn| the surface of unit sphere in Rn+1. Indeed,

Ad = 2

∫

Rd

dxδ(x2 − 1)|x · ω1| = 2

∫ 1

−1
dzz

∫

Rd−1

dyδ(|z|2 + |y|2 − 1) =

2

∫ 1

0
dz|z|(

√

1− z2)d−3|Sd−2| = 2

d− 1
|Sd−2|,

with |S0| = 2, |S1| = 2π, . . . .

Hence

ν(|v|) = Ad

∫

Rd

dwM(w)|v − w|, d = 2, 3. . . . (2.16)

Similarly, one can show that

L̂3ϕ(v) = Ad

∫

Rd

dwM(w)ϕ(w)|v − w| :=
∫

Rd

dwK̂3(v,w)ϕ(w). (2.17)

The operators L̂1 and L̂2 are integral operators of the form

L̂iϕ(v) =

∫

Rd

dwK̂i(v,w)ϕ(w), i = 1, 2. (2.18)

The explicit expression of K̂i will be given in the proof of Proposition 2.1 below.

The transport coefficients are computed in the Chapmann-Enskog expansion by solving the

integral equation

L̂ϕ = g, (2.19)

and one has to choose, with α, β = 1, . . . , d

g = vαvβ − 1

d
|v|2δα,β (2.20)

to compute the viscosity coefficient and

g =
1

2
vα(|v|2 − (d+ 2)) (2.21)

to compute the heat conductivity.

It is convenient to symmetrize the operator L̂ by setting ψ̃(v) =
√
Mϕ(v), h̃(v) =

√
Mg(v), so

that (2.19) becomes

Lψ̃ = h̃, (2.22)

with

Lψ̃(v) =
√
ML̂

[

1√
M
ψ̃

]

(v) = −ν(|v|)ψ̃(v)+
∫

Rd

dw
[

K̃1(v,w)+K̃2(v,w)−K̃3(v,w)
]

ψ̃(w), (2.23)
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K̃i(v,w) = K̂i(v,w) exp

[

w|2 − |v|2
2

]

. (2.24)

The operator so defined is symmetric in L2(R
d).

Since the operator L has a non trivial null space, spanned by the function
√
M , v1

√
M , v2

√
M ,

. . . , vd
√
M and |v|2

√
M , in order that the equation (2.22) has solutions, the right hand side h has

to be orthogonal to the null space, a condition which is fulfilled by the functions h̃ =
√
Mg with g

given by (2.20) and (2.21).

Therefore it only remains to establish the sufficient conditions to apply the Fredhom alternative

theorems [9].

We set ψ =
√
νψ̃, h̃ =

√
νh and (2.22) becomes

h = −ψ + (L1 + L2 − L3)ψ (2.25)

with

Liψ(v) =

∫

Rd

Ki(v,w)ψ(w), i = 1, 2, 3, (2.26)

and

Ki(v,w) = K̃i(v,w)(
√

ν(v)ν(w))−1. (2.27)

We are interested in the case d = 2. The explicit expressions of the kernels K̃i(v,w) and Ki(v,w)

in d = 2 are given in the following:

Proposition 2.1. For d = 2 the kernels K̃i(v,w) read

K̃1(v,w) = a exp

[

−A(v,w)
8

]

, (2.28)

K̃2(v,w) = ab

exp

[

−A(v,w)
8

]

|v − w| B





|v||w|
|v − w|

√

1−
(

v · v
|v||w|

)2


, (2.29)

K̃3(v,w) = 4
√

M(v)
√

M(w)|v − w|, (2.30)

with

M(v) = (2π)−1 exp

[

−|v|2
2

]

, A(v,w) = |u|2 + (|v|2 − |w|2)2
|u|2 , (2.31)

u = v − w, B(x) = e
−
x2

2 + x

∫ x

0
dye

−
y2

2 , (2.32)

and a = b =

√

2

π
. Moreover

K1(v,w) = a

exp

[

−A(v,w)
8

]

√

ν(|v|)ν(|w|)
, (2.33)

K2(v,w) = ab

exp

[

−A(v,w)
8

]

|v − w|
√

ν(|v|)ν(|w|)
B





|v||w|
|v − w|

√

1−
(

v · v
|v||w|

)2


 (2.34)
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K3(v,w) = 4

√

M(v)
√

M(w)
√

ν(|v|)ν(|w|)
|v − w|. (2.35)

Proof. The proof of Proposition 2.1 is given in Appendix

The following estimates are based on the above explicit formulas.

