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Abstract

This article introduces a new - somehow mild - Itô type formula
for the solution process of a stochastic partial differential equation of
evolutionary type.

1 A mild Itô formula for SPDEs

Throughout this article suppose that the following setting and the following
assumptions are fulfilled. Fix T ∈ (0,∞) and t0 ∈ [0, T ), let (Ω,F ,P) be a
probability space with a normal filtration (Ft)t∈[t0,T ] and let (H, ⟨·, ·⟩H , ∥·∥H)
and (U, ⟨·, ·⟩U , ∥·∥U) be two separable R-Hilbert spaces. In addition, let
Q : U → U be a bounded nonnegative symmetric linear operator and let
(Wt)t∈[t0,T ] be a cylindrical Q-Wiener process with respect to (Ft)t∈[t0,T ].

Assumption 1 (Linear operator A). Let I be a finite or countable set and
let (λi)i∈I ⊂ R be a family of real numbers with infi∈I λi > −∞. Moreover,
let (ei)i∈I ⊂ H be an orthonormal basis of H and let A : D(A) ⊂ H → H be
a linear operator with

Av =
∑
i∈I

−λi ⟨ei, v⟩H ei (1)

for all v ∈ D(A) and with D(A) =
{
w ∈ H

∣∣∑
i∈I |λi|2 |⟨ei, w⟩H |

2 < ∞
}
.

Let η ∈ [0,∞) be a nonnegative real number with η > − infi∈I λi. By(
Hr := D ((η − A)r) , ⟨·, ·⟩Hr

, ∥·∥Hr

)
for r ∈ R we denote the R-Hilbert spaces

of domains of fractional powers of the linear operator η−A : D(A) ⊂ H → H.

Assumption 2 (Drift term F ). Let α, γ ∈ R be real numbers with γ−α < 1
and let F : Hγ → Hα be globally Lipschitz continuous.
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In order to formulate the assumption on the diffusion coefficient of our
SPDE, we denote by

(
U0, ⟨·, ·⟩U0

, ∥·∥U0

)
the separable R-Hilbert space U0 :=

Q
1
2 (U) with ⟨v, w⟩U0

=
⟨
Q− 1

2v,Q− 1
2w
⟩
U
and ∥v∥U0

=
∥∥∥Q− 1

2v
∥∥∥
U
for all v, w ∈

U0 (see, for example, Proposition 2.5.2 in Prévôt and Röckner [17]).

Assumption 3 (Diffusion term B). Let β ∈ R be a real number with γ−β <
1
2
and let B : Hγ → HS(U0, Hβ) be globally Lipschitz continuous.

Assumption 4 (Initial value ξ). Let ξ : Ω → Hγ be Ft0/B (Hγ)-measurable
with E ∥ξ∥pHγ

< ∞ for all p ∈ [1,∞).

Proposition 1. Let the assumptions above be fulfilled. Then there exists an
up to indistinguishability unique adapted stochastic process with continuous
sample paths X : [t0, T ]× Ω → Hγ ∈ ∩p∈[1,∞)L

p (Ω;C([t0, T ], Hγ)) fulfilling

Xt = eA(t−t0)ξ +

∫ t

t0

eA(t−s)F (Xs) ds+

∫ t

t0

eA(t−s)B(Xs) dWs (2)

for all t ∈ [t0, T ] P-a.s..

Let J be a finite or countable set and let gj ∈ U0, j ∈ J , be an arbitrary
orthonormal basis of the R-Hilbert space

(
U0, ⟨·, ·⟩U0

, ∥·∥U0

)
. Such a set and

such an orthonormal basis exists since
(
U0, ⟨·, ·⟩U0

, ∥·∥U0

)
is separable.

Theorem 1 (Main result: A new - somehow mild - Itô formula for SPDEs).
Let the assumptions above be fulfilled, let (V, ⟨·, ·⟩V , ∥·∥V ) be a separable R-
Hilbert space and let φ : Hγ → V be a twice continuously Fréchet differ-
entiable mapping with at most polynomially growing derivatives, i.e. sup-
pose that there exists a real number c ∈ [0,∞) such that ∥φ′′(v)∥L(2)(Hγ ,V ) ≤
c(1 + ∥v∥cHγ

) for all v ∈ Hγ. Then we have

φ(Xt) = φ(eA(t−t0)Xt0) +

∫ t

t0

φ′(eA(t−s)Xs) e
A(t−s)F (Xs) ds

+

∫ t

t0

φ′(eA(t−s)Xs) e
A(t−s)B(Xs) dWs (3)

+
1

2

∑
j∈J

∫ t

t0

φ′′(eA(t−s)Xs)
(
eA(t−s)B(Xs)gj, e

A(t−s)B(Xs)gj
)
ds

for all t ∈ [t0, T ] P-a.s..

