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Abstract

A non-time-homogeneous generalized Mehler semigroup on a real sep-

arable Hilbert space H is defined through

ps,tf(x) =

∫
H

f(U(t, s)x+ y)µt,s(dy), t ≥ s, x ∈ H,

for every bounded measurable function f on H, where (U(t, s))t≥s is an

evolution family of bounded operators on H and µt,s is a family of prob-

ability measures on (H,B(H)) satisfying µt,s = µt,r ∗
(
µr,s ◦ U(t, r)−1

)
for

t ≥ r ≥ s. This kind of semigroups is closely related with the “transi-

tion semigroup” of non-autonomous (possibly non-continuous) Ornstein-

Uhlenbeck process driven by some proper additive process. We show the

infinite divisibility and a Lévy-Khintchine type representation of µt,s. We

also study the corresponding evolution systems of measures (=space-time

invariant measures), dimension free Harnack inequality and their appli-

cations to derive important properties of ps,t. We also prove the Harnack

inequality and show the strong Feller property for the transition semigroup

of semi-linear non-autonomous Ornstein-Uhlenbeck processes driven by a

Wiener process.
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1 Introduction

Generalized Mehler semigroups (pt)t≥0 on a real separable Hilbert space H, which

have been extensively studied in [BRS96, SS01, FR00, LR02, RW03, DL04, DLSS04,

LR04] etc., are defined by the formula

ptf(x) =

∫
H

f(Ttx+ y)µt(dy), t ≥ 0, x ∈ H, f ∈ Bb(H). (1.1)

Here Bb(H) is the space of all bounded Borel measurable functions on H, and

(Tt)t≥0 is a strongly continuous semigroup on H and (µt)t≥0 is a family of proba-

bility measures on (H,B(H)) satisfying the following skew convolution semigroup

condition

µt+s = µs ∗ (µt ◦ T−1
s ), s, t ≥ 0. (1.2)

Condition (1.2) is necessary and sufficient for the semigroup property of (pt)t≥0:

for all t, s ≥ 0, ptps = pt+s on Bb(H) (and the Markov property of the correspond-

ing stochastic process respectively).

The transition semigroups of Lévy driven Ornstein-Uhlenbeck processes are

typical examples of generalized Mehler semigroups. See e.g. [App06, PZ07]. It is

shown in [BRS96, FR00] that under some mild conditions the reverse result also

holds.
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Recently, much work, for instance, [DPL07, DPR08, GL08, Knä09, Woo09],

has been devoted to the study of non-autonomous Ornstein-Uhlenbeck processes.

In these papers, the drift is time-dependent, and the noise is modeled by a station-

ary process, e.g. a Wiener process or Lévy process. To get a full non-homogeneous

Ornstein-Uhlenbeck process, it is natural to consider a more general noise given

by non-stationary processes such as additive processes. To be more precise, let

us describe our framework in detail.

Let (A(t),D(A(t)))t∈R be a family of linear operators on H with dense do-

mains. Suppose that the non-autonomous Cauchy problem dxt = A(t)xtdt, t ≥ s,

with initial condition xs = x, is well posed (see [Paz83]). That is, there exists an

evolution family of bounded operators (U(t, s))t≥s on H such that x(t) = U(t, s)x

for x ∈ D(A(s)) is a classical unique solution of this Cauchy problem.

Recall that a family of bounded linear operators (U(t, s))t≥s on H is an evo-

lution family if

(1) For every s ∈ R, U(s, s) = I and for all t ≥ r ≥ s, U(t, r)U(r, s) = U(t, s);

(2) For every x ∈ H, (t, s) → U(t, s)x is strongly continuous on {(t, s) : t ≥
s; t, s ∈ R}.

An evolution family is also called evolution system, propagator etc.. For more

details we refer e.g. to [Paz83].

Let (Zt)t≥s be an additive processes in H, i.e. an H-valued stochastic con-

tinuous stochastic process with independent increments, and (B(t))t∈R a family

of bounded linear operators on H. Consider the following stochastic differential

equation {
dXt = A(t)Xtdt+B(t)dZt,

Xs = x.
(1.3)

We call the following process a mild solution of (1.3):

X(t, s, x) = U(t, s)x+

∫ t

s

U(t, r)B(r) dZr, (1.4)

t ≥ s and x ∈ H, if the stochastic convolution integral in (1.4) is well-defined for

a proper additive process (Zt)t≥0 (see [Det83, Sat06]). Denote the distribution

of the convolution
∫ t
s
U(t, r)B(r) dZr by µ̃t,s. Then the transition semigroup of

X(t, s, x) is given by

Ps,tf(x) = EPf(X(t, s, x)) =

∫
H

f (U(t, s)x+ y) µ̃t,s(dy). (1.5)

for all t ≥ s, x ∈ H.

The aim of the present paper is to adopt the axiomatic approach from [BRS96]

to study this kind of non-autonomous processes through its semigroup (1.5).

3



Complementing the analytic study in this work, the more probabilistic paper

(see [Ouy10]) containing a detailed study of non-autonomous Ornstein-Uhlenbeck

processes (1.4) driven by an additive process is in preparation. For the present

paper, we consider an abstract form of (1.5) given by the following non-time-

homogeneous version of the generalized Mehler semigroup (1.1):

ps,tf(x) =

∫
H

f(U(t, s)x+ y)µt,sdy, x ∈ H, f ∈ Bb(H). (1.6)

Here µt,s, s ≤ t, is a family of probability measures on (H,B(H)) satisfying a

non-time-homogeneous analog of (1.2) (see (1.7) below).

The organization of this paper is as follows.

In Section 2 we shall introduce the non-time-homogeneous transition func-

tion ps,t of generalized Mehler type. We show the continuity and characterize

the Markov property of ps,t. We also indicate how it fits into the more general

framework of non-homogeneous skew convolution semigroups.

In Section 3 we study the skew convolution equation for measures

µt,s = µt,r ∗
(
µr,s ◦ U(t, r)−1

)
(1.7)

which is equivalent to the flow property for (ps,t)t≥s, i.e. the Chapman-Kolmogorov

equations (see Proposition 2.2 below). We prove that if µt,s is stochastically con-

tinuous in s, t (cf. Assumption 3.1 below), then for every t ≥ s, µt,s is infinitely

divisible. We then investigate the structure and representation of the measures

µt,s.

In Section 4 we study evolution systems of measures, i.e. space-time invariant

measures, for the semigroup (ps,t)t≥s. We show some sufficient and necessary

conditions for the existence and uniqueness of evolution systems of measures.

The basic idea can be found in [BRS96, FR00, DPL07, Knä09, Woo09] etc.. But

we are in a more general framework. Theorem 4.3 and Theorem 4.4 below are the

infinite dimensional generalizations of the results in [Woo09] for finite dimensional

Lévy driven non-autonomous Ornstein-Uhlenbeck processes. However, Items (3)

and (4) of Theorem 4.4, which are not in [Woo09], are new also in finite dimensions

and interesting by themselves since they are converse results to Theorem 4.2 below

about the relationship of two evolution systems of measures. We borrow the idea

to use periodic (in time) conditions to prove uniqueness (see Theorem 4.7) from

[DPL07, Knä09].

In Section 5 we prove Harnack inequalities for ps,t using much simpler argu-

ments than in the previous papers [RW03, Knä09, ORW09, Ouy09a] in which also

Harnack inequalities for generalized Mehler semigroups or Ornstein-Uhlenbeck

semigroup driven by Lévy processes were shown. The method in [Knä09] and

[RW03] relies on taking the derivative of a proper functional; the method in
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[ORW09, Ouy09a] is based on coupling and Girsanov transformation. Our ap-

proach in this paper is based on a decomposition of ps,t. As applications of the

Harnack inequality, we prove that null controllability implies the strong Feller

property and that for the Gaussian case, null controllability, Harnack inequal-

ity and strong Feller property are even equivalent to each other as in the time

homogeneous case.

In Section 6 we apply Girsanov’s theorem to study the existence of martingale

solutions of semi-linear non-autonomous Ornstein-Uhlenbeck process driven by a

Wiener process for possibly non-Lipschitz non-linearities. For the Lipschitz case

we refer to [Ver09]. Our approach is an adaption of the standard procedure when

the linear part A does not depend on time (see [DPZ92, Chapter 10]). Our

main contribution here is to establish a Harnack inequality and hence show the

strong Feller property for the transition semigroup (based on applying a properly

adapted version of the method in [ORW09, Section 4]).

In Section 7 we append a short introduction to control theory for non-autonomous

linear control systems and null controllability. This is closely related to the strong

Feller property of the corresponding Ornstein-Uhlenbeck processes. The minimal

energy representation also proves useful for more precise estimates of the con-

stants in the Harnack inequalities.

2 Non-time-homogeneous generalized

Mehler semigroups

Let H be a real separable Hilbert space with norm and inner product denoted

by | · | and 〈·, ·〉 respectively. Let (U(t, s))t≥s be an evolution family on H and

(µt,s)t≥s a family of probability measures on (H,B(H)). For every f ∈ Bb(H)

and t ≥ s, define

ps,tf(x) =

∫
H

f(U(t, s)x+ y)µt,s(dy), x ∈ H. (2.1)

For every (t, s) ∈ Λ := {(t, s) ∈ R2 : t ≥ s}, it is clear that ps,t is Feller,

i.e. ps,t(Cb(H)) ⊂ Cb(H), where Cb(H) is the space of all bounded continuous

functions on H. Now we look at the continuity of the map (t, s, x) 7→ ps,tf(x) for

f in Cb(H).

The following proposition is a direct generalization of [BRS96, Lemma 2.1].

The proof is quite similar to the proof in [BRS96].

Proposition 2.1. Assume that (sn, tn) ∈ Λ, n ∈ N with (sn, tn) → (s, t) as

n→∞ such that µtn,sn → µt,s weakly as n→∞. Then psn,tnf(xn)→ ps,tf(x) if

xn → x in H as n→∞ and f ∈ Cb(H).
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Proof. Since µtn,sn → µt,s weakly, by Prohorov’s theorem, for every ε > 0, there

exists a compact set K ⊂ H such that

µr,σ(K) ≥ 1− ε, for all (r, σ) ∈ {(t, s), (tn, sn) : n ∈ N}. (2.2)

For abbreviation, we set zn = U(tn, sn)xn and z = U(t, s)x.

By the strong continuity of the evolution family (U(t, s))t≥s, the set S :=

{z, zn : n ∈ N} is compact. Hence S +K is also compact. So there exists N ∈ N
such that for any n > N and any y ∈ K,

|f(zn + y)− f(z + y)| < ε, (2.3)

since f is uniformly continuous on compacts.

