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Abstract

In this paper, we introduce a definition of BV functions in a Gelfand triple which is an
extension of the definition of BV functions in [1] by using Dirichlet form theory. By this
definition, we can consider the stochastic reflection problem associated with a self-adjoint
operator 𝐴 and a cylindrical Wiener process on a convex set Γ in a Hilbert space 𝐻. We
prove the existence and uniqueness of a strong solution of this problem when Γ is a regular
convex set. The result is also extended to the non-symmetric case. Finally, we extend our
results to the case when Γ = 𝐾𝛼, where 𝐾𝛼 = {𝑓 ∈ 𝐿2(0, 1)∣𝑓 ≥ −𝛼}, 𝛼 ≥ 0.
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formula in infinite dimensions

1 Introduction

A definition of BV functions in abstract Wiener spaces has been given by M. Fukushima in
[12], M. Fukushima and M. Hino in [13], based upon Dirichlet form theory. In this paper, we
introduce BV functions in a Gelfand triple, which is an extension of BV functions in a Hilbert
space defined in [1]. Here we use a version of the Riesz-Markov representation theorem in
infinite dimensions proved by M. Fukushima using the quasi-regularity of the Dirichlet form
(see [17]) to give a characterization of BV functions.

In this paper, we consider the Dirichlet form

ℰ𝜌(𝑢, 𝑣) = 1

2

∫
𝐻

⟨𝐷𝑢,𝐷𝑣⟩𝜌(𝑧)𝜇(𝑑𝑧)
0Research supported by 973 project, NSFC, key Lab of CAS, the DFG through IRTG 1132 and CRC 701

and the I.Newton Institute, Cambridge, UK
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(where 𝜇 is a Gaussian measure in 𝐻 and 𝜌 is a BV function) and its associated process. By
using BV functions, we obtain a Skorohod-type representation for the associated process, if
𝜌 = 𝐼Γ and Γ is a convex set.

As a consequence of these results, we can solve the following stochastic differential inclusion
in the Hilbert space 𝐻:{

𝑑𝑋(𝑡) + (𝐴𝑋(𝑡) +𝑁Γ(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),
𝑋(0) = 𝑥,

(1.1)

where our solution is strong (in the probabilistic sense), if Γ is regular. Here 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻
is a self-adjoint operator. 𝑁Γ(𝑥) is the normal cone to Γ at 𝑥 and 𝑊 (𝑡) is a cylindrical Wiener
process in 𝐻. The precise meaning of the above inclusion will be defined in Section 5.2. The
solution to (1.1) is called distorted (if 𝜌 = 𝐼Γ, reflected) Ornslein-Uhlenbek (OU for short)-
process.

(1.1) was first studied (strongly solved) in [19], when𝐻 = 𝐿2(0, 1), 𝐴 is the Laplace operator
with Dirichlet or Neumann boundary conditions and Γ is the convex set of all nonnegative
functions of 𝐿2(0, 1); see also [28]. In [6] the authors study the situation when Γ is a regular
convex set with nonempty interior. They get precise information about the corresponding
Kolmogorov operator, but did not construct a strong solution to (1.1).

In this paper, we consider a convex set Γ. If Γ is a regular convex set, we show that 𝐼Γ is
a BV-function and thus obtain existence and uniqueness results for (1.1). By a modification
of [12] and using [7], we obtain the existence of an (in the probabilistic sense) weak solution
to (1.1). Then, we prove pathwise uniqueness. Thus, by a version of the Yamada-Watanabe
Theorem (see [15]), we deduce that (1.1) has a unique strong solution. We also consider the
case when Γ = 𝐾𝛼, where 𝐾𝛼 = {𝑓 ∈ 𝐿2(0, 1)∣𝑓 ≥ −𝛼}, 𝛼 ≥ 0, and prove 𝐼Γ is a BV function.
Thus our result about Skorohod-type representation applies.

This paper is organized as follows. In Section 2, we consider the Dirichlet form and its
associated distorted OU-process. We introduce BV functions in Section 3, by which we can get
the Skorohod type representation for the OU- process. In Section 4, we analyze the reflected
OU-process. In Section 5, we get the existence and uniqueness of the solution for (1.1) if Γ is
a regular convex set. We also extend these results to the non-symmetric case. In Section 6, we
consider the case when Γ = 𝐾𝛼, where 𝐾𝛼 = {𝑓 ∈ 𝐿2(0, 1)∣𝑓 ≥ −𝛼}, 𝛼 ≥ 0.

2 The Dirichlet form and the associated distorted OU-

process

Let 𝐻 be a real separable Hilbert space (with scalar product ⟨⋅, ⋅⟩ and norm denoted by ∣ ⋅ ∣).
We denote its Borel 𝜎-algebra by ℬ(𝐻). Assume that:

Hypothesis 2.1 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is a linear self-adjoint operator on H such that
⟨𝐴𝑥, 𝑥⟩ ≥ 𝛿∣𝑥∣2 ∀𝑥 ∈ 𝐷(𝐴) for some 𝛿 > 0 and 𝐴−1 is of trace class.

Since 𝐴−1 is trace class, there exists an orthonormal basis {𝑒𝑗} in 𝐻 consisting of eigen-
functions for 𝐴 with corresponding eigenvalues 𝛼𝑗 ∈ ℝ, 𝑗 ∈ ℕ, that is,

𝐴𝑒𝑗 = 𝛼𝑗𝑒𝑗, 𝑗 ∈ ℕ.
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Then 𝛼𝑗 ≥ 𝛿 for all 𝑗 ∈ ℕ.

Below 𝐷𝜑 : 𝐻 → 𝐻 denotes the Frêchet-derivative of a function 𝜑 : 𝐻 → ℝ. By 𝐶1
𝑏 (𝐻)

we shall denote the set of all bounded differentiable functions with continuous and bounded
derivatives. For 𝐾 ⊂ 𝐻, the space 𝐶1

𝑏 (𝐾) is defined as the space of restrictions of all functions
in 𝐶1

𝑏 (𝐻) to the subset𝐾. 𝜇 will denote the Gaussian measure in 𝐻 with mean 0 and covariance
operator

𝑄 :=
1

2
𝐴−1.

Since𝐴 is strictly positive, 𝜇 is nondegenerate and has full topological support. Let 𝐿𝑝(𝐻,𝜇), 𝑝 ∈
[1,∞], denote the corresponding real 𝐿𝑝-spaces equipped with the usual norms ∥ ⋅ ∥𝑝. We set

𝜆𝑗 :=
1

2𝛼𝑗
∀𝑗 ∈ ℕ,

so that
𝑄𝑒𝑗 = 𝜆𝑗𝑒𝑗 ∀𝑗 ∈ ℕ.

For 𝜌 ∈ 𝐿1
+(𝐻,𝜇) we consider

ℰ𝜌(𝑢, 𝑣) = 1

2

∫
𝐻

⟨𝐷𝑢,𝐷𝑣⟩𝜌(𝑧)𝜇(𝑑𝑧), 𝑢, 𝑣 ∈ 𝐶1
𝑏 (𝐹 ),

where 𝐹 := 𝑆𝑢𝑝𝑝[𝜌 ⋅ 𝜇] and 𝐿1
+(𝐻,𝜇) denotes the set of all non-negative elements in 𝐿1(𝐻,𝜇).

Let 𝑄𝑅(𝐻) be the set of all functions 𝜌 ∈ 𝐿1
+(𝐻,𝜇) such that (ℰ𝜌, 𝐶1

𝑏 (𝐹 )) is closable on
𝐿2(𝐹, 𝜌⋅𝜇). Its closure is denoted by (ℰ𝜌,ℱ𝜌). We denote by ℱ𝜌

𝑒 the extended Dirichlet space
of (ℰ𝜌,ℱ𝜌), that is, 𝑢 ∈ ℱ𝜌

𝑒 if and only if ∣𝑢∣ <∞ 𝜌 ⋅ 𝜇− 𝑎.𝑒. and there exists a sequence {𝑢𝑛}
in ℱ𝜌 such that ℰ𝜌(𝑢𝑚 − 𝑢𝑛, 𝑢𝑚 − 𝑢𝑛) → 0 as 𝑛 ≥ 𝑚→ ∞ and 𝑢𝑛 → 𝑢 𝜌 ⋅ 𝜇− 𝑎.𝑒. as 𝑛→ ∞.

Theorem 2.2 Let 𝜌 ∈ 𝑄𝑅(𝐻). Then (ℰ𝜌,ℱ𝜌) is a quasi-regular local Dirichlet form on
𝐿2(𝐹 ; 𝜌 ⋅ 𝜇) in the sense of [17, IV Definition 3.1].

Proof The assertion follows from the main result in [27]. □
By virtue of Theorem 2.2 and [17], there exists a diffusion process𝑀𝜌 = (Ω,ℳ, {ℳ𝑡}, 𝜃𝑡, 𝑋𝑡,

𝑃𝑧) on 𝐹 associated with the Dirichlet form (ℰ𝜌,ℱ𝜌). 𝑀𝜌 will be called distorted OU-process on
𝐹 . Since constant functions are in ℱ𝜌 and ℰ𝜌(1, 1) = 0, 𝑀𝜌 is recurrent and conservative. We
denote by A𝜌

+ the set of all positive continuous additive functionals (PCAF in abbreviation) of
𝑀𝜌, and define A𝜌 := A𝜌

+−A𝜌
+. For 𝐴 ∈ A𝜌, its total variation process is denoted by {𝐴}. We

also define A𝜌
0 := {𝐴 ∈ A𝜌∣𝐸𝜌⋅𝜇({𝐴}𝑡) < ∞∀𝑡 > 0}. Each element in A𝜌

+ has a corresponding
positive ℰ𝜌-smooth measure on 𝐹 by the Revuz correspondence. The set of all such measures
will be denoted by 𝑆𝜌+. Accordingly, 𝐴𝑡 ∈ A𝜌 corresponds to a 𝜈 ∈ 𝑆𝜌 := 𝑆𝜌+ − 𝑆𝜌+, the set
of all ℰ𝜌-smooth signed measure in the sense that 𝐴𝑡 = 𝐴1

𝑡 − 𝐴2
𝑡 for 𝐴𝑘𝑡 ∈ A𝜌

+, 𝑘 = 1, 2 whose
Revuz measures are 𝜈𝑘, 𝑘 = 1, 2 and 𝜈 = 𝜈1 − 𝜈2 is the Hahn-Jordan decomposition of 𝜈 . The
element of A𝜌 corresponding to 𝜈 ∈ 𝑆𝜌 will be denoted by𝐴𝜈 .