Lemma 2.2. For B and ν defined above, we have

1. There is a constant c > 0 such that

B





|v||w|
|v − w|

√

1−
(

v · v
|v||w|

)2


 ≤ c[1 + min{|v|, |w|}; (2.36)

2. There is a constant ν0 > 0 such that

ν(|v|) ≥ ν0(1 + |v|). (2.37)

Proof. We have

B(x) = e
−
x2

2 + x

∫ x

0
dye

−
y2

2 ≤ 1 +

√

π

2
x, (2.38)

|v|2|w|2
|v − w|2

{

1−
(

v · v
|v||w|

)2
}

=
|v|2|w|2
|v − w|2

{

1− cos2 θ
}

=
|v|2|w|2

|v|2 + |w|2







1− cos2 θ

1− 2(cos θ) |v||w|
|v|2+|w|2







≤ |v|2|w|2
|v|2 + |w|2

{

1− cos2 θ

1− cos θ

}

=
|v|2|w|2

|v|2 + |w|2 {1 + cos θ} ≤ 2
|v|2|w|2

|v|2 + |w|2 .

Moreover, if |v| ≥ |w|
|v|2|w|2

|v|2 + |w|2 ≤ |w|2

1 + |w|2

|v|2

≤ |w|2, (2.39)

Hence the statement 1) holds with c =
√
π.

From (2.16)

ν(|v|) = 2

π

∫

dw|v −w|e−w2/2 =
2

π

∫

dw|w|e−(v−w)2/2, (2.40)

∇vν(|v|) =
ν ′(|v|)
|v| v = − 2

π

∫

dw|w|(v − w)e−(v−w)2/2. (2.41)

Taking the inner product with v/|v|, we get

ν ′(|v|) = − 2

π|v|

∫

dw|w|(v − w) · ve−(v−w)2/2 = − 2

π|v|

∫

dw|v − w|(w · v)e−w2/2 (2.42)

Therefore
1

2
πν ′(|v|) = −

∫ ∞

0
dyy2e−y2/2g(y, |v|), (2.43)
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with

g(y, |v|) = 2

∫ π

0
dθ cos θ

√

y2 + |v|2 − 2y|v| cos θ. (2.44)

It results in g(y, |v|) < 0, because, for θ ∈ [0, π2 ]

√

y2 + |v|2 − 2y|v| cos θ <
√

y2 + |v|2 + 2y|v| cos θ (2.45)

for |y| > ǫ, |v| > ǫ, |θ − π/2| > ǫ. Hence ν ′(|v|) > 0. Therefore, since obviously ν(0) > 0, there is

ν0 > 0 such that ν(|v|) > ν0(1 + |v|).

As a consequence of Proposition 2.1 and Lemma 2.2, we have the following estimate for the

kernels K1 and K2:

Proposition 2.3. There are constant C1 and C2 such that

K1(v,w) ≤ C1
exp

[

−A(v,w)
8

]

√

(1 + |v|)(1 + |w|)
, (2.46)

K2(v,w) ≤ C2
exp

[

−A(v,w)
8

]

|v − w| , (2.47)

where

A(v,w) = |u|2 + (|v|2 − |w|2)2
|u|2 . (2.48)

Proof. It is enough to note that
1 + min{|v|, |w|}
√

(1 + |v|)(1 + |w|)
≤ 1. (2.49)

Next proposition contains the essential estimates to prove the compactness of the operators L1

and L2:

Proposition 2.4. Let gi(|v|) =
∫

R2 dwKi(v,w), i = 1, 2. Then

g1(|v|) ≤ h1(|v|) := 8
√
πC1

∫ 1

−1

dz√
1− z2

exp

[

−|v|2z2
4

]

, (2.50)

g2(|v|) ≤ h2(|v|) :=
8π

√

1 + |v|
C2 (2.51)

The functions hi, i = 1, 2, are bounded, monotone and go to 0 as |v| → ∞.