Because the map (t, s) 7→ µt,s on Λ is weakly continuous, (taking N larger if

necessary) we have for all n > N∣∣∣∣∫
H

f(z + y)µtn,sn(dy)−
∫
H

f(z + y)µt,s(dy)

∣∣∣∣ < ε. (2.4)

From (2.2), (2.3) and (2.4) we get∣∣∣∣∫
H

f(zn + y)µtn,sn(dy)−
∫
H

f(z + y)µt,s(dy)

∣∣∣∣
≤
∣∣∣∣∫
H

f(z + y)µtn,sn(dy)−
∫
H

f(z + y)µt,s(dy)

∣∣∣∣
+

∫
K

|f(zn + y)− f(z + y)| µtn,sn(dy) + 2‖f‖∞ε

≤2ε(1 + ‖f‖∞),

and the result is proved since ε was arbitrary.

We are interested in the case when (ps,t)t≥s in (2.1) satisfies the Chapman-

Kolmogorov equations:

Proposition 2.2. For all s ≤ r ≤ t,

ps,rpr,t = ps,t (“Chapman-Kolmogorv equations”) (2.5)

on Bb(H) if and only if for all s ≤ r ≤ t,

µt,s = µt,r ∗
(
µr,s ◦ U(t, r)−1

)
. (2.6)

For the proof we refer to Example 2.6 below which is based on Proposition

2.5 below where we deal with the more general skew convolution semigroups.

Later on, we shall always assume (2.6) to hold or equivalently the following

equation holds:

µ̂t,s(ξ) = µ̂t,r(ξ)µ̂r,s(U(t, r)∗ξ), ξ ∈ H. (2.7)
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Here for every probability measure µ on (H,B(H)), we denote its Fourier trans-

form by µ̂, i.e.,

µ̂(ξ) =

∫
ei〈x,ξ〉 µ(dx), ξ ∈ H.

Obviously, (2.6) implies that µt,t = δ0 for all t ∈ R.

Definition 2.3. The family of probability kernels (ps,t)t≥s defined in (2.1) with

(µt,s)t≥s satisfying (2.6) is called a non-time-homogeneous generalized Mehler

semigroup.

Naturally there exists a Markov process associated with (ps,t)t≥s by Kol-

mogorov’s consistency theorem. However, this process is of interest only if one

can prove certain regularity properties of its sample paths. One can mimic the

idea in [BRS96] and [FR00] to construct corresponding Markov processes with

càdlàg paths and even show that the process solves some stochastic equation.

This will be contained in [Ouy10].

As noted by Li et al. (see [Li06] for a survey), a generalized Mehler semigroup

is a special case of a so called skew convolution semigroup. In the remainder of

this section we shall briefly discuss non-time-homogeneus skew convolution semi-

groups which constitute a more general framework than non-time-homogeneous

generalized Mehler semigroups. But in the following sections of this paper we

shall concentrate on the setting introduced above.

Let (S,+) be a metrizable abelian semigroup, that is, S is a metrizable topo-

logical space and there is an operation +: S2 → S which is associative, commu-

tative and continuous. Let (us,t)t≥s be a Borel Markov transition function on S

satisfying

us,t(x+ y, ·) = us,t(x, ·) ∗ us,t(y, ·) (2.8)

for every t ≥ s and x, y ∈ S.

Since (us,t)t≥s is a family of Markov transition functions, the Chapman-Kolmogorov

equations hold, i.e. for all x ∈ S, f ∈ Bb(S), t ≥ r ≥ s,

us,tf(x) = us,r(ur,tf)(x),

or written in integral form:∫
S2

f(z)ur,t(y, dz)us,r(x, dy) =

∫
S

f(z)us,t(x, dz). (2.9)

From (2.8) we see that for every t ≥ s

us,t(0, ·) = δ0. (2.10)

Here 0 denotes the neutral element in S.
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For every probability measure µ on (S,B(S)) we set

µus,t(A) =

∫
S

us,t(x,A)µ(dx), A ∈ B(S)

for every t ≥ s. It is easy to show the following result.

Proposition 2.4. For any two probability measures µ and ν on (S,B(S)),

(µ ∗ ν)us,t = (µus,t) ∗ (νus,t)

for all t ≥ s.

Now let (µt,s)t≥s be a family of probability measures on (S,B(S)). Define

qs,t(x, ·) = us,t(x, ·) ∗ µt,s(·)

for all x ∈ S and t ≥ s. We have the following result.

Proposition 2.5. (qs,t)t≥s is a family of transition functions, i.e.

qs,t = qs,rqr,t, t ≥ r ≥ s (2.11)

if and only if

µt,s = µt,r ∗ (µr,sur,t), t ≥ r ≥ s, (2.12)

or equivalently,

µ̂t,s(ξ) = µ̂t,r(ξ) ̂(µr,sur,t)(ξ), ξ ∈ S, t ≥ r ≥ s.

Proof. For every f ∈ Bb(S), x ∈ S, we have

qs,rqr,tf(x)

=

∫
S

qr,tf(y)qs,r(x, dy)

=

∫
S2

qr,tf(y1 + y2)us,r(x, dy1)µr,s(dy2)

=

∫
S4

f(z)qr,t(y1 + y2, dz)us,r(x, dy1)µr,s(dy2)

=

∫
S4

f(z1 + z2)ur,t(y1 + y2, dz1)µt,r(dz2)us,r(x, dy1)µr,s(dy2)

=

∫
S5

f(z11 + z12 + z2)ur,t(y1, dz11)ur,t(y2, dz12)µt,r(dz2)us,r(x, dy1)µr,s(dy2)

=

∫
S4

f(z11 + z12 + z2)us,t(x, dz11)ur,t(y2, dz12)µt,r(dz2)µr,s(dy2)

=

∫
S3

f(z11 + z12 + z2)us,t(x, dz11)(µr,sur,t)(dz12)µt,r(dz2)

=

∫
S

f(z)(us,t(x, ·) ∗ (µr,sur,t) ∗ µt,r)(dz).

(2.13)
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Here to get the sixth identity we used (2.9). If (2.12) holds, then by (2.13) we

obtain

qs,rqr,tf(x) =

∫
S

f(z)[us,t(x, ·) ∗ µt,s](dz) = qs,tf(x).

That is, (2.11) holds.

Conversely, if (2.11) holds, then by taking x = 0 in (2.13) and using (2.10),

we get ∫
S

f(z)[(µr,sur,t) ∗ µt,r](dz) =

∫
S

f(z)(µt,s)(dz)

for every f ∈ Bb(H). This implies (2.12).

Example 2.6. When S = H is a real separable Hilbert space and us,t(x, ·) =

δU(t,s)x for every t ≥ s and x ∈ S. Then (qs,t)t≥s is the non-homogeneous gen-

eralized Mehler semigroup (ps,t)t≥s defined in (2.1) and the equivalence of (2.11)

and (2.12) in Proposition 2.5 is exactly the equivalence of (2.5) and (2.6) in

Proposition 2.2. The latter is thus proved.

Example 2.7. Let S = M(E) be the space of all finite Borel measures on a Lusin

topological space E. Let (us,t)t≥s be the transition semigroup of some measure-

valued branching process and (µt,s)t≥s be a family of probability measures on

M(E) satisfying (2.12). Then (qs,t)s≤t is called an immigration process in [Li02].

3 On the equation µt,s = µt,r ∗
(
µr,s ◦ U(t, r)−1

)
3.1 Infinite divisibility

Recall that a probability measure µ on H is said to be infinitely divisible if for

any n ∈ N there exists a probability measure µn on H such that µ = µ∗nn :=

µn ∗ µn ∗ · · · ∗ µn (n-times). We first look at equation (1.2). If Ts ≡ I, then it

is clear that for every t ≥ 0, µt is infinitely divisible. It is proved in [SS01] that

in fact µt satisfying (1.2) is also infinitely divisible. Consider (2.6) for the case

when H is finite and U(t, s) ≡ I. It is known (see [Itô06] or [Sat99, Theorem

9.1 and Theorem 9.7]) that µt,s is infinitely divisible provided Assumption 3.1

below holds. In the following, assuming Assumption 3.1, we shall prove infinite

divisibility for µt,s satisfying (2.6) for the general case. That is, we generalize

the results mentioned above both to the time-inhomogeneous with general U(t, s)

and infinite dimensional state space.

In the rest of this chapter we fix µt,s, t ≥ s satisfying (2.6) and we shall use

the following assumption.

Assumption 3.1. For every ε, η > 0, there exists δ > 0 such that for every

t, s ∈ R with 0 ≤ t− s < δ,

µt,s({x : |x| > ε}) < η.
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In this case, we say the family of probability measures (µt,s)t≥s is stochastically

continuous.

Remark 3.2. Note that measures (µt)t≥0 satisfying µt+s = µt ∗ µs for every

t, s ≥ 0 do not necessarily fulfill Assumption 3.1. See for instance the argu-

ments in [Bre92, Section 14.4]. We also note that for the homogeneous case, the

infinite divisibility of µt satisfying (1.2) is proved without the above continuity

assumption.

Lemma 3.3. (U(t, s))t≥s is uniformly bounded on every compact interval. That

is, for every fixed s0 < t0, there exists some constant c > 0 such that for every

s0 ≤ s ≤ t ≤ t0,

|U(t, s)x| ≤ c|x|, x ∈ H, s0 ≤ s ≤ t ≤ t0. (3.1)

Proof. For every fixed x ∈ H, |U(t, s)x| is a continuous function in (t, s) on

Λt0,s0 := {(t, s) : s0 ≤ s ≤ t ≤ t0}. Hence |U(t, s)x| is uniformly bounded on Λt0,s0

for every fixed x ∈ H. By the Banach–Steinhaus theorem sup(t,s)∈Λt0,s0
‖U(t, s)‖ <

∞. That is, there exists some c > 0 such that

|U(t, s)x| ≤ c|x|, x ∈ H, s0 ≤ s ≤ t ≤ t0. (3.2)

Lemma 3.4. Suppose that Assumption 3.1 holds. On every compact interval

[s0, t0], there exists a δ > 0 such that for all s, t ∈ [s0, t0] with 0 ≤ t− s < δ,

µt,s ◦ U(t0, t)
−1({x ∈ H : |x| > ε}) < η. (3.3)

Proof. Since the case t = s is trivial, we shall assume t > s. For convenience, set

A(r) := {x ∈ H : |x| > r} for every r > 0. By Lemma 3.3, there exists a constant

c ≥ 1 such that

|U(t, s)x| ≤ c|x|, x ∈ H, s0 ≤ s < t ≤ t0.

