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1. INTRODUCTION

We are dealing with flows described by stochastic Navier Stokes equations in dimension
2 of the following form

) (0) + (a(0) V(1) =~V o, () ) )

in an open bounded domain D of R? with a smooth boundary 9D which satisfies the
locally Lipschitz condition see [1]. Here, u, is the velocity of the fluid, v > 0 is its
viscosity, p denotes the pressure, W is a Gaussian random field white in time, subject to
the restrictions imposed below on the space correlation and ¢ is an operator acting on the
solution. The velocity field w, is subject to the incompressibility condition

W (t,.)

V-u,(t,x) =0, te€[0,T], =z€D, (1.2)
and to the boundary condition for every ¢ € [0, 7]
uy(t,.)-n=0 and curl u,(¢,.) =0 on 9D, (1.3)

n being the unit outward normal to dD. The initial condition is the function ¢ defined on
D:
uy(0,2) =((z) =z € D. (1.4)
In the deterministic case, for fixed v > 0 and an initial condition { € H, well posedness
of the above system is well-known in C([0,T]; H) N L?(0,T;V), where H and V denote
respectively subspaces of L?(D) and W12(D), see [37]. The well posedness can also be
found in [2] and [4] as an intermediate result for the well posedness of the deterministic and
stochastic Euler equation with additive noise. Martingale solutions of the above system
(with a multiplicative noise) have been studied in [5] and [9].
The aim of the present paper is to prove a Large Deviation Principle (LDP) for the sto-
chastic 2D Navier Stokes equations (1.1) when the viscosity coefficient v — 0 and the noise
W is multiplied by the square root of the viscosity, in order to be in the Freidlin-Wentzell

setting. Several recent papers have studied a LDP for the distribution of the solution to a
1
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hydro-dynamical stochastic evolution equation. We refer to [35] for the 2D Navier-Stokes
equations, [21] for the Boussinesq model, [16] for more general hydro-dynamic models, [34]
for tamed 3D Navier Stokes equations. All the above papers consider an equation with
a (fixed) positive viscosity coefficient and study the exponential concentration to a deter-
ministic model when the noise intensity is multiplied by a coefficient /¢ which converges
to 0. They deal with a multiplicative noise and use the weak convergence approach of
LDP, based on the Laplace principle, developed by P. Dupuis and R. Ellis in [22].

In a recent paper [6], we consider a simpler equation driven by a multiplicative noise
and a vanishing viscosity coefficient, that is a shell model of turbulence. Under certain
conditions on the initial condition and the operator acting on the noise, this equation is
well posed in C([0,7]; V) where V is a Hilbert space similar to H%?. However, we prove
a LDP for a weaker topology, that of L?(0,T;H), where H is a subspace of V similar to

H %’2, with the same scaling between the ”viscosity” and the square of the noise intensity.
The technique used is again the weak convergence approach, To our knowledge, this is
the first paper that proves a LDP when the coefficient in front of the noise term depends
on the viscosity. Let us point out that the study of the inviscid limit is an important
step towards understanding turbulent fluid flows in general. Let us also refer to the paper
of M. Mariani [29], where a "nonviscous” scalar equation is considered in the context of
conservation laws. However the techniques used in that paper are completely different
from the ones used here and in [6].

In this paper, we will generalize our result to the Navier Stokes equations (1.1) in a
bounded domain of R?; this is technically more involved. Note that the rate function in
this framework is described by the solution to a deterministic ”controlled” Euler equation

Ou(t)

ot

with the same incompressibility and boundary conditions, where h denotes an element
of the RKHS of the noise. This equation is a deterministic counterpart of the stochastic
Euler equation studied by [4] in the case of additive noise, [10] and [5] when the noise
is multiplicative. There is an extensive literature for the deterministic Euler equation in
dimension 2. We refer to [2], [24], [36] and the references therein and [3] for a survey
paper.

The technique we use is again the weak convergence approach and thus will require to
prove well posedness and apriori bounds in the space C([0,T]; L?) N L>(0,T; H4) for
some ¢ > 2 of the solution to (1.5) for a more regular initial condition. Thus, we are able
to prove the LDP in a "non-optimal” space for the Navier Stokes equations with positive
viscosity, namely L2(0,T;H), where H is a Hilbert interpolation space between H and
V similar to that in [6]. This is due to the fact that the Euler equation is known to be
quite irregular and to require strong conditions in order to have uniqueness of the solution;
this forces us to work with non Hilbert Sobolev spaces H¢ for ¢ € (2,00) and to require
that the diffusion coefficient ¢ is both trace class and Radonifying. Indeed, some apriori
estimates have to be obtained in general Sobolev spaces uniformly in the ”small” viscosity
v > 0 for the stochastic Navier Stokes equations (1.1) when the noise W is multiplied by
/v and shifted by a random element of its RKHS.

Let us finally point out that, even if the problem solved here is similar to that in [6], the
final step is quite different. Indeed, unlike all the references on LDP for hydrodynamical
models, the weak convergence is proven using a tightness argument and not by means of
the convergence in L? of a properly localized sequence. Unlike in [6], no time increment
has to be studied and no Hélder regularity of the map o(.,u) has to be imposed. Let
us also point out that we replace the classical homogenous Dirichlet boundary conditions
by the free boundary one. Working with the classical homogeneous Dirichlet boundary

+ (u(t) - V)u(t) = =Vp+o(t,u(t))h(t), (1.5)
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condition would lead to some boundary layers problems that are beyond the scope of this
paper. For more details and explanations about the free boundary condition (1.3) we refer
to [37]. Let us also mention that all our results can proved for the Stochastic Navier-Stokes
equations with periodic conditions.

The paper is organized as follows: In section 2 we describe the model and establish
apriori estimates in the Hilbert spaces L? and H'? similar to known ones, except for
two things: the boundary conditions are slightly different, and we have to prove estimates
uniform in a ”small” viscosity v. Section 3 deals with the inviscid problem in C([0, T]; L?)N
L>(0,T; H™). Section 4 proves apriori bouunds of the NS equations in H¢ and section
5 establishes the large deviations results. Finally, some technical results on Radonifying
and Nemytski’s operators are gathered in an Appendix.

2. DESCRIPTION OF THE MODEL

For every v > 0 we consider the equations of Navier-Stokes type

at + (u-V)u+ Vp = vAu + o(t,u) W 5> in [0,T] x D,

Vou=0, in [0,7] x D, 2.1)
curlu=0and u-n=0 on [0,T] x 0D, '
u|t:0:C7 in D,

where curlu = Dijus — Douy.

2.1. Notations and hypothesis. Let V be the space of infinitely differentiable vector
fields w on D with compact support strictly contained in D, satisfying V-« =0 in D and
u.n =0 on dD. Let us denote by H the closure of V in L?(D;R?), that is

H:{ue [L2(D)]*; V-u=0in D, u-n:OonaD}.

The space H is a separable Hilbert space with the inner product inherited from [L2 (D)] 2,
denoted in the sequel by (.,.) and |.|y denotes the corresponding norm. For every integer
k > 0 and any q € [1,00), let W*4 denote the completion of the set of C5°(D,R) or of
Cs°(D,R?) with respect to the norm

oo = (3 [ utoiear)?
la|<k
To ease notations, let ||.||; := ||.|lyyo.. For k < 0and ¢* = ¢/(g—1), let W4 = (Wha)*,
ol ()
dxoxg?”
number s = k + 7, where k is an integer and 0 < 7 < 1, and for any ¢ € [1,00), let W4
denote the completion of the set of C§°(D,R) or of C§°(D,R?) with respect to the norm

defined by:
0u(x) — O uly)|?
lalyne = e + 3 / / |x_ W dudy.
| =k

Given 0 < a < 1, let W*P(0,T; H) be the Sobolev space of all w € LP(0,T; H) such that

! Ju(®) [ult) = u(s)I” 1.
‘t_s‘l-l-ap s < 0OQ.

Let us set H4 = WkanH for any k € [0,400) and ¢ € [2,00); the set H* is endowed
with the norm inherited from that of W% and denoted by ||.|| gx.». Let V = H'2, that is
the subspace of H defined as follows:

V:{UGWI’Q(D;R2): V-u=0inD, u-n=0o0ndD}.

Here, for a multi-index o = (a1, a2) we set 0%u(x) = For a non-negative real
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The space V is a separable Hilbert space with the inner product ((.,)) inherited from that

of WH2(D;R?) and ||.|| := |.]|v denotes the corresponding norm, defined for u,v € V by:
Jull? = (), and (w,0)) = [ [u(a).o(e) + V(). Vo(x)]da.
D

Identifying H with its dual space H’, and H’ with the corresponding natural subspace
of the dual space V', we have the Gelfand triple V. C H C V' with continuous dense
injections. We denote the dual pairing between u € V and v € V' by (u,v). When v € H,
we have (u,v) = (u,v). Let b(-,+,+) : V. x V x V — R be the continuous trilinear form
defined as

b(u,v,z) = /D(u(x) -Vo(z)) - 2(x) de.

It is well known that there exists a continuous bilinear operator B(-,-) : V. x V — V'
such that (B(u,v),z) = b(u,v,z), for all z € V. By the incompressibility condition, for
u, v,z € V we have (see e.g. [27] or [2])

<B(U,U),Z> = _<B(u7 Z),’U) and (B(u,v),v> =0. (22)
Furthermore, there exits a constant C' such that for any v € V,

1B (u, w)llvr < Clul g [u]- (2.3)
Let a(-,-) : V x V' — R be the bilinear continuous form defined in [2] as

a(u,v) = /DVu -Vou — /aD k(r)u(r) - v(r)dr,

where k() is the curvature of the boundary 0D at the point r, and we have the following
estimates (see [26] for details):

/BD k(ryu(r) - o(r)dr < Clluf|[o], (2.4)
and for any € > 0 there exists a positive constant C(€) such that:
/ k(r)|u(r)[Frdr < elul® + C(e)lulf- (2.5)
oD

Moreover, we set D(A) = {u € H*? : curl u=0o0n 0D}, and define the linear operator
A:D(A) — H as
Au = —Au, ie., a(u,v) := (Au,v).

On the other hand, for all u € D(A) we have

(B(u,u), Au) = 0. (2.6)
For 3 > 0 we will denote the 3-power of the operator A by A® and its domain by D(A?).
Here D(A~?) denotes the dual of D(A?). Note that for k < 3/4, we have H*2 = D(A¥/?);
the proof can be found in [10] Theorem 3.1. Set H = H'/>2 and note that H = D(AY*4)

and V = D(A'?). The continuous embedding V € H C H holds. Moreover, H is an
interpolation space, that is there exists a constant ag > 0 such that

w3, < aolulg|ul, for all u € V. (2.7)
Since H ¢ L*(D) and (B(u,v),w) = —(B(u,w),v), we deduce
[(B(u,v), w)| < Cllulls|[vllx]|lwl], (2.8)

and B can be extended as a bilinear operator from H x H — V.
In place of equations (2.1) we will consider the abstract stochastic evolution equation:

du(t) + vAu(t)dt + B(u(t), u(t))dt = o(t, u(t))dW (t) (2.9)
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on the time interval [0, 7] with the initial condition u(0) = ¢, where B satisfies conditions
(2.2), (2.3), (2.6) and (2.8).