We remark that the possibly infinite sum and all integrals in (3) are well
defined under the assumptions of Theorem 1 (see Section 2 for details). Other
kinds of Itô formulas for SPDEs can be found in [1, 3, 5, 6, 7, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19].
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Example 1 (Identity). Let V = Hγ and let ⟨v, w⟩V = ⟨v, w⟩Hγ
and ∥v∥V =

∥v∥Hγ
for all v, w ∈ V = Hγ. Moreover, let φ : Hγ → Hγ be the identity on

Hγ, i.e. φ(v) = v for all v ∈ Hγ. Theorem 1 then shows

Xt = eA(t−t0)Xt0 +

∫ t

t0

eA(t−s)F (Xs) ds+

∫ t

t0

eA(t−s)B(Xs) dWs

for all t ∈ [t0, T ] P-a.s. which is nothing else than the mild formulation of
the SPDE (2). In this sense the formula (3) is somehow a mild Itô formula
for SPDEs.

Example 2 (Squared norm). Let V = R and let ⟨v, w⟩V = v ·w and ∥v∥V =
|v| for all v ∈ V = R. Moreover, assume γ ≤ 0 and let φ : Hγ → V be given
by φ(v) = ∥v∥2H for all v ∈ H. Theorem 1 then shows

∥Xt∥2H =
∥∥eA(t−t0)Xt0

∥∥2
H
+ 2

∫ t

t0

⟨
eA(t−s)Xs, e

A(t−s)F (Xs)
⟩
H
ds

+ 2

∫ t

t0

⟨
eA(t−s)Xs, e

A(t−s)B(Xs) dWs

⟩
H

+

∫ t

t0

∥∥eA(t−s)B(Xs)
∥∥2
HS(U0,H)

ds

for all t ∈ [t0, T ] P-a.s.. We refer to [6, 7, 10, 14, 15, 17, 18] for other Itô
type formulas with the particular test function φ(v) = ∥v∥2H , v ∈ Hγ.

Example 3 (Deterministic case). Let Ω = {∅}. Proposition 1 then implies
the existence of a unique continuous function x : [t0, T ] → Hγ fulfilling

xt = eA(t−t0)ξ +

∫ t

t0

eA(t−s)F (xs) ds (4)

for all t ∈ [t0, T ]. Moreover, Theorem 1 shows

φ(xt) = φ(eA(t−t0)xt0) +

∫ t

t0

φ′(eA(t−s)xs) e
A(t−s)F (xs) ds (5)

for all t ∈ [t0, T ]. Equation (5) is somehow a mild chain rule for the PDE (4).

Example 4 (Nonautonomous case). In this example let (H̃, ⟨·, ·⟩H̃ , ∥·∥H̃)
be a separable R-Hilbert spaces, let Ĩ be a finite or countable set and let
Ã : D(Ã) ⊂ H̃ → H̃ be a linear operator with eigenvectors ẽi, i ∈ Ĩ,
and eigenvalues −λ̃i ∈ R, i ∈ Ĩ, satisfying Assumption 1. Moreover, let
η̃ ∈ [0,∞) with η̃ > − infi∈Ĩ λ̃i and let (H̃r := D((η̃− Ã)r), ⟨·, ·⟩H̃r

, ∥·∥H̃r
) for
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r ∈ R be the R-Hilbert spaces of domains of fractional powers of the linear
operator η̃ − Ã : D(Ã) ⊂ H̃ → H̃. In addition, let F̃ : R × H̃γ → H̃α

and B̃ : R × H̃γ → H̃β be globally Lipschitz continuous and let ξ̃ : Ω → H̃γ

be Ft0/B(H̃γ)-measurable with E∥ξ̃∥p
H̃γ

< ∞ for all p ∈ [1,∞). Then let

H = R × H̃ and ⟨(s, v), (t, w)⟩H = s · t + ⟨v, w⟩H̃ for all s, t ∈ R and all
v, w ∈ H̃. Moreover, let D(A) = R × D(Ã) and let A(s, v) = (0, Ãv) for
all s ∈ R and all v ∈ D(Ã). In particular, we obtain Hr = R × H̃r for
all r ∈ R. Furthermore, let F (s, v) = (1, F̃ (s, v)) for all s ∈ R and all
v ∈ H̃γ, let B(s, v)u = (0, B̃(s, v)u) for all s ∈ R, v ∈ H̃γ and all u ∈ U0

and let ξ(ω) = (t0, ξ̃(ω)) for all ω ∈ Ω. We now consider the consequences
of Proposition 1 and Theorem 1 in this particular example. More precisely,
Proposition 1 implies the existence of an up to indistinguishability unique
adapted stochastic process with continuous sample paths X̃ : [t0, T ] × Ω →
H̃γ ∈ ∩p∈[1,∞)L

p(Ω;C([t0, T ], H̃γ)) fulfilling

X̃t = eÃ(t−t0)ξ̃ +

∫ t

t0

eÃ(t−s)F̃ (s, X̃s) ds+

∫ t

t0

eÃ(t−s)B̃(s, X̃s) dWs

for all t ∈ [t0, T ] P-a.s.. Finally, let φ : R× H̃γ → V be a twice continuously
Fréchet differentiable mapping with at most polynomially growing derivatives.
Theorem 1 then shows

φ(t, X̃t) = φ(t0, e
Ã(t−t0)X̃t0)

+

∫ t

t0

[
φt(s, e

Ã(t−s)X̃s) + φx(s, e
Ã(t−s)X̃s) e

Ã(t−s)F̃ (s, X̃s)