Proof. By (2.47) and (2.48)

g2(|v|) ≤ C2
1

√

1 + |v|

∫

R2

dw exp

[

−(v − w)2

8

]

=
8π

√

1 + |v|
C2. (2.52)
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By (2.46) and (2.48), using u = v − w,

1

C1
g1(|v|) =

∫

R2

du

|u| exp
[

−A(v, v − u)

8

]

=

∫

R2

du

|u| exp



−
|u|2 + (|u|2−2u·v)2

|u|2
)

8
=





2

∫ ∞

0
dρ exp

[

−ρ
2

8

] ∫ 2π

0
dθ exp

[

−(ρ− 2|v| cos θ)2
8

]

= 2

∫ 2π

0
dθ

∫ ∞

−|v| cos θ
dζ exp

[

−ζ
2 + |v|2 cos2 θ

4

]

≤ 4
√
π

∫ 2π

0
dθ exp

[

−|v|2 cos2 θ
4

]

=
h1(|v|)
C1

.

Obviously h1(|v|) < h1(0) = 4πC1. h′1(|v|) ≤ 0. Finally, h(|v|) → 0 as |v| → ∞ because

h1(|v|) ≤ 16
√
πC1

{

√
π

∫ 1
√

2

0
dz exp

[

−|v|2z2
4

]

+
π

2
exp

[

−|v|2
8

]

}

. (2.53)

3 Compactness

To prove the compactness of the operators L1 and L2, we introduce, for any R > 0, χR(x) = η(R−x)
and χc

R = 1− χR. Clearly

1 = (χR(|v|) + χc
R(|v|))(χR(|w|) + χc

R(|w|)) = χR(|v|)χR(|w|) + χc
R(|v|) + χR(|v|)χc

R(|w|). (3.1)

We introduce the following kernels for i = 1, 2:

QR
i (v,w) = χR(|v|)χR(|w|)Ki(v,w), (3.2)

SR
i = χc

R(|v|)Ki(v,w), PR
i (v,w) = χR(|v|)χc

R(|w|)Ki(v,w), (3.3)

and denote by QR
i , S

R
i and PR

i the corresponding operators on L2(R
2).

Previous estimates show that the operators SRi and PR
i go to 0 as R → ∞ in the uniform

operator norm. To prove this we need to show the estimates

‖SRi f‖2‖ ≤ o(R)‖f‖2, ‖PR
i f‖2 ≤ o(R)‖f‖2, (3.4)

with ‖ · ‖ the L2(R
2)-norm and o(R) → 0 as R→ ∞. Let φ(v,w) ≥ 0 be one of the these kernels.

We have:

∫

R2

dv

[
∫

R2

dwφ(v,w)f(w)

]2

=

∫

R2

dv

[
∫

R2

dw
√

φ(v,w)
√

φ(v,w)f(w)

]2

≤
∫

R2

dv

[
∫

R2

dw′φ(v,w′)

] [
∫

R2

dwφ(v,w)f2(w)

]

≤
∫

R2

dwf2(w)

∫

R2

dvφ(v,w)

[∫

R2

dw′φ(v,w′)

]

.