2.2. Stochastic driving force. Let () be a linear positive operator in the Hilbert space

H which is trace class, and hence compact. Let Hy = Q%H ; then Hy is a Hilbert space
with the scalar product

(6,)0 = (Q 26, Q2%), Yo, 4 € H,

together with the induced norm |- |y = /(+,-)o. The embedding i : Hy — H is Hilbert-
Schmidt and hence compact, and moreover, i i* = Q. Let Lo = Lg(Hy, H) be the space

of linear operators S : Hy — H such that SQ% is a Hilbert-Schmidt operator from H to
H. The norm in the space L¢ is defined by |S|%Q = tr(SQS™*), where S* is the adjoint

operator of S. The Lg-norm can also be written in the form

1517, = tr([SQ?ISQ1") = > 1SQ 2y > = T I[SQ ) | (2.10)

k>1 E>1

for any orthonormal basis (¢) in H.

Let (W (t),t > 0) be a Wiener process defined on a filtered probability space (2, F, (), P),
taking values in H and with covariance operator ). This means that W is Gaussian, has
independent time increments and that for s,t > 0, f,g € H,

E(W(s),f) =0 and E[(W(s), N(W(t),9)] = (s A1) (Qf.9)-

Let (B3;) be standard (scalar) mutually independent Wiener processes, (e;) be an or-
thonormal basis in H consisting of eigen-elements of @), with Qe; = gje;. Then W has
the following representation
W(t) = lim Wa(t) in LX(Q; H) with Wa(t) = Y ¢/*8i(t)e;, (2.11)
n—oo

J
1<j<n

and Trace(Q) = 3_;>; ¢;- For details concerning this Wiener process see e.g. [17].

Let k> 0, ¢ € (2,00) and let R(Hp, W*) denote the space of all y-radonifying mappings
from Hy into W*4, which are analogues of Hilbert-Schmidt operators when the Hilbert
Sobolev spaces W#2 are replaced by the more general Banach spaces W*4. The definitions
and some basic properties of stochastic calculus in the framework of special Banach spaces,
including the case of non-Hilbert Sobolev spaces, can be found in [10]; see also [7], [19],
[32] and [33]. For the sake of self-completeness, they are described in sub-section 6.2 of the
Appendix. The radonifying norm ||S| g, wr.ay of an element S of R(Ho, WH) is defined
in (6.9) ; it is the extension of the Lg norm of S € Ly which is the particular case k =0
and g = 2.

2.3. Assumptions. Given a viscosity coefficient v > 0, consider the following stochastic
Navier-Stokes equations

du” (t) + [vAu” (1) + B(u” (t), u” (£))] dt = /v o, (£, u” () AW (£), (2.12)

where the noise intensity o, : [0,7] x V' — Lg(Hy, H) of the stochastic perturbation is
properly normalized by the square root of the viscosity coefficient v. We assume that o,
satisfies the following growth and Lipschitz conditions:

Condition (C1): For every v > 0, o, € C([0,T] x V;Lg(Ho, H)), and there exist
constants a > 0 and K;, L; > 0 such that for every t € [0,T], v >0 and u,v € V:

(0) low (b w3, < Ko+ Kulul}y + Kov® [ull?.

(i) |ov(t,u) — o, (t, v)|%Q < Liju— |3 + Lo||u — |3
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For technical reasons, in order to prove a large deviation principle for the distribution of
the solution to (2.12) as the viscosity coefficient v converges to 0, we will need some precise
estimates on the solution of the equation deduced from (2.12) by shifting the Brownian
W by some random element of its RKHS. This cannot be deduced from similar ones on
u by means of a Girsanov transformation; indeed, the Girsanov density is not uniformly
bounded in L?(P) when the intensity of the noise tends to zero (see e.g. [21] or [16]).

To describe a set of admissible random shifts, we introduce the class A as the set of
Hp—valued (F;)—predictable stochastic processes h such that fOT |h(s)|2ds < oo, a.s. For
fixed M > 0, let

T
Sy = {h € L*(0,T; Hy) : / |h(s)|3ds < M}.
0

The set Sys, endowed with the following weak topology, is a Polish (complete separa-

ble metric) space (see e.g. [12]): di(h, k) = > 4oy 2%‘ fOT (h(s) — k(s),éx(s)),ds|, where
(éx(s), k > 1) is an orthonormal basis for L2(0, T; Hy). For M > 0 set
Ay ={h e A: h(w) € Sy, a.s.}. (2.13)

In order to define the stochastic controlled equation, we introduce for v > 0 a family of
intensity coefficients ,, which act on a random element h € Ay, for some M > 0. The
case v = 0 will be that of an inviscid limit ”deterministic” equation with no stochastic
integral, and which can be dealt with for fixed w. We assume that for any v > 0 the
coefficient &, satisfies the following condition:

Condition (C2): For any v > 0, 6, € C([0,T] x V;L(Ho, H)) and there exist non

negative constants Ky, K; and L; such that for every t € 0, 7], v>0 and u,v € V:

160 (t, )| L (to,11) < Ko+ Ki|ulg + Vv Ky ||ul|x, (2.14)
‘5’,/(15, u) - 6V<t7v>‘L(HQ,H) S il\u — U|H + \/;EQH’U, — 'UH‘/. (2.15)

Examples of coefficients ¢, and &, which satisfy conditions (C1) and (C2), of Nemytski
form, are provided in subsection 6.3 of the Appendix.

Let v > 0, M >0, h € Ay, ¢ be an H-valued random variable independent of WW.
Under Conditions (C1) and (C2), we consider the nonlinear SPDE

duf (1) + [ Au (1) + B (1), (uf (5)] b = /(6 () AW (1) + G (1, () ()
uf(0) = ¢, (2.16)

with the conditions V.uj =0 on [0,T] x D, curl uf =0 and u.n =0 on [0,7] x 0D. Well
posedness of the above equation as well as apriori bounds of the solution to this equation
in C([0,T); H) N L?(0,T;V) are known for fixed v > 0 when v = 0 on 6D (see e.g. [35]
and [16]. We will prove them uniformly in v € (0, 1] for some small vy under different
boundary conditions.

Let us define the following conditions that we will use later in the paper. The following
conditions (C3) and (C4) will allow to improve apriori estimates on the p-th moment of
the solution to the stochastic controlled equation (2.16) in V, uniformly in time and on
a "small” viscosity coefficient v. They will also yield the existence of a solution to the
inviscid deterministic equation, that is of (2.16) when v = 0.

Condition (C3): For every v > 0, o, € C([0,T] x D(A); Lo(Hop,V)) and there exist
constants a > 0 and K;, L; > 0 such that for every t € [0,T], v > 0 and u,v € D(A):
(i) |curl al,(u)|%Q < Ko + Killul} + v* Ky |Veurl ul%,

(ii) |AY 20, (t,u) — AY %0, (t, v)|%Q < Li|ju —v||# + vLo|Au — Avl%,.
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Condition (C4): For every v > 0, &, € C([0,T] x D(A); L(Ho,V)), there exist non
negative constants K;, L;, such that for every t € [0,T], v > 0 and u,v € D(A):

(1) [eurl 6, (t, w)| Loy, o) < Ko + K1 |ully + /vKs|Veurl uly,

(ii) |AY25,(t,u) — AY?5,(t, V)| L(Ho, H) < Li|ju — v||y + VLo Au — Av|g.

The next condition (C6q) for v = 0 will enable us to prove the uniqueness of the
solution to the ”deterministic” inviscid equation in H%¢ when 2 < ¢ < co. The following
general assumptions (C5q) and (C6q) on o, and 6, will also yield some apriori estimates
for the g-th moment of the H " 9-norm of the solution to the stochastic controlled equation.
Condition (C5q): Let g € [2,00); 0, € C([0,T) x H*% R(Hy, H"?)) for v > 0, and there
exist non negative constants K; for every u € H(\H>4, if ¢ = curl ,

2
leurl 0y () By oy < K+ Kallull2 + Ks €12 + Ko [ ()72 Ve (z) 2 )
Condition (C6q): Let g € [2,00); 6, € C([0,T] x H"%; L(Hy, H"9)) for v >0, and there

exist non negative constants K; such that for every u € H%1 (resp. uw € H*Y forv =0) if
¢ = curl u,

1
leurl G (b, ) a0 2oy < Kt Kallull+-Ks [l [ |62 VE@)Pdr) 7. Again
sub-section 6.3 of the Appendix provides examples of Nemytski operators which satisfy all
the conditions above.

2.4. Well Posedness and a priori estimates. Let us mention in this section that the
results used to obtain the well posedness of solutions are similar to known ones with
different boundary conditions. However the apriori estimates are more involved since we
are seeking estimates uniform in the parameter v > 0 which will be used later in Section
5 to let v — 0.

Proposition 2.1. Let T > 0, (o,,v > 0) and (6,,v > 0) satisfy conditions (C1) and
(C2) and let the initial condition ¢ be such that E|C|?§ < oo for some p > 2. Then there
exists a positive constant ka(p) such that for Ko € [0,k2(p)] and for any M > O there
exists a constant vo(M, ka(p), ka(p) V K3,) := 19 > 0 and positive constants Cy(p, M) and
C1(M) (depending also on T, vy, Ki,i =0,1,2, K;,i = 0,1 and Ky;), such that for any

€ (0,v0) and any h € Ay, (2.16) has a unique solution in C([0,T); H) N L?(0,T;V)

which satisfies the following apriori estimates:

sup sup IE< sup |uh() )<Cl(p, )[1+E|C!?ﬂ, (2.17)

0<v<vg he Ay 0<s<T
and
T 2 4 2 4
owpsup v [ B(u )P + (s < GOD[ B (19
O0<v<vg he Aps 0

Remark 2.2. Note that condition (2.14) on &, is needed with an upper estimate written in
terms of ||ul|x in order to prove the existence of a solution to (2.16) and more precisely that
the weak limit of the Galerkin approximation is a solution to (2.16). Howewver, if one knows
that (2.16) has a unique solution, the estimates (2.17) and (2.18) can be obtained under
a weaker assumption on &,. For example, if o, satisfies condition (C1) and &, = Co,
for v > 0, then using Proposition 2.1 with 6, = 0 and then using the Girsanov theorem
with W, (s) = W(s) — %hy(s) we deduce the well-posedeness of (2.16). Nevertheless,
once well-posedeness is proved, the estimates (2.17) and (2.18) could not be deduced from
the Girsanov theorem, since the moments of the Girsanov density are not bounded for

€ (0,v9]. The main aim of the proof below is to establish upper estimates uniform in
“small” v in a general framework. Finally note that if 6, = Co, and o, satisfies (C1)
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with a = 1 and an arbitrary constant Ko(1), then rewrittting (C1) with a = 1/2, one sees
that the corresponding constant Ko = \/UK3(1) can be made arbitrary small for small v.