Note that for each 𝑙 ∈ 𝐻 the function 𝑢(𝑧) = ⟨𝑙, 𝑧⟩ belongs to the extended Dirichlet space
ℱ𝜌
𝑒 and

ℰ𝜌(𝑙(⋅), 𝑣) = 1

2

∫
⟨𝑙, 𝐷𝑣(𝑧)⟩𝜌(𝑧)𝑑𝜇(𝑧) ∀𝑣 ∈ 𝐶1

𝑏 (𝐹 ). (2.1)
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On the other hand, the AF ⟨𝑙, 𝑋𝑡 − 𝑋0⟩ of 𝑀𝜌 admits a unique decomposition into a sum of
a martingale AF (𝑀𝑡) of finite energy and CAF (𝑁𝑡) of zero energy. More precisely, for every
𝑙 ∈ 𝐻,

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =𝑀 𝑙
𝑡 +𝑁 𝑙

𝑡 ∀𝑡 ≥ 0 𝑃𝑧 − 𝑎.𝑠. (2.2)

for ℰ𝜌-q.e. 𝑧 ∈ 𝐹 .
Now for 𝜌 ∈ 𝐿1(𝐻,𝜇) and 𝑙 ∈ 𝐻, we say that 𝜌 ∈ 𝐵𝑉𝑙(𝐻) if there exists a constant 𝐶𝑙 > 0,

∣
∫

⟨𝑙, 𝐷𝑣(𝑧)⟩𝜌(𝑧)𝑑𝜇(𝑧)∣ ≤ 𝐶𝑙 ∥ 𝑣 ∥∞ ∀𝑣 ∈ 𝐶1
𝑏 (𝐹 ). (2.3)

By the same argument as in [13, Theorem 2.1], we obtain the following:

Theorem 2.3 Let 𝜌 ∈ 𝐿1
+ and 𝑙 ∈ 𝐻.

(1) The following two conditions are equivalent:
(i)𝜌 ∈ 𝐵𝑉𝑙(𝐻)
(ii) There exists a (unique) signed measure 𝜈𝑙 on 𝐹 of finite total variation such that

1

2

∫
⟨𝑙, 𝐷𝑣(𝑧)⟩𝜌(𝑧)𝑑𝜇(𝑧) = −

∫
𝐹

𝑣(𝑧)𝜈𝑙(𝑑𝑧) ∀𝑣 ∈ 𝐶1
𝑏 (𝐹 ). (2.4)

In this case, 𝜈𝑙 necessarily belongs to 𝑆𝜌+1.
Suppose further that 𝜌 ∈ 𝑄𝑅(𝐻). Then the following condition is also equivalent to the

above:
(iii)𝑁 𝑙 ∈ A𝜌

0

In this case, 𝜈𝑙 ∈ 𝑆𝜌, and 𝑁 𝑙 = 𝐴𝜈𝑙

(2) 𝑀 𝑙 is a martingale AF with quadratic variation process

⟨𝑀 𝑙⟩𝑡 = 𝑡∣𝑙∣2, 𝑡 ≥ 0. (2.5)

Remark 2.4 Recall that the Riesz representation theorem of positive linear functionals on
continuous functions by measures is not applicable to obtain Theorem 2.3, (𝑖) ⇒ (𝑖𝑖), because
of the lack of local compactness. However, the quasi-regularity of the Dirichlet form provides
a means to circumvent this difficulty.

In the rest of this section, we shall introduce a special class of 𝜌 ∈ 𝑄𝑅(𝐻), which will be
used in Section 4 below.

A non-negative measurable function ℎ(𝑠) on ℝ1 is said to possess the Hamza property if
ℎ(𝑠) = 0 𝑑𝑠− 𝑎.𝑒. on the closed set ℝ1 ∖𝑅(ℎ) where

𝑅(ℎ) = {𝑠 ∈ ℝ1 :

∫ 𝑠+𝜀

𝑠−𝜀

1

ℎ(𝑟)
𝑑𝑟 <∞ for some 𝜀 > 0}.

We say that a function 𝜌 ∈ 𝐿1
+(𝐻,𝜇) satisfies the ray Hamza condition in direction 𝑙 ∈ 𝐻

(𝜌 ∈ H𝑙 in notation) if there exists a non-negative function 𝜌𝑙 such that

𝜌𝑙 = 𝜌 𝜇− 𝑎.𝑒. and 𝜌𝑙(𝑧 + 𝑠𝑙) has the Hamza property in 𝑠 ∈ ℝ1 for each 𝑧 ∈ 𝐻.
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We set H := ∩𝑘H𝑒𝑘 , where 𝑒𝑘 is as in Hypothesis 2.1. A function in the family H is simply
said to satisfy the ray Hamza condition. By [5] H ⊂ 𝑄𝑅(𝐻), and thus we always have 𝜌+ 1 ∈
𝑄𝑅(𝐻), since clearly 𝜌+ 1 ∈ H.

Next we will present some explicit description of the Dirichlet form (ℰ𝜌,ℱ𝜌) for 𝜌 ∈ H.
For 𝑒𝑗 ∈ 𝐻 as in Hypothesis 2.1, we set 𝐻𝑒𝑗 = {𝑠𝑒𝑗 : 𝑠 ∈ ℝ1}. We then have the direct sum

decomposition 𝐻 = 𝐻𝑒𝑗 ⊕ 𝐸𝑒𝑗 given by

𝑧 = 𝑠𝑒𝑗 + 𝑥, 𝑠 = ⟨𝑒𝑗, 𝑧⟩ .

Let 𝜋𝑗 be the projection onto the space 𝐸𝑒𝑗 and 𝜇𝑒𝑗 be the image measure of 𝜇 under 𝜋𝑗 : 𝐻 →
𝐸𝑒𝑗 i.e 𝜇𝑒𝑗 = 𝜇 ∘ 𝜋−1

𝑗 . Then we see that for any 𝐹 ∈ 𝐿1(𝐻,𝜇)∫
𝐻

𝐹 (𝑧)𝜇(𝑑𝑧) =

∫
𝐸𝑒𝑗

∫
ℝ1

𝐹 (𝑠𝑒𝑗 + 𝑥)𝑝𝑗(𝑠)𝑑𝑠𝜇𝑒𝑗(𝑑𝑥), (2.6)

where 𝑝𝑗(𝑠) = (1/
√

2𝜋𝜆𝑗)𝑒
−𝑠2/2𝜆𝑗 . Thus by [5, Theorem3.10] for all 𝑢, 𝑣 ∈ 𝐷(ℰ𝜌),

ℰ𝜌(𝑢, 𝑣) =
∞∑
𝑗=1

ℰ𝜌,𝑒𝑗(𝑢, 𝑣), (2.7)

where

ℰ𝜌,𝑒𝑗(𝑢, 𝑣) = 1

2

∫
𝐸𝑒𝑗

∫
𝑅(𝜌(⋅𝑒𝑗+𝑥))

𝑑�̃�𝑗(𝑠𝑒𝑗 + 𝑥)

𝑑𝑠
× 𝑑𝑣𝑗(𝑠𝑒𝑗 + 𝑥)

𝑑𝑠
𝜌(𝑠𝑒𝑗 + 𝑥)𝑝𝑗(𝑠)𝑑𝑠𝜇𝑒𝑗(𝑑𝑥), (2.8)

and 𝑢, �̃�𝑗 satisfy �̃�𝑗 = 𝑢 𝜌𝜇− 𝑎.𝑒 and �̃�𝑗(𝑠𝑒𝑗 + 𝑥) is absolutely continuous in 𝑠 on 𝑅(𝜌(⋅ 𝑒𝑗 + 𝑥))
for each 𝑥 ∈ 𝐸𝑒𝑗 . 𝑣 and 𝑣𝑗 are related in the same way.

3 BV functions and distorted OU-processes in 𝐹

As in [13], we introduce some function spaces on 𝐻. Let

𝐴1/2(𝑥) :=

∫ 𝑥

0

(log(1 + 𝑠))1/2𝑑𝑠, 𝑥 ≥ 0,

and let 𝜓 be its complementary function, namely,

𝜓(𝑦) :=

∫ 𝑦

0

(𝐴′
1/2)

−1(𝑡)𝑑𝑡 =

∫ 𝑦

0

(exp(𝑡2)− 1)𝑑𝑡.

Define

𝐿(log𝐿)1/2(𝐻,𝜇) := {𝑓 : 𝐻 → ℝ∣𝑓 Borel measurable, 𝐴1/2(∣𝑓 ∣) ∈ 𝐿1(𝐻,𝜇)},

𝐿𝜓(𝐻,𝜇) := {𝑔 : 𝐻 → ℝ∣𝑔 Borel measurable, 𝜓(𝑐∣𝑔∣) ∈ 𝐿1(𝐻,𝜇) for some 𝑐 > 0}.
From the general theory of Orlicz spaces (cf. [24]), we have the following properties.
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(i) 𝐿(log𝐿)1/2 and 𝐿𝜓 are Banach spaces under the norms

∥𝑓∥𝐿(log𝐿)1/2 = inf{𝛼 > 0∣
∫
𝐻

𝐴1/2(∣𝑓 ∣/𝛼)𝑑𝜇 ≤ 1},

∥𝑔∥𝐿𝜓 = inf{𝛼 > 0∣
∫
𝐻

𝜓(∣𝑔∣/𝛼)𝑑𝜇 ≤ 1}.

(ii) For 𝑓 ∈ 𝐿(log𝐿)1/2 and 𝑔 ∈ 𝐿𝜓, we have

∥𝑓𝑔∥1 ≤ 2∥𝑓∥𝐿(log𝐿)1/2∥𝑔∥𝐿𝜓 . (3.1)

(iii) Since 𝜇 is Gaussian, the function 𝑥 7→ ⟨𝑥, 𝑙⟩ belongs to 𝐿𝜓.
Let 𝑐𝑗, 𝑗 ∈ ℕ, be a sequence in [1,∞). Define

𝐻1 := {𝑥 ∈ 𝐻∣
∞∑
𝑗=1

⟨𝑥, 𝑒𝑗⟩2𝑐2𝑗 <∞},

equipped with the inner product

⟨𝑥, 𝑦⟩𝐻1 :=
∞∑
𝑗=1

𝑐2𝑗⟨𝑥, 𝑒𝑗⟩⟨𝑦, 𝑒𝑗⟩.

Then clearly (𝐻1, ⟨, ⟩𝐻1) is a Hilbert space such that 𝐻1 ⊂ 𝐻 continuously and densely. Iden-
tifying 𝐻 with its dual we obtain the continuous and dense embeddings

𝐻1 ⊂ 𝐻(≡ 𝐻∗) ⊂ 𝐻∗
1 .

It follows that

𝐻1⟨𝑧, 𝑣⟩𝐻∗
1
= ⟨𝑧, 𝑣⟩𝐻∀𝑧 ∈ 𝐻1, 𝑣 ∈ 𝐻,

and that (𝐻1, 𝐻,𝐻
∗
1 ) is a Gelfand triple. Furthermore, { 𝑒𝑗

𝑐𝑗
} and {𝑐𝑗𝑒𝑗} are orthonormal bases

of 𝐻1 and 𝐻∗
1 , respectively.

We also introduce a family of 𝐻-valued functions on 𝐻 by

(𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 := {𝐺 : 𝐺(𝑧) =

𝑚∑
𝑗=1

𝑔𝑗(𝑧)𝑙
𝑗, 𝑧 ∈ 𝐻, 𝑔𝑗 ∈ 𝐶1

𝑏 (𝐻), 𝑙𝑗 ∈ 𝐷(𝐴) ∩𝐻1}

Denote by 𝐷∗ the adjoint of 𝐷 : 𝐶1
𝑏 (𝐻) ⊂ 𝐿2(𝐻,𝜇) → 𝐿2(𝐻,𝜇;𝐻). That is

𝐷𝑜𝑚(𝐷∗) := {𝐺 ∈ 𝐿2(𝐻,𝜇;𝐻)∣𝐶1
𝑏 ∋ 𝑢 7→

∫
⟨𝐺,𝐷𝑢⟩𝑑𝜇 is continuous with respect to 𝐿2(𝐻,𝜇)}.