By Assumption 3.1, for every ε, η > 0, t ∈ [s0, t0], there exists a δt ≥ 0 such that

for each s ∈ (t− δt, t),

µt,s(A(ε′/2)) < η/2, µt,s ◦ U(t0, t)
−1(A(ε′/2)) < η/2,

where we set ε′ = ε/c. For each s ∈ (t, t+ δt),

µs,t(A(ε′/2)) < η/2, µs,t ◦ U(t0, s)
−1(A(ε′/2)) < η/2.

For every t ∈ [s0, t0], set It := (t − δt, t + δt). Then {It : t ∈ [s0, t0]} covers the

interval [s0, t0]. Hence there is a finite sub–covering {Itj : j = 1, 2 . . . , n} of [s0, t0].
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Let δ be the minimum of {δtj/2: j = 1, 2, . . . , n}. Then for every t ∈ [s0, t0], we

have t ∈ Itj for some j. For every s ∈ [s0, t0] satisfying 0 < t − s < δ, we have

|s− tj| < δtj since |s− tj| ≤ |s− t|+ |t− tj| < δ + δtj/2 ≤ δtj . Now we consider

the following three cases respectively: 1. s ≤ tj < t; 2. s < t ≤ tj; 3. tj < s < t.

Case 1. (s ≤ tj < t) By (2.6),

µt,s(A(ε′)) = µt,tj ∗ (µtj ,s ◦ U(t, tj)
−1)(A(ε′))

=

∫
H

∫
H

1A(ε′)(x+ y)µt,tj(dx)(µtj ,s ◦ U(t, tj)
−1)(dy)

≤
∫
H

∫
H

(1A(ε′/2)(x) + 1A(ε′/2)(y))µt,tj(dx)(µtj ,s ◦ U(t, tj)
−1)(dy)

= µt,tj(A(ε′/2)) + (µtj ,s ◦ U(t, tj)
−1)(A(ε′/2))

<
η

2
+
η

2
= η.

Hence

µt,s ◦ U(t0, t)
−1({x ∈ H : |x| > ε}) = µt,s({x ∈ H : |U(t0, t)x| > ε})

≤ µt,s({x ∈ H : |x| > ε/c}) < η.

Case 2. (s < t ≤ tj) We first show (µt,s ◦ U(tj, t)
−1)(A(ε′)) < η by contradic-

tion. If otherwise, we have

(µt,s ◦ U(tj, t)
−1)(A(ε′)) ≥ η. (3.4)

Then by (2.6), we have

η

2
> µtj ,s(A(ε′/2)) = µtj ,t ∗ (µt,s ◦ U(tj, t)

−1)(A(ε′/2))

=

∫
H

∫
H

1A(ε′/2)(x+ y)µtj ,t(dx)(µt,s ◦ U(tj, t)
−1)(dy)

≥
∫
H

∫
H

1A(ε′/2)c(x) · 1A(ε′)(y)) µtj ,t(dx)(µt,s ◦ U(tj, t)
−1)(dy)

= µtj ,t(A(ε′/2)c) · (µt,s ◦ U(tj, t)
−1)(A(ε′))

> η
(

1− η

2

)
= η − η2

2
.

Here we used the fact that if |y| > ε′ and |x| < ε′/2, then |x+ y| ≥ |y| − |x| > ε′

2
.

The inequality obtained above shows η
2
> η − η2

2
. Consequently, η > 1 which

contradicts (3.4).

Then

µt,s ◦ U(t0, t)
−1({x ∈ H : |x| > ε}) = µt,s({x ∈ H : |U(t0, tj)U(tj, t)x| > ε})

≤ µt,s({x ∈ H : |U(tj, t)x| > ε/c}) < η.
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Case 3. (tj < s < t) Similar to Case 1 we only need to show µt,s(A(ε′)) < η

whose proof is similar to the proof in Case 2. Indeed, if µt,s(A(ε′)) ≥ η then

η

2
> µt,tj(A(ε′/2)) = µt,s ∗ (µs,tj ◦ U(t, s)−1)(A(ε′/2))

=

∫
H

∫
H

1A(ε′/2)(x+ y)µt,s(dx)(µs,tj ◦ U(t, s)−1)(dy)

≥ µt,s(A(ε′)) · (µs,tj ◦ U(t, s)−1)(A(ε′/2)c)

≥ η
(

1− η

2

)
.

This implies η > 1 which contradicts the assumption.

Remark 3.5. From the proof of Lemma 3.4 (or (3.3)) we obtain the following

result. Suppose that Assumption 3.1 holds and for every fixed s0 < t0, there

exists some constant c > 0 such that for every s0 ≤ s ≤ t ≤ t0 (cf. (3.1)),

1/c|x| ≤ |U(t, s)x| ≤ c|x|, x ∈ H, s0 ≤ s ≤ t ≤ t0.

Then (µt,s)t,s is uniformly stochastically continuous on compact intervals. That

is, for every s0 < t0 and every ε, η > 0, there exists a δ > 0 such that for all

s, t ∈ [s0, t0] with s ≤ t and t− s < δ, we have µt,s({x ∈ H : |x| > ε}) < η.

Now we can prove the following theorem.

Theorem 3.6. The measures (µt,s)t≥s satisfying (2.6) and Assumption 3.1 are

infinitely divisible.

Proof. For simplicity we only show that µ1,0 is infinitely divisible since the proof

for arbitray s ≤ t is similar. By (2.6), we can write for every m ∈ N,

µ1,0 = Π
∗(2m−1)
j=0 µ j+1

2m
, j
2m
◦ U

(
1,
j + 1

2m

)−1

.

Here we use Π∗ to denote the convolution product. By Lemma 3.4 we know that

µ1,0 is the limit of an infinitesimal triangular array. Then by [Par67, Corollary

VI.6.2] we know that µ1,0 is an infinitely divisible distribution.

By the Lévy-Khintchine theorem [Par67, Theorem VI.4.10], for every t ≥ s,

there exists a negative definite measurable function ψt,s on H such that

µt,s exp(i〈·, ξ〉) = exp(−ψt,s(ξ)), ξ ∈ H

and ψt,s has the following form

ψt,s(ξ) = −i〈at,s, ξ〉+
1

2
〈ξ, Rt,sξ〉 −

∫
H

(
ei〈ξ,x〉−1− i〈ξ, x〉

1 + |x|2

)
mt,s(dx), (3.5)
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where at,s ∈ H, Rt,s is a trace class operator on H and mt,s is a Lévy measure on

H.

Then condition (2.6) turns to

ψt,s(ξ) = ψt,r(ξ) + ψr,s(U(t, r)∗ξ) (3.6)

for every t ≥ r ≥ s and ξ ∈ H.

For simplicity, we shall denote the infinite divisible measure with characteristic

function exp(−ψt,s) given as in (3.5) by D[at,s, Rt,s,mt,s]. That is,

̂D[at,s, Rt,s,mt,s](ξ) = exp(−ψt,s(ξ)), ξ ∈ H.

By (2.6) and the uniqueness of the canonical representation of infinite divis-

ible distributions (see also the proof of [Ouy09a, Corollary 1.4.11]), we have the

following identities

Rt,s = Rt,r + U(t, r)Rr,sU(t, r)∗,

mt,s = mt,r + mr,s ◦ U(t, r)−1,

at,s = at,r + U(t, r)ar,s

+

∫
H\{0}

U(t, r)x

[
1

1 + |U(t, r)x|2
− 1

1 + |x|2

]
mr,s(dx)

(3.7)

for every t ≥ r ≥ s.

3.2 Representation of µt,s

The following proposition shows a typical form of the measure µt,s which satisfies

the equation (2.6).

Proposition 3.7. Let (λt,s)t>s be a family of negative definite Sazonov continuous

functions on H satisfying λt,s(0) = 1 for every t > s such that the function

s 7→ λt,s(ξ), ξ ∈ H, t > s, is locally integrable. Assume for every t > r > s,

λt,s(ξ) = λr,s(U(t, r)∗ξ), ξ ∈ H. (3.8)

Let π be a σ-finite measure on R. Then

µ̂t,s(ξ) = exp

(
−
∫ t

s

λt,σ(ξ) π(dσ)

)
, ξ ∈ H, t > s (3.9)

with µ̂t,t ≡ 1 defines a family of probability measures (µt,s)t≥s such that (2.6)

holds. If the setting for (λt,s)t>s above extends to (λt,s)t≥s then we have

µ̂t,s(ξ) = exp

(
−
∫ t

s

λσ(U(t, σ)∗ξ) π(dσ)

)
, ξ ∈ H, t > s, (3.10)
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where we set λs := λs,s for every s ∈ R.

Conversely, let λr : H→ C be a negative definite Sazonov continuous function

for every r ∈ R with λr(0) = 0. Then λt,s(ξ) := λs
(
U(t, s)∗ξ

)
, t ≥ s, satisfies

(3.8).

Proof. By the assumptions, it is easy to see that for every t > s,
∫ t
s
λt,σ(ξ) π(dσ)

is also negative definite and Sazonov continuous. Hence by [BF75, Theorem 7.8]

we know the right hand side of (3.9) is positive definite and Sazonov continuous.

By Bochner’s theorem (see e.g. [VTC87, Chapter VI; Proposition 3.2(c)]), we

know µt,s is well defined through (3.9). It is a probability measure by the fact

that λt,s(0) = 1 for every t ≥ s.

Now we verify (2.6). We only need to consider the case when t > r > s. For

every ξ ∈ H,

µ̂t,r(ξ)µ̂r,s
(
U(t, r)∗ξ

)
= exp

(
−
∫ t

r

λt,σ(ξ) π(dσ)−
∫ r

s

λr,σ(U(t, r)∗ξ)

)
= exp

(
−
∫ t

s

λt,σ(ξ) π(dσ)

)
= µ̂t,s(ξ).

Now we show the last assertion. Suppose that for every t ≥ s, λt,s :=

λs
(
U(t, s)∗ξ

)
. Then for every t ≥ r ≥ s,

λr,s
(
U(t, r)∗ξ

)
= λs

(
U(r, s)∗U(t, r)∗ξ

)
= λs

(
(U(t, r)U(r, s))∗ξ

)
= λs

(
U(t, s)∗ξ

)
= λt,s(ξ).

Remark 3.8. For t > s, let νt,s be the measure on (H,B(H)) with Fourier

transformation ν̂t,s = exp(−λt,s(ξ)) for every ξ ∈ H. Fix s0 and set νt = νt,s0 .