Proof. The proof, which is quite classical, requires some Galerkin approximation of uy,
say ulfl’”, for which apriori estimates are proved uniformly in n. Using a subsequence of
(uZ’n, n > 1) which converges in the weak or the weak-star topologies of appropriate spaces,
one can then prove that there exists a solution to (2.16) (see e.g [16] or [35]). The proof of
the uniqueness is standard. To ease notation, we will replace the Galerkin approximation
by the limit process uj to obtain the required apriori estimates uniformly in n > 1 and in
v € (0,p] for some vy > 0 under slightly more general boundary conditions; the proof can
then be completed as in the appendix of [16]. If the well-posedeness is already known, we
use the solution u} instead of the Galerkin approximation. Finally, to prove these uniform
apriori estimates, we will suppose that &, satisfies (C2) where (2.14) is replaced by the
following weaker condition for every t € [0,7], v > 0 and u € V:

oy (t,u) < Ko+ Kilulg + Vv Ks|ul. (2.19)

Let v > 0, h € Apy; for every N > 0, let v = inf {t >0, |uj(t)|g > N} AT.
Applying 1t6’s formula first to H% and the process uj (. A Ty), then to the map x — z?
for p > 2 and the process |u}(. A 7n)|3;, we deduce:

tATN 5
jub (t AN+ Vzp/o [ty ()77 [[up, (51| ds < | (0)[F7 + T(8) + > Ti(t), (2.20)

where

I = 2V / ) (035 e (5) AW (5), (),
Ti(t) = 2w / N\uz<s> -2 LDk<r>ruz<r>r%drds,

() = 2 / )2 (Buk(5), (), () s,

tATN
Ti(t) = wp / 6, (5) 22 (5, () 2. s,

tATN
T5(0) = wplp-1) [ lobls k)R (o) s

The incompressibility condition (2.2) implies that T5(t) = 0 for any ¢ € [0, T]. Using (2.5),
we deduce that for any € > 0 there exists a constant C'(¢) such that

tATN . o2 5 tATN . %
T1(t) < 2vpe lub () lluk(s)l["ds +2vp C(e) |up, (s) |77 ds.
0 0

Since h € Ay, the growth condition (2.19), the Cauchy-Schwarz and Holder inequalities
imply that for any € > 0,

Ty(t) < 2p /0 g (Ko + aluf (9 + VERalluf (5)]) 1h(s)ods

<[ T [Ro ot (Ro B () + Rl (s) 3 )] ) lods
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_ N _ tATN
< 2pKoVMT + 2p(K0 + Kl) / [y (5) |77 |h(s)lods
0

~|—2p(/0tATN vl ()| 22 |t (s )||2d5)5</0 ﬁ| s )%dS)%‘

Finally, the Young inequality implies that for any é > 0, we have

tATN

- tATN
Tyt) < 2pKoVMT + pev / i ()22 ik (s) |2 ds
0

tATN - N KQ
i [ o) [2( o+ K)o + 2 o) F] ds
0 €
Using the growth condition (C1), we deduce for v € (0, 1]:

tATN
Tut) < VP/O b ()32 (Ko + Kuuj(s)[3 + Koaluf (s)]%) ds

tATN
Ts(t) < 2p(p-— 1)1//0 [ty ()72 (Ko + Kluf,(s)[3; + Kallup (s)]|°) ds

Thus, the It6 formula (2.20) and the previous upper estimates of T;(t), i = 1,--- , 5, imply
that for any t € [0,T1], €,€ > 0,

tATN
AT (2 26— e Eap 1)) [ Iap(6) B o) ds
0

gZ—l—/O P(s )\u(s/\TN)|Hds+J() (2.21)

where
= ’C’}an + 2upKoVMT +p(2p — Vv KT,
D ~ ~ k22 2
B(s) = p|20C() + (2p = V(Ko + K1) +2(Ko + K1 ) |a(s) o + =2 |A(s)[F].

Let w2(p) € (0, g7); for 0 < Ko < ra(p), let e(Ka) = €(K32) = 152 — K2(2p — 1)]. For
t € 10,77, set

tATN B
X(t) 1= sup Juf(s ATw)lif, Y (1) i= /0 jur () 3l () |ds, T(8) = sup J(s).

Let A(K2) = £[2 — K2(2p — 1)] > A(k2(p)) := A € (0,1) and
a(K) = vp [2(1 M) — 26(Ks) — é(Ka2) — (2p — 1)1@] > a(ka(p)) := & > 0.
With these notations, the inequality (2.21) yields for v € (0,1] and K> € [0, k2(p)]:
AX(8) 4+ (1= N|ub(t AN +aY (t) < Z + /t @(s)X (s)ds + I(t). (2.22)
0

Furthermore, using the Burkholder-Davis-Gundy inequality, condition (C1), then Cauchy-
Schwarz’s and Young’s inequalities, we deduce that for any 3 > 0,

1/2

Ef(t) < 6v/vpE </0 ™ | (s )4p 2|a( U (s))|%st>

tIATN 1/2
< GﬁpE< [ o2 o + Koo >\%+szauuz<s>u2]ds)
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tATN

1/2
< 6V/vpE (X(t) /0 (Ko + (Ko + K1)lup ()77 + Kav®[uf (s) ?_QIIUZ(S)IIQ]d«?)

< BEX(t) + AE /t X(s)ds + 0EY (t) + C,
0

where
) B 14a,2 ~ 2
=P koK), F=2 PR, and = 2Py
B B B
Suppose that 0 < Ky < ko(p) and set ¢ = %, o= % 8= % v = %’ 5= § and I(t) = Igj:)_
Then
Z t
X(t)+aY(t) < X —|—/ o(s)X(s)ds+ I(t),
0
with

>/.\ Ql

EI(t) < BEX(t) +E / t X(s)ds + OEY (t) +
0

Furthermore, C(Kj, Ko) = fOT o(s)ds = ®q1(k2(p), K2) + v®a(K3), where for Ky €
[0, k2(p)],

Di(ra(p), K) = 5 (;?7(’2]9 gy (VT (Ko + ) + MES],
Da(K) = =P [2C(e(Ky)) + (2p — 1) (Ko + K71)].

C 2—ka(p)(2p—1)

The functions ®;(kz(p),.) and ®o(.) are clearly increasing. Let § = %e_%(“?(p)’”?(p)\/f{%)
and choose v € (0, 1] small enough to ensure ¢”1®2(+2(P)) < 2 Then for any K € [0, ko(p)]
and v € (0, 11], we have 2ﬁeC(K2’f<2) < 1. Finally, let 5 € (0, 1] be small enough to ensure
that 23208 priy (p)e2®1 (m2(P)r2(P)VK2) < 1 (p— 3)k2(p). Then for Ky € [0, k2(p)], M > 0,
v € (0, 1] with vy := vo(M, ko (p), ka(p) V K3) = 15, we have 26¢C(E2.K2) < o Thus, since
X(.) is bounded by N, Lemma A.1 in [16] (see also Lemma 3.9 in [21]) implies that for
v e (0,1) and t € [0,T], we have:

E[X(t) + Y (t)] < C(E|C|?, ka(p), Ko, v0, M, T),

for some constant C’(E|C|§§’, ko(p), K2, 19, M, T) which does not depend on N, v, h € Ay
and on the step n of the Galerkin approximation. Since the right handside in the above
equation does not depend on NV, letting N — oo we obtain that 7y — T a.s. Hence there
exists 19 > 0 which does not depend on n such that the Galerkin approximation ;" of
uy satisfies:

T
supE( sup fur” (1) §§+u/ [l 1) + s ()] ds) < oo
n>1  NO<t<T 0
for any v € (0,1p] and any h € Aps. The proof is completed using a classical argument
(see e.g. the Appendix of [16] for details.) O

Proposition 2.3. Let the assumptions of Proposition 2.1 be satisfied for p =1 or some
p € [2,00). Moreover, assume that the initial condition is such that E||¢||* < oo and that
(oy,v > 0) and (6,,v > 0) satisfy conditions (C3) and (C4). Then there exists a constant
Ra(p) > 0 and given any M > 0, there exists U = vg(M, Re(p) V Ky V K3) € (0,19 and
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a positive constant Ca(p, M) such that for Ks € [0,Ra2(p)], 0 < v < 1y and h € Ay, the
solution to (2.16) satisfies:

T
B( sup [ (O +v [ Auf(s) ds) < Calp, M) (1 +EJCI) (2.23)
0<t<T 0

Proof. Let £ = curl uy, then it is a classical result that wu} is solution of the following
elliptic problem (see e.g. [5] and the references therein),

—Auy = Ve in D,
up-n=¢§ =0 ondD,

where V+ = (D3, —D;). Using the equation (2.24), we get that
—(Auj, Auj) = (V€ Aujy) = —(VHE, V€.

(2.24)

Hence
1L
Ayl = V& 5 = 1D2& 172y + 1D1&: 72y = [VERIEr-
Hence, using (6.3) we see that it is enough to prove that for 1y > 0 small enough, there

exists a constant C(M, T, K;, K;) := C3 such that for any v € (0,1] and h € Ay,

T
B( s 03 +v [ VE6hds) < G0+ Bl e B 229)
0<t<T 0

We at first prove this inequality for the Galerkin approximation of the solution ; a standard
argument extends it to uj and hence &;. Fix N > 0 and set 7y = inf{t > 0 : [}/ (t)|g >
N} AT. Applying the curl to the evolution equation (2.16) yields &;/(0) = curl ¢ and

d&y (t) + v A& (t)dt+curl B(uj,(t),uy(t))dt =
Vveurl o,(s,uf(t)) dW (t) + curl 6, (s, uf,(t))h(t) dt. (2.26)

Recall that equation (6.7) with ¢ = 2, implies (curl B(ujy,u}),§;) = 0 for u € D(A).
Using Ito’s formula for the square of the H norm, and then for the map z — |z}, for
p € [2,00), we obtain for t € [0,T:

9 tATN 9 9p—9 9 _ _
& (s ATV + QPV/O V& () 165 ()7 2ds = |eurl C[3F + J(2) + Y Ti(t), (2.27)
where

It = 2y / ()2 (curl o, (s, u ()W (), €4(5),
Ti(t) = 2 / ()22 (curl (s, u () R(s) , €4(s)) d.
) — v [ e (5) 2 [eurl o (s, ()2, d,

Ty(t) = 2vp(p—1) /0 T len) B |(ew! oy (s, uf(5))) "€ (5)| 3y, ds.