Obviously, (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 ⊂ 𝐷𝑜𝑚(𝐷∗). Then∫

𝐻

𝐷∗𝐺(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) =
∫
𝐻

⟨𝐺(𝑧), 𝐷𝑓(𝑧)⟩𝜇(𝑑𝑧) ∀𝐺 ∈ (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 , 𝑓 ∈ 𝐶1

𝑏 (𝐻). (3.2)
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For 𝜌 ∈ 𝐿(log𝐿)1/2(𝐻,𝜇), we set

𝑉 (𝜌) := sup
𝐺∈(𝐶1

𝑏 )𝐷(𝐴)∩𝐻1
,∥𝐺∥𝐻1

≤1

∫
𝐻

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧).

A function 𝜌 on 𝐻 is called a BV function in the Gelfand triple (𝐻1, 𝐻,𝐻
∗
1 )(𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1)

in notation), if 𝜌 ∈ 𝐿(log𝐿)1/2(𝐻,𝜇) and 𝑉 (𝜌) is finite. When 𝐻1 = 𝐻 = 𝐻∗
1 , this coincides

with the definition of BV functions defined in [1] and clearly 𝐵𝑉 (𝐻,𝐻) ⊂ 𝐵𝑉 (𝐻,𝐻1). We can
prove the following theorem by a modification of the proof of [12, Theorem 3.1].

Theorem 3.1 (i) 𝐵𝑉 (𝐻,𝐻1) ⊂
∩
𝑙∈𝐷(𝐴)∩𝐻1

𝐵𝑉𝑙(𝐻).

(ii) Suppose 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1)∩𝐿1
+(𝐻,𝜇), then there exist a positive finite measure ∥𝑑𝜌∥ on 𝐻

and a Borel-measurable map 𝜎𝜌 : 𝐻 → 𝐻∗
1 such that ∥𝜎𝜌(𝑧)∥𝐻∗

1
= 1 ∥𝑑𝜌∥−𝑎.𝑒, ∥𝑑𝜌∥(𝐻) = 𝑉 (𝜌),∫

𝐻

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
∫
𝐻
𝐻1⟨𝐺(𝑧), 𝜎𝜌(𝑧)⟩𝐻∗

1
∥𝑑𝜌∥(𝑑𝑧) ∀𝐺 ∈ (𝐶1

𝑏 )𝐷(𝐴)∩𝐻1 (3.3)

and ∥𝑑𝜌∥ ∈ 𝑆𝜌+1.
Furthermore, if 𝜌 ∈ 𝑄𝑅(𝐻), ∥𝑑𝜌∥ is ℰ𝜌-smooth in the sense that it charges no set of zero

ℰ𝜌1 -capacity. In particular, the domain of integration 𝐻 on both sides of (3.3) can be replaced
by 𝐹 , the topological support of 𝜌𝜇.

Also, 𝜎𝜌 and ∥𝑑𝜌∥ are uniquely determined, that is, if there are 𝜎′
𝜌 and ∥𝑑𝜌∥′ satisfying

relation (3.3), then ∥𝑑𝜌∥ = ∥𝑑𝜌∥′ and 𝜎𝜌(𝑧) = 𝜎′
𝜌(𝑧) for ∥𝑑𝜌∥ − 𝑎.𝑒.𝑧

(iii) Conversely, if Eq.(3.3) holds for 𝜌 ∈ 𝐿(log𝐿)1/2(𝐻,𝜇) and for some positive finite
measure ∥𝑑𝜌∥ and a map 𝜎𝜌 with the stated properties, then 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1) and 𝑉 (𝜌) =
∥𝑑𝜌∥(𝐻).

(iv) Let 𝑊 1,1(𝐻) be the domain of the closure of (𝐷,𝐶1
𝑏 (𝐻)) with norm

∥𝑓∥ :=

∫
𝐻

(∣𝑓(𝑧)∣+ ∣𝐷𝑓(𝑧)∣)𝜇(𝑑𝑧).

Then 𝑊 1,1(𝐻) ⊂ 𝐵𝑉 (𝐻,𝐻) and Eq.(3.3) is satisfied for each 𝜌 ∈ 𝑊 1,1(𝐻). Furthermore,

∥𝑑𝜌∥ = ∣𝐷𝜌∣ ⋅ 𝜇, 𝑉 (𝜌) =

∫
𝐻

∣𝐷𝜌∣𝜇(𝑑𝑧), 𝜎𝜌 = 1

∣𝐷𝜌∣𝐷𝜌𝐼{∣𝐷𝜌∣>0}.

Proof (i) Let 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1) and 𝑙 ∈ 𝐷(𝐴) ∩𝐻1. Take 𝐺 ∈ (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 of the type

𝐺(𝑧) = 𝑔(𝑧)𝑙, 𝑧 ∈ 𝐻, 𝑔 ∈ 𝐶1
𝑏 (𝐻). (3.4)

By (3.2)∫
𝐻

𝐷∗𝐺(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) =
∫
𝐻

⟨𝐺(𝑧), 𝐷𝑓(𝑧)⟩𝜇(𝑑𝑧)

=−
∫
𝐻

⟨𝑙, 𝐷𝑔(𝑧)⟩𝑓(𝑧)𝜇(𝑑𝑧) + 2

∫
𝐻

⟨𝐴𝑙, 𝑧⟩𝑔(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) ∀𝑓 ∈ 𝐶1
𝑏 (𝐻);

consequently,
𝐷∗𝐺(𝑧) = −⟨𝑙, 𝐷𝑔(𝑧)⟩+ 2𝑔(𝑧)⟨𝐴𝑙, 𝑧⟩. (3.5)
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Accordingly,∫
𝐻

⟨𝑙, 𝐷𝑔(𝑧)⟩𝜌(𝑧)𝜇(𝑑𝑧) = −
∫
𝐻

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) + 2

∫
𝐻

⟨𝐴𝑙, 𝑧⟩𝑔(𝑧)𝜌(𝑧)𝜇(𝑑𝑧). (3.6)

For any 𝑔 ∈ 𝐶1
𝑏 (𝐻), satisfying ∥𝑔∥∞ ≤ 1, by (3.1) the right hand side is dominated by

𝑉 (𝜌)∥𝑙∥𝐻1 + 4∥𝜌∥𝐿(log𝐿)1/2∥⟨𝐴𝑙, ⋅⟩∥𝐿𝜓 <∞,

hence, 𝜌 ∈ 𝐵𝑉𝑙(𝐻).
(ii) Suppose 𝜌 ∈ 𝐿1

+(𝐻,𝜇)
∩
𝐵𝑉 (𝐻,𝐻1). By (i) and Theorem 2.3 for each 𝑙 ∈ 𝐷(𝐴) ∩𝐻1,

there exists a finite signed measure 𝜈𝑙 on 𝐻 for which Eq.(2.4) holds. Define

𝐷𝐴
𝑙 𝜌(𝑑𝑧) := 2𝜈𝑙(𝑑𝑧) + 2⟨𝐴𝑙, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧).

In view of (3.6), for any 𝐺 of type (3.4), we have∫
𝐻

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
∫
𝐻

𝑔(𝑧)𝐷𝐴
𝑙 𝜌(𝑑𝑧), (3.7)

which in turn implies

𝑉 (𝐷𝐴
𝑙 𝜌)(𝐻) = sup

𝑔∈𝐶1
𝑏 (𝐻),∥𝑔∥∞≤1

∫
𝐻

𝑔(𝑧)𝐷𝐴
𝑙 𝜌(𝑑𝑧) ≤ 𝑉 (𝜌)∥𝑙∥𝐻1 , (3.8)

where 𝑉 (𝐷𝐴
𝑙 𝜌) denotes the total variation measure of the signed measure 𝐷𝐴

𝑙 𝜌.
For the orthonormal basis { 𝑒𝑗

𝑐𝑗
} of 𝐻1, we set

𝛾𝐴𝜌 := Σ∞
𝑗=12

−𝑗𝑉 (𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌), 𝑣𝑗(𝑧) :=

𝑑𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌(𝑧)

𝑑𝛾𝐴𝜌 (𝑧)
, 𝑧 ∈ 𝐻, 𝑗 ∈ ℕ. (3.9)

𝛾𝐴𝜌 is a positive finite measure with 𝛾𝐴𝜌 (𝐻) ≤ 𝑉 (𝜌) and 𝑣𝑗 is Borel-measurable. Since 𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌

belongs to 𝑆𝜌+1, so does 𝛾𝐴𝜌 . Then for

𝐺𝑛 :=
𝑛∑
𝑗=1

𝑔𝑗
𝑒𝑗
𝑐𝑗

∈ (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 , 𝑛 ∈ ℕ, (3.10)

by (3.7) the following equation holds∫
𝐻

𝐷∗𝐺𝑛(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
𝑛∑
𝑗=1

∫
𝐻

𝑔𝑗(𝑧)𝑣𝑗(𝑧)𝛾
𝐴
𝜌 (𝑑𝑧). (3.11)

Since ∣𝑣𝑗(𝑧)∣ ≤ 2𝑗 𝛾𝐴𝜌 -a.e. and 𝐶1
𝑏 (𝐻) is dense in 𝐿1(𝐻, 𝛾𝐴𝜌 ), we can find 𝑣𝑗,𝑚 ∈ 𝐶1

𝑏 (𝐻) such
that

lim
𝑚→∞

𝑣𝑗,𝑚 = 𝑣𝑗 𝛾
𝐴
𝜌 − 𝑎.𝑒.,
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Substituting

𝑔𝑗,𝑚(𝑧) :=
𝑣𝑗,𝑚(𝑧)√∑𝑛

𝑘=1 𝑣𝑘,𝑚(𝑧)
2 + 1/𝑚

, (3.12)

for 𝑔𝑗(𝑧) in (3.10) and (3.11) we get a bound

𝑛∑
𝑗=1

∫
𝐻

𝑔𝑗,𝑚(𝑧)𝑣𝑗(𝑧)𝛾
𝐴
𝜌 (𝑑𝑧) ≤ 𝑉 (𝜌),

because ∥𝐺𝑛(𝑧)∥2𝐻1
=

∑𝑛
𝑗=1 𝑔𝑗,𝑚(𝑧)

2 ≤ 1 ∀𝑧 ∈ 𝐻. By letting 𝑚→ ∞, we obtain

∫
𝐻

√√√⎷ 𝑛∑
𝑗=1

𝑣𝑗(𝑧)2𝛾
𝐴
𝜌 (𝑑𝑧) ≤ 𝑉 (𝜌) ∀𝑛 ∈ ℕ.