Define a transition semigroup us,t by us,t(x, ·) = δU(t,s)x(·) for every x ∈ H. Then

(3.8) implies that (νt)t>s>s0 is an entrance law (or an evolution system of measures,

see Section 4) for us,t.

Remark 3.9. Let λr : H → C be a negative definite Sazonov continuous func-

tion for every r ∈ R with λr(0) = 0. Then for every r ∈ R, exp(−λr) is the

characteristic function of an infinitely divisible probability measure on H. By the

Lévy-Khintchine Theorem [Par67, Theorem VI.4.10], for every r ∈ R the symbol

λr can be written in the form

λr(ξ) = −i〈ar, ξ〉+
1

2
〈ξ, Rrξ〉 −

∫
H

(
ei〈ξ,x〉−1− i〈ξ, x〉

1 + |x|2

)
mr(dx), ξ ∈ H,

(3.11)

where ar ∈ H, Rr is a trace class operator on H and mr is a Lévy measure on H.
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By Proposition 3.7,

µ̂t,s(ξ) := exp

(
−
∫ t

s

λr(U(t, r)∗ξ) π(dr)

)
(3.12)

defines a family of measures (µt,s)t≥s satisfying (2.6). Then µt,s an infinite divisible

measure with triplet (at,s, Rt,s, νt,s) given by

at,s =

∫ t

s

U(t, r)∗ar π(dr)

+

∫ t

s

∫
H

U(t, r)x

[
1

1 + |U(t, r)x|2
− 1

1 + |x|2

]
mr(dx)dr

Rt,s =

∫ t

s

U(t, r)RrU(t, r)∗ π(dr),

mt,s({0}) = 0 and mt,s(A) =

∫ t

s

mr(U(t, r)−1(A))π(dr), A ∈ B(H \ {0}).

Remark 3.10. For the case when H is a finite dimensional Euclidean space, it

is shown in [Sat06] that a natural additive process Zt admits a factorization and

hence the distribution of the convolution integral
∫ t
s
U(t, r)B(r) dZr has the form

(3.12). An extension to the infinite dimensional case is in preparation [Ouy10].

The following result is a converse to Proposition 3.7. Recall that we set

ψt,s(ξ) := − log µ̂t,s(ξ) for every ξ ∈ H and r ≥ s.

Proposition 3.11. Assume that (2.6) (equivalently (3.6)) holds. Let ξ ∈ H and

t ∈ R. If ψt,·(ξ) is of bounded variation on (−∞, t], then there is a unique signed

measure F t
ξ on ((−∞, t],B((−∞, t])) such that

F t
ξ ([s, t]) = ψt,s(ξ), s ≤ t. (3.13)

Let π be a σ-finite measure on (R,B(R)). Suppose that for any t ∈ R and

ξ ∈ H, F t
ξ is absolutely continuous with respect to π on ((−∞, t],B((−∞, t]))

with Randon–Nikodým derivative λt,s(ξ) :=
dF tξ
dπ

(s), s ≤ t. Then λt,s(·) is negative

definite and Sazonov continuous on H, (3.9) holds and (3.8) holds for π almost

every s with t ≥ r > s.

Proof. Define F t
ξ ([s, r]) = ψr,s(U(t, r)∗ξ) for every s ≤ r ≤ t. By (3.6) we have

the following additive property: for every s ≤ σ ≤ r ≤ t,

F t
ξ ([σ, r]) + F t

ξ ([s, σ]) = ψr,σ(U(t, r)∗ξ) + ψσ,s(U(t, σ)∗ξ)

= ψr,σ(U(t, r)∗ξ) + ψσ,s(U(r, σ)∗U(t, r)∗ξ)

= ψr,s(U(t, r)∗ξ) = F t
ξ ([s, r]).
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Note also that s 7→ ψt,s(ξ) is left continuous at t. Hence by the standard extension

procedure of additive set-functions on rings, we know F t
ξ can be uniquely extended

to a signed measure on ((−∞, t],B((−∞, t])) which is denoted still by F t
ξ .

Since λt,·(ξ) is the density of F t
ξ with respect to π, we have∫ t

s

λt,σ(ξ) π(dσ) = F t
ξ ([s, t]) = ψt,s(ξ).

Hence

µ̂t,s(ξ) = exp(−ψt,s(ξ)) = exp

(
−
∫ t

s

λt,σ(ξ) π(dσ)

)
.

That is, (3.9) holds.

Let t ≥ r. For any r1 < r2 ≤ r, we have∫ r2

r1

λt,σ(ξ) π(dσ) = F t
ξ ([r1, r2]) = ψr2,r1(U(t, r2)∗ξ) = ψr2,r1(U(r, r2)∗U(t, r)∗ξ)

= F r
U(t,r)∗ξ([r1, r2]) =

∫ r2

r1

λr,σ(U(t, r)∗ξ) π(dσ).

This implies that for π almost every s, s < r ≤ t,

λt,s(ξ) = λr,s(U(t, r)∗ξ)

This proves (3.8). The negative definiteness and Sazonov continuity of λt,s(·) are

easy to show by (3.9) and the corresponding properties of ψt,s.

We shall consider the special case where π is Lebesgue measure. We need the

following fact. For the proof we refer to [MV86, Theorem 1] (or the references

therein, e.g. [Hob57, Page 365 (3rd Ed.) or Page 341 (2nd Ed.)]).

Lemma 3.12. Let f be a continuous function on [a, b]. If for each x ∈ (a, b)

either the left derivative or the right derivative vanishes, then f is constant.

Proposition 3.13. Assume that (2.6) (equivalently (3.6)) hold and for every

ξ ∈ H and t ≥ s,

(1) the function s 7→ ψt,s(ξ) is continuous and left differentiable at s = t.

Denote the left derivative by −λt(ξ), i.e.

− λt(ξ) :=
d−

ds
ψt,s(ξ)

∣∣∣∣
s=t

= lim
r↑t

ψt,r(ξ)

r − t
; (3.14)

(2) the function s 7→ λs
(
U(t, s)∗ξ

)
is continuous.
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Then for every t ∈ R, λt(·) is negative definite and Sazonov continuous on H,

and for every ξ ∈ H, t ≥ s,

µ̂t,s(ξ) = exp

(
−
∫ t

s

λr
(
U(t, r)∗ξ

)
dr

)
. (3.15)

Proof. For every ξ ∈ H and r ≤ t, by (3.6) we get

d−

dr
ψt,r(ξ) = lim

r′↑r

ψt,r′(ξ)− ψt,r(ξ)
r′ − r

= lim
r′↑r

ψt,r(ξ) + ψr,r′(U(t, r)∗ξ)− ψt,r(ξ)
r′ − r

= lim
r′↑r

ψr,r′(U(t, r)∗ξ)

r′ − r
= −λr

(
U(t, r)∗ξ

)
.

By our assumption, for every ξ ∈ H, r 7→ λr(U(t, r)∗ξ), r ≤ t, is continuous.

Hence we see that
d−

dr
Φt,r(ξ) = 0, r ≤ t, ξ ∈ H, (3.16)

where

Φt,r(ξ) := ψt,r(ξ)−
∫ t

r

λu(U(t, u)∗ξ) du, r ≤ t, ξ ∈ H.

By Lemma 3.12 we know Φt,r(ξ) is constant for every r ∈ [s, t]. But Φt,t(ξ) = 0,

hence Φt,s(ξ) = 0 also. This implies

ψt,s(ξ) =

∫ t

s

λr(U(t, r)∗ξ) dr.

Since ψt,s(ξ) = − log µ̂t,s(ξ), we obtain (3.15).

From the negative definiteness and Sazonov continuity of ψt,s(·) we get the

corresponding property of λt(·).

Remark 3.14. The assumption that s 7→ λs(U(t, s)∗ξ) is continuous for s ≤ t and

ξ ∈ H, is used to ensure that the map s 7→
∫ t
s
λu(U(t, u)∗ξ) du is continuous and

has (left)-derivative −λs(U(t, s)∗ξ). This continuity assumption on λ·(U(t, ·)∗ξ)
holds if we assume that for every ε > 0, s ≤ t, and for every bounded set B ⊂ H,

there exists a δ > 0 such that supx∈B |λs+h(x)− λs(x)| < ε provided |h| < δ and

h < t− s. Indeed, note that

|λs+h(U(t, s+ h)∗ξ)− λs(U(t, s)∗ξ)|
≤|λs+h(U(t, s+ h)∗ξ)− λs(U(t, s+ h)∗ξ)|+ |λs(U(t, s+ h)∗ξ)− λs(U(t, s)∗ξ)|.

Hence |λs+h(U(t, s + h)∗ξ) − λs(U(t, s)∗ξ)| can be made arbitrarily small, since

the first term on the right hand side of the inequality above can be made small

by the assumption that s 7→ λs(x) is continuous uniformly in x on bounded sets;

the second term can be made samll by the strong continuity of U(t, ·).
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Remark 3.15. Proposition 3.13 generalize [BRS96, Lemma 2.6] which dealt

with homogeneous generalized Mehler semigroups (see (1.1)) using differentia-

bility condition. For the homogeneous case, there are some generalizations of

[BRS96, Lemma 2.6]. Neerven [vN00] relaxed the differentiability condition for

general Gaussian Mehler semigroups on Banach space. Dawson et al. [DL04, The-

orem 2.1] (see also [DLSS04, Theorem 2.3]) used entrance laws to characterize

µt and hence dropped the differentiability condition for homogeneous generalized

Mehler semigroups on Hilbert spaces. For measure-valued skew convolution semi-

groups, the sufficiency and necessity of the representation were proved in [Li96,

Theorem 2] and [Li02, Theorem 3.1] respectively, for the homogeneous case and

the non-homogeneous case by using entrance laws. Proposition 3.11 can be seen

as an attempt to use entrance laws to characterize µs,t. But we do not know how

to find a natural measure π.

4 Evolution systems of measures

Let (ps,t)t≥s be defined as in (2.1) on a separable Hilbert space H with (U(t, s))t≥s
and (µt,s)t≥s satisfying (2.6).

Generally, for a family of non-autonomous operators (ps,t)t≥s on H, we cannot

expect to have a stationary invariant measure for them. But we can try to look

for a family of probability measures (νt)t∈R on H such that∫
ps,tf(x) νs(dx) =

∫
f(x) νt(dx), s ≤ t (4.1)

for all f ∈ Bb(H). Such a family of probability measures is called an evolution

system of measures for (ps,t)t≥s (see [DPR08]). Evolution systems of measures

are also called entrance law in [Dyn89].