]
ds

+

∫ t

t0

φx(s, e
Ã(t−s)X̃s) e

Ã(t−s)B̃(s, X̃s) dWs (6)

+
1

2

∑
j∈J

∫ t

t0

φxx(s, e
Ã(t−s)X̃s)

(
eÃ(t−s)B̃(s, X̃s)gj, e

Ã(t−s)B̃(s, X̃s)gj

)
ds

for all t ∈ [t0, T ] P-a.s. where φt : R × H̃γ → V , φx : R × H̃γ → L(H̃γ , V )
and φxx : R× H̃γ → L(2)(H̃γ, V ) denote appropriate partial derivatives of φ.
Formula (6) is nothing else but the nonautonomous counterpart of (3).
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2 Proofs

2.1 Proof of Proposition 1

Proof of Proposition 1. First of all, we assume α ≤ γ and β ≤ γ w.l.o.g..
Moreover, the real number R ∈ (0,∞) defined by

R := 1 +
∥∥(η − A)−1

∥∥
L(H)

+ ∥F (0)∥Hα
+ sup

v,w∈Hγ

v ̸=w

∥F (v)− F (w)∥Hα

∥v − w∥Hγ

+ ∥B(0)∥HS(U0,Hβ)
+ sup

v,w∈Hγ

v ̸=w

∥B(v)−B(w)∥HS(U0,Hβ)

∥v − w∥Hγ

< ∞

is used throughout this proof. Due to Assumptions 1-3 the number R is
indeed finite. Moreover, let Hp for p ∈ [1,∞) be the R-vector space of
equivalence classes of Hγ-valued predictable stochastic processes Y : [t0, T ]×
Ω → Hγ that satisfy

sup
t∈[t0,T ]

E ∥Yt∥pHγ
< ∞ (7)

where two stochastic processes lie in one equivalence class if and only if they
are modifications of each other. As usual we do not distinguish between a
predictable stochastic process Y : [t0, T ] × Ω → Hγ satisfying (7) and its
equivalence class in Hp for p ∈ [1,∞). In the next step we equip the vector
spaces Hp, p ∈ [1,∞), with the norms

∥Y ∥Hp,r
:= sup

t∈[t0,T ]

(
ert ∥Yt∥Lp(Ω;Hγ)

)
for all Y ∈ Hp, r ∈ R and all p ∈ [1,∞). Note that the pair

(
Hp, ∥·∥Hp,r

)
is

an R-Banach space for every r ∈ R and every p ∈ [1,∞). Moreover, consider
the mappings Φp : Hp → Hp, p ∈ [2,∞), defined by

(ΦpY )t := eA(t−t0)ξ +

∫ t

t0

eA(t−s)F (Ys) ds+

∫ t

t0

eA(t−s)B(Ys) dWs (8)

P-a.s. for all t ∈ [t0, T ] and all p ∈ [2,∞). In the following we show that the
mappings Φp : Hp → Hp, p ∈ [2,∞), given by (8) are well defined.

To this end note that Assumptions 1 and 4 yield that eA(t−t0)ξ, t ∈ [t0, T ],
is an Hγ-valued adapted stochastic process with continuous sample paths. In
particular, eA(t−t0)ξ, t ∈ [t0, T ], is anHγ-valued predictable stochastic process
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(see Proposition 3.6 (ii) in Da Prato and Zabczyk [3]). Additionally, we have

sup
t∈[t0,T ]

E
∥∥eA(t−t0)ξ

∥∥p
Hγ

≤ sup
t∈[t0,T ]

(∥∥eA(t−t0)
∥∥p
L(H)

E ∥ξ∥pHγ

)
≤ epηT · E ∥ξ∥pHγ

< ∞ (9)

for all p ∈ [1,∞) which shows that the stochastic process eA(t−t0)ξ, t ∈ [t0, T ],
is indeed in ∩p∈[1,∞)Hp.

We now concentrate on the second summand on the right hand side of
(8). To this end note that Lemma 1 in [8] yields∫ t

t0

E
∥∥eA(t−s)F (Ys)

∥∥
Hγ

ds

≤
∫ t

t0

∥∥∥(η − A)(γ−α) eA(t−s)
∥∥∥
L(H)

E ∥F (Ys)∥Hα
ds

≤
∫ t

t0

∥∥∥(η − A)(γ−α) e(A−η)(t−s)
∥∥∥
L(H)

eηTR
(
1 + E ∥Ys∥Hγ

)
ds

≤ ReηT
(∫ t

t0

(t− s)(α−γ) ds

)(
1 + sup

s∈[t0,T ]

E ∥Ys∥Hγ

)

and Jensen’s inequality therefore implies∫ t

t0

E
∥∥eA(t−s)F (Ys)

∥∥
Hγ

ds

≤ ReηT
(∫ T

0

s(α−γ) ds

)(
1 + sup

s∈[t0,T ]

∥Ys∥Lp(Ω;Hγ)

)

=
ReηTT (1+α−γ)

(1 + α− γ)

(
1 + sup

s∈[t0,T ]