Using the Cauchy-Schwarz inequality, (C4) and (6.3) with ¢ = 2, we get that
_ tATN 91
Ti(t) < 219/0 1€ ()5 leurl &y (s, w)| e,y [h(5)]o ds

INTN - B ~ ~ -~
< 2p / Ko+ (Ko +2 0K )I64() 37 + Kl ()| aleh !
0
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VR |VE () 1413 | 1h(s)lo ds

Using Cauchy-Schwarz’s, Holder’s and Young’s inequalities, we deduce that for any € > 0,
we have:

_ _ B ~ tATN
Ti(t) < 2pKoVMT + 2p<K0 +2 CK1> / 12 (5) |22 |h(s)]o ds
0

2p—1

ook [ o) B lods) /0 e el as)
va( [ g weor ) ([ P g e )’

~ N tATN
< 9Ry/MT + KPVMT sup [ul(s)[2 + /0 by ()€ () [22ds

0<s<T

tATN 99 9
e [ I Ve (9 s,
where -
~ " pK22 2
¥(s) = 2p( Ko +2CR1 ) + (2p = DIA(s)]o + 222 [n(s) 3
Furthermore, T3(t) can be upper estimated in terms of T (t) as follows:
_ tATN _ B
To(t) < 20pp=1) [ lewl ouuf (6D l€E ()3 ds = 20— 1To(0)

Finally, condition (C3), (6.3) with ¢ = 2, Hélder’s and Young’s inequalities, we obtain for
€ (0,1]:

tATN
To(t) + T3(0) < vpl2p = 1) [ 6K (Ko + K (i ()l +4C5 () )
+ K| Ve ()] ds

tATN tATN 9p—9
<vpCp=[KT+ [ o+ a0 Hds + Ko [l Ve (9l

+K1( /0 Mﬁv|§g(s)ﬁfds) 5 ( /0 WNIzLZ(s)I?de);}

tATN
< vizp = DT[pEo + Ky swp ()] + [ v el

tATN 9p—2
Fupp =D [ I s
where
1/}2 = (2p — 1) [p(Ko + 4K102) + (p — I)Kl]

Let Ra(p) € [0, k2(p)] where ka(p) < % is defined in Proposition 2.1 and for 0 < Ky <
Ra(p), set

Let

tATN
X(t) = sup [&(s ATw)E, V(t) = / € ()22 VL (s) 3 ds.
0<s<t 0
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Then for
a(Ky) = vp[2(1 = X) — e — Ka(2p — 1)] = L2 Ky(2p — 1)] > al(Ra(p)) == &,
— Jeurl ¢|% + 2pKoVMT + vp(2p — 1)TK,

+ (R'IQP\/M +v(2p — 1)TK1) sup |uf(s) 125’,
0<s<T

Mws

equation (2.27) and the upper bounds of T;(¢) imply that for any ¢t € [0,7] and v €
(0, vo(M)], where vo(M) € (0,1] is defined in Lemma 2.1:

AX(t) + aY (t) + (1 = AL (s A7) |7 <Z+/ [1(s) + vipo| X (s)ds + I(t), (2.28)

where I(t) = supg<,<; |J(s)].
The Davies inequality, condition (C3), (6.3) for ¢ = 2, Cauchy-Schwarz’s, Hélder’s and
Young’s inequalities imply that for any 3 > 0,

tATN 1
B10) < pvoB( [ I e o (9)f ds)

tATN
< 6oV sup k(s ([ IO Ko+ Kl o)

1

+ACP K4 (3) + v KV ()] ds )

9 9 tATN
PV o + 2 (K + 4CPKE / €2 (s)|20ds
ﬁ B 0
1%

(s [ i) T (T s o))"

0<s<T

< BEX(t) +
9

_|_

9 2Va+1
+ 2

IATN
KE/O €8 () 272 |VEx (s) 2 ds

< BEX(t) +7E /WN X(s)ds + OEY (t) + Z, (2.29)
0

where 5 = 91’_2” (Ko + 4C2Ky) + (p — DK1], 6 = 222Ky and 7 = 2 [pKoT +
3 5

KIE(SupO<s<t ’uh( )QP)]' Set SO(S) = M7 o = d/;\, ﬁ = B/j‘) Y= :)//5‘7 § = 5/5‘
and I(t) = I(t)/\. Then for 0 < Ky < &2(p) and 0 < v < vo(M) we have for ¢ € [0, T],

X(t) +aY(t) < /t o(s)X (s)ds + I(t) + Z(t)/A,
0
and
EI(t) < BEX(t) + AE / X(s)ds + OBV (1) + Z/A.
0
Furthermore, C(K3) : fo @(s)ds = ®1(Ra(p), K2) + v®y, where &y = 12T /A(Ra(p)) and

PK2M =
= ( D /A (B2 (D).

Kasv/m0) and let 7y €
)K2v F2(P) < 2 — Ry(p)(2p — 1).

B, (Ra(p), K2) = 2p[(f(0 +20K))T + (2p — 1)VMT +

The map ®1(Ra(p),.) is clearly increasing. Set 3 =
(0, 9] be such that %2 < 9 and 2632k (p) 7 vde o2®1(R2
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Then for Ko € [0, R2(p)] and v € (0, %), we have 28eC(K2) < 1 and 26¢¢(K2) < . Hence,
applying Lemma A.1 in [16] we deduce

T
supE( sup ]f,”t(t/\ﬁv)]?—i-u/ |V£Z(s)\%{ds) < C(E|curl C|12$,M,T),
N N0<t<T 0

for every h € Ay and v € (0,]. Since the previous upper bound is uniform in N, we
deduce that 7y — T as N — oo. Thus, using the monotone convergence we get (2.25),
which concludes the proof. O

The following well-posedeness result for problem (2.16) follows from Propositions 2.1
and 2.3; the proof is not given and we refer to [16] and [35] for details.

Theorem 2.4. Let (o,,v > 0) and (6,,v > 0) satisfy conditions (C1) - (C4) some
p € [2,00) such that E(||C||*P) < oo. There exists a constant ka(p) > 0 such that for
Ky € [0,r2(p)] and for every M > 0 and T > 0, there exists iy := (M, ka(p), K2(p) V
I~('22 Vv K’%) > 0 such that for any v € (0,] and h € Ayy, there exists a pathwise unique
"weak” solution uj, of equation (2.9) with initial condition uy(0) = ¢ € V' such that a.s.
uy € C([O,T];V), the inequalities (2.17), (2.18) and (2.23) hold, and such that for every
v € D(A) and t € [0,T], one has a.s.

(up(t),v) = (¢, v) +/0 [v(uf(s), Av) + (B(uj,(s), v), up(s))] ds

= /O (0 (s, ut(s))dW (s), v) + /O (0 (s, u2(s))h(s), v)ds. (2.30)

3. WELL POSEDNESS OF THE INVISCID PROBLEM

The aim of this section is to deal with the inviscid case v = 0, that is with the Euler

evolution equation
dujy () + B(up (t), up () dt = Go(t, up () h(t) dt ,  up(0) = ¢ (3.1)

in [0,7] x D with the incompressibility condition V.u9 = 0 in [0,7] x D and curl u = 0,
u.n =0on [0,T] x 0D.
Theorem 3.1. Let us assume that ( € V and that &y satisfies conditions (C2) and
(C4). Then for all M > 0, h € Ay and T > 0, there exists a.s. a solution u)) €
C([O,T];H) (L (O,T; V) for the equation (3.1) with the initial condition u§ = ¢, such
that for allv eV and t € [0,T]

t t
(u%(t),v)+/0 (B(u%(s),v),u%(s))ds:/o ((fo(s,ug(s))h(s),v)ds, a.s. (3.2)

Moreover, there exists a positive constant C3(M) (which also depends on Ko, K and T)
such that for every h € Ay, one has a.s.

Sup lup@)]] < C3(M)(L +I¢]))- (3-3)

Proof. For > 0, let us approximate equation (3.1) by the solution uz“ to the following
Navier Stokes evolution equation:

dug (t) + [pAu (t) + B(up(t), up (t))] dt = Go(t, ug(¢)) h(t) dt ,  up(0) =¢, (3.4)

with the same incompressibility and boundary conditions. If ( € H, Gy satisfies the
condition (C2) and h € Ays for M > 0, then Lemma 2.1 shows that a.s. equation (3.4)
has a unique solution u?f € C([0,T); H) N L?(0,T;V) (see also [35] or [16]). Moreover, if
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¢ € V and 6y satisfies (C4), then Proposition 2.3 implies that a.s. u?l“ € C([0,T);V). In

order to prove the existence of solutions for equation (3.1), we need some estimates on u?l“

uniform in g > 0. Multiply the equation (3.4) by 2u2“ and integrate over [0,t] x D; then
(6.5), the Cauchy-Schwarz and Young inequalities and assumption (C2), yield for every
w>0:

g (8) 3 + 2p / (s s < P + 2 / (ol 0 (5))h(s), o (5)) s
< 6l +2 | 106D a0 1Yo 5o
< [¢)% 4 2KoVMT + 2(1?0 + K’l) /Ot [ (5) |3 |h(s) ods.
Hence, by Gronwall’s lemma, we deduce the existence of a constant C, which depends on

M, T, Ko and f(l such that:

sup sup |up ()|} < Ch(1+ [¢[3)- (3.5)
>0 0<t<T

Let 52“ (t) := curl u?l“ (t); then applying the curl operator to equation (3.4) and using (6.6)
we obtain the following evolution equation

dEM (1) + pAE (t) + B(upt(t), £ (1)) dt = curl Go(t, uy (t)) h(t) dt (3.6)

with the initial condition §2“ (0) = curl ¢ and the boundary condition §2“ = 0 on 0D.
Multiply the equation (3.6) by 252" and integrate over [0,7] x D; since ¢ satisfies the
condition (C4), using (6.7) for ¢ = 2, (6.3), Cauchy-Schwarz’s and Young’s inequalities,
we deduce

O + 20 /0 t||€2“(8)\|2ds

< |curl ¢|% + 2/0t\curl &O(S’UQM(S)HL(HO,H) Ih(s)]o |§2“(s)|Hds

< feurt Gl +2 [ (o + Bl 0l + 2K 66 ) 1) le (5 s

< I+ (2K0 -+ Ry sup [ul"(s)ff ) VAIT + 2 /0 (Ko+ 20+ DKL) ()]0l (5) s

s€[0,7

Thus, (3.5), Gronwall’s lemma yields the existence of a constant Cy which depends on
M, T, Ky and K, such that for every h € Ay;:

sup sup [ (6)[F < Co(L+IC)P)  aus. (3.7)
>0 0<t<T

Combining the estimates (3.5), (3.7) and (6.3), we deduce the existence of a constant Cs
depending on M, T, Ky and K7 such that for any h € Aj; one has:

sup sup [u!|| < Cy(1+[¢]) aus. (3.8)
pn>00<t<T

Furthermore, we have u?f € C’([O,T}; H) L= (O, T; V) a.s. for every pu > 0, and

WPt = C— /O Au®(s) — /0 Bl (s), % (s)) ds + /0 Fo(s, u% (s)) h(s) ds.
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Using the estimates (3.5), (3.8), assumptions (C4) on 6y and (6.4) for ¢ = 2 and r = 1,
we deduce the existence of a constant Cy depending on M, T, Ky and K such that the
following estimate holds for any p € (0,1] and h € Ay

[ 1207y < Ca(L +[C])- as. (3.9)

By classical compactness arguments, we can extract a subsequence (still denoted u%“ ) and
prove the existence of a function v € W12 (0, T; V’) () L™ (0, T; V) such that as p — 0:

2“ — v weakly in L? (0,T;V),
“2 — v strongly in L? (O,T; H) ,
u?l” — v in the weak star topology of L*° (0, T; V) ,
uz“ — v weakly in W?(0,T;V7).