Now we define

∥𝑑𝜌∥ :=

√√√⎷ ∞∑
𝑗=1

𝑣𝑗(𝑧)2𝛾
𝐴
𝜌 (𝑑𝑧) (3.13)

and 𝜎𝜌 : 𝐻 → 𝐻∗
1 by

𝜎𝜌(𝑧) =

{ ∑∞
𝑗=1

𝑣𝑗(𝑧)√∑∞
𝑘=1 𝑣𝑘(𝑧)

2
⋅ 𝑐𝑗𝑒𝑗, if 𝑧 ∈ {∑∞

𝑘=1 𝑣𝑘(𝑧)
2 > 0}

0 otherwise.
(3.14)

Then
∥𝑑𝜌∥(𝐻) ≤ 𝑉 (𝜌), ∥𝜎𝜌(𝑧)∥𝐻∗

1
= 1 ∥𝑑𝜌∥ − 𝑎.𝑒., (3.15)

∥𝑑𝜌∥ is 𝑆𝜌+1-smooth and 𝜎𝜌 is Borel-measurable. By (3.11) we see that the desired equation
(3.3) holds for 𝐺 = 𝐺𝑛 as in (3.10). It remains to prove (3.3) for any 𝐺 of type (3.4), i.e.
𝐺 = 𝑔 ⋅ 𝑙, 𝑔 ∈ 𝐶1

𝑏 (𝐻), 𝑙 ∈ 𝐷(𝐴) ∩𝐻1. In view of (3.6), Eq.(3.3) then reads

−
∫
𝐻

⟨𝑙, 𝐷𝑔(𝑧)⟩𝜌(𝑧)𝜇(𝑑𝑧) + 2

∫
𝐻

𝑔(𝑧)⟨𝐴𝑙, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧) =
∫
𝐻

𝑔(𝑧)𝐻1⟨𝑙, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧). (3.16)

We set

𝑘𝑛 :=
𝑛∑
𝑗=1

⟨𝑙, 𝑒𝑗⟩𝑒𝑗 =
𝑛∑
𝑗=1

⟨𝑙, 𝑒𝑗
𝑐𝑗
⟩𝐻1

𝑒𝑗
𝑐𝑗
, 𝐺𝑛(𝑧) := 𝑔(𝑧)𝑘𝑛.

Thus 𝑘𝑛 → 𝑙 in 𝐻1 and 𝐴𝑘𝑛 → 𝐴𝑙 in 𝐻 as 𝑛→ ∞. But then also

lim
𝑛→∞

∫
𝐻

⟨𝐷𝑔, 𝑘𝑛⟩𝜌𝑑𝜇 =

∫
𝐻

⟨𝐷𝑔, 𝑙⟩𝜌𝑑𝜇,

and

∣
∫
𝐻

𝑔(𝑧)⟨𝐴𝑘𝑛, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧)−
∫
𝐻

𝑔(𝑧)⟨𝐴𝑙, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧)∣

≤ 2∥𝑔∥∞∥𝜌∥𝐿(log𝐿)1/2∥⟨𝐴𝑘𝑛 − 𝐴𝑙, ⋅ ⟩∥𝐿𝜓 .
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Furthermore,

lim
𝑛→∞

∫
𝐻

𝑔(𝑧)𝐻1⟨𝑘𝑛, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧) =

∫
𝐻

𝑔(𝑧)𝐻1⟨𝑙, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧).

So letting 𝑛→ ∞ yields (3.16).
If 𝜌 ∈ 𝑄𝑅(𝐻), we can get the claimed result by the same arguments as above.
Uniqueness follows by the same argument as [13, Theorem 3.9].
(iii) Suppose 𝜌 ∈ 𝐿(log)1/2(𝐻,𝜇) and that Eq.(3.3) holds for some positive finite measure

∥𝑑𝜌∥ and some map 𝜎𝜌 with the properties stated in (ii). Then clearly

𝑉 (𝜌) ≤ ∥𝑑𝜌∥(𝐻)

and hence 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1). To obtain the converse inequality, set

𝜎𝑗(𝑧) := ⟨𝑐𝑗𝑒𝑗, 𝜎𝜌(𝑧)⟩𝐻∗
1
=𝐻1 ⟨

𝑒𝑗
𝑐𝑗
, 𝜎𝜌(𝑧)⟩𝐻∗

1
, 𝑗 ∈ ℕ.

Fix an arbitrary 𝑛. As in the proof of (ii) we can find functions

𝑣𝑗,𝑚 ∈ 𝐶1
𝑏 (𝐻), lim

𝑚→∞
𝑣𝑗,𝑚(𝑧) = 𝜎𝑗(𝑧) ∥𝑑𝜌∥ − 𝑎.𝑒.

Define 𝑔𝑗,𝑚(𝑧) by (3.12). Substituting 𝐺𝑛,𝑚(𝑧) :=
∑𝑛

𝑗=1 𝑔𝑗,𝑚(𝑧)
𝑒𝑗
𝑐𝑗

for 𝐺(𝑧) in (3.3) then yields

𝑛∑
𝑗=1

∫
𝐻

𝑔𝑗,𝑚(𝑧)𝜎𝑗(𝑧)∥𝑑𝜌∥(𝑑𝑧) ≤ 𝑉 (𝜌).

By letting 𝑚→ ∞, we get∫
𝐻

√√√⎷ 𝑛∑
𝑗=1

𝜎𝑗(𝑧)2∥𝑑𝜌∥(𝑑𝑧) ≤ 𝑉 (𝜌) ∀𝑛 ∈ ℕ.

We finally let 𝑛→ ∞ to obtain ∥𝑑𝜌∥(𝐻) ≤ 𝑉 (𝜌).
(iv) Obviously the duality relation (3.2) extends to 𝜌 ∈ 𝑊 1,1(𝐻) replacing 𝑓 ∈ 𝐶1

𝑏 (𝐻). By
defining ∥𝑑𝜌∥ and 𝜎𝜌(𝑧) in the stated way, the extended relation (3.2) is exactly (3.3). □

Theorem 3.2 Let 𝜌 ∈ 𝑄𝑅(𝐻) ∩ 𝐵𝑉 (𝐻,𝐻1) and consider the measure ∥𝑑𝜌∥ and 𝜎𝜌 from
Theorem 3.1(ii). Then there is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆 under 𝑃𝑧
there exists an ℳ𝑡- cylindrical Wiener process𝑊 𝑧, such that the sample paths of the associated
distorted OU-process 𝑀𝜌 on 𝐹 satisfy the following: for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡−𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩+

1

2

∫ 𝑡

0
𝐻1⟨𝑙, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝑧−a.s.. (3.17)

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspondence.

In particular, if 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻), then ∀𝑧 ∈ 𝐹∖𝑆, 𝑙 ∈ 𝐷(𝐴) ∩𝐻

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩+

1

2

∫ 𝑡

0

⟨𝑙, 𝜎𝜌(𝑋𝑠)⟩𝑑𝐿∥𝑑𝜌∥
𝑠 −

∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝑧−a.s..
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Proof Let {𝑒𝑗} be the orthonormal basis of H introduced above. Define for all 𝑘 ∈ ℕ

𝑊 𝑧
𝑘 (𝑡) := ⟨𝑒𝑘, 𝑋𝑡 − 𝑧⟩ − 1

2

∫ 𝑡

0
𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 +

∫ 𝑡

0

⟨𝐴𝑒𝑘, 𝑋𝑠⟩𝑑𝑠. (3.18)

By (2.1) and (3.16) we get for all 𝑘 ∈ ℕ

ℰ𝜌(𝑒𝑘(⋅), 𝑔) =
∫
𝐻

𝑔(𝑧)⟨𝐴𝑒𝑘, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧)− 1

2

∫
𝐻

𝑔(𝑧)𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧) ∀𝑔 ∈ 𝐶1

𝑏 (𝐻).

By Theorem 2.3 it follows that for all 𝑘 ∈ ℕ

𝑁 𝑒𝑘
𝑡 =

1

2

∫ 𝑡

0
𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑒𝑘, 𝑋𝑠⟩𝑑𝑠. (3.19)

Here we get from (3.18), (3.19) and the uniqueness of decomposition (2.2) that for ℰ𝜌-q.e. 𝑧 ∈ 𝐹 ,

𝑊 𝑧
𝑘 (𝑡) =𝑀 𝑒𝑘

𝑡 ∀𝑡 ≥ 0 𝑃𝑧−a.s.,

where the ℰ𝜌-exceptional set and the zero measure set does not depend on 𝑒𝑘. Indeed, we
can choose the capacity zero set 𝑆 = ∪∞

𝑗=1𝑆𝑗, where 𝑆𝑗 is the ℰ𝜌-exceptional set for 𝑒𝑗, and for
𝑧 ∈ 𝐹∖𝑆, we can use the same method to get a zero measure set independent of 𝑒𝑘. By Dirichlet
form theory we get ⟨𝑀 𝑒𝑖 ,𝑀 𝑒𝑗⟩𝑡 = 𝑡𝛿𝑖𝑗. So for 𝑧 ∈ 𝐹 ∖ 𝑆, 𝑊 𝑧

𝑘 is an ℳ𝑡-Wiener process under
𝑃𝑧. Thus, with 𝑊 𝑧 being an ℳ𝑡- cylindrical Wiener process given by 𝑊 𝑧(𝑡) = (𝑊 𝑧

𝑘 (𝑡)𝑒𝑘)𝑘∈ℕ,
(3.17) is satisfied for 𝑃𝑧 − 𝑎.𝑒., where 𝑧 ∈ 𝐹 ∖ 𝑆. □

4 Reflected OU-processes

In this section we consider the situation where 𝜌 = 𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻1), where Γ ⊂ 𝐻 and

𝐼Γ(𝑥) =

{
1, if 𝑥 ∈ Γ,
0 if 𝑥 ∈ Γ𝑐.

Denote the corresponding objects 𝜎𝜌, ∥𝑑𝐼Γ∥ in Theorem 3.1(ii) by −nΓ, ∥∂Γ∥ respectively. Then
formula (3.3) reads∫

Γ

𝐷∗𝐺(𝑧)𝜇(𝑑𝑧) = −
∫
𝐹
𝐻1⟨𝐺(𝑧),nΓ⟩𝐻∗

1
∥∂Γ∥(𝑑𝑧) ∀𝐺 ∈ (𝐶1

𝑏 )𝐷(𝐴)∩𝐻1 ,

where the domain of integration 𝐹 on the right hand side is the topological support of 𝐼Γ ⋅ 𝜇.
𝐹 is contained in Γ̄, but we shall show that the domain of integration on the right hand side
can be restricted to ∂Γ. We need to use the associated distorted OU-process 𝑀 𝐼Γ on 𝐹 , which
will be called reflected OU-process on Γ.

First we consider a 𝜇-measurable set Γ ⊂ 𝐻 satisfying

𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻1) ∩H. (4.1)

Remark 4.1 We emphasize that if Γ is a convex closed set in 𝐻, then obviously 𝐼Γ ∈ H.
Indeed, for each 𝑧, 𝑙 ∈ 𝐻 the set {𝑠 ∈ ℝ∣𝑧 + 𝑠𝑙 ∈ Γ} is a closed interval in ℝ, whose indicator
function hence trivially has the Hamza property. Hence, in particular, 𝐼Γ ∈ 𝑄𝑅(𝐻).
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By a modification of [12, Theorem 4.2], we can prove the following theorem.

Theorem 4.2 Let Γ ⊂ 𝐻 be 𝜇-measurable satisfying condition (4.1). Then the support of
∥∂Γ∥ is contained in the boundary ∂Γ of Γ, and the following generalized Gauss formula holds:∫

Γ

𝐷∗𝐺(𝑧)𝜇(𝑑𝑧) = −
∫
∂Γ

𝐻1⟨𝐺(𝑧),nΓ⟩𝐻∗
1
∥∂Γ∥(𝑑𝑧) ∀𝐺 ∈ (𝐶1

𝑏 )𝐷(𝐴)∩𝐻1 . (4.2)

Proof For any 𝐺 of type (3.4) we have from (2.1), (3.5) and (3.7) that

ℰ𝐼Γ(𝑙(⋅), 𝑔)−
∫
Γ

𝑔(𝑧)⟨𝐴𝑙, 𝑧⟩𝜇(𝑑𝑧) = −1

2

∫
𝐹

𝑔(𝑧)𝐷𝐴
𝑙 𝐼Γ(𝑑𝑧). (4.3)

Since the finite signed measure 𝐷𝐴
𝑙 𝐼Γ charges no set of zero ℰ𝐼Γ1 -capacity, Eq.(4.3) readily

extends to any ℰ𝐼Γ-quasicontinuous function 𝑔 ∈ ℱ 𝐼Γ
𝑏 := ℱ 𝐼Γ ∩ 𝐿∞(Γ, 𝜇).