∥Ys∥Lp(Ω;Hγ)

)
< ∞

for all t ∈ [t0, T ], Y ∈ Hp and all p ∈ [1,∞). (We used here that 1+α−γ > 0

due to Assumption 2.) This shows that
∫ t

t0
eA(t−s)F (Ys) ds, t ∈ [t0, T ], is a well

definedHγ-valued adapted stochastic process for every Y ∈ ∪p∈[1,∞)Hp = H1.
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Moreover, we have∥∥∥∥∫ t2

t0

eA(t2−s)F (Ys) ds−
∫ t1

t0

eA(t1−s)F (Ys) ds

∥∥∥∥
Lp(Ω;Hγ)

≤
∫ t2

t1

∥∥eA(t2−s)F (Ys)
∥∥
Lp(Ω;Hγ)

ds

+

∫ t1

t0

∥∥(eA(t2−s) − eA(t1−s)
)
F (Ys)

∥∥
Lp(Ω;Hγ)

ds

≤ eηT
∫ t2

t1

∥∥∥(η − A)(γ−α) e(A−η)(t2−s)
∥∥∥
L(H)

∥F (Ys)∥Lp(Ω;Hα)
ds

+ eηT
∥∥(η − A)−ε (eA(t2−t1) − I

)∥∥
L(H)

·
∫ t1

t0

∥∥∥(η − A)(γ+ε−α) e(A−η)(t1−s)
∥∥∥
L(H)

∥F (Ys)∥Lp(Ω;Hα)
ds

and Lemmas 1 and 2 in [8] then show∥∥∥∥∫ t2

t0

eA(t2−s)F (Ys) ds−
∫ t1

t0

eA(t1−s)F (Ys) ds

∥∥∥∥
Lp(Ω;Hγ)

≤ ReηT
∫ t2

t1

(t2 − s)(α−γ)
(
1 + ∥Ys∥Lp(Ω;Hγ)

)
ds

+R2e2ηT (η + 1) (T + 1) (t2 − t1)
ε

∫ t1

t0

(t1 − s)(α−γ−ε)
(
1 + ∥Ys∥Lp(Ω;Hγ)

)
ds

≤ ReηT (t2 − t1)
(1+α−γ)

(1 + α− γ)

(
1 + sup

s∈[t0,T ]

∥Ys∥Lp(Ω;Hγ)

)
(10)

+
R2e2ηT (η + 1) (T + 1)2 (t2 − t1)

ε

(1 + α− γ − ε)

(
1 + sup

s∈[t0,T ]

∥Ys∥Lp(Ω;Hγ)

)

≤ 2R2e2ηT (η + 1) (T + 1)2

(1 + α− γ − ε)

(
1 + sup

s∈[t0,T ]

∥Ys∥Lp(Ω;Hγ)

)
(t2 − t1)

ε < ∞

for all t1, t2 ∈ [t0, T ] with t1 ≤ t2, ε ∈ [0, 1 + α − γ), Y ∈ Hp and all
p ∈ [1,∞). Proposition 3.6 (ii) in Da Prato and Zabczyk [3] therefore yields
that the stochastic process

∫ t

t0
eA(t−s)F (Ys) ds, t ∈ [t0, T ], has a modification

in Hp for every Y ∈ Hp and every p ∈ [1,∞).
It remains to analyze the stochastic integral in (8). To this end observe
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that Lemma 1 in [8] gives∫ t

t0

E
∥∥eA(t−s)B(Ys)

∥∥2
HS(U0,Hγ)

ds

≤ e2ηT
∫ t

t0

∥∥∥(η − A)(γ−β) e(A−η)(t−s)
∥∥∥2
L(H)

E ∥B(Ys)∥2HS(U0,Hβ)
ds

≤ 2R2e2ηT
∫ t

t0

(t− s)2(β−γ)
(
1 + E ∥Ys∥2Hγ

)
ds

≤ 2R2e2ηT (T + 1)

(1 + 2β − 2γ)

(
1 + sup

s∈[t0,T ]

E ∥Ys∥2Hγ

)
< ∞

for all t ∈ [t0, T ] and all Y ∈ ∪p∈[2,∞)Hp = H2. (We used here that
1 + 2β − 2γ = 2(1

2
+ β − γ) > 0 due to Assumption 3.) Remark 1 in [8]

hence shows that
∫ t

t0
eA(t−s)B(Ys) dWs, t ∈ [t0, T ], is a well defined Hγ-valued

adapted stochastic process for every Y ∈ ∪p∈[2,∞)Hp = H2. Additionally,
the Burkholder-Davis-Gundy type inequality in Lemma 7.7 in Da Prato and
Zabczyk [3] gives∥∥∥∥∫ t2

t0

eA(t2−s)B(Ys) dWs −
∫ t1

t0

eA(t1−s)B(Ys) dWs

∥∥∥∥
Lp(Ω;Hγ)

≤ p

(∫ t2

t1

∥∥eA(t2−s)B(Ys)
∥∥2
Lp(Ω;HS(U0,Hγ))

ds

) 1
2

+ p

(∫ t1

t0

∥∥(eA(t2−s) − eA(t1−s)
)
B(Ys)