Letting ¢ — 0 in equation (3.4), we deduce that the above limit v is solution of the
equation (3.1), that is v = u. Moreover, the estimate (3.8) being uniform in p > 0, we
deduce the estimate (3.3). O

The following theorem shows that if curl ¢ is bounded, then the solution to (3.1) is
unique.

Theorem 3.2. Let us assume that the assumptions of Theorem 3.1 are satisfied. More-
over, let us assume that curl ¢ € (LOO(D))2 and that condition (C6q) holds for every
q € (2,00). Then, for every M > 0 and h € Ay, the solution of equation (3.1) with
the initial condition u) = ( is a.s. unique in C([O,T];H) () L (O,T; Hl’q) for every

€ (2,00) and every T > 0. Moreover, there exist positive constants Cq(M) and Cy(M)
(which also depend on T, K; and ¢l oo (py2), such that for every h € Ay and g € (2,00),
one has a.s.

S lleurl wp(tllg < Ca(M)(A +[I¢]| + lleurl Clly), (3.10)
sup || Vup(t) g < Ca(M)q(L + [[¢]] + [Jeurl ¢ly). (3.11)
0<t<T

Proof. The first step of the proof will establish the estimate (3.10). The second step will
prove the uniqueness of the solution u%.

Stepl. (Existence) Using (6.3) one sees that the proof of (3.11) reduces to that of (3.10),
that is to check Lq(D) upper bounds for §h( ) := curl u (¢). Replacing u) by its Galerkin
approximation uh , we may assume that uh € H?% and deduce the desired inequality
by proving upper bounds which do not depend on n. To ease notations in the sequel, we
skip the index n.

Let us apply the curl to the equation (3.1); the identity (6.6) yields

ded(t) + (ud(t) - V)EX(t)) dt = curl Go(t, ud(t)) h(t)dt , £D(0) = curl . (3.12)

Let us multiply the equation (3.12) by ¢|€)(t)[972£)(¢) and integrate over [0,¢] x D; we
obtain

IO+ 0 [ [ WR6) - DIERsDIER o) s = fewrl ]
i ‘—’/0 /D curl Go(s, uj(s))h(s)[€4 (5|~ €0 (s)dads.
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Using (6.7), we deduce that for every s, [, (u)(s) - V)Ep(s))|€(s)[P~2£)(s)dz = 0. On the
other side, using the Holder and Young inequalities, condition (C6q) yields

t ~ ~ ~
IR ®)11g < fleurl ¢[12 + Q/O (K3 + Kallup(s)llg + Ksll€n(s)llg) 1A(s)loli€n ()1~ ds

< flewst ¢l + (oK + Ka sup [[u)(s)) VAT
>8>

+ (R + K+ K5) /0 Ih(8)loI€2(s)]ds.

Finally, the inclusion V = H'? C L?(D) given by (6.1), the control of the ¥ norm proven
in (3.3) (which clearly also holds for the Galerkin approximation u} 1 With an upper bound
which does not depend on n) and Gronwall’s lemma imply the existence of a non negative
constant C5( ), depending on T', M, Ks, K4 such that for any n > 1 and h € Ay, we

have

sup (160, (0117 < (llewrt ¢4+ [aRs + Ky sup [luf(e)]3]) @00 (3.13)
0<t<T 0<t<T
< (Ilewrl Cllg + [aRs + RaC(a)?Cy(M)T 207 (1 4+ [[¢][7)] ) x50,

Since sup{qq 2 < ¢ < o0} < 00, letting n — o0, classical arguments conclude that
SUPg<t<T ||£2n( )||q S ||curl C||q+C’(T M, q)(1+ ||§||) for every h € Ap; and n > 1. Using
(6.3) for some qo € (2, ), we deduce that supg<;<7 [|Vuj, ,(£)[lgo < Cs (M) (1+[curl ¢||g +
I¢]]) a.s. Thus, the Sobolev embedding (6.2) yields the existence of a constant Cs(M)
such that supg<;<r ||U27n(t)||Loo(D) < C(M)(1+ ||curl {||go + [|IC]]) a.s. for any n > 1 and
h € Aps. Since D is bounded, using this inequality in (3.13), we deduce the existence of
a constant C7(M) such that supy<,<p 1€ (g < exp(qCs(M))[|lcurl ¢[|3 + qCr(M) (1 +
1¢]|7 4 |lcurl ¢[|&,)] a.s. for every integer n > 1 and any h € Ay Since qo < ¢ and D is
bounded, we deduce ||curl ¢||d, < [A(D)V 1]4]|curl {||Z. Letting n — oo and using classical
arguments, we conclude the proof of (3.10).

Step 2. (Uniqueness) Let us mention that the proof of the uniqueness is based on [2] and
[36] adapted to the nonhomogeneous random case. Using the estimate (3.11) for some
q > 2 (such as ¢ = 4) and (6.2), we deduce that any solution u) to (3.1) belongs to
L>*((0,T) x D). Let u) and v) be two solutions for equation (3.1) with the same initial
condition and let us denote by z := u) — v9; then z is solution of z(0) = 0 and

dz(s) + [B(up(s), up(s)) — B(vp(s), vi(s))] ds = [Go(s, up(s)) — Go(s,vp(s))] h(s)ds.

Let us multiply the above equation by z(¢) and integrate on D, use assumption (C2) on
&0, the Schwarz and Holder inequalities and (3.11). This yields for any ¢ € (1, 00), when
q' = -4 denotes the conjugate exponent of ¢:

1i!Z(t) i = —(B(2(t), u(1)), () + ( [Go(t, up (1)) — Go(t,vj(£)] h(t), (1))

S/DIZ(t)IQ(w)\Vug(t)l(w)der|(5o(t,ug(t))—5o(t7v2(t))) |L(to, ) |R(B)l0 |2() |1

< [[Vup (8) |22 )IILoo \E (t)l}’z} + Lafup () — vy (0)] | A(t) o] =(1) |1

Set Z := supg<i<7 ||2(t)||oe(py and X (t) := |2(t)|3;. Since D is bounded, [[curl ¢[|, <
C|curl (|| for some constant C' > 1 and all ¢ € [2,00); then X (0) = 0 and for ¢ € [0, 7],
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(3.11) yields

_ 2 _1 ~
X'(t) < 2Cq Ca(M)[1 + ||| + [leurl ¢||poo(py)]Za X (£)' "0 + 2L1|h(t)|0 X (),
which leads to

t X/ s _ 2 t ~
/ %)l/ds <2CqCa(M)[1+ ||| + [[eurl (|l poo(py] Zat +/ 2L1|h(s)]oX (s)"/ds.
o X(s)t=1/a 0

Hence, using Gronwall’s lemma, we deduce that for ¢ € [2,00) and ¢ € [0, T],
1 ~ 2 2 [t. 1
X(t)e < 2C(M)[1+[[C][ + [leurl ¢[|peo(p)]Zat + q/ Ly|h(s)|oX (s)2ds
0

— 2 ~
< 20U+ ¢ + fleurl ¢ o 0)) 7 t exp(Eav/MT).

Finally, we get the following estimate for any 7* € [0,T] and ¢ € (2, c0):

S l2()[F < (2@4(M)[1 + [[€I + fleurl ¢l o ()] T eXp(2L1VMT))qZQ- (3.14)
Thus, choosing T} > 0 small enough and letting ¢ — oo, we deduce that |2(¢)|% = 0 for
every t € [0,7}]. Repeating this argument with u(7T}) = v)(T}) instead of ¢ and using
(6.2), (3.11) and (3.3), we conclude that there exists 7% > 0 such that |z(¢)|[% = 0 for
every integer k =0,1,--- and any ¢ € [T} + kT™, Ty + (k + 1)T*] N [0, T]. This concludes
the proof of the uniqueness. O

4. APRIORI BOUNDS OF THE STOCHASTIC CONTROLLED EQUATION IN H 14

In order to prove the large deviation principle for the solution u to (2.1), we need to
obtain more regularity and apriori bounds for the solution u} to the stochastic controlled
equation (2.16) in non Hilbert Sobolev spaces, such as H? for ¢ > 2. This requires some
more conditions on the diffusion coefficient ¢, and the stochastic calculus in Banach spaces
briefly described in the subsection 6.2 of the Appendix.

Proposition 4.1. Suppose that E|(|*? < oo for some p € [2,00) and let q € [2,00) be such
that E|[C||%1., < co. Let o, and &, satisfy conditions (C1)-(C4), (C5q) and (C6q) with
Ky < Ra(p), where Ra(p) is defined in Proposition 2.3. Then for every M > 0 there exists
Ke(M) and vy := (M, Kg(M)) > 0 such that for 0 < K¢V K¢ < K¢(M), v € (0, ),
and h € Ay, the solution uf to (2.16) belongs to L>(0,T; H'?) a.s. Furthermore, there
exists a constant Cs5(M,q) such that

sup sup E( sup [lup(6)]%..,) < C5(M.q) (1+EIC/I3,). (4.1)
0<v<in h€Ay NO<t<T
Proof. The Sobolev embedding inequality (6.1) and Proposition 2.3 imply that for 0 < v <
v and h € Apr, E(supge;<r |Jul (8)]|3) < C(q)1Ca(q, M)(1+E||¢[|9). Using the inequality
(6.3), one sees that the proof of (4.1) reduces to check that if (} = curl uj,

sup  sup B( sup [[§()II1) < Co(M,q) (1+ Elleurl 7). (4.2)

0<v<g(M) heAn 0<t<T
We use once more the Galerkin approximation up 4, of uy and prove an estimate similar
to (4.2) for £ = curl uy . with a constant Cg(M, q) which does not depend on n. The
process 5,’:7n satisfies an equation similar to (2.26) and once more to ease notations, we will

skip the index n. Let (.,.) denote the duality between LP(D) and LP/®=Y(D) for some
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p € (1,00). For fixed N > 0, let 7y = inf{t > 0: [|§} ,(¢)lly = N} AT. The It6 formula
(6.11) and the upper estimate (6.12) yield

&t A Ta)1g < lleurd <l + T(8) + D Tit), (4.3)
1<i<4

where we have:

50 = v [ GO ). el oo uf ()W (5)
1) = v [ G, G

1) = —a [ (e ). ennd Blub(s) (),
T0) = [ (GO S), cunl oo ())h(s)) s,

IATN
q 1% v —
1) = SV [ el 0o uf () o) 110515 s

Since £ = 0 on 9D and A = —A, we have:
tATN
Ti(t) = —av [ ds [ (V(6)() . Ve () de
0 D

tATN
— —qlg—1) /0 ds /D €2 ()72 [Vex (s) .