Denote by Γ0 the interior of Γ. Then Γ0 ⊂ 𝐹 ⊂ Γ̄. In view of the construction of the
measure ∥𝑑𝐼Γ∥ in Theorem 3.1, it suffices to show that for

𝑒𝑗
𝑐𝑗

∈ 𝐷(𝐴) ∩𝐻1

𝑉 (𝐷𝐴
𝑒𝑗
𝑐𝑗

𝐼Γ)(Γ
0) = 0.

By linearity and since positive constants interchange with sup, it suffices to show that,

𝑉 (𝐷𝐴
𝑒𝑗
𝐼Γ)(Γ

0) = 0. (4.4)

Take an arbitrary 𝜀 > 0 and set

𝑈 := {𝑧 ∈ 𝐻 : 𝑑(𝑧,𝐻∖Γ0) > 𝜀}, 𝑉 := {𝑧 ∈ 𝐻 : 𝑑(𝑧,𝐻∖Γ0) ≥ 𝜀},

where 𝑑 is the metric distance of the Hilbert space 𝐻. Then �̄� ⊂ 𝑉 and 𝑉 is a closed set
contained in the open set Γ0. We define a function ℎ by

ℎ(𝑧) := 1− 𝐸𝑧(𝑒
−𝜏𝑉 ), 𝑧 ∈ 𝐹, (4.5)

where 𝜏𝑉 denotes the first exit time of 𝑀 𝐼Γ from the set 𝑉 . The nonnegative function ℎ is in
the space ℱ 𝐼Γ

𝑏 and furthermore it is ℰ𝐼Γ-quasicontinuous because it is 𝑀 𝐼Γ finely continuous.
Moreover,

ℎ(𝑧) > 0 ∀𝑧 ∈ 𝑈, ℎ(𝑧) = 0 ∀𝑧 ∈ 𝐹∖𝑉. (4.6)

Set
𝜈𝑗(𝑑𝑧) := ℎ(𝑧)𝐷𝐴

𝑒𝑗
𝐼Γ(𝑑𝑧) (4.7)

and

𝐼𝑗𝑔 := ℰ𝐼Γ(𝑒𝑗(⋅), 𝑔ℎ)−
∫
Γ

𝑔(𝑧)ℎ(𝑧)⟨𝐴𝑒𝑗, 𝑧⟩𝜇(𝑑𝑧). (4.8)

Then Eq.(4.3) with the ℰ𝐼Γ-quasicontinuous function 𝑔ℎ ∈ ℱ 𝐼Γ
𝑏 replacing 𝑔 implies

𝐼𝑗𝑔 = −1

2

∫
𝐹

𝑔(𝑧)𝜈𝑗(𝑑𝑧).
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In order to prove (4.4), it is enough to show that 𝐼𝑗𝑔 = 0 for any function 𝑔(𝑧) of the type

𝑔(𝑧) = 𝑓(⟨𝑒𝑗, 𝑧⟩, ⟨𝑙2, 𝑧⟩, ..., ⟨𝑙𝑚, 𝑧⟩); 𝑙2, ..., 𝑙𝑚 ∈ 𝐻, 𝑓 ∈ 𝐶1
0(𝑅

𝑚), (4.9)

for we have then 𝜈𝑗 = 0.
On account of (2.8) we have the expression

ℰ𝐼Γ(𝑒𝑗(⋅), 𝑔ℎ) = ℰ𝐼Γ,𝑒𝑗(𝑒𝑗(⋅), 𝑔ℎ) = 1

2

∫
𝐸𝑒𝑗

∫
𝑅𝑥

𝑑(𝑔ℎ̃)(𝑠𝑒𝑗 + 𝑥)

𝑑𝑠
𝑝𝑗(𝑠)𝑑𝑠𝜇𝑒𝑗(𝑑𝑥), (4.10)

where 𝑅𝑥 = 𝑅(𝐼Γ(⋅𝑒𝑗 + 𝑥)), 𝐹𝑥 := {𝑠 : 𝑠𝑒𝑗 + 𝑥 ∈ 𝐹} for 𝑥 ∈ 𝐸𝑒𝑗 and ℎ̃ is a 𝐼Γ ⋅ 𝜇-version of ℎ
appearing in the description of (2.8). For 𝑥 ∈ 𝐸𝑒𝑗 set

𝑉𝑥 := {𝑠 : 𝑠𝑒𝑗 + 𝑥 ∈ 𝑉 },Γ0
𝑥 := {𝑠 : 𝑠𝑒𝑗 + 𝑥 ∈ Γ0}.

We then have the inclusion 𝑉𝑥 ⊂ Γ0
𝑥 ⊂ 𝑅𝑥 ∩ 𝐹𝑥. By (4.6), ℎ(𝑠𝑒𝑗 + 𝑥) = 0 for any 𝑥 ∈ 𝐸𝑒𝑗 and

for any 𝑠 ∈ 𝑅𝑥 ∖𝑉𝑥. On the other hand, there exists a Borel set 𝑁 ⊂ 𝐸𝑒𝑗 with 𝜇𝑒𝑗(𝑁) = 0 such
that for each 𝑥 ∈ 𝐸𝑒𝑗∖𝑁 ,

ℎ(𝑠𝑒𝑗 + 𝑥) = ℎ̃(𝑠𝑒𝑗 + 𝑥) 𝑑𝑠− 𝑎.𝑒.

Here we set ℎ ≡ 0 on 𝐻∖𝐹 . Since ℎ̃(⋅𝑒𝑗+𝑥) is absolutely continuous in 𝑠, we can conclude that

ℎ̃(𝑠𝑒𝑗 + 𝑥) = 0 ∀𝑥 ∈ 𝐸𝑒𝑗∖𝑁, ∀𝑠 ∈ 𝑅𝑥∖𝑉𝑥.

Fix 𝑥 ∈ 𝐸𝑒𝑗∖𝑁 and let 𝐼 be any connected component of the one dimensional open set 𝑅𝑥.
Furthermore, for any function 𝑔 of type (4.9) we denote the support of 𝑔(⋅𝑒𝑗 +𝑥) by 𝐾𝑥 (which
is a compact set) and choose a bounded open interval 𝐽 containing 𝐾𝑥. Then 𝐼 ∩ 𝑉𝑥 ∩𝐾𝑥 is a
closed set contained in the bounded open interval 𝐼 ∩ 𝐽 and

𝑔ℎ̃(𝑠𝑒𝑗 + 𝑥) = 0 ∀𝑠 ∈ (𝐼 ∩ 𝐽)∖(𝐼 ∩ 𝑉𝑥 ∩𝐾𝑥).

Therefore, an integration by part gives∫
𝐼∩𝐽

𝑑(𝑔ℎ̃)(𝑠𝑒𝑗 + 𝑥)

𝑑𝑠
𝑝𝑗(𝑠)𝑑𝑠 =

∫
𝐼∩𝐽

1

𝜆𝑗
(𝑔ℎ̃)(𝑠𝑒𝑗 + 𝑥)𝑠𝑝𝑗(𝑠)𝑑𝑠.

Combining this with (4.8) and (4.10), we arrive at

𝐼𝑗𝑔 =

∫
𝐸𝑒𝑗

∫
𝑅𝑥

1

2𝜆𝑗
(𝑔ℎ̃)(𝑠𝑒𝑗 + 𝑥)𝑠𝑝𝑗(𝑠)𝑑𝑠𝜇𝑒𝑗(𝑑𝑥)−

∫
𝐻

𝑔(𝑧)ℎ(𝑧)⟨𝐴𝑒𝑗, 𝑧⟩𝐼Γ(𝑧)𝜇(𝑑𝑧) = 0.

□
Now we state Theorem 3.2 for 𝜌 = 𝐼Γ.

Theorem 4.3 Suppose Γ ⊂ 𝐻 is a 𝜇-measurable set satisfying condition (4.1). Then there
is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆, under 𝑃𝑧 there exists an ℳ𝑡- cylindrical
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Wiener process 𝑊 𝑧, such that the sample paths of the associated reflected OU-process 𝑀𝜌 on
𝐹 with 𝜌 = 𝐼Γ satisfy the following: for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0
𝐻1⟨𝑙,nΓ(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥∂Γ∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 𝑃𝑧−a.s.. (4.11)

Here, 𝐿
∥∂Γ∥
𝑡 is the real valued PCAF associated with ∥∂Γ∥ by the Revuz correspondence, which

has the following additional property: ∀𝑧 ∈ 𝐹∖𝑆

𝐼∂Γ(𝑋𝑠)𝑑𝐿
∥∂Γ∥
𝑠 = 𝑑𝐿∥∂Γ∥

𝑠 𝑃𝑧 − 𝑎.𝑠.. (4.12)

In particular, if 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻), then ∀𝑧 ∈ 𝐹∖𝑆, 𝑙 ∈ 𝐷(𝐴) ∩𝐻

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0

⟨𝑙,nΓ(𝑋𝑠)⟩𝑑𝐿∥∂Γ∥
𝑠 −

∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝑧 − 𝑎.𝑠..

Proof All assertions except for (4.12) follow from Theorem 3.2 for 𝜌 := 𝐼Γ. (4.12) follows by

Theorem 4.2 and [10, Theorem 5.1.3]. □

5 Stochastic reflection problem on a regular convex set

In this section, we consider Γ satisfying [6] Hypothesis 1.1 (ii) with 𝐾 := Γ, that is:

Hypothesis 5.1 There exists a convex 𝐶∞ function 𝑔 : 𝐻 → ℝ with 𝑔(0) = 0, 𝑔′(0) = 0,
and 𝐷2𝑔 strictly positive definite, that is,⟨𝐷2𝑔(𝑥)ℎ, ℎ⟩ ≥ 𝛾∣ℎ∣2 ∀ℎ ∈ 𝐻 for some 𝛾 > 0, such
that

Γ = {𝑥 ∈ 𝐻 : 𝑔(𝑥) ≤ 1}, ∂Γ = {𝑥 ∈ 𝐻 : 𝑔(𝑥) = 1}
Moreover, we also suppose that 𝐷2𝑔 is bounded on Γ and 𝑔 and all its derivatives grow at
infinity at most polynomially.

Remark 5.2 By [6, Lemma 1.2], Γ is convex and closed and there exists some constant 𝛿 > 0
such that ∣𝐷𝑔(𝑥)∣ ≤ 𝛿 ∀𝑥 ∈ Γ.

5.1 Reflected OU processes on regular convex sets

Under Hypothesis 5.1, by [7, Lemma A.1] we can prove that 𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻) ∩𝑄𝑅(𝐻):

Theorem 5.3 Assume that Hypothesis 5.1 holds. Then 𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻) ∩𝑄𝑅(𝐻).

Proof We first note that trivially by Remark 4.1 we have that 𝐼Γ ∈ 𝑄𝑅(𝐻). Let

𝜌𝜀(𝑥) := exp(−(𝑔(𝑥)− 1)2

𝜀
1{𝑔≥1}), 𝑥 ∈ 𝐻.

Thus,
lim
𝜀→0

𝜌𝜀 = 𝐼Γ.
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Moreover,

𝐷𝜌𝜀 = −2

𝜀
𝜌𝜀1{𝑔≥1}𝐷𝑔(𝑔 − 1) 𝜇− 𝑎.𝑒..