∥∥2
Lp(Ω;HS(U0,Hγ))

ds

) 1
2

≤ eηTp

(∫ t2

t1

∥∥∥(η − A)(γ−β) e(A−η)(t2−s)
∥∥∥2
L(H)

∥B(Ys)∥2Lp(Ω;HS(U0,Hβ))
ds

) 1
2

+ eηTp
∥∥(η − A)−ε (eA(t2−t1) − I

)∥∥
L(H)

·
(∫ t1

t0

∥∥∥(η − A)(γ+ε−β) e(A−η)(t1−s)
∥∥∥2
L(H)

∥B(Ys)∥2Lp(Ω;HS(U0,Hβ))
ds

) 1
2

8



and Lemmas 1 and 2 in [8] hence yield∥∥∥∥∫ t2

t0

eA(t2−s)B(Ys) dWs −
∫ t1

t0

eA(t1−s)B(Ys) dWs

∥∥∥∥
Lp(Ω;Hγ)

≤ eηTp

(
sup

s∈[t0,T ]

∥B(Ys)∥Lp(Ω;HS(U0,Hβ))

)
(t2 − t1)

( 1
2
+β−γ)

(1 + 2β − 2γ)
1
2

(11)

+Re2ηTp

(
sup

s∈[t0,T ]

∥B(Ys)∥Lp(Ω;HS(U0,Hβ))

)
(η + 1) (T + 1)2 (t2 − t1)

ε

(1 + 2β − 2γ − 2ε)
1
2

≤ R2e2ηTp (η + 1) (T + 1)2(
1
2
+ β − γ − ε

) (
1 + sup

s∈[t0,T ]

∥Ys∥Lp(Ω;Hγ)

)
(t2 − t1)

ε < ∞

for all t1, t2 ∈ [t0, T ] with t1 ≤ t2, ε ∈ [0, 1
2
+ β − γ), Y ∈ Hp and all

p ∈ [2,∞). Proposition 3.6 (ii) in Da Prato and Zabczyk [3] therefore yields
that the stochastic process

∫ t

t0
eA(t−s)B(Ys) dWs, t ∈ [t0, T ], has a modification

in Hp for every p ∈ [2,∞) and this finally shows the well definedness of the
mappings Φp : Hp → Hp, p ∈ [2,∞), given by (8) (see (9), (10) and (11)).

In the next step we show that the mappings Φp : Hp → Hp, p ∈ [2,∞), are
contractions with respect to appropriate norms. More formally, Lemma 7.7
in Da Prato and Zabczyk [3] and Lemma 1 in [8] give∥∥(ΦpY )t − (ΦpZ)t

∥∥
Lp(Ω;Hγ)

≤
∫ t

t0

∥∥eA(t−s) (F (Ys)− F (Zs))
∥∥
Lp(Ω;Hγ)

ds

+ p

(∫ t

t0

∥∥eA(t−s) (B(Ys)−B(Zs))
∥∥2
Lp(Ω;HS(U0,Hγ))

ds

) 1
2

≤ eηT
∫ t

t0

(t− s)(α−γ) ∥F (Ys)− F (Zs)∥Lp(Ω;Hα)
ds

+ eηTp

(∫ t

t0

(t− s)2(β−γ) ∥B(Ys)−B(Zs)∥2Lp(Ω;HS(U0,Hβ))
ds

) 1
2

≤ ReηT
∫ t

t0

(t− s)(α−γ) ∥Ys − Zs∥Lp(Ω;Hγ)
ds

+ReηTp

(∫ t

t0

(t− s)2(β−γ) ∥Ys − Zs∥2Lp(Ω;Hγ)
ds

) 1
2
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and hence

ert
∥∥(ΦpY )t − (ΦpZ)t

∥∥
Lp(Ω;Hγ)

≤ ReηT
(∫ t

t0

er(t−s) (t− s)(α−γ) ds

)
∥Y − Z∥Hp,r

+ReηTp

(∫ t

t0

e2r(t−s) (t− s)2(β−γ) ds

) 1
2

∥Y − Z∥Hp,r

≤ ReηTp

∫ (t−t0)

0

ers s(α−γ) ds+

[∫ (t−t0)

0

e2rs s2(β−γ) ds

] 1
2

 ∥Y − Z∥Hp,r

for all t ∈ [t0, T ], Y, Z ∈ Hp, p ∈ [2,∞) and all r ∈ R. Finally, we obtain

∥Φp(Y )− Φp(Z)∥Hp,r

≤ ReηTp

(∫ T

0

ers s(α−γ) ds+

[∫ T

0

e2rs s2(β−γ) ds

] 1
2

)
∥Y − Z∥Hp,r

for all Y, Z ∈ Hp, p ∈ [2,∞) and all r ∈ R. This shows that Φp : Hp → Hp

is a contraction with respect to ∥ · ∥Hp,r for a sufficiently small r ∈ (−∞, 0)
and every p ∈ [2,∞). Hence, there exists a unique Y : [t0, T ] × Ω → Hγ ∈
∩p∈[1,∞)Hp with Y = Φ2(Y ), i.e.