Equation (6.7) implies that T»(¢) = 0. Holder’s and Young’s inequalities and the assump-

tion (C6q) yield for ¢’ = q_il and for any € > 0,

tATN
T <a [ eIy ot o, (s, uf ()R ds
tIATN _ - ~
<o IEEN [Fa+ Rl )l + Kol )]
- VRs( [ 1619 ()P de) '] Ih(s)ods

B B tIATN tIATN
< qKy/MT + Ky / k()12 |(s)lo ds + ve / ds / €8 ()7 2|V EL (s) Pda
0 0 D

tATN ~ ~ ~ -q/(q—1) Py 4
+ [ el (ol + R Ralinolo+ (0 - 1) 2 oA b6 s

Condition (C5q), Hélder’s and Young’s inequalities imply that for any 1 € (0,3 — 1),
ﬁzl—nq%Q € (0,1) and v € (0, 1],

-1 tATN
7i(0) < My [T gl [+ Kl + KGO

Ko [ I Ve ) Par) as

q(qg—1)
2

tATN

< VST + (g — 1)K / lut (s)|9dis
0

-1 tATN B % ,
+L- 5 / [vq(K3 + Ks) + vKy(q —2) + " (q — 2)Kg | 1I€7 (s)||2ds
0
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tATN
(g — 1)t / s /D €8 ()| 2V (s) .

For ¢t € [0, 7], let
tATN
X(t) = sup [[§(sATn)[§ and Y (?) =/ dS/ €5 (5)|772VE (5)]da.
0<s< 0 D

Then for any A € (0,1), the inequality (4.3) and the above estimates of T;(¢) imply that

AX () +(1=N)I€ (AT +v[a(q—1) (1=N)—e—(g—1)p"]Y (1) < Z+/90(8)X(8)d3+1(t)7

0
where
I(t) = sup J(s),
0<s<t
o q % \/7 Q(q B 1) TN 7% v q
7 = own €3+ afo/ AT + LD e [T kaa = 1) + Ralh(o)lo] o ()35,
0
o gl L, g
¢(s) = [q(K3 + K4+ Ks5)|h(s)|o + (g — 1)%’/2"*2 [h(s)lg™"
_ _ P
+ L [va(Ks + K+ Ks) + (g = 2K 7).
Set A\=1,¢= @, let 19 € (0,79(M)] be such that v < £, and let 77 = % A 7. Thus
C(v, K¢, Kg) = fOT ©(s)ds = ®1(M, Kg) + 11®o(M, K¢, Kg). For v € (0, 1], we have:
1

SX(0) + Zq(q SD)Y () < Z+ /Ot o(s)X (s)ds + I(2).

Furthermore, using the Burkholder-Davies-Gundy inequality (6.10), condition (C5q),
Holder’s and Young’s inequalities, we deduce that for any § > 0,

[un

tATN 1
EI(t) < VvCigE( /0 leurl o (s, uf () g 1, 165 () |29~ Veds )
v ol PATN v —2 v 2
< Vg swp Al [ [ 1661 {Ka+ Kaluf (o)1
0<s<t 0
2 1
q

+K5||gg(s)||§+K6(/Dyg,g(s)|q—2|V£Z(s)l2dx) }d5}§>

t t
< BEX(t) + vE/O X(s)ds + 5E/0 Y (s)ds + Z,

where
1 1
7= 35V O [0 (K + Ks) + aKa(g = 2) + Kog(a - 2)], 8 = Z5vaCPKG,
3 K4 tATN y
7= gavaCiE [ uiolgas.

Set a = q(q — 1), and choose 3 > 0 such that 26e®1 (M) — 1/2. Choosing K¢(M) < 1
small enough, we may have for 0 < K¢V K¢ < K¢(M): 16K662(I’1(M’K6)q%012 < % Then
choosing 7p(M) € (0,1p] small enough, we may have 270 (M)7®2(M.Ks(M).Ke(M)) < 9 This

yields 26eCK6.K6) < o for v € (0,9(M)] and K¢ V K¢ < Kg(M). Thus, using Lemma
Al in [16], we conclude that (4.2) holds for the Galerkin approximation &y, of & with a
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constant Cg(M, q) which does not depend on n. A classical weak convergence argument
concludes the proof. O

5. LARGE DEVIATIONS

We will prove a large deviation principle using a weak convergence approach [11, 12],
based on variational representations of infinite dimensional Wiener processes.

Let 0 : [0,T] x V — Lg, and for every v > 0 let 5, : [0,T] x Dom(A) — L satisfy the
following:
Condition (C7)
(i) For every q € [2,00) there exist non negative constants, K;, i = 0,...,4 and Ly such
that for all u,v € H“9 and t € [0,T):

lo(t, u)\LQ < Ko+ K, |u|H, ‘curl o(t,u ’L < Ko+ K4 ||u]|%/,
el ot ) B oy < Ko+ Rollull? + Kalewr! ul?,
lo(t,u) — a(t,v)|%Q < Li|u— Uﬁ{, ‘A%U(t,u) A2a t,v ‘L < Li||u— ’U”%/,

(ii) For every q € [2,00) there exist non negative constants Ko, Ks, K¢ and Ly such that
forv >0, s,t€10,T], and u,v € Dom(A)(H*4, if |.| denotes the absolute value,

\6V(t,u)]%Q < (Ko+ Ks |ull}), |cwl &,(t,u) iQ < (Ko + K5 |Veurl ulf;),

)

||curl 6l,(t,u)H2R(HO Loy < Ko+ R};(/ |cur] u(z)|92|Veurl u(g;)|2d:r;) v
’ D

70 (t,u) — 3 (4, 0)[3, < Lo llu— vl [A26,(tu) — A26,(t v)}i@ < Ly |Au— Av[%.

Note that as in the case of Hilbert-Schmidt operators with Hilbert spaces, we have
| T\ £(ro,z0) < CNT || r(Ho, L4y~ Set
o, =6,=0++ve, for v>0, and &y=o0. (5.1)
Then for v > 0, the coefficients o, and &, satisfy the conditions (C1)-(C6q) with appro-
priate coefficients. Indeed, note that conditions (C1) and (C3) hold with a = 1 and that
Ky < 2Ky, Ky = K5, Ly < 2L, Ly = Lo, K < 2vKg and Kg = CKg. Using Remark 2.2
we deduce that for any coefficients Ky and Kg, the conditions of Propositions 2.1, 2.3 and
4.1 are satisfied for small enough 7 and v € (0, ).
Let B denote the Borel o—field of the Polish space

X =C(0,T;H) (L=, T; HY 0 V) (| L*(0,T; H) (5.2)
endowed with the norm
T 1/2
folies= ([ o))
and
Y ={¢ €V, such that curl ( € L>(D)} (5.3)

endowed with the norm ||.||y defined by:

€13 == 1€ + [leurld]|F-.

Note that using (6.3) and (6.1) we deduce that JJ C H'? for any ¢ € [2,00). We will
establish a LDP in the set A" for the family of distributions of the solutions u” = G¢ (/v W)
to the evolution equation (2.12) with initial condition u”(0) = € Y.
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Definition 5.1. The random family (u”) is said to satisfy a large deviation principle on
X with the good rate function I if the following conditions hold:

I is a good rate function. The function I : X — [0,00] is such that for each
M € [0,00] the level set {¢p € X : I(¢) < M} is a compact subset of X.
For A € B, set I(A) = infyeca I(u).

Large deviation upper bound. For each closed subset F' of X :

limsup vlogP(u” € F') < —I(F).
v—0

Large deviation lower bound. For each open subset G of X':
lim infO vlogP(u” € G) > —I1(G).

Let Co = {[;h(s)ds : h € L*(0,T;Ho)} C C([0,T); Ho). Given ¢ € Y define G :
C([0,T]; Hy) — X by gg(g) = uj) where g = [; h(s)ds € Cy and uj is the solution to the
(inviscid) control equation (3.1) with initial condition ¢, and gg(g) = 0 otherwise. The
following theorem is the main result of this section.

Theorem 5.2. Let ( € ), and let 0, = 0 + \/vG, where the coefficients o and &, satisfy
condition (CT). Then the solution (u”,v > 0) to (2.12) with initial condition ¢ satisfies a
large deviation principle in X with the good rate function

I(u) = inf {; /OT h(s) 3 ds . (5.4)

{h€L?(0,T;Hy): uzgg(fo‘ h(s)ds)} 2

In order to prove this theorem, fix ¢,p € [4,00), M > 0 and let vo(M) € (0,0 A g A i)
be small enough to ensure that for v € (0,v9(M)], 2vK5 < k2(p) ARa(p), 2vKes < K¢(M),
where k2(p), R2(p), K¢(M), vy, Uy and Dy are defined in Propositions 2.1, 2.3 and 4.1
applied with q.

Let (hy,0 < v < Dg(M)) be a family of random elements taking values in the set
Apr defined by (2.13). Let uj, be the solution of the following corresponding stochastic
controlled equation

duj (t)+ [I/AUZV (t) + B(up, (t),ur, (t))]dt = ﬁa,,(t,uzu(t)) dW (t) + o, (t,up, (t))h(t)dt,

(5.5)
with initial condition u} (0) = ¢ € Y. Note that uf = GY (W(W, +L h,,(s)ds))
due to the uniqueness of the solution. The following proposition establishes the weak
convergence of the family (uj ) as v — 0.

Proposition 5.3. Let us assume that 0, = o + \/vg, where the coefficients o and &,
satisfy condition (CT). Let ¢ be Fo-measurable such that E(|¢|3 + |IC]15) < 400, and let
h, converge to h in distribution as random elements taking values in Apy, where this set is
defined by (2.13) and endowed with the weak topology of the space L2(0,T; Hy). Then, as
v — 0, the solution uy —of (5.5) converges in distribution in X to the solution u of (3.1).

That is, as v — 0, the process Qé’(ﬁ(W + % fo hl,(s)ds)> converges in distribution to
G2( J; h(s)ds) in X.

Proof. Step 1: Let us decompose uy = ¢+ Z?Zl J;, where
t t
J1 = —I// Auy, (s)ds, Jy = —/ B(uy, (s),up (s))ds,
0 0

J3 = ﬁ/ﬁ au(s,uy (s))dW(s), J4 :/0 o (s,up, (s))hy(s)ds.
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For v € (0,v9(M)] we have using Minkowski’s and Cauchy-Schwarz’s inequalities

T t 9 T
||J1H%,V1,2(07T;H) = I// ‘/ Auzy(s)ds‘Hdt—l-V/ |Auy, (t)|7dt
0 0 0
T
C(T)w /O A, (5)|3ds.