By [7, Lemma A.1] we have

lim
𝜀→0

1

𝜀

∫
𝐻

𝜑(𝑥)1{𝑔(𝑥)≥1}(𝑔(𝑥)−1)⟨𝐷𝑔(𝑥), 𝑧⟩𝜌𝜀(𝑥)𝜇(𝑑𝑥) = 1

2

∫
∂Γ

𝜑(𝑦)⟨𝑛(𝑦), 𝑧⟩𝜇∂Γ(𝑑𝑦) ∀𝑧 ∈ 𝐻,𝜑 ∈ 𝐶1
𝑏 (𝐻),

where 𝑛 := 𝐷𝑔/∣𝐷𝑔∣ is the exterior normal to ∂Γ at 𝑦 and 𝜇∂Γ is the surface measure on ∂Γ
induced by 𝜇 (cf. [6], [7], [16]), whereas by (3.2) for any 𝜑 ∈ 𝐶1

𝑏 (𝐻) and 𝑧 ∈ 𝐷(𝐴)

lim
𝜀→0

1

𝜀

∫
𝐻

𝜑(𝑥)1{𝑔(𝑥)≥1}(𝑔(𝑥)− 1)⟨𝐷𝑔(𝑥), 𝑧⟩𝜌𝜀(𝑥)𝜇(𝑑𝑥)

=− lim
𝜀→0

1

2

∫
𝐻

⟨𝐷𝜌𝜀(𝑥), 𝜑(𝑥)𝑧⟩𝜇(𝑑𝑥)

=− 1

2
lim
𝜀→0

∫
𝐻

𝜌𝜀(𝑥)𝐷
∗(𝜑𝑧)(𝑥)𝜇(𝑑𝑥)

=− 1

2

∫
𝐻

1Γ(𝑥)𝐷
∗(𝜑𝑧)(𝑥)𝜇(𝑑𝑥).

Thus, ∫
𝐻

1Γ(𝑥)𝐷
∗(𝜑𝑧)(𝑥)𝜇(𝑑𝑥) = −

∫
∂Γ

𝜑(𝑥)⟨𝑛(𝑥), 𝑧⟩𝜇∂Γ(𝑑𝑥) ∀𝑧 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1
𝑏 . (5.1)

By the proof of [7, Lemma A.1], we get that 𝑔 is a non-degenerate map. So we can use the
co-area formula (see [16, Theorem 6.3.1, Ch. V] or [7, (A.4)]):∫

𝐻

𝑓𝜇(𝑑𝑥) =

∫ ∞

0

[

∫
𝑔=𝑟

𝑓(𝑦)
1

∣𝐷𝑔(𝑦)∣𝜇Σ𝑟(𝑑𝑦)]𝑑𝑟.

By [16, Theorem 6.2, Ch. V] the surface measure is defined for all 𝑟 ≥ 0, moreover [16,
Theorem 1.1, Corollary 6.3.2, Ch. V] imply that 𝑟 7→ 𝜇Σ𝑟 is continuous in the topology induced
by 𝐷𝑝

𝑟(𝐻) for some 𝑝 ∈ (1,∞), 𝑟 ∈ (0,∞)(cf [16]) on the measures on (𝐻,ℬ(𝐻)). Take 𝑓 ≡ 1
in the co-area formula, then by the continuity property of the surface measure with respect to
𝑟 we have that 1

∣𝐷𝑔(𝑦)∣𝜇Σ𝑟(𝑑𝑦) is a finite measure supported in {𝑔 = 𝑟}. By Remark 5.2 and

since 𝜇∂Γ = 𝜇Σ1 , we have that 𝜇∂Γ is a finite measure. And hence by Theorem 3.1 (iii), we get
𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻).

□
Thus by Theorem 4.3 we immediately get the following.

Theorem 5.4 Assume Hypothesis 5.1. Then there exists an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such
that ∀𝑧 ∈ 𝐹∖𝑆, under 𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that the
sample paths of the associated reflected OU-process𝑀𝜌 on 𝐹 with 𝜌 = 𝐼Γ satisfy the following:
for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0

⟨𝑙,nΓ(𝑋𝑠)𝑑𝐿
∥∂Γ∥
𝑠 ⟩ −

∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝑧 − 𝑎.𝑒.
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where nΓ := 𝐷𝑔
∣𝐷𝑔∣ is the exterior normal to Γ and

∥∂Γ∥ = 𝜇∂Γ,

where 𝜇∂Γ is the surface measure induced by 𝜇 (c.f [6], [7], [16]).

Remark 5.5 It can be shown that for 𝑥 ∈ ∂Γ, nΓ(𝑥) =
𝐷𝑔
∣𝐷𝑔∣ is the exterior normal to Γ, i.e

the unique element in 𝐻 of unit length such that

⟨nΓ(𝑥), 𝑦 − 𝑥⟩ ≤ 0 ∀𝑦 ∈ Γ.

5.2 Existence and uniqueness of solutions

Let Γ ⊂ 𝐻 and our linear operator 𝐴 satisfy Hypothesis 5.1 and Hypothesis 2.1, respectively.
Consider the following stochastic differential inclusion in the Hilbert space 𝐻,{

𝑑𝑋(𝑡) + (𝐴𝑋(𝑡) +𝑁Γ(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),
𝑋(0) = 𝑥,

(5.2)

where 𝑊 (𝑡) is a cylindrical Wiener process in 𝐻 on a filtered probability space (Ω,ℱ ,ℱ𝑡, 𝑃 )
and 𝑁Γ(𝑥) is the normal cone to Γ at 𝑥, i.e.

𝑁Γ(𝑥) = {𝑧 ∈ 𝐻 : ⟨𝑧, 𝑦 − 𝑥⟩ ≤ 0 ∀𝑦 ∈ Γ}.

Definition 5.6 A pair of continuous 𝐻×ℝ-valued and ℱ𝑡-adapted processes (𝑋(𝑡), 𝐿(𝑡)), 𝑡 ∈
[0, 𝑇 ], is called a solution of (5.2) if the following conditions hold.

(i) 𝑋(𝑡) ∈ Γ for all 𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠.;
(ii) 𝐿 is an increasing process with the property that

𝐼∂Γ(𝑋𝑠)𝑑𝐿𝑠 = 𝑑𝐿𝑠 𝑃 − 𝑎.𝑠.

and for any 𝑙 ∈ 𝐷(𝐴) we have

⟨𝑙, 𝑋𝑡 − 𝑥⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊𝑠⟩ −
∫ 𝑡

0

⟨𝑙,nΓ(𝑋𝑠)𝑑𝐿𝑠⟩ −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃 − 𝑎.𝑠.

where nΓ is the exterior normal to Γ.

Remark 5.7 By Remark 5.5 we know that nΓ(𝑥) ∈ 𝑁Γ(𝑥) for all 𝑥 ∈ Γ. Hence by Definition
5.6 (ii) it follows that Definition 5.6 is appropriate to define a solution for the multi-valued
equation (5.2).

We denote the semigroup with the infinitesimal generator −𝐴 by 𝑆(𝑡), 𝑡 ≥ 0.

Definition 5.8 A pair of continuous 𝐻×ℝ valued and ℱ𝑡-adapted processes (𝑋(𝑡), 𝐿(𝑡)), 𝑡 ∈
[0, 𝑇 ] is called a mild solution of (5.2) if

(i) 𝑋(𝑡) ∈ Γ for all 𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠.;
(ii) 𝐿 is an increasing process with the property

𝐼∂Γ(𝑋𝑠)𝑑𝐿𝑠 = 𝑑𝐿𝑠 𝑃 − 𝑎.𝑠.
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and

𝑋𝑡 = 𝑆(𝑡)𝑥+

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑑𝑊𝑠 −
∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠 ∀𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠.

where nΓ is the exterior normal to Γ. In particular, the appearing integrals have to be well
defined.

Lemma 5.9 The process given by∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠

is 𝑃 -a.s. continuous and adapted to ℱ𝑡, 𝑡 ∈ [0, 𝑇 ]. This especially implies that it is predictable.

Proof As ∣𝑆(𝑡 − 𝑠)nΓ(𝑋𝑠)∣ ≤ 𝑀𝑇 ∣nΓ(𝑋𝑠)∣, 𝑠 ∈ [0, 𝑇 ], the integrals
∫ 𝑡
0
𝑆(𝑡 − 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠, 𝑡 ∈

[0, 𝑇 ], are well defined. For 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 ,

∣
∫ 𝑠

0

𝑆(𝑠− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢 −
∫ 𝑡

0

𝑆(𝑡− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢∣

≤∣
∫ 𝑠

0

[𝑆(𝑠− 𝑢)− 𝑆(𝑡− 𝑢)]nΓ(𝑋𝑢)𝑑𝐿𝑢∣+ ∣
∫ 𝑡

𝑠

𝑆(𝑡− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢∣

≤
∫ 𝑠

0

∣[𝑆(𝑠− 𝑢)− 𝑆(𝑡− 𝑢)]nΓ(𝑋𝑢)∣𝑑𝐿𝑢 +
∫ 𝑡

𝑠

∣𝑆(𝑡− 𝑢)nΓ(𝑋𝑢)∣𝑑𝐿𝑢,

where the first summand converges to zero as 𝑠 ↑ 𝑡 or 𝑡 ↓ 𝑠, because

∣1[0,𝑠)(𝑢)[𝑆(𝑠− 𝑢)− 𝑆(𝑡− 𝑢)]nΓ(𝑋𝑢)∣ → 0 as 𝑠 ↑ 𝑡 or 𝑡 ↓ 𝑠.

For the second summand we have∫ 𝑡

𝑠

∣𝑆(𝑡− 𝑢)nΓ(𝑋𝑢)∣𝑑𝐿𝑢 ≤𝑀𝑇 (𝐿𝑡 − 𝐿𝑠) → 0 as 𝑠 ↑ 𝑡 or 𝑡 ↓ 𝑠.

By the same arguments as in [25, Lemma 5.1.9] we conclude that the integral is adapted to
ℱ𝑡, 𝑡 ∈ [0, 𝑇 ]. □

Theorem 5.10 (𝑋(𝑡), 𝐿𝑡), 𝑡 ∈ [0, 𝑇 ], is a solution of (5.2) if and only if it is a mild solution.

Proof (⇒) First, we prove that for arbitrary 𝜁 ∈ 𝐶1([0, 𝑇 ], 𝐷(𝐴)) the following equation holds:

⟨𝑋𝑡, 𝜁𝑡⟩ = ⟨𝑥, 𝜁0⟩+
∫ 𝑡

0

⟨𝜁𝑠, 𝑑𝑊𝑠⟩ −
∫ 𝑡

0

⟨nΓ(𝑋𝑠), 𝜁𝑠⟩𝑑𝐿𝑠 +
∫ 𝑡

0

⟨𝑋𝑠,−𝐴𝜁𝑠 + 𝜁 ′𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃 − 𝑎.𝑠..