Yt = eA(t−t0)ξ +

∫ t

t0

eA(t−s)F (Ys) ds+

∫ t

t0

eA(t−s)B(Ys) dWs (12)

P-a.s. for all t ∈ [t0, T ]. Moreover, the Kolmogorov-Chentsov theorem (see,
e.g., Theorem 21.6 and Remark 21.7 in Klenke [9]), (10) and (11) show that
Y : [t0, T ] × Ω → Hγ has an up to indistinguishability unique modification
X : [t0, T ]×Ω → Hγ with continuous sample paths. In particular, (12) gives

Xt = eA(t−t0)ξ +

∫ t

t0

eA(t−s)F (Xs) ds+

∫ t

t0

eA(t−s)B(Xs) dWs (13)

P-a.s. for all t ∈ [t0, T ]. Additionally, the Garsia-Rodemich-Rumsey lemma
(see [4]) and again (10) and (11) yield that X : [t0, T ]×Ω → Hγ even lies in
∩p∈[1,∞)L

p(Ω;C([t0, T ], Hγ)).
In order to complete the proof of Proposition 1, it remains to show that

Xt, t ∈ [t0, T ], is even indistinguishable from the right hand side of (13).
For this, it is sufficient to check that the Hγ-valued adapted stochastic pro-

cess
∫ t

t0
eA(t−s)F (Xs) ds, t ∈ [t0, T ], has continuous sample paths. Indeed,

10



Lemma 1 in [8] gives∥∥∥∥∫ t2

t0

eA(t2−s)F (Xs) ds−
∫ t1

t0

eA(t1−s)F (Xs) ds

∥∥∥∥
Hγ

≤ eηT
∫ t2

t1

(t2 − s)(α−γ) ∥F (Xs)∥Hα
ds

+ eηT
∥∥(η − A)−ε (eA(t2−t1) − I

)∥∥
L(H)

∫ t1

t0

(t1 − s)(α−γ−ε) ∥F (Xs)∥Hα
ds

≤ eηT

(
sup

s∈[t0,T ]

∥F (Xs)∥Hα

)
(t2 − t1)

(1+α−γ)

(1 + α− γ)

+ eηT

(
sup

s∈[t0,T ]

∥F (Xs)∥Hα

) ∥∥(η − A)−ε (eA(t2−t1) − I
)∥∥

L(H)
(T + 1)

(1 + α− γ − ε)

for all t1, t2 ∈ [t0, T ] with t1 ≤ t2 and all ε ∈ [0, 1+α−γ) and Lemma 2 in [8]
hence shows that theHγ-valued adapted stochastic process

∫ t

t0
eA(t−s)F (Xs) ds,

t ∈ [t0, T ], has continuous sample paths. This completes the proof of Propo-
sition 1.

2.2 Proof of Theorem 1

Proof of Theorem 1. A central difficulty in order to establish an Itô formula
for the solution process X : [t0, T ] × Ω → Hγ of the SPDE (2) is that this
solution process is, in general, not a semimartingale anymore to which Itô’s
formula in infinite dimensions (see Theorem 4.17 in Section 4.5 in Da Prato
and Zabczyk [3]) could be applied. The solution process X : [t0, T ]×Ω → Hγ

of (2) is, in general, not a semimartingale since the mild SPDE (2) is an
Itô-Volterra type equation and the integrand processes eA(t−s)F (Xs), s ∈
[t0, t], and eA(t−s)B(Xs), s ∈ [t0, t], in (2) depend on t ∈ [t0, T ] too. In
order to overcome this difficulty we fix the time variable t ∈ [t0, t] within
these integrands and then apply classical stochastic calculus to the resulting
semimartingal processes. This well known trick has already been used in
proofs of Davis-Burkholder-Gundy type inequalities for SPDEs (see, e.g.,
Proposition 7.8 in Da Prato and Zabczyk [3]) and has also been intensively
exploited in the work of Conus [2] (see Theorem 5.1 and Theorem 7.2 in
[2]). More formally, let Y t : [t0, t] × Ω → Hγ ∈ ∩p∈[1,∞)L

p(Ω;C([t0, t], Hγ)),
t ∈ [t0, T ], be a family of stochastic processes given by

Y t
u = eA(t−t0)Xt0 +

∫ u

t0

eA(t−s)F (Xs) ds+

∫ u

t0

eA(t−s)B(Xs) dWs

11



for all u ∈ [t0, t] P-a.s. and all t ∈ [t0, t]. Note that Y t : [t0, t] × Ω → Hγ is
well defined and indeed in ∩p∈[1,∞)L

p(Ω;C([t0, t], Hγ)) for all t ∈ [t0, t]. Itô’s
formula in infinite dimensions (see Theorem 4.17 in Section 4.5 in Da Prato
and Zabczyk [3]) then gives

φ(Y t
u) = φ(Y t

t0
) +

∫ u

t0

φ′(Y t
s ) e

A(t−s)F (Xs) ds+

∫ u

t0

φ′(Y t
s ) e

A(t−s)B(Xs) dWs

+
1

2

∑
j∈J

∫ u

t0

φ′′(Y t
s )
(
eA(t−s)B(Xs) gj, e

A(t−s)B(Xs) gj
)
ds

for all u ∈ [t0, t] P-a.s. and all t ∈ [t0, T ]. Exploiting the facts Y t
t = Xt and