Bobylev-Esposito 9

Therefore, setting

c = sup
w∈R2

∫

R2

dvφ(v,w)

[
∫

R2

dw′φ(v,w′)

]

, (3.5)

for any f ∈ L2(R
2) we have

∫

R2

dv

∣

∣

∣

∣

∫

R2

dwφ(v,w)f(w)

∣

∣

∣

∣

2

≤ c‖f‖2. (3.6)

Let us now consider the case φ(v,w) = SR
i . Remember the definition of gi in Proposition 2.3

∫

R2

dvSR
i (v,w)

[∫

R2

dw′SR
i (v,w

′)

]

=

∫

|v|>R
dvKi(v,w)gi(v) ≤ hi(R)hi(0) → 0 (3.7)

If φ(v,w) = PR
i , then

∫

R2

dvPR
i (v,w)

[∫

R2

dw′PR
i (v,w

′)

]

=

∫

|v|≤R
dvK(v,w)χc

R(w)

[∫

R2

dw′Ki(v,w
′)χc

R(w
′)

]

≤ hi(0)hi(R)χ
c
R(w) → 0.

The compactness of the operators QR
i , for fixed R is standard (see [9], pages 229-231). Indeed,

from Proposition 2.3 the kernel Q1 is a continuous function on a bounded set, hence uniformly

continuous and this is sufficient for the compactness. As for the kernel QR
2 we have to take care of

the singularity v = w. To do this we proceed in the same spirit as before. Since now R is fixed, we

drop the apex R and introduce a (smooth version) of the characteristic function χε(v) = η(ε− |v|)
and χc

ε(|v|) = η(|v| − ε) and write

Q2(v,w) = χc
ε(|v − w|)Q2(v,w) + χε(|v − w|)Q2(v,w). (3.8)

Clearly for the part χc
ε(|v −w|)Q2(v,w) we can use the same argument used for Q1. Now we show

that χε(|v − w|)Q2(v,w) goes to 0 as ε→ 0 in the uniform operator norm.

Indeed, by the same argument used to obtain (3.6), we have

∫

|v|≤R
dv

∣

∣

∣

∣

∣

∫

|w|≤R
dwχε(|v − w|)Q2(v,w)f(w)

∣

∣

∣

∣

∣

2

≤

C2
2

(

∫

{z∈R2,|z|<ε}

dz

|z|

)2

‖f‖2 ≤ 4π2C2
2ε

2‖f‖2 → 0,

as ε→ 0.
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A Appendix

Proof of Proposition 2.1. For the moment we keep d unspecified.

By using (2.11),

L̂1ϕ(v) =

∫

Rd

dk|k|3−dI(k, v)ϕ(v +
k

2
). (A.1)

We compute I(k, v):

I(k, v) =
1

2

∫

Rd

dwM(w)δ(k · [v − w +
k

2
]) = J(v +

k

2
, k), (A.2)

J(v, k) =
1

2

∫

Rd

dwM(w)δ(k · (v − w)). (A.3)

We set w = k̂w‖ + w⊥, k̂ = k|k|−1, w‖ = w · k̂. Hence

J(v, k) =
(2π)−d/2

2|k|

∫ ∞

−∞
dw‖δ(v‖ − w‖)

∫

Rd−1

dw⊥ exp

[

−
w2
‖ + |w⊥|2

2

]

=
1

2
√
2π|k|

exp

[

−
v2‖

2

]

Therefore

L1ϕ(v) =
1

2
√
2π

∫

Rd

dk|k|2−d exp

[

−((v + k
2 ) · k̂)2
2

]

ϕ(v +
k

2
) (A.4)

So we get

K̂1(v,w) =

√

2

π
|v −w|2−d exp

[

−1

2

(

w · v − w

|v − w|

)2
]

. (A.5)

By using (2.12) we have (with the notation u = v−w, û = u/|u|, w‖ = (w · û)û and w⊥ = w−w‖)

K̂2(v,w) =
1

2

∫

Rd

dkM(w +
k

2
)δ(k · (v − w))|k|3−d =

1

2(2π)d/2

∫

Rd

dk|k|3−dδ(k · u) exp
[

−(w + k
2 )

2

2

]

=

2

(2π)d/2
1

|u|

∫

Rd

dk|k|3−dδ(k · û) exp
[

−|w|2 + |k|2 − 2k · w
2

]

=
1

(2π)d/2
2

|u|

∫ ∞

−∞
dk‖δ(k‖)