Lemma 4.1. A family of probability measures (νt)t∈R on H is an evolution system

of measures for (ps,t)t≥s if and only if for every t ≥ s,

µ̂t,s(ξ)ν̂s
(
U(t, s)∗ξ

)
= ν̂t(ξ), ξ ∈ H. (4.2)

Proof. Identity (4.2) comes from (4.1) for functions f of the form exp(i〈ξ, x〉),
ξ ∈ H, which is enough to ensure (4.1) for all bounded measurable functions.

Theorem 4.2. Suppose that (ν
(1)
t )t∈R is an evolution system of measures for

(ps,t)t≥s. Let (ν
(2)
t )t∈R be another system of probability measures and assume that

there exists a family of probability measures (σt)t∈R on H such that

ν
(2)
t = ν

(1)
t ∗ σt and σs ◦ U(t, s)−1 = σt.

Then (ν
(2)
t )t∈R is also an evolution system of measures for (ps,t)t≥s.
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Proof. For every ξ ∈ H,

ν̂
(2)
t (ξ) = ν̂

(1)
t (ξ)σ̂t(ξ) = µ̂t,s(ξ)ν̂

(1)
s

(
U(t, s)∗ξ

)
σ̂t(ξ)

= µ̂t,s(ξ)ν̂
(1)
s

(
U(t, s)∗ξ

)
σ̂s(U(t, s)∗ξ) = µ̂t,s(ξ)ν̂

(2)
s

(
U(t, s)∗ξ

)
.

Hence the assertion follows by Lemma 4.1.

Assume that for every t ≥ s, µt,s is infinitely divisible and has the form

µt,s = D[at,s, Rt,s,mt,s], where at,s ∈ H, Rt,s is a trace class operator on H, and

mt,s is a Lévy measure on H.

By (3.7), we know that for every fixed t ∈ R, (mt,s)s≤t is a decreasing family

of Lévy measures. This allows us to define mt,−∞ for every t ∈ R by setting

mt,−∞({0}) = 0 and

mt,−∞(A) = lim
s→−∞

mt,s(A), A ∈ B(H \ {0}).

From (3.7) we also see for every x ∈ H and t ∈ R, 〈Rt,sx, x〉 is decreasing in

s. Hence the limit lims→−∞〈Rt,sx, x〉 exists for every x ∈ H. By the polarization

identity, we see that for every t ∈ R, x, y ∈ H, the limit lims→−∞〈Rt,sx, y〉 exists.

Fixing x ∈ H and letting y ∈ H vary, we get a functional lims→−∞〈Rt,sx, ·〉.
We shall assume sups≤t trRt,s < ∞. Then for every t ∈ R, there exists Ct > 0

such that sups<t〈Rt,sx, x〉 ≤ Ct|x|2 for every x ∈ H. So we can apply Riesz’s

representation theorem and see that for every x ∈ H, there exists an element

x∗t ∈ H such that for every t ∈ R and all y ∈ H,

lim
s→−∞

〈Rt,sx, y〉 = 〈x∗t , y〉.

By the property of Rt,s, we see that the mapping from x to x∗t is a trace class

operator and we denote it by Rt,−∞. That is, for every t ∈ R there is a trace

class operator Rt,−∞ on H such that

〈Rt,−∞x, y〉 = lim
s→−∞

〈Rt,sx, y〉, x, y ∈ H.

Consequently for every t ∈ R, the central Gaussian measure with covariance

operator Rt,−∞ is well defined.

Theorem 4.3. Suppose that for t ∈ R,

(H1) sups≤t trRt,s <∞;

(H2) sups≤t
∫
H

(1 ∧ |x|2) mt,s(dx) <∞;

(H3) at,−∞ := lims→−∞ at,s.
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Then for every t ∈ R, mt,−∞ is a Lévy measure, Rt,−∞ < ∞ is a trace class

operator and the system of measures (νt)t∈R given by νt = D[at,−∞, Rt,−∞,mt,−∞],

t ∈ R, is an evolution system of measures for (ps,t)t≥s.

Proof. Suppose that (H1), (H2) and (H3) hold. For every t ∈ R, we note that

trRt,−∞ = sups≤tRt,s < ∞. So Rt,−∞ is a trace class operator. Moreover, for

each t ∈ R,∫
H

(1 ∧ |y|2) mt,−∞(dy) = lim
s→−∞

∫
H

(1 ∧ |x|2) mt,s(dx)dr <∞.

This shows that mt,−∞ is a Lévy measure.

Now we show that (νt)t∈R is an evolution system of measures. By (2.6), for

every t ≥ s ≥ r, we have

µt,s ∗
(
µs,r ◦ U(t, s)−1

)
= µt,r. (4.3)

Note that µt,s = D[at,s, Rt,s,mt,s] converge weakly to D[at,−∞, Rt,−∞,mt,−∞] = νt
as s→ −∞ (cf. [FR00, Lemma 3.4]). Hence letting r → −∞ in (4.3) we obtain(
νs ◦ U(t, s)−1

)
∗ µt,s = νt. This proves that (νt)t∈R is an evolution system of

measures for (ps,t)s≤t by Lemma 4.1.

The following theorem is the converse to Theorem 4.3.

Theorem 4.4. Let (ν̃t)t∈R be an evolution system of measures for (ps,t)t≥s. Then

(1) Conditions (H1) and (H2) hold.

(2) For every t ∈ R there exist xt,s ∈ H, s ≤ t, such that δxt,s ∗ δat,s ∗
(
ν̃s ◦

U(t, s)−1
)

is relatively compact.

(3) There exists some probability measure σ̃t such that δat,s∗
(
ν̃s◦U(t, s)−1

)
→ σ̃t

weakly as s→ −∞. Moreover ν̃t = D[0, Rt,−∞,mt,−∞] ∗ σ̃t, t ∈ R.

(4) Assume in addition that the following condition holds

(H4) For every t ∈ R, ν̃s ◦ U(t, s)−1 → σt weakly as s→ −∞.

Then the limit in (H3) exists and

ν̃t = νt ∗ σt, t ∈ R. (4.4)

Moreover

σt = σs ◦ U(t, s)−1, t ≥ s. (4.5)

Especially, if σt ≡ δ0, then ν̃t = νt, t ∈ R.
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(5) If the limit in (H3) exists, then the limit in (H4) exists, and hence (4.4),

(4.5) hold.

Proof. Since (ν̃t)t∈R is an evolution system of measures for (ps,t)t≥s, by Lemma

4.1 we have for every t ≥ s,

ν̃t = µt,s ∗
(
ν̃s ◦ U(t, s)−1

)
= D[at,s, Rt,s,mt,s] ∗

(
ν̃s ◦ U(t, s)−1

)
= δat,s ∗NRt,s ∗Mt,s ∗

(
ν̃s ◦ U(t, s)−1

)
.

(4.6)

Here we set NRt,s := D[0, NRt,s , 0] and Mt,s = D[0, 0,mt,s]. Consider s = −n, n ∈
N, for (4.6). The sequence δat,−n ∗ NRt,−n ∗Mt,−n, n ∈ N, is right shift relatively

compact by [Par67, Theorem III.2.2], i.e. there exist yt,−n ∈ H, t ∈ R, n ∈ N
such that the sequence

δyt,−n ∗ (δat,−n ∗NRt,−n ∗Mt,−n) = D[yt,−n + at,−n, Rt,−n,mt,−n]

is weakly relatively compact. This implies (see [Par67, Theorem VI.5.3]) that

sup
n

mt,−n({|x| ≥ 1}) <∞.

and

sup
n

(
trRt,−n +

∫
|x|<1

|x|2 mt,−n(dx)

)
<∞.

Therefore, we can define naturally a Lévy measure mt,−∞ and trace class operator

Rt,−∞ for each t ∈ R. It is easy to show (H1), (H2) by a slightly modified

argument from [FR00, Lemma 3.4]. This proves (1).

Similarly, from (4.6) and by applying [Par67, Theorem III.2.2] we get (2).

From (4.6) we also get (3) by applying [Par67, Theorem III.2.1] since NRt,s ∗Mt,s

converge weakly to NRt,−∞ ∗Mt,−∞. Here we set Mt,−∞ := D[0, 0,mt,−∞].

Suppose that in addition (H4) hold. ThenNRt,s∗Mt,s∗
(
ν̃s◦U(t, s)−1

)
converges

weakly to NRt,−∞ ∗Mt,−∞ ∗σt as s→ −∞. Hence it follows from (4.6) by [Par67,

Theorem III.2.1] that (δat,−n) is relatively compact. It is easy to see that this

implies (H3). Moreover, the statement ν̃t = νt ∗ σt also follows easily.

Now we show (4.5). For every r ≤ s ≤ t and ξ ∈ H, we have

ˆ̃νr(U(t, r)∗ξ) = ˆ̃νr(U(s, r)∗U(t, s)∗ξ). (4.7)

Letting r → −∞ in (4.7) above, we get σ̂t(ξ) = σ̂s
(
U(t, s)∗ξ

)
. This completes the

proof of (4).

The proof of the last assertion (5) uses the same arguments as in the proof of

(4).
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Remark 4.5. Similarly, the invariant measure for pt defined in (1.1) is of the

form ν ∗ µ∞, where ν is a measure on H that is invariant under the action of the

semigroup Tt and µ∞ is the centered Gaussian measure with variance Q∞ which

is the proper limit of the variance of µt. We refer to [Hai09, Theorem 5.22] for

details.

Remark 4.6. Condition (H4) holds if the following conditions (H5) and (H6) hold

(see [Woo09, Lemma 3.7], which also holds for the infinite dimensional case):

(H5) For every t ∈ R and x ∈ H, U(t, s)x→ 0 as s→ −∞.

(H6) There exists some t0 ∈ R such that (νt)t<t0 is uniformly tight.

In the following we consider periodicity condition in time. We shall assume:

(HT) The function U(t, s), µt,s on Λ = {(t, s) : t ≥ s} are T -periodic for some

T > 0. That is, for every (t, s) ∈ Λ,

U(t+ T, s+ T ) = U(t, s), µt+T,s+T = µt,s.

Theorem 4.7. Suppose that (HT), (H1),(H2), H(3) hold and that for every t ≥ s,

there exist some some M,ω > 0 such that ‖U(t, s)‖ ≤ M e−ω(t−s). Then νt =

D[at,−∞, Rt,−∞,mt,−∞] is the unique evolution system of measures with period T

for ps,t.