Y t
t0
= eA(t−t0)Xt0 P-a.s. for all t ∈ [t0, T ] then gives

φ(Xt) = φ(Y t
t ) = φ(eA(t−t0)Xt0) +

∫ t

t0

φ′(Y t
s ) e

A(t−s)F (Xs) ds

+

∫ t

t0

φ′(Y t
s ) e

A(t−s)B(Xs) dWs (14)

+
1

2

∑
j∈J

∫ t

t0

φ′′(Y t
s )
(
eA(t−s)B(Xs) gj, e

A(t−s)B(Xs) gj
)
ds

P-a.s. for all t ∈ [t0, T ]. Equation (14) is an expansion formula for the
stochastic process φ(Xt), t ∈ [t0, T ]. Nevertheless, this formula seems to be
of limited use since the integrands in (14) contain the stochastic processes
Y t
s , s ∈ [t0, t], t ∈ [t0, T ], instead of the solution process Xs, s ∈ [t0, T ], of (2)

only. However, a key observation here is to exploit the elementary identity

Y t
s = eA(t−t0)Xt0 +

∫ s

t0

eA(t−u)F (Xu) du+

∫ s

t0

eA(t−u)B(Xu) dWu

= eA(t−s)

(
eA(s−t0)Xt0 +

∫ s

t0

eA(s−u)F (Xu) du+

∫ s

t0

eA(s−u)B(Xu) dWu

)
= eA(t−s)Xs (15)

for all s ∈ [t0, t] P-a.s. and all t ∈ [t0, T ] in equation (14). This enables us
to obtain a closed formula for the stochastic process φ(Xt), t ∈ [t0, T ]. More
precisely, putting (15) into (14) gives

φ(Xt) = φ(eA(t−t0)Xt0) +

∫ t

t0

φ′(eA(t−s)Xs) e
A(t−s)F (Xs) ds

+

∫ t

t0

φ′(eA(t−s)Xs) e
A(t−s)B(Xs) dWs (16)

+
1

2

∑
j∈J

∫ t

t0

φ′′(eA(t−s)Xs)
(
eA(t−s)B(Xs)gj, e

A(t−s)B(Xs)gj
)
ds

12



P-a.s. for all t ∈ [t0, T ]. The stochastic process φ(Xt), t ∈ [t0, T ], is thus
a modification of the stochastic process on the right hand side of (16). In
order to complete the proof of Theorem 1, it remains to show that φ(Xt),
t ∈ [t0, T ], is even indistinguishable from the right hand side of (16). For this,
it is sufficient to verify that the first, the second and the fourth summand on
the right hand side of (16) are V -valued adapted stochastic processes with
continuous sample paths.

To this end note that φ(eA(t−t0)Xt0), t ∈ [t0, T ], is a V -valued adapted
stochastic process with continuous sample paths since φ : Hγ → V is contin-
uous and since eAt ∈ L(Hγ), t ∈ [0,∞), is a strongly continuous semigroup
on Hγ.

In the next step we concentrate on the second summand on the right
hand side of (16). More formally, Lemma 1 in [8] gives∥∥∥∥∫ t2

t0

φ′(eA(t2−s)Xs

)
eA(t2−s)F (Xs) ds−

∫ t1

t0

φ′(eA(t1−s)Xs

)
eA(t1−s)F (Xs) ds

∥∥∥∥
V

≤ eηT
∫ t2

t1

∥∥φ′(eA(t2−s)Xs

)∥∥
L(Hγ ,V )

(t2 − s)(α−γ) ∥F (Xs)∥Hα
ds

+ eηT
∫ t1

t0

∥∥φ′(eA(t2−s)Xs

)
− φ′(eA(t1−s)Xs

)∥∥
L(Hγ ,V )

(t2 − s)(α−γ) ∥F (Xs)∥Hα
ds

+ eηT
∫ t1

t0

∥∥φ′(eA(t1−s)Xs

)∥∥
L(Hγ ,V )

∥∥(η − A)−ε (eA(t2−t1) − I
)∥∥

L(H)

·
∥∥∥(η − A)(γ+ε−α) e(A−η)(t1−s)

∥∥∥
L(H)

∥F (Xs)∥Hα
ds

and hence∥∥∥∥∫ t2

t0

φ′(eA(t2−s)Xs

)
eA(t2−s)F (Xs) ds−

∫ t1

t0

φ′(eA(t1−s)Xs

)
eA(t1−s)F (Xs) ds

∥∥∥∥
V

≤ eηT

(
sup

u,s∈[t0,T ]

∥∥φ′(eA(u−t0)Xs

)∥∥
L(Hγ ,V )

)(
sup

s∈[t0,T ]

∥F (Xs)∥Hα

)

·

(
(t2 − t1)

(1+α−γ)

(1 + α− γ)
+

(T + 1)
∥∥(η − A)−ε (eA(t2−t1) − I

)∥∥
L(H)