(5.3)
If 𝜁𝑠 = 𝜂𝑓𝑠 for 𝑓 ∈ 𝐶1([0, 𝑇 ]) and 𝜂 ∈ 𝐷(𝐴), by Itô’s formula we have the above relation for such
𝜁. Then by [25, Lemma G.0.10] and the same arguments as the proof of Proposition G.0.11 we
obtain the above formula for all 𝜁 ∈ 𝐶1([0, 𝑇 ], 𝐷(𝐴)). As in [25, Proposition G.0.11], for the
resolvent 𝑅𝑛 := (𝑛 + 𝐴)−1 : 𝐻 → 𝐷(𝐴) and 𝑡 ∈ [0, 𝑇 ] choosing 𝜁𝑠 := 𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂, 𝜂 ∈ 𝐻, we
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deduce from (5.3) that

⟨𝑋𝑡, 𝑛𝑅𝑛𝜂⟩ =⟨𝑥, 𝑆(𝑡)𝑛𝑅𝑛𝜂⟩+
∫ 𝑡

0

⟨𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂, 𝑑𝑊𝑠⟩ −
∫ 𝑡

0

⟨nΓ(𝑋𝑠), 𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂⟩𝑑𝐿𝑠

+

∫ 𝑡

0

⟨𝑋𝑠, 𝐴𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂⟩+ ⟨𝑋𝑠,−𝐴𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂⟩𝑑𝑠

=⟨𝑆(𝑡)𝑥+
∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑑𝑊𝑠 +

∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠, 𝑛𝑅𝑛𝜂⟩ ∀𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠..

Letting 𝑛→ ∞, we conclude that (𝑋(𝑡), 𝐿𝑡), 𝑡 ∈ [0, 𝑇 ], is a mild solution.
(⇐) By Lemma 5.9 and [25, Theorem 5.1.3], we have∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠 and

∫ t

0

S(t− s)dWs, t ∈ [0,T],

have predictable versions. And we use the same notation for the predictable versions of the
respective processes. As (𝑋𝑡, 𝐿𝑡) is a mild solution, for all 𝜂 ∈ 𝐷(𝐴) we get∫ 𝑡

0

⟨𝑋𝑠, 𝐴𝜂⟩𝑑𝑠 =
∫ 𝑡

0

⟨𝑆(𝑠)𝑥,𝐴𝜂⟩𝑑𝑠−
∫ 𝑡

0

⟨
∫ 𝑠

0

𝑆(𝑠− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢, 𝐴𝜂⟩𝑑𝑠

+

∫ 𝑡

0

⟨
∫ 𝑠

0

𝑆(𝑠− 𝑢)𝑑𝑊𝑢, 𝐴𝜂⟩𝑑𝑠 ∀𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠..

The assertion that (𝑋(𝑡), 𝐿𝑡), 𝑡 ∈ [0, 𝑇 ], is a solution of (5.2) now follows as in the proof of [25,
Proposition G.0.9] because∫ 𝑡

0

⟨
∫ 𝑠

0

𝑆(𝑠− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢, 𝐴𝜂⟩𝑑𝑠 =
∫ 𝑡

0

∫ 𝑠

0

⟨nΓ(𝑋𝑢),− 𝑑

𝑑𝑠
𝑆(𝑠− 𝑢)𝜂⟩𝑑𝐿𝑢𝑑𝑠

=− ⟨
∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠, 𝜂⟩+ ⟨
∫ 𝑡

0

nΓ(𝑋𝑠)𝑑𝐿𝑠, 𝜂⟩.

□
Below, we prove (5.2) has a unique solution in the sense of Definition 5.6.

Theorem 5.11 Let Γ ⊂ 𝐻 satisfy Hypothesis 5.1. Then the stochastic inclusion (5.2) admits
at most one solution in the sense of Definition 5.6.

Proof Let (𝑢, 𝐿1) and (𝑣, 𝐿2) be two solutions of (5.2), and let {𝑒𝑘}𝑘∈𝑁 be the eigenbasis of 𝐴
from above. We then have

⟨𝑒𝑘, 𝑢(𝑡)− 𝑣(𝑡)⟩+
∫ 𝑡

0

⟨𝛼𝑘𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩𝑑𝐿1
𝑠 −

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩𝑑𝐿2
𝑠 = 0
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Setting 𝜙𝑘(𝑡) := ⟨𝑒𝑘, 𝑢(𝑡)− 𝑣(𝑡)⟩, we obtain

𝜙2
𝑘(𝑡) =2

∫ 𝑡

0

𝜙𝑘(𝑠)𝑑𝜙𝑘(𝑠)

=− 2(

∫ 𝑡

0

⟨𝛼𝑘𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠

−
∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠)

≤− 2

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 + 2

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠.

(5.4)
By dominated convergence theorem for all 𝑡 ≥ 0 we have 𝑃 − 𝑎.𝑠:∑

𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠

→
∫ 𝑡

0

⟨nΓ(𝑢(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 as 𝑁 → ∞,

and ∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠

→
∫ 𝑡

0

⟨nΓ(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠 as 𝑁 → ∞.

Summing over 𝑘 ≤ 𝑁 in (5.4) and letting 𝑁 → ∞ yield that for all 𝑡 ≥ 0 𝑃 − 𝑎.𝑠

∣𝑢(𝑡)− 𝑣(𝑡)∣2 ≤ 2

∫ 𝑡

0

⟨nΓ(𝑢(𝑠)), 𝑣(𝑠)− 𝑢(𝑠)⟩𝑑𝐿1
𝑠 + 2

∫ 𝑡

0

⟨nΓ(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠

By Remark 5.5 it follows that
∣𝑢(𝑡)− 𝑣(𝑡)∣2 ≤ 0,

which implies
𝑢(𝑡) = 𝑣(𝑡),

and thus
𝐿1(𝑡) = 𝐿2(𝑡).

□
Combining Theorem 5.4 and 5.11 with the Yamada-Watanabe Theorem, we now obtain the

following:

Theorem 5.12 If Γ satisfies Hypothesis 5.1, then there exists a Borel set 𝑀 ⊂ 𝐻 with
𝐼Γ ⋅𝜇(𝑀) = 1 such that for every 𝑥 ∈𝑀 , (5.2) has a pathwise unique continuous strong solution
in the sense that for every probability space (Ω,ℱ ,ℱ𝑡, 𝑃 ) with an ℱ𝑡-Wiener process 𝑊 , there
exists a unique pair of ℱ𝑡-adapted processes (𝑋,𝐿) satisfying Definition 5.6 and 𝑃 (𝑋0 = 𝑥) = 1.
Moreover 𝑋(𝑡) ∈𝑀 for all 𝑡 ≥ 0 𝑃 -a.s.
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Proof By Theorem 5.4 and Theorem 5.11, one sees that [15, Theorem 3.14] a) is satisfied for
the solution (𝑋,𝐿). So, the assertion follows from [15, Theorem 3.14] b). □

Remark 5.13 Following the same arguments as in the proof of [26, Theorem 2.1], we can
give an alternative proof of Theorem 5.12 for a stronger notion of strong solutions (see e.g.
[26]). Also, because of Theorem 5.10, by a modification of [20, Theorem 12.1], we can prove the
Yamada Watanabe Theorem for the mild solution in Definition 5.8, and then also a correspond-
ing version of Theorem 5.12 for mild solutions for (5.2). This will be contained in forthcoming
work.

5.3 The non-symmetric case

In this section, we extend our results to the non-symmetric case. For Γ ⊂ 𝐻 satisfying Hy-
pothesis 5.1, we consider the non-symmetric Dirichlet form,

ℰΓ(𝑢, 𝑣) =

∫
Γ

(
1

2
⟨𝐷𝑢(𝑧), 𝐷𝑣(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷𝑢(𝑧)⟩𝑣(𝑧))𝜇(𝑑𝑧), 𝑢, 𝑣 ∈ 𝐶1

𝑏 (Γ),

where 𝐵 is a map from 𝐻 to 𝐻 such that

𝐵 ∈ 𝐿∞(Γ → Γ, 𝜇),

∫
Γ

⟨𝐵,𝐷𝑢⟩𝑑𝜇 ≥ 0 for all 𝑢 ∈ 𝐶1
𝑏 (Γ), 𝑢 ≥ 0. (5.5)

Then (ℰ , 𝐶1
𝑏 (Γ)) is a densely defined bilinear form on 𝐿2(Γ;𝜇) which is positive definite,

since for all 𝑢 ∈ 𝐶1
𝑏 (Γ)

ℰΓ(𝑢, 𝑢) =

∫
Γ

1

2
(⟨𝐷𝑢(𝑧), 𝐷𝑢(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷𝑢2(𝑧)⟩(𝑧))𝜇(𝑑𝑧) ≥ 0.

Furthermore, by the same argument as [17, II.3.e] we have (ℰ , 𝐶1
𝑏 (Γ)) is closable on 𝐿

2(Γ, 𝜇)
and its closure (ℰΓ,ℱΓ) is a Dirichlet form on 𝐿2(Γ, 𝜇). We denote the extended Dirichlet space
of (ℰΓ,ℱΓ) by ℱΓ

𝑒 : Recall that 𝑢 ∈ ℱΓ
𝑒 if and only if ∣𝑢∣ < ∞ 𝐼Γ ⋅ 𝜇 − 𝑎.𝑒. and there exists a

sequence {𝑢𝑛} in ℱΓ such that ℰΓ(𝑢𝑚−𝑢𝑛, 𝑢𝑚−𝑢𝑛) → 0 as 𝑛 ≥ 𝑚→ ∞ and 𝑢𝑛 → 𝑢 𝐼Γ ⋅𝜇−𝑎.𝑒.
as 𝑛→ ∞. This Dirichlet form satisfies the weak sector condition

∣ℰΓ
1 (𝑢, 𝑣)∣ ≤ 𝐾ℰΓ

1 (𝑢, 𝑢)
1/2ℰΓ

1 (𝑣, 𝑣)
1/2.

Furthermore, we have:

Theorem 5.14 Suppose Γ ⊂ 𝐻 satisfies Hypothesis 5.1. Then (ℰΓ,ℱΓ) is a quasi-regular
local Dirichlet form on 𝐿2(Γ;𝜇).

Proof The assertion follows by [17 IV,4b] and [28]. □
By virtue of Theorem 5.14 and [17], there exists a diffusion process 𝑀Γ = (𝑋𝑡, 𝑃𝑧) on Γ

associated with the Dirichlet form (ℰΓ,ℱΓ). Since constant functions are in ℱΓ and ℰΓ(1, 1) = 0,
𝑀Γ is recurrent and conservative. We denote by AΓ

+ the set of all positive continuous additive
functionals (PCAF in abbreviation) of 𝑀Γ, and define AΓ = AΓ

+ − AΓ
+. For 𝐴 ∈ AΓ, its

total variation process is denoted by {𝐴}. We also define AΓ
0 = {𝐴 ∈ AΓ∣𝐸𝐼Γ⋅𝜇({𝐴}𝑡) <
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∞ ∀𝑡 > 0}. Each element in AΓ
+ has a corresponding positive ℰΓ-smooth measure on Γ by

the Revuz correspondence. The totality of such measures will be denoted by 𝑆Γ
+. Accordingly,

AΓ corresponds to 𝑆Γ = 𝑆Γ
+ − 𝑆Γ

+, the set of all ℰΓ-smooth signed measure in the sense that
𝐴𝑡 = 𝐴1

𝑡 − 𝐴2
𝑡 for 𝐴

𝑘
𝑡 ∈ A𝜌

+, 𝑘 = 1, 2 whose Revuz measures are 𝜈𝑘, 𝑘 = 1, 2 and 𝜈 = 𝜈1 − 𝜈2 is
the Hahn-Jordan decomposition of 𝜈. The element of A corresponding to 𝜈 ∈ 𝑆 will be denoted
by𝐴𝜈 .