Proof. It has already been shown in Theorem 4.3 that (νt)t∈R is an evolution

system of measures. It remains to show the uniqueness. Let ν̃t be a T -periodic

evolution system of measures for ps,t. Then for every t ∈ R,

ˆ̃νt+T (ξ) = µ̂t+T,t(ξ)ˆ̃νt(V (t)∗ξ).

Here we set V (t) := U(t+T, t). From (2.6) we see that for every t ∈ R and ξ ∈ H

µ̂t+T,−∞(ξ) = µ̂t+T,t(ξ)µ̂t,−∞(V (t)∗ξ).

So, by the T -periodicity we get

ˆ̃νt(ξ)

µ̂t,−∞(ξ)
=

ˆ̃νt+T (ξ)

µ̂t+T,−∞(ξ)
=

ˆ̃νt(V (t)∗ξ)

µ̂t,−∞(V (t)∗ξ)
.

Iterating the identity above, for any k ∈ N, we get

ˆ̃νt(ξ)

µ̂t,−∞(ξ)
=

ˆ̃νt((V (t)∗)kξ)

µ̂t,−∞((V (t)∗)kξ)
.

By assumption, for any x ∈ H we see that (U(t, s))kx converges to 0 as k →∞.

This is enough to see that the right hand side of the identity above goes to 1 as

k →∞. Therefore, we obtain that ˆ̃νt(ξ) = µ̂t,−∞(ξ).
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Remark 4.8. Let µt,s be the distribution of the convolution integral
∫ t
s
Tt−r dZr

of a one-parameter C0-semigroup Tt with respect to a semi-Lévy process Zr (see

[MS03]). Then µt,s is automatically periodic. Assume
∫ t
−∞ Tt−r dZr exists with

distribution νt. Then it is shown in [MS03] that for the finite dimensional case

(which can obviously be extended to the infinite dimensional case), ν0 is semi-

self-decomposable. Moreover, this is closely related to semi-self similar processes

etc.. We refer to [MS03] for more details.

5 Harnack inequalities and applications

Let (ps,t)t≥s be as in (2.1), that is ps,tf(x) = (µt,s ∗ δU(t,s)x)f for every x ∈ H and

f ∈ Bb(H). Suppose that for every t ≥ s, µt,s = D[at,s, Rt,s,mt,s] is an infinite

divisible measure on (H,B(H)) satisfying (2.6).

For each t ≥ s, set

µgt,s = D[0, Rt,s, 0], µjt,s = D[at,s, 0,mt,s],

and for every f ∈ Bb(H), x ∈ H,

pgs,tf(x) := (µgt,s ∗ δU(t,s)x)f =

∫
H

f(U(t, s)x+ y)µgt,s(dy),

pjs,tf(x) := (µjt,s ∗ δx)f =

∫
H

f(x+ y)µjt,s(dy).

With these notations, we have the following decomposition for ps,t.

Proposition 5.1. For every t ≥ s, x ∈ H and f ∈ Bb(H), ps,tf(x) = pgs,t(p
j
s,t)f(x).

Proof. Note that µt,s = µgt,s ∗ µ
j
t,s. Hence we get

ps,tf(x) = (µt,s ∗ δU(t,s)x)f = (µgt,s ∗ µ
j
t,s ∗ δU(t,s)x)f

=
(
(µgt,s ∗ δU(t,s)x) ∗ (µjt,s)

)
f =

∫
H

µgt,s ∗ δU(t,s)x(dy)

∫
H

f(y + z)µjt,s(dz)

=
(
µgt,s ∗ δU(t,s)x

)
(pjs,tf) = pgs,t(p

j
s,tf)(x).

Define for every t ≥ s,

Γt,s = R
−1/2
t,s U(t, s) (5.1)

with domain D(Γt,s) = {x ∈ H : U(t, s)x ∈ R
1/2
t,s (H)}. If x /∈ D(Γt,s) then set

|Γt,sx| := ∞. Let B+
b (H) denote the space of all bounded positive measurable

functions on H.
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Theorem 5.2. For every α > 1, t ≥ s and f ∈ B+
b (H)

(ps,tf(x))α ≤ exp

(
α|Γt,s(x− y)|2

2(α− 1)

)
ps,tf

α(y), x, y ∈ H. (5.2)

Proof. It is sufficient to consider the case U(t, s)(H) ∈ R1/2
t,s (H), since otherwise

the right hand side of (5.3) is infinite by the definition of |Γt,s(·)| and the inequality

(5.3) becomes trivial.

We claim that we only need to show the following Harnack inequality for pgs,t

(pgs,tf(x))α ≤ exp

(
α|Γt,s(x− y)|2

2(α− 1)

)
pgs,tf

α(y), x, y ∈ H. (5.3)

Indeed, by Proposition 5.1, we know ps,t = pgs,tp
j
s,t. If (5.3) holds, then by applying

inequality (5.3) to pgs,t and Jensen’s inequality to pjs,t we see

(
ps,tf(x)

)α
=
(
pgs,t(p

j
s,tf)(x)

)α ≤ exp

(
α|Γt,s(x− y)|2

2(α− 1)

)(
pgs,t(p

j
s,tf)α

)
(y)

≤ exp

(
α|Γt,s(x− y)|2

2(α− 1)

)(
pgs,t(p

j
s,tf

α)
)
(y) = exp

(
α|Γt,s(x− y)|2

2(α− 1)

)(
ps,tf

α
)
(y).

Applying the Cameron-Martin formula for Gaussian measures (see [DPZ92,

Theorem 2.21]) we see

ρt,s(x− y, z) =
dN(U(t, s)(x− y), Rt,s)

dN(0, Rt,s)
(z)

= exp

(〈
R
−1/2
t,s U(t, s)(x− y), R

−1/2
t,s z

〉
− 1

2
|R−1/2

t,s U(t, s)(x− y)|2
)
.

(5.4)

By changing variables and using Hölder’s inequality we obtain

pgs,tf(x)

=

∫
f(U(t, s)x+ z)µt,s(dz)

=

∫
f(U(t, s)y + z)ρt,s(x− y, z)µt,s(dz)

≤ exp

(
−1

2
|Γt,s(x− y)|2

)(∫
fα(U(t, s)y + z)µt,s(dz)

)1/α

·(∫
exp

(
α

α− 1
〈R−1/2

t,s U(t, s)(x− y), R
−1/2
t,s z〉

)
µt,s(dz)

)(α−1)/α

= exp

(
1

2(α− 1)
|Γt,s(x− y)|2

)(
pgs,tf

α(y)
)1/α

.
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Applying the previous theorem, we have the following result.

Theorem 5.3. Fix t ≥ s. The implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) of the

following statements hold.

(1)

U(t, s)(H) ⊂ Q
1/2
t,s (H), (5.5)

(2) ‖Γt,s‖ <∞ and for every α > 1 and f ∈ B+
b (H),

(ps,tf(x))α ≤ exp

[
α(‖Γt,s‖ · |x− y|)2

2(α− 1)

]
ps,tf

α(y), x, y ∈ H; (5.6)

(3) ‖Γt,s‖ <∞ and there exists α > 1 such that (5.6) holds for all f ∈ B+
b (H);

(4) ‖Γt,s‖ <∞ and for every f ∈ B+
b (H) with f > 1,

ps,t log f(x) ≤ log ps,tf(y) +
‖Γt,s‖2

2
|x− y|2, x, y ∈ H; (5.7)

(5) ps,t is strong Feller.

In particular, if mt,s ≡ 0, then these statements are equivalent to each other.

Proof. If (5.5) hold, then ‖Γt,s‖ is bounded. Hence by Theorem 5.2, we get (2)

from (1). That (2) implies (3) is trivial. The implications (3)⇒(4)⇒(5) are

consequences of Harnack inequalities, as proved in [Wan09].

It remains to show that (5) implies (4) in the case mt,s ≡ 0. Note that

ps,tf(x) =

∫
H

f(y)N(U(t, s)x,Rt,s)(dy).

If (5.5) doesn’t hold, then there exists x0 ∈ H such that U(t, s)x0 /∈ R1/2
t,s (H). Take

xn = 1
n
x0 ∈ H, n = 1, 2, · · · . By the Cameron-Martin theorem (see e.g. [DPZ92]),

we know that for each n = 1, 2, · · · , the Gaussian measure µn := N(U(t, s)xn, Rt,s)

is orthogonal to µ0 := N(0, Rt,s) since U(t, s)xn /∈ R1/2
t,s (H). That is, there exists

An ∈ B(H) such that µn(An) = 1, µ0(An) = 0. Set A := ∪n≥1An. Then

µ0(A) = 0, µn(A) = 1 since µ0(A) ≤
∑

n µ0(An) = 0 and µn(A) ≥ µn(An) = 1.

Take f = 1A. We get ps,tf(xn) = 1, ps,tf(0) = 0. This contradicts the fact

that ps,t is strong Feller, since it is obvious that ps,tf(xn) does not converge to

ps,tf(0) as xn tends to 0.

Remark 5.4. If Rt,s has the form (7.2), then (5.5) is equivalent to the null con-

trollability of a non-autonomous control system (7.1) (see Section 7 for details).

For this reason, condition (5.5) is also called null-controllability condition. This

gives an equivalent description of the strong Feller property.
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Remark 5.5. In [DP95] the fact that the null controllability implies the strong

Feller property was proved for autonomous Ornstein-Uhlenbeck processes driven

by a Wiener process and with deterministic perturbation. Our result generalizes

this result.

In fact (5.5) implies more. Denote the space of all infinitely Fréchet differen-

tiable functions with uniform continuous derivatives on H by UC∞(H).

Proposition 5.6. Suppose (5.5) holds. Then for every f ∈ Bb(H) and every

t > s, ps,tf ∈ UC∞(H).

Proof. In view of the decomposition ps,t = pgs,tp
j
s,t shown in Proposition 5.1, we

only need to show that pgs,t ∈ UC∞(H) for every g ∈ Bb(H). The rest of the proof

is as in [DPZ02, Theorem 6.2.2].

We have the following quantitative estimate for the strong Feller property.

This result is shown in [ORW09] for Lévy driven Ornstein-Uhlenbeck process by

a coupling method.

Proposition 5.7. Let t > s and x, y ∈ H. Then

|ps,tf(x)− ps,tf(y)|2

≤
(

e|Γt,s(x−y)|2 −1
)

min
{
ps,tf

2(z)− (ps,tf(z))2 : z = x, y
}
.