(1 + α− γ − ε)

)

+ eηT

(
sup

s∈[t0,T ]

∥F (Xs)∥Hα

)

·
(∫ T

t0

1[t0,t1](s)
∥∥φ′(eA(t2−s)Xs

)
− φ′(eA(t1−s)Xs

)∥∥
L(Hγ ,V )

(t2 − s)(α−γ) ds

)
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for all t1, t2 ∈ [t0, T ] with t1 ≤ t2 and all ε ∈ [0, 1 + α − γ). Lebesgue’s
theorem of dominated convergence and Lemma 2 in [8] therefore show that
the V -valued adapted stochastic process

∫ t

t0
φ′(eA(t−s)Xs) e

A(t−s)F (Xs) ds, t ∈
[t0, T ], has continuous sample paths.

Finally, we analyze the fourth summand on the right hand side of (16).
Here we have∥∥∥∥∥∑

j∈J

∫ t2

t0

φ′′(eA(t2−s)Xs

) (
eA(t2−s)B(Xs)gj, e

A(t2−s)B(Xs)gj
)
ds

−
∑
j∈J

∫ t1

t0

φ′′(eA(t1−s)Xs

) (
eA(t1−s)B(Xs)gj, e

A(t1−s)B(Xs)gj
)
ds

∥∥∥∥∥
V

≤
∫ t2

t1

∥∥φ′′(eA(t2−s)Xs

)∥∥
L(2)(Hγ ,V )

∥∥eA(t2−s)B(Xs)
∥∥2
HS(U0,Hγ)

ds

+

∫ t1

t0

∥∥φ′′(eA(t2−s)Xs

)
−φ′′(eA(t1−s)Xs

)∥∥
L(2)(Hγ ,V )

∥∥eA(t2−s)B(Xs)
∥∥2
HS(U0,Hγ)

ds

+
∑
j∈J

∫ t1

t0

∥∥φ′′(eA(t1−s)Xs

)∥∥
L(2)(Hγ ,V )

(∥∥(eA(t2−s) − eA(t1−s)
)
B(Xs)gj

∥∥
Hγ

·
(∥∥eA(t2−s)B(Xs)gj

∥∥
Hγ

+
∥∥eA(t1−s)B(Xs)gj

∥∥
Hγ

))
ds
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and therefore∥∥∥∥∥∑
j∈J

∫ t2

t0

φ′′(eA(t2−s)Xs

) (
eA(t2−s)B(Xs)gj, e

A(t2−s)B(Xs)gj
)
ds

−
∑
j∈J

∫ t1

t0

φ′′(eA(t1−s)Xs

) (
eA(t1−s)B(Xs)gj, e

A(t1−s)B(Xs)gj
)
ds

∥∥∥∥∥
V

≤

(
sup

u,s∈[t0,T ]

∥∥φ′′(eA(u−t0)Xs

)∥∥
L(2)(Hγ ,V )

)(
sup

s∈[t0,T ]

∥B(Xs)∥2HS(U0,Hβ)

)

· e
2ηT (t2 − t1)

(1+2β−2γ)

(1 + 2β − 2γ)
+ e2ηT

(
sup

s∈[t0,T ]

∥B(Xs)∥2HS(U0,Hβ)

)

·
∫ T

t0

1[t0,t1](s)
∥∥φ′′(eA(t2−s)Xs

)
− φ′′(eA(t1−s)Xs

)∥∥
L(2)(Hγ ,V )

(t2 − s)2(β−γ) ds

+

(
sup

u,s∈[t0,T ]

∥∥φ′′(eA(u−t0)Xs

)∥∥
L(2)(Hγ ,V )

)∥∥(η − A)−ε (eA(t2−t1) − I
)∥∥

L(H)

· 2e2ηT
∫ t1

t0

(t1 − s)(2β−2γ−ε) ∥B(Xs)∥HS(U0,Hβ)
ds

for all t1, t2 ∈ [t0, T ] with t1 ≤ t2 and all ε ∈ [0, 1+2β− 2γ) due to Lemma 1
in [8]. Lebesgue’s theorem of dominated convergence and Lemma 2 in [8]
hence yield that the V -valued adapted stochastic process∑

j∈J

∫ t

t0

φ′′(eA(t−s)Xs) (e
A(t−s)B(Xs)gj, e

A(t−s)B(Xs)gj) ds

for t ∈ [t0, T ] has continuous sample paths and this finally completes the
proof of Theorem 1.
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Polytechnique Fédéderale De Lausanne, 2008. Dissertation.

[3] Da Prato, G., and Zabczyk, J. Stochastic equations in infinite
dimensions, vol. 44 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, 1992.

[4] Garsia, A. M., Rodemich, E., and Rumsey, Jr., H. A real vari-
able lemma and the continuity of paths of some Gaussian processes.
Indiana Univ. Math. J. 20 (1970/1971), 565–578.

[5] Gradinaru, M., Nourdin, I., and Tindel, S. Ito’s- and Tanaka’s-
type formulae for the stochastic heat equation: the linear case. J. Funct.
Anal. 228, 1 (2005), 114–143.
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