Note that for each 𝑙 ∈ 𝐻 the function 𝑢(𝑧) = ⟨𝑙, 𝑧⟩ belongs to the extended Dirichlet space
ℱΓ
𝑒 and

ℰΓ(𝑙(⋅), 𝑣) =
∫
Γ

(
1

2
⟨𝑙, 𝐷𝑣(𝑧)⟩+ ⟨𝐵(𝑧), 𝑙⟩𝑣(𝑧))𝜇(𝑑𝑧) ∀𝑣 ∈ 𝐶1

𝑏 (Γ). (5.6)

On the other hand, the AF ⟨𝑙, 𝑋𝑡−𝑋0⟩ of𝑀Γ admits a decomposition into a sum of a martingale
AF (𝑀𝑡) of finite energy and CAF (𝑁𝑡) of zero energy. More precisely, for every 𝑙 ∈ 𝐻

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =𝑀 𝑙
𝑡 +𝑁 𝑙

𝑡 ∀𝑡 ≥ 0 𝑃𝑧 − 𝑎.𝑠. (5.7)

for ℰ𝜌-q.e. 𝑧 ∈ Γ.
Then we have the following:

Theorem 5.15 Suppose Γ ⊂ 𝐻 satisfies Hypothesis 5.1.
(1) The next three conditions are equivalent:
(i)𝑁 𝑙 ∈ 𝐴0.
(ii)∣ℰΓ(𝑙(⋅), 𝑣)∣ ≤ 𝐶∥𝑣∥∞ ∀𝑣 ∈ 𝐶1

𝑏 (Γ).
(iii) There exists a finite (unique) signed measure 𝜈𝑙 on Γ such that

ℰΓ(𝑙(⋅), 𝑣) = −
∫
Γ

𝑣(𝑧)𝜈𝑙(𝑑𝑧) ∀𝑣 ∈ 𝐶1
𝑏 (Γ). (5.8)

In this case, 𝜈𝑙 is automatically smooth, and

𝑁 𝑙 = 𝐴𝜈𝑙 .

(2) 𝑀 𝑙 is a martingale AF with quadratic variation process

⟨𝑀 𝑙⟩𝑡 = 𝑡∣𝑙∣2, 𝑡 ≥ 0. (5.9)

Proof (1) By [21, Theorem 5.2.7] and the same arguments as in [11], we can extend Theorem
6.2 in [11] to our nonsymmetric case to prove the assertions.

(2)Since

ℰΓ(𝑢, 𝑣) =

∫
Γ

(
1

2
⟨𝐷𝑢(𝑧), 𝐷𝑣(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷𝑢(𝑧)⟩𝑣(𝑧))𝜇(𝑑𝑧), 𝑢, 𝑣 ∈ ℱΓ,

by [21 Theorem 5.1.5] for 𝑢 ∈ 𝐶1
𝑏 (Γ), 𝑓 ∈ ℱΓ bounded we have∫

𝑓(𝑥)𝜇⟨𝑀 [𝑢]⟩(𝑑𝑥) =2ℰΓ(𝑢, 𝑢𝑓)− ℰΓ(𝑢2, 𝑓)

=2

∫
Γ

(
1

2
⟨𝐷𝑢(𝑧), 𝐷(𝑢𝑓)(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷𝑢(𝑧)⟩𝑢(𝑧)𝑓(𝑧))𝜇(𝑑𝑧)

−
∫
Γ

(
1

2
⟨𝐷(𝑢(𝑧)2), 𝐷𝑓(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷(𝑢2)(𝑧)⟩𝑓(𝑧))𝜇(𝑑𝑧)

=

∫
Γ

⟨𝐷𝑢(𝑧), 𝐷𝑢(𝑧)⟩𝑓(𝑧)𝜇(𝑑𝑧).
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Here 𝑓 denotes the ℰΓ-quasi-continuous version of 𝑓 , 𝜇⟨𝑀 [𝑢]⟩ is the Reuvz measure for ⟨𝑀 [𝑢]⟩ and
𝑀 [𝑢] is the martingale additive functional in the Fukushima decomposition for 𝑢(𝑋𝑡). Hence
we have

𝜇⟨𝑀 [𝑢]⟩(𝑑𝑧) = 𝐼Γ⟨𝐷𝑢(𝑧), 𝐷𝑢(𝑧)⟩ ⋅ 𝜇(𝑑𝑧).
By [21, (5.1.3)] we also have

𝑒(⟨𝑀 𝑙⟩) = 𝑒(𝑀 𝑙) =

∫
Γ

1

2
⟨𝑙, 𝑙⟩𝜇(𝑑𝑧)

where 𝑒(𝑀 𝑙) is the energy of 𝑀 𝑙. Then (5.9) easily follows. □
By Theorem 3.1 we can now prove the following:

Theorem 5.16 Suppose Γ ⊂ 𝐻 satisfies Hypothesis 5.1. Then there is an ℰΓ-exceptional
set 𝑆 ⊂ Γ such that ∀𝑧 ∈ Γ∖𝑆, under 𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧,
such that the sample paths of the associated OU-process 𝑀Γ on Γ satisfy the following: for
𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡−𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩−

1

2

∫ 𝑡

0
𝐻1⟨𝑙,nΓ(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥∂Γ∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠−⟨𝑙,
∫ 𝑡

0

𝐵(𝑋𝑠)⟩𝑑𝑠 𝑃𝑧−a.s.

(5.11)

Here, 𝐿
∥∂Γ∥
𝑡 is the real valued PCAF associated with ∥∂Γ∥ by the Revuz correspondence, which

has the following additional property: ∀𝑧 ∈ Γ∖𝑆

𝐼∂Γ(𝑋𝑠)𝑑𝐿
∥∂Γ∥
𝑠 = 𝑑𝐿∥∂Γ∥

𝑠 𝑃𝑧 − 𝑎.𝑠.. (5.12)

Here nΓ := 𝐷𝑔
∣𝐷𝑔∣ is the exterior normal to Γ, and

∥∂Γ∥ = 𝜇∂Γ,

where 𝜇∂Γ the surface measure induced by 𝜇.

Proof By (5.6) and (3.16) we have

ℰΓ(𝑙(⋅), 𝑣) =
∫
Γ

1

2
⟨𝑙, 𝐷𝑣(𝑧)⟩+ ⟨𝐵(𝑧), 𝑙⟩𝑣(𝑧)𝜇(𝑑𝑧)

=

∫
Γ

⟨𝐵(𝑧), 𝑙⟩𝑣(𝑧)𝜇(𝑑𝑧) +
∫
Γ

𝑣(𝑧)⟨𝐴𝑙, 𝑧⟩𝜇(𝑑𝑧) + 1

2

∫
∂Γ

𝑣(𝑧)⟨𝑙,nΓ(𝑧)⟩∥∂Γ∥(𝑑𝑧).

Thus, by Theorem 5.15

𝑁 𝑙
𝑡 = −⟨𝐴𝑙,

∫ 𝑡

0

𝑋𝑠(𝜔)𝑑𝑠⟩ − ⟨𝑙,
∫ 𝑡

0

𝐵(𝑋𝑠(𝜔))𝑑𝑠⟩ − 1

2
⟨𝑙,

∫ 𝑡

0

nΓ(𝑋𝑠(𝜔))𝑑𝐿
∥∂Γ∥
𝑠 (𝜔)⟩.

By Theorem 5.15 and the same method as in Theorem 3.2 one then proves the first assertion,
and the last assertion follows by Theorem 5.3 and 5.4. □

22



Let Γ ⊂ 𝐻 and our linear operator 𝐴 satisfy Hypothesis 5.1 and Hypothesis 2.1, respectively.
As in Section 5.2 we shall now prove the existence and uniqueness of a solution of the following
stochastic differential inclusion on the Hilbert space 𝐻,{

𝑑𝑋(𝑡) + (𝐴𝑋(𝑡) +𝐵(𝑋(𝑡)) +𝑁Γ(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),
𝑋(0) = 𝑥,

(5.13)

where 𝐵 satisfies condition (5.5), 𝑊 (𝑡) is a cylindrical Wiener process in 𝐻 on a filtered
probability space (Ω,ℱ ,ℱ𝑡, 𝑃 ) and 𝑁Γ(𝑥) is the normal cone to Γ at 𝑥, i.e.

𝑁Γ(𝑥) = {𝑧 ∈ 𝐻 : ⟨𝑧, 𝑦 − 𝑥⟩ ≤ 0 ∀𝑦 ∈ Γ}.

Definition 5.17 A pair of continuous𝐻×ℝ-valued and ℱ𝑡-adapted processes (𝑋(𝑡), 𝐿(𝑡)), 𝑡 ∈
[0, 𝑇 ], is called a solution of (5.13) if the following conditions hold.

(i) 𝑋(𝑡) ∈ Γ for all 𝑡 ∈ [0, 𝑇 ] 𝑃 -a.s;
(ii) 𝐿 is an increasing process with the property that

𝐼∂Γ(𝑋𝑠)𝑑𝐿𝑠 = 𝑑𝐿𝑠 𝑃 − 𝑎.𝑠,

and for any 𝑙 ∈ 𝐷(𝐴) we have

⟨𝑙, 𝑋𝑡−𝑥⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊𝑠⟩−
∫ 𝑡

0

⟨𝑙,nΓ(𝑋𝑠)⟩𝑑𝐿𝑠−
∫ 𝑡

0

⟨𝑙, 𝐵(𝑋𝑠)⟩𝑑𝑠−
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃 − 𝑎.𝑠.,

where nΓ is the exterior normal to Γ.
Below we prove (5.13) has a unique solution in the sense of Definition 5.17.

Theorem 5.18 Let Γ ⊂ 𝐻 satisfy Hypothesis 5.1 and 𝐵 satisfy the monotonicity condition

⟨𝐵(𝑢)−𝐵(𝑣), 𝑢− 𝑣⟩ ≥ −𝛼∣𝑢− 𝑣∣2 (5.14)

for all 𝑢, 𝑣 ∈ 𝑑𝑜𝑚(𝐺), for some 𝛼 ∈ [0,∞) independent of 𝑢, 𝑣. The stochastic inclusion (5.13)
admits at most one solution in the sense of Definition 5.17.

Proof Let (𝑢, 𝐿1) and (𝑣, 𝐿2) be two solutions of (5.13), and let {𝑒𝑘}𝑘∈𝑁 be the eigenbasis of
𝐴 from above. We then have

⟨𝑒𝑘, 𝑢(𝑡)− 𝑣(𝑡)⟩+
∫ 𝑡

0

⟨𝛼𝑘𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑒𝑘, 𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠))⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩𝑑𝐿1
𝑠 −

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩𝑑𝐿2
𝑠 = 0.
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Setting 𝜙𝑘(𝑡) := ⟨𝑒𝑘, 𝑢(𝑡)− 𝑣(𝑡)⟩, and we have

𝜙2
𝑘(𝑡) =2

∫ 𝑡

0

𝜙𝑘(𝑠)𝑑𝜙𝑘(𝑠)

=− 2(

∫ 𝑡

0

⟨𝛼𝑘𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑒𝑘, 𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 −

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠)

≤− 2

∫ 𝑡

0

⟨𝑒𝑘, 𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

− 2

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 + 2

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠.

(5.15)
By the same argument as Theorem 5.11, we have the following 𝑃 − 𝑎.𝑠:∑

𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘, 𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

→
∫ 𝑡

0

⟨𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠 as 𝑁 → ∞,

∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠

→
∫ 𝑡

0

⟨nΓ(𝑢(