(5.8)

Proof. Let h = pjs,tf . Then by Proposition 5.1 we see that ps,tf = pgs,th. So, for

every z ∈ H, we have

pgs,th
2(z)−

(
pgs,th(z)

)2

≤pgs,tp
j
s,tf

2(z)−
(
pgs,tp

j
s,tf(z)

)2
= ps,tf

2(z)− (ps,tf(z))2.
(5.9)

Note also that x, y play the same role in (5.8). So, according to (5.9) we only

need to show the following inequality

|pgs,th(x)− pgs,th(y)|2 ≤
(

e|Γt,s(x−y)|2 −1
) (
pgs,th

2(y)− (pgs,th(y))2
)
. (5.10)

Recalling formula (5.4) for ρt,s(x− y, z), we see

pgs,th(x) =

∫
H

h(U(t, s)x+ z)µgt,s(dz) =

∫
H

ρt,s(x− y, z)h(U(t, s)y + z)µgt,s(dz).
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So,

|pgs,th(x)− pgs,th(y)|2

=

(∫
H

[ρt,s(x− y, z)− 1] · [h(U(t, s)y + z)− pgs,th(y)]µgt,s(dz)

)2

≤
∫
H

(ρt,s(x− y, z)− 1)2 µgt,s(dz)

∫
H

[
h(U(t, s)y + z)− pgs,th(y)

]2
µgt,s(dz)

=

(∫
H

ρ2
t,s(x− y, z)µ

g
t,s(dz)− 1

)
·
(∫

H

h2(U(t, s)y + z)µgt,s(dz)− (pgs,th(y))2

)
=
(

e|Γt,s(x−y)|2 −1
) (
pgs,th

2(y)− (pgs,th(y))2
)
.

Now we apply the Harnack inequality (5.2) to study the hyperboundedness

of the transition function ps,t. In [GL08] hypercontractivity is studied for the

Gaussian case via log-Soboblev inequality.

Theorem 5.8. Let (νt)t∈R be an evolution system of measures for ps,t. For every

s ≤ t, α > 1, and ε > 0, let

Cs,t(α, ε) :=

∫
H

[∫
H

exp

(
−α|Γt,s(x− y)|2

2(α− 1)

)
νs(dy)

]−(1+ε)

νs(dx).

Then

‖ps,tf‖Lα(1+ε)(H,νs) ≤ Cs,t(α, ε)
−α(1+ε)‖f‖Lα(H,νt). (5.11)

Proof. From the Harnack inequality (5.2) we have

(ps,tf(x))α exp

[
−α|Γt,s(x− y)|2

2(α− 1)

]
≤ ps,tf

α(y), x, y ∈ H.

Integrating both sides of the inequality above with respect to νs(dy) and using

the fact that (νt)t∈R is an evolution system of measures, we get

(ps,t|f |)α(x)

∫
H

exp

(
−α|Γt,s(x− y)|2

2(α− 1)

)
νs(dy) ≤

∫
H

|f |α νt(dy).

Hence

(ps,t|f |)α(1+ε)(x) ≤
[∫

H

exp

(
−α|Γt,s(x− y)|2

2(α− 1)

)
νs(dy)

]−(1+ε)

‖f‖α(1+ε)
Lα(H,νt)

.

Integrating both sides of the equation above with respect to νs(dx), we get (5.11).
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6 Semi-linear equations

Fix s ∈ R and consider the following equation for t ≥ s,{
dX(t, s, x) = A(t)X(t, s, x) dt+ F (t,X(t, s, x))dt+R1/2dWt,

X(s, s, x) = x ∈ H,
(6.1)

where

(1) (A(t))t∈R is a family of operators on H associated with an evolution family

(U(t, s)t≥s) (See Section 1);

(2) R is a trace class operator on H;

(3) (Wt)t∈R is a cylindrical Wiener process on H on some filtered probability

space (Ω, (Ft)t∈R,F ,P);

(4) F is a measurable map from [s,+∞)×H to R1/2(H) satisfying

|R−1/2F (t, x)|2 ≤ k1 + k2|x|2, t ∈ R, x ∈ H (6.2)

for some constants k1, k2 > 0.

Proposition 6.1. Equation (6.1) has a martingale solution.

Proof. For every r ∈ [s, t], set X̃(r, s, x) := U(r, s)x+WU(r, s), where

WU(r, s) :=

∫ r

s

U(r, σ)R1/2 dWσ.

For every r ∈ [s, t], [s′, t′] ⊂ [s, t], define

ψx(r, s) := R−1/2F (r, X̃(r, s, x)) = R−1/2F (r, U(r, s)x+WU(r, s)),

W̃ x
r = Wr −

∫ r

s

ψx(σ, s) dσ,

Mx
t′,s′ = exp

(∫ t′

s′
〈ψx(σ, s), dWσ〉 −

1

2

∫ t′

s′
|ψx(σ, s)|2 dσ

)
.

We first show that EMx
t,s = 1. By (6.2), for every r ∈ [s, t],

|ψx(r, s)|2 ≤ k1 + 2k2(|U(r, s)x|2 + |WU(r, s)|2).

Hence,

E exp

(
1

2

∫ t

s

|ψx(σ, s)|2 dσ
)

≤E exp

(
k1 ∨ k2

2

∫ t

s

(1 + 2|U(σ, s)x|2) dσ

)
E exp

(
1

2

∫ t

s

|WU(σ, s)|2 dσ
)
.
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Since
∫ t
s
|WU(σ, s)|2 dσ is Gaussian distributed, applying Fernique’s Theorem, for

a fine partition s = t0 < t1 < · · · < tn−1 < tn = t, we have

E exp

(
1

2

∫ ti

ti−1

|ψx(σ, s)|2 dσ
)
< +∞.

This implies that for each i = 1, 2, · · · , n, Mx
ti−1,t

for t ∈ [ti−1, ti], is a martingale.

Noting that Mx
t,s = Mx

tn,tn−1
· · ·Mx

t1,t0
, we get EMx

t,s = 1.

Consequently, we can define a new probability measure Qx := Mx
t,sP on

(Ω,Ft). By [DPZ92, Theorem 10.14], W̃ x
r is also a Wiener process with respect

to Qx. Hence

X̃(t, s, x) = U(t, s)x+

∫ t

s

U(t, r)R1/2 dWr

= U(t, s)x+

∫ t

s

U(t, r)F (r, X̃(r, s, x)) dr +

∫ t

s

U(t, r)R1/2 dW̃r.

This shows that X̃(t, s, x) is a martingale solution of (6.1) on (Ω, (Ft)t≥s,F ,Qx).

We shall need the following fact.

Lemma 6.2. Let s ∈ R. Set

λ := tr

∫ s+1

s

U(s+ 1, σ)RU(s+ 1, σ)∗ dσ.

Then

C0 := sup
r∈[s,s+1]

E exp
(
|WU(r, s)|2/4λ

)
<∞

and for every κ > 0 and t ∈ [s, s+ (1 ∧ (4λκ)−1)],

E exp

(
κ

∫ t

s

|WU(r, s)|2 dr
)
< C

4λκ(t−s)
0 . (6.3)

Proof. Note that the covariance operator of WU(r, s) =
∫ r
s
U(r, σ)R1/2 dWσ is

given by
∫ r
s
U(r, σ)RU(r, σ)∗ dσ. By Fernique’s Theorem (see [DPZ92, Propostion

2.16]), it follows that C0 <∞. Moreover,

E exp

(
κ

∫ t

s

|WU(r, s)|2 dr
)

= E exp

(
1

t− s

∫ t

s

κ(t− s)|WU(r, s)| dr
)

≤ 1

t− s

∫ t

s

E exp
(
κ(t− s)|WU(r, s)|2

)
dr

≤ 1

t− s

∫ t

s

[
E exp

(
|WU(r, s)|2/4λ

)]4λκ(t−s)
dr ≤ C

4λκ(t−s)
0 .
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From Lemma 6.2 we see that for every p > 0, there exists tp > 0 such that for

every t ∈ [s, s+ tp],

Cp,k2(t, s) := E exp

(
2p(2p+ 1)k2

∫ t

s

|WU(r, s)|2 ds
)
<∞.

In particular, if k2 = 0 then Cp,0(t, s) = 1 for all t ≥ s.

Lemma 6.3. For any t > s, p > 1, δ > 0 and x ∈ H,

E(Mx
t,s)

p ≤ (Cp,k2(t, s))
1/2 exp

(p(2p− 1)

2

∫ t

s

(k1 + 2k2|U(r, s)x|2) dr
)

E(Mx
t,s)
−δ ≤ (Cδ,k2(t, s))

1/2 exp
(δ(2δ + 1)

2

∫ t

s

(k1 + 2k2|U(r, s)x|2) dr
)
.

Proof. From the proof of Proposition 6.1 we see that for every κ ∈ R

t 7→ exp

(
κ

∫ t

s

〈ψx(r, s), dWr〉 −
κ2

2

∫ t

s

|ψx(r, s)|2 dr
)

is a martingale. Therefore,

E(Mx
t,s)

p =E exp

(
p

∫ t

s

〈ψx(r, s), dWr〉 − p2

∫ t

s

|ψx(r, s)|2 dr
)

· exp

(
p(2p− 1)

2

∫ t

s

|ψx(r, s)|2 dr
)

≤
[
E exp

(
2p

∫ t

s

〈ψx(r, s), dWr〉 − 2p2

∫ t

s

|ψx(r, s)|2 ds
)]1/2

·
[
E exp

(
p(2p− 1)

∫ t

s

|ψx(r, s)|2 ds
)]1/2

=

[
E exp

(
p(2p− 1)

∫ t

s

|ψx(r, s)|2 ds
)]1/2

.

This implies the first inequality, since by (6.2)

|ψx(r, s)|2 ≤ k1 + 2k2|WU(r, s)|2 + 2k2|U(r, s)x|2.
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Similarly, the second inequality follows by

E(Mx
t,s)
−δ =E exp

(
−δ
∫ t

s

〈ψx(r, s), dWr〉 − δ2

∫ t

s

|ψx(r, s)|2 dr
)

· exp

(
δ(2δ + 1)

2

∫ t

s

|ψx(r, s)|2 dr
)

≤
[
E exp

(
−2δ

∫ t

s

〈ψx(r, s), dWr〉 − 2δ2

∫ t

s

|ψx(r, s)|2 ds
)]1/2

·
[
E exp

(
δ(2δ + 1)

∫ t

s

|ψx(r, s)|2 dr
)]1/2

=

[
E exp

(
δ(2δ + 1)

∫ t

s

|ψx(r, s)|2 dr
)]1/2

.

By the proof of Proposition 6.1, we see that X̃(t, s, x) is a solution of (6.1).