∫

Rd−1

dk⊥|k⊥|3−d exp

[

−
(|w‖|2 + |w⊥ − k⊥|2)

2

]

. (A.6)

Hence

K̂2(v,w) =

√

2

π

1

|v − w| exp
[

−1

2

(

w · v − w

|v − w|

)2
]

Hd(w⊥), (A.7)

with Hd defined on Rd−1 as

Hd(x) =
1

(2π)
d−1

2

∫

Rd−1

dy exp

[

−|y|2
2

]

|x− y|3−d. (A.8)

Clearly Hd depends only on |x|. The calculation of Hd gives the following result: For d ≥ 3,

Hd(x) =
|Sd−3|

(2π)(d−1)/2

∫ ∞

0
drrd−2 exp

[

−r
2

2

] ∫ 1

−1
dz(1− z2)(d−4)/2(|x|2+ r2− 2r|x|z)−(d−3)/2; (A.9)
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For d = 2

H2(x) =

√

2

π

[

exp

[

−x
2

2

]

+ x

∫ x

0
dy exp

[

−y
2

2

]]

. (A.10)

Then we need to compute |w⊥|. We set cos θ =
v · w
|v||w| . Then

|w⊥|2 =
|v|2|w|2
|v − w|2 (1− cos2 θ). (A.11)

In fact

|w⊥|2 = |w|2 + |û · w|2 − 2(û · w)2 = |w|2 − |û · w|2 =

1

|u|2
[

|w|2|v − w|2 − (v · w)2 − |w|4 + 2|w|2(v · w)
]

=

1

|u|2
[

|w|2(|v|2 + |w|2)− 2|w|2(v · w)− (v · w)2 − |w|4 + 2|w|2(v · w)
]

=

1

|v − w|2 [|w|
2|v|2 − (v · w)2 = |w|2|v|2(1− cos2 θ)]. (A.12)

Therefore

|w⊥| =
|v||w|
|v − w|

√

1−
(

v · w
|v||w|

)

. (A.13)

We conclude that

K̂2(v,w) = Gd(v,w)Hd

(

|v||w|
|v −w|

√

1−
(

v · w
|v||w|

)

)

, (A.14)

and

Gd(v,w) =

√

2

π

1

|v −w| exp
[

−1

2

(

w · v − w

|v − w|

)2
]

. (A.15)

To compute Ki we have to multiply K̂i by
√

M(v)/
√

M(w).

We have the identity

2

(

w · v − w

|v − w|

)2

− |w|2 + |v|2 =
1

2
|u|2 + 1

2

(|v|2 − |w|2)2
|u|2 . (A.16)

Proof. Proof of the identity

2

(

w · v − w

|v − w|

)2

− |w|2 + |v|2 = 1

|v − w|2
{

(|v|2 + |w|2 − 2v · w)(|v|2 − |w|2) + 2(|w|2 − v · w)2
}

=
1

|v − w|2
{

|v|4 − |w|4 − 2(v · w)(|v|2 − |w|2) + 2|w|4 + 2(v · w)2 − 4(v · w)|w|2
}

=
1

|v − w|2
{

−2(|v|2 + |w|2)(v · w) + |w|4 + |v|4 + 2(v · w)2
}

=
1

|v − w|2
{

(v · (v −w))2 + (w · (v − w))2
}

= (v · û)2 + (w · û)2.
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Moreover

|u|2[2(v · û)2 + 2(w · û)2 − |u|2] = 2(|v|2 − v · w)2 + 2(|w|2 − v · w)2 − (|v|2 + |w|2 − 2v · w)2 =

−4(v · w)(|v|2 + |w|2) + 4(v · w)(|v|2 + |w|2) + 4(v · w)2 − 4(v · w)2

+2(|v|4 + |w|4)− (|v|2 + |w|2)2 = |v|4 + |w|4 − 2|v|2|w|2 = (|v|2 − |w|2)2.

Therefore, the exponent in the exponentials is exactly A(v,w) and this concludes the proof of

Proposition 2.1.
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