Hence, using the estimate (2.23), we get that
B33 0,m) < Co(M, T)[1 + EJCI) (5.6)
Similarly, the upper estimate (2.23) implies that for all p € [2, ),

T
El Iy aozyy < vO(DE /0 lAuf, () [ ds

IN

T
< VC(T)E/O lup,, (s)[[Pds < C(T)[1 + E[C|I"]. (5.7)

Using again Minkowski’s and Hoélder’s inequalities and the estimate (6.8), we deduce that
ford <p<g< oo

T
172110 0,701y < C(T)/0 [, (O p.q [k, ([P

Thus Hoélder’s inequality with the conjugate exponents ¢/p and ¢/(q — p) and the upper
estimates (2.23) and (4.1) yield
BNl ar) < O M, pyq)[L+ EICIP/ G P08 (14 BG4, 7. (5.5)

The Minkowski and Cauchy Schwarz inequalities and condition (C7) imply
T
il < CT) [ llauts.uf, (DI lhelo)lds
< COM[1+ sup Juf, (O +v swp uf, (0.
o<t<T

0<t<T
Thus the upper estimates (2.17) and (2.23) yield that for v € (0, ] one has:

E(|Jallfy 120 7y < C(T, M) [1+E|¢| 3 + 2B C|5]- (5.9)

Furthermore, Holder’s inequality and condition (C7) imply that for v € (0,7 and p €
[4,00):

T
/0 |J4(t)\%dt§M§0[1+81<1¥|u;’by(5)|p +1/0/ sugHuZV(s)Hp].

Let o € (0, 3); then using again Minkowski’s and Hélder’s inequalities, condition (CT7)
and Fubini’s theorem, we deduce that for v € (0, p]:

|Ja(t) — Ja(s)l5
/ / t— S 1+aP dsdt
< 2/ dt/ ds(t — s)~17op
0 0

<CM:?: [1+Sup|u%y(r)\%+y sup||u )[7] / dt/ —14+(1/2=a)p g
r<T

[ ot rhu<r>\odr\”

The two above estimates, (2.17) and (2.23) imply that for a € (0,1), p € [4,00) and
v e (0, 170]:
_p/2
Bl il o.1pr) < €00 T, M)[L+ EICH + 7 E[¢|]. (5.10)
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The Burkholder-Davis-Gundy and Hélder inequalities imply

T T T p/2
E / ()t < G2 / E(/ ray<s,uzy<s>>|%st) dt
0 0 0

T
O, /2102 /0 Eloy (s, uf, (£))[}, dt.

IN

IN

Let p € [4,00), a € (0,3) and for t € [0,T] set ¢(t) := fg |O'V(S,UZV(S))’%QdS; then the
Burkholder-Davis-Gundy and Hoélder inequalities imply

/ /T\Jg 3($)5r g, p/Q/ dt/ |2 (ol (r)dW (1)
’t— ‘1+pa ‘t_s‘l-i-pa

p/2
<C I/p/Q/ /

It — s|70+P) dtds
< C,P°E / / (s)[P/2]t — s|~(HP0) dds

\Uu g, (1)L dr

< C Vp/QEH¢HW2a P/2 (0,T5R)

<C I/p/QEHGbHWl »/2(0,T;R)

T
< CpC(T)up/QE/ |ow (s, ujy, (5))I7,, ds.

0

Using the assumption (C7) and the two above upper estimates of J3, we deduce that

B yonoiran € O T2 [1+ sup Blu, (Olf + /2 sup Eluf, ()]F].

Finally, the upper estimates (2.17) and (2.23) yield for v € (0, ] and p € [4,00):
2 _p/2
B3| Byenorzry < o, TVT 2 [1+ EICI, + 75 El|¢|17]. (5.11)

Collecting all the estimates (5.6)-(5.11) we deduce that for p € [4,00), a € (0,1/2) and
v € (0, 1p], there exists a positive constant C'(p, M,T') such that

Eiiu;iy”%/[/aﬂ(o,T;H) + EH“Z,,H];[/a,p(o,T;vl) < Cp,M,T' (5'12)

Step 2: The upper estimates (2.23) and (5.12) show that the process (uj, ,v € (0, ])
is bounded in probability in

W*2(0,T; H) () L*(0,T: V) (Y W*P(0,T; V).

Thanks to the compactness theorem given in [27], Chapter 1, Section 5. the space
We2(0,T; H)( L?(0,T; V) is compactly embedded in L?(0,T;H). For pa > 1, thanks to
Theorem 2.2 given in [23], see also [10] and the references therein, the space W*P(0,T; V")
is compactly embedded in C([0,T]; D(A™?)) with 28 > 1.

On the other hand, the family (h,) is included in Ap;. Set F),( fo s)ds; since Hy
is compactly embedded in H, we can again use the above compact embedding theorem
and deduce that W12(0,T; Hy) is compactly embedded in C([0,T]; H). Furthermore, by
assumption h, — h in distribution in L?(0,T; Hy) endowed with the weak topology. This
yields that F,, — F in distribution in the weak topology of W12(0,T; Hy) (denoted by
Wh2(0,T; Ho)), where F(t fo
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Hence, by the Prokhorov theorem, the family of distributions (L(h,,uy, ,v € (0,10]) of
the process (F,,ujy ,v € (0,10]) is tight in

Z = [W'(0,T; Ho)w N C(0, T], H)] x [L*(0,T:H) N C([0, T); D(A™))].

Let (vp,n > 0) be a sequence in (0 9] such that v, — 0. Thus, we can extract a
subsequence, still denoted by (F,,,u;" ) that converges in distribution in Z to a pair

(F,u) as n — oo. Note that by assumptlon, F=F.

Step 3: By Skorohod’s theorem, there exists a stochastic basis (!, F!, (F}),P!) and
on this basis, Z- valued random variables (F' = [; h'(s)ds,u') and for n > 0 (F"! =

INGEE )ds,uh,,n1 ), such that the pairs (F1 1Yy and (F,u) have the same distribution,

for n > 0 the pairs (F"»!, Zﬁ;} ) and (Fy,,, u" ) have the same distribution on Z, and
l/n,].

,upney) — (FHu') in Z. To ease notations in the sequel, we will skip
the upper index 1 and the index n of the subsequence and still denote F1* by F,, h' by

hy uillly,, by uy, . F! by F, h! by h and u' by @. Let again ¢ denote the initial condition

u” 1
hl v (O)
Moreover, by (2.17), (2.23) and (4.1) we deduce the existence of constants C; such that

for v > 0 and for ¢ € [2,00):

as n — oo, (FVm!

T
Ei( sup [uf, (0}) <C1, Ex / sy, (8)]2dt < o, B sup [, (8)]%1.40py ) < Cs.
0<t<T 0 0<t<T

Therefore, we deduce as n — oo
we C([0, T H)()L=(0,T; V() HY) P! —aus. (5.13)
and that u’fl’:n — @ weakly in L2(Q! x (0,7); V)N L4(Q! x (0,T); H*9) as n — oo.

Step 4: (Identification of the limit.) We have to prove that the limit u is solution of
the equation

du(t) + B(u(t),u(t)) dt = o(t,u(t)) h(t)dt , u(0) = . (5.14)
Let ¢ € D(AP) with 23 > 1; then
(up (t) = ¢, ) + /<B(a(s), u(s)) — o(s,u(s))h(s), (p>ds = Z 1;, (5.15)
0 1<i<6

where
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Since 3 > 1/2 implies that Dom(A%) C V, using Cauchy-Schwarz’s inequality and (2.23),
we deduce for ¢t € [0,7] and v € (0, 7]

t t 1/2
EiL| < vE; /0 1. ()lllelds < vl (E /0 ||uzu<s>||2ds)

_ 1/2
< C(T, M)|||[1 +E|¢[*] .

The It6 isometry, the Cauchy-Schwarz’s inequality, condition (C7) and (2.17) yield

t 1/2
Eal | < V7R, ( /0 ray<s,uzu<s>>|%quso||2)

(5.16)

t 1/2
< Vol (B [ ot () )

1/2
< Vollello(@, M) 1+ Elgl] 2.
Using (2.8), the Cauchy-Schwarz inequality and (2.23) we get

(5.17)

Ealfal < CE [, (5) — a(s)lbe (luf, (9 -+ ) ) Dl
t 1/2 ¢ 1/2
< Ol (E JATECE u(s)H%ds) (IE O ||u<s>u2v}ds)

t 1/2
< O(T, M)l [t +E[¢|[*]"? (E /O lup, (s) — u(s)\l%ds> (5.18)

Using assumption (C7), the Cauchy Schwarz inequality and (2.23), we obtain

t
BalTi] < VP B | [t (0) g o el

t 1/2
< Vo lelu VATT (B, /O o0 (s, ()3, )

1/2

< Vol VAIT (B1 [ (Koot Kalluf, (9)Fas)

< VLol C(T, M) [1 + E[¢|4]2. (5.19)
Condition (C7) and the Cauchy Schwarz inequality yield
t
BT < B [ [os,uf,) = 0(a.0()) | ) 1) ol
t 1/2
< lelu VITT (B4 [ lo(o.u, ()~ o(s,a(5)) )
0
_ t 1/2
< ol VATV (B [ g, () - a)lhds) (5.20)
0
Finally, we have that
t
Billol = Ex | [ ([hu(s) — h(s) 0" (s, a(s)) ) . (5.21)
0

Using the upper estimates (5.16), (5.17) and (5.19) we deduce that E,|l;| — 0 for i =
1,2,4 as n — oo. Furthermore, by construction, we have P! a.s. ulfb’; — 4 — 0 in

L?(0,T; H'"*) and hence in L?(0,T;H) and in L?(0,T; H) as n — 0. Furthermore, the
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estimates (2.23), (3.3) prove that fOT Juf (s) — a(s)||*ds is bounded in L?(P') and hence
is uniformly integrable. Therefore, the dominated convergence theorem, (5.18) and (5.20)
prove that E;|I;| — 0 for ¢ = 3, 5. Finally, condition (C7) shows that

T T
/0 0" (s, a(s))pl2ds < ol /0 [Ro + Kala(s)[3]ds

and by assumption, as n — oo, we have h,, —h — 0 in L?(0,T; Hy) for the weak topology
P! a.s. Hence P! as., fg([hun(s) — h(s)],0*(s,u(s))p)ds converges to 0 as n — oo.
Furthermore, the upper estimate (3.3) proves that this family is bounded in L?(PP'); using
once more the dominated convergence theorem, (5.21) proves that Eq|lg| — 0 as n — oc.
Thus, (5.15) shows that as n — oo, for any ¢ € [0, 7],

t
E, (u;’lzn (t),p) — /0 (= B(u(s), u(s)) + o(s,u(s))h(s), gp>ds} — 0. (5.22)

On the other hand, by construction, since ¢ € Dom(A%), we have P! a.s.

sup [(uyr (t) —a(t), @) =0 P'as. asv— 0.
te[0,T] v

Using again (2.23), (3.3) and the dominated convergence theorem, we deduce that as
n — 0o,

B sup [(uyr (8) = a(t), ¢)]) — 0. (5:23)

Since P! a.s. 4 € C([0,T], H), this identity holds a.s. for all ¢ € [0,7] and 4 is a solution
to the inviscid evolution equation (3.1).
Hence, from any sequence v, — 0, one can extract a subsequence (v, ,k > 0) such

that uzzk — u% in distribution in X'. This implies that the family uy ~converges to u% in

distribution in H, which concludes the proof. U

The following compactness result is the second ingredient which allows to transfer the
LDP from /vW to u”.