Hence we define the “transition semigroup” of X(t, s, x) by

P F
s,tf(x) = EQxf(X̃(t, s, x)), f ∈ Bb(H). (6.4)

We have the following result.

Theorem 6.4. For any t > 0, α > 1, x, y ∈ H, p, q > 1 with α/(pq) > 1, and

f ∈ B+
b (H)

(P F
s,tf)α(x) ≤ NP F

s,tf
α(y). (6.5)

Here we set ΓFt,s := R−1/2U(t, s) and

N :=
(
C p
p−1

,k2(t, s)
)αp/(2(p−1))

·
(
C 1
q−1

,k2
(t, s)

)αq/(2(q−1))

· exp

(
αq|ΓFt,s(x− y)|2

2(α− q)

+α

[
p+ 1

p− 1
+

q + 1

q(q − 1)

] ∫ t

s

[
k1 + k2(|U(r, s)x|2 + |U(r, s)y|2)

]
dr

)
.

Assume that for every s ≤ r ≤ t, P F
s,t = P F

s,rP
F
r,t. If ‖ΓFt,s‖ < ∞ for every t ≥ s,

then P F
s,t is strong Feller.

Proof. Recall that X̃(t, s, x) is a mild solution to

dX̃(t, s, x) = A(t)X̃(t, s, x)dt+R1/2dWt, X̃(s, s, x) = x.

Let P 0
s,t be the semigroup of X̃(t, s, x) under P. Then by Theorem 5.2 we have

(P 0
s,tf)α(x) ≤ P 0

s,tf
α(y) exp

(
α|ΓFt,s(x− y)|2

2(α− 1)

)
, f ∈ B+

b (H), (6.6)
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For simplicity, we set p′ := p
p−1

, q′ := q
q−1

, θ = α/(pq). By (6.6) we have

P F
s,tf(x) = EQxf(X̃(t, s, x)) = EMx

t,sf(X̃(t, s, x))

≤ (Efp(X̃(t, s, x)))1/p(E(Mx
t,s)

p′)1/p′ = (P 0
s,tf

p(x))1/p(E(Mx
t,s)

p′)1/p′

≤

[
P 0
s,tf

θp(y) exp

(
θ|ΓFt,s(x− y)|2

2(θ − 1)

)]1/(θp)

(E(Mx
t,s)

p′)1/p′ .

On the other hand, for every g ∈ B+
b (H),

P 0
s,tg(y) ≤ EPg(X̃(t, s, y)) = EQyg(X̃(t, s, y))(My

t,s)
−1

≤ (P F
s,tg

q(y))1/q(E(My
t,s)

1−q′)1/q′ .

So, taking g = f θp we obtain

(P F
s,tf)α(x) ≤ P F

s,tf
α(y) exp

(
α|ΓFt,s(x− y)|2

2p(θ − 1)

)
(E(Mx

t,s)
p′)α/p

′
(E(My

t,s)
1−q′)α/q

′
.

This implies the desired Harnack inequality according to Lemma 6.3.

Now we show that P F
s,t is strongly Feller. Let f ∈ B+

b (H). By (6.3) and (6.5),

for any α > 1 there exist constants tα, cα > 0 and a positive function Hα(r, s),

r ∈ (s, s+ tα) such that

P F
s,rf(x) ≤ (P F

s,rf
α(y))1/α ecα(r−s)+|x−y|2Hα(r,s), r ∈ (s, s+ tα). (6.7)

We take tα < t − s. Then, using the assumption that P F
s,t is a semigroup, for

every r ∈ (s, s+ tα), we get

lim
x→y

P F
s,tf(x) = lim

x→y
P F
s,rP

F
r,tf(x)

≤ lim
α→1

lim
r→s

lim
x→y

[
P F
s,r(P

F
r,tf)α(y)

]1/α
ecα(r−s)+|x−y|2Hα(r,s)

≤ lim
α→1

lim
r→s

lim
x→y

[
P F
s,tf

α(y)
]1/α

ecα(r−s)+|x−y|2Hα(r,s) = P F
s,tf(y).

(6.8)

On the other hand, (6.7) also implies for every r ∈ (s, s+ tα)

P F
s,tf(x) ≥

[
P F
s,r(P

F
r,tf)1/α(y)

]α
e−αcα(r−s)−αHα(r,s)|x−y|2

≥
[
P F
s,tf

1/α(y)
]α

e−αcα(r−s)−αHα(r,s)|x−y|2 .

So, first letting x→ y then r → s and finally α→ 1, we arrive at

lim
x→y

P F
s,tf(x) ≥ P F

s,tf(y). (6.9)

From (6.8) and (6.9) we see P F
s,tf is continuous. So, P F

s,t is strongly Feller.
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7 Appendix: Null controllability

Consider the following non-autonomous linear control system{
dz(t) = A(t)z(t)dt+ C(t)u(t) dt,

z(s) = x,
(7.1)

where (A(t))t∈R is a family of linear operators on H with dense domains and

(C(t))t∈R is a family of bounded linear operators on H. Let (U(t, s))t≥s be an

evolution family on H associated with (A(t))t∈R. Consider the mild solution of

(7.1)

z(t, s, x) = U(t, s)x+

∫ t

s

U(t, r)C(r)u(r) dr. x ∈ H, t ≥ s.

z(t, s, x) is interpreted as the state of the system and u as a strategy to control

the system. If there exists u ∈ L2([s, t],H) such that z(t, s, x) = 0, then we say

the system (7.1) can be transferred to 0 at time t from initial state x ∈ H at time

s. If for every initial state x ∈ H the system (7.1) can be transferred to 0 then

we say the system (7.1) is null controllable at time t. We refer to [Zab08] (see

also [DPZ92, Appendix B]) for details on the null controllability of autonomous

control systems.

Set for every t ≥ s

Πt,sx :=

∫ t

s

U(t, r)C(r)C(r)∗U(t, r)∗ dr, x ∈ H. (7.2)

Proposition 7.1. Let x ∈ H and t ≥ s. The system (7.1) can be transferred to 0

at time t from x if and only if U(t, s)x ∈ Π
1/2
t,s (H). Moreover, the minimal energy

among all strategies transferring x to 0 at time t is given by |Π−1/2
t,s U(t, s)x|2, i.e.

|Π−1/2
t,s U(t, s)x|2

= inf

{∫ t

s

|u(r)|2 dr : z(t, s, x) = 0, z(s, s, x) = x, u ∈ L2([s, t],H)

}
.

(7.3)

Proof. For every t ≥ s define a linear operator

Lt,s : L2([s, t],H)→ H, u 7→ Lt,su :=

∫ t

s

U(t, r)C(r)u(r) dr.

The adjoint L∗t,s of Lt,s is given by

(L∗t,sx)(r) = C∗(r)U(t, r)∗x, x ∈ H, r ∈ [s, t].

It is easy to check that Πt,s = Lt,sL
∗
t,s. Then by [DPZ92, Corollary B.4], we know

that Lt,s(L
2([s, t],H) = Πt,s(H). Hence the first assertion of the theorem is proved
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since the initial state x can be transferred to 0 if and only if U(t, s)x is contained

in the image space of Lt,s due to the fact that z(t, s, x) = U(t, s)x+ Lt,su.

By [DPZ92, Corollary B.4] we also get

|Π−1/2
t,s y| = |L−1

t,s y|, y ∈ Lt,s(L2([s, t],H)). (7.4)

Here the inverse is understood as a pseudo–inverse. Taking y = U(t, s)x in (7.4),

we obtain (7.3).

From Proposition 7.1, we get the following corollary.

Corollary 7.2. The system (7.1) is null controllable at time t if and only if

U(t, s)(H) ⊂ Π
1/2
t,s (H). (7.5)

From (7.3), it is easy to get upper bounds of |Π−1/2
t,s U(t, s)x|2 by choos-

ing proper null control functions u. The following proposition is analogous to

[ORW09, Proposition 2.1].

Proposition 7.3. Let t > s. Assume that for every r ∈ [s, t], the operator C(r)

is invertible. Then for every strictly positive function ξ ∈ C([s, t]),

|Π−1/2
t U(t, s)x|2 ≤

∫ t
s
|C(r)−1U(r, s)x|2 ξ2

r dr(∫ t
s
ξr dr

)2 , x ∈ H. (7.6)

Especially if C(r) ≡ C and |C−1U(r, s)x|2 ≤ h(r)|C−1x|2 for every x ∈ H, then

|Π−1/2
t U(t, s)x|2 ≤ |C−1x|2∫ t

s
h(r)−1 dr

, x ∈ H. (7.7)

Proof. We only need to consider the case where U(t, s)x ∈ Π
1/2
t,s (H) and the

function [s, t] 3 r 7→ ξrC(r)−1U(r, s)x belongs to L2([0, t],H). Then the following

function

u(r) := − ξr∫ t
s
ξr dr

C(r)−1U(r, s)x, r ∈ [s, t],

is a null control of the system (7.1). And hence the estimate (7.6) follows from

(7.3). The second estimate (7.7) follows by taking ξ(r) = h(r)−1 for all r ∈
[s, t].
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[BRS96] V. I. Bogachev, M. Röckner, and B. Schmuland, Generalized Mehler

semigroups and applications, Probab. Theory Related Fields 105

(1996), no. 2, 193–225.

[Det83] E. Dettweiler, Banach space valued processes with independent incre-

ments and stochastic integration, Probability in Banach spaces, IV

(Oberwolfach, 1982), Lecture Notes in Math., vol. 990, Springer, Berlin,

1983, pp. 54–83.

[DL04] D. A. Dawson and Z. Li, Non-differentiable skew convolution semi-

groups and related Ornstein-Uhlenbeck processes, Potential Anal. 20

(2004), no. 3, 285–302.

[DLSS04] D. A. Dawson, Z. Li, B. Schmuland, and W. Sun, Generalized Mehler

semigroups and catalytic branching processes with immigration, Poten-

tial Anal. 21 (2004), no. 1, 75–97.

[DP95] G. Da Prato, Null controllability and strong Feller property of Markov

transition semigroups, Nonlinear Anal. 25 (1995), no. 9-10, 941–949.

[DPL07] G. Da Prato and A. Lunardi, Ornstein-Uhlenbeck operators with time

periodic coefficients, J. Evol. Equ. 7 (2007), no. 4, 587–614.

[DPR08] G. Da Prato and M. Röckner, A note on evolution systems of mea-

sures for time-dependent stochastic differential equations, Seminar

on Stochastic Analysis, Random Fields and Applications V, Progr.
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