Proposition 5.4. Suppose that o satisfies condition (C7) and let 69 = 0. Fiz M > 0,
¢ €Y andlet Kyy = {u) : h € Sy}, where u) is the unique solution in X of the
deterministic control equation (3.1). Then Ky is a compact subset of X .

Proof. To simply the notation, we skip the superscript 0 which refers to the inviscid case.
By Theorems 3.1 and 3.2, Ky C X. Let (un,n > 1) be a sequence in Ky, corresponding
to solutions of (3.1) with controls (h,,n > 1) in Sys:

it (£) + B(un(t), un(t))dt = o(t, wn(£) (), 1 (0) = C.

Since S); is a bounded closed subset of the Hilbert space L?(0, T; Hy), it is weakly compact.
So there exists a subsequence of (hy,), still denoted as (h,,), which converges weakly to a
limit h € L%(0,T; Hy). Note that in fact h € Sys as Sy is closed.

We at first prove that (uy,) is bounded in W12(0, T; LY)NWP(0,T; LY) N L2(0,T; H?)
for any p,q > 2 and a < 3. Indeed, uy,(t) = ¢ + Ji(t) + Ja(t), where

Ji(t) = /0 B(un(s),un(s))ds, Ja(t) = /0 o (s, un(s))hn(s)ds.
Holder’s inequality, (6.8) and (3.11) yield

[T l[wraor,Ley < C(T) s lun ()5 < 1O, ML+ [IC]l + fleurd ¢l (5.24)
tel(o,
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Furthermore, Minkowski’s inequality, the Sobolev embedding theorem (see (6.1)), (6.3),
condition (C7) and (3.3) yield

T T
19200y < OT.) [ lott ()OI < CTa) [ ot un(®halo) P

T
< C(T, Q)/ jcurl o(t, un (8)) |7, |hn (8)[5dt < C(T, q)M [Ko + K S[up] [Ju(t) ][]
0 te[0,T

< C(T,q, M)[1+[I¢]17). (5.25)

The Minkowski and Holder inequalities, the Sobolev embedding theorem, (6.3), condition
(C7) and (3.3) imply,

/|J2 ||pdt</ ‘/na S tun(3))ha(8) s dt < C(g / ‘/HJ .t (3))ha(5) s "t

< C(Q)(MT)P? sup |o(t, un(t ))ViQ < C(q,T,M)[1+ sup [u(t)|]]
te[0,T) t€[0,1]

< Clg, T, M)[1 + [[CIIP]- (5.26)

Finally, similar arguments imply that for « € (0, %), we have

T () = (o)l
/ / t_sHap dsdt
qc/wﬁwpﬂlw/wmn Uw

<20(q)(TM)5 C 1+ sup un(r)|?] / dt/ 1+(1/2-)p g
rel0,77]

< C(q, T, M)[1+ [IC][*]. (5.27)

As in the proof of Proposition 5.3, Step 3, using [27] we deduce from the upper estimates
(5.24)-(5.27) that the sequence (uy,) is relatively compact in L?(0, T; H)NC([0, T], Dom(A~5))
with 23 > 1. Hence there exists a subsequence, still denoted (u,), which converges in
L%(0,T;H) N C([0,T], Dom(A~P)) to some element u. It remains to check that u is the
solution to the evolution equation

du(t) + B(u(t),u(t))dt = o(t,u(t))h(t)dt, u(0)=_C.

The proof, which is similar to that of Step 4 in Proposition 5.3 and easier, is briefly
sketched. Only (deterministic) terms similar to I; for i = 3,5 and 6 have to be dealt with.
As in the proof of Proposition 5.3, these terms are estimated replacing the upper estimate
(2.23) by (3.3). This concludes the proof of the Proposition. O

The proof of Theorem 5.2 is a straightforward consequence of Propositions 5.3 and 5.4,
as shown in [12].

6. APPENDIX

6.1. Properties of the bilinear operator. Let us at first recall the following classical
Sobolev embeddings which hold since D is a bounded domain of R? which satisfies the
cone condition (see e.g. [1]):

lully < C(@)||lullwre  for we WH? and 1 < g < 400, (6.1)
w2l c c%(D), Wl c C%(D) for g € (2,00). (6.2)
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Furthermore, recall the following result proved in [24] (see also [10] and [36] for the way
the constant depends on ¢). Given ¢ € [2,00) there exists a constant C' such that for every
u € H% one has:

|Vully < Cql|curl ul|4 for ¢ € [2, 00). (6.3)
Furthermore, given ¢ € [2,00) and r > 0, the operator B has a unique extension to a
continuous bilinear operator from H% x HY9 to H~™9 and the following estimates are
satisfied for some constant C' and all u,v € H9 resp. ¢,¢ € D(A):

1B(u, v)llH—w < Cllullgra 1ol gr.a, (6.4)
(B(u,v), v) = (6.5)
(curl B(p, ), > (0 - V(curl @), ) = (B(ep, curl ), ), (6.6)
(curl B(u,v), curl v|curl v|?72) =0 for all u,v € H*>? ﬂ D(A (6.7)

Finally, if ¢ > 2, there exists a constant C' > 0 such that for all u,v € H%4
|B(u,v)| < Cllullgra l|vllgrz  and [|B(u,v)llq < Cllullgra [[o]l o (6.8)

6.2. Radonifying operators and stochastic calculus in W% spaces. In this section,
we recall the basic definitions and results of stochastic calculus on non Hilbert Sobolev
spaces used in this paper. Their proofs can be found in references [9], [10], [19], [32] and
[33].

Let € be a Banach space, such as the Sobolev spaces W4 for k > 0 and ¢ € [1, 00), and
let Hy be a Hilbert space. The following notion extends that of Hilbert Schmidt operator
from Hy to £ when & is not a Hilbert space. Let (ex) denote an orthonormal basis of
Hy and (0)) be a sequence of independent standard Gaussian random variables on some
probability space (Q, F, ]5)

Definition 6.1. A linear operator K : Hy — & is Radonifying if the series ), BpKey

converges in L*(Q &). Let R(Hy, &) denote the set of Radonifying operators, and given
K € R(Hy,¢), set

1K || r( o 6) = (INE‘ ZﬁkKGk‘Z>é- (6.9)
%

Then (R(Ho, &), || K| r(r,,e)) is a separable Banach space and ||K||g(g,e) does not
depend on the choice of (er) and (0).

We now suppose that Hy is the RKHS of the H-valued Wiener process (W(t),t > 0)
and fix some orthonormal basis (e) of Hy. Simple R(Hy, E)- valued processes o on [0, 7]
are defined as follows. Given integers m,n > 1, 0 < t; <ty < -+ < typy1 < T, and
(aj € LQ(Q,ftj;R(HO,E)),j =0,-- ,m) set

o(t,w) = Z (W)t 1,,7(1).
0<j<m

For such a simple process o, and t € (0,7, set

t
/ o()dWy = > 0j(W)Q2 (W(tjp1 At) — W(tj AL)).
0 0<j<m
The extension of stochastic integrals to predictable square integrable processes cannot be
done for any Banach space £. Fix k € [0,00) and ¢ € [2,00) and let & = W9 (with
the convention L = W%9). The stochastic integral can be extended uniquely as a linear
bounded operator from the set of predictable processes in L?(0, T; R(Ho, H*%)) to the set
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of (F;) adapted random variables in L?(Q, H*7). Moreover, the following Burkholder-
Davies-Gundy inequality holds (see e.g. [33], section 5): For any p € [1,00), there exists
a constant Cj, > 0 such that for any predictable process o € L2(0,T; R(Hy, H*4)),

D

T , p
(g, | [ oaw]l,.) < ou( [l mnts) @10

Finally, given 2 < ¢ < p < oo, some predictable processes o € L%(0,T; R(Ho, H*9)) and
f € LY0,T; H*9), we state a particular case of the Itd formula applied to the function
Uyn() = |I.|[f on H% and the H%9-valued process (Z,t € [0,7]) defined by

Z(t) = Z(0) +/0 o(s)dW (s) +/0 f(s)ds

With the above notations, if (F, G) denotes the duality between F' € LY and G € L?* with

q*x = qqu, we have:

1201l = [12(0)Ig +p/0 1Z(s)I59(1Z ()72 Z(5) , f(5))ds

t B 3 1 t
+p/0 1Z(s)|[2=9(1Z(s)|" 2 Z(s) , o(s)dW (s)) + 2/0 tro(o Vg ,(Z(s))ds,  (6.11)
and for every u € H%9,
0 < tro(e) Wy p(w) < p(p = 1) [lullh=2 [lo ()| B azy. 110.0)- (6.12)

6.3. Nemytski operators. In this section we will show that assumptions (C5q) and
(C6q) are satisfied by Nemytski operators.

Definition 6.2. Let q € [2,00). A mapping g : [0,T] x D x R? — R? belongs to the class
U(D,q) if and only if g(t,z,y) = g*(t, ) + ¢*(t,2,y), t € [0,T], x € D, y € R%, where:
(1) g and g* are measurable, and for anyt € [0,T], g*(t,-) € HY?>NHY and g*(t,-,")
is differentiable,
(2) there are a constant ¢ > 0 and ¢ € L*(D) N LY(D) such that all t € [0,T], and
z €D, yeR?,
19" (t, )2 + 9%t ) e < e,
gtz y) + Y 10tz ) < cd(x) + ly), Y 10,67z, y)| < e
i=1,2 i=1,2
We say that g : [0,T] x D x R? — R? belongs to the class U(D,00) if and only if it is
differentiable with respect to the second and third variables, and there is a constant ¢ > 0
such that for allt € [0,T], * € D, y € R?:

gtz )|+ Y 10m gtz y) + Y [9y9(tz,y)| <.
i=1,2 i=1,2
Let g;, it =1,--- ;m and g be in U(D, q) and define the Nemytski operators
5(t,u0)(@) =tz u(), and ot W) = Y gt u@)w),  (6.13)
1<i<m

where ¢; € Hy, i = 1,--- ,m. These operators satisfy the assumptions (C5q) and (C6q)
(see e.g. [10]). The condition U(D, o) obviously implies U(D,q) for every q € [2,00).
Therefore, if the coefficients g and g; belong to the class U (D, 00), then o and & satisfy
the conditions (C5q) and (C6q) for all ¢ € [2,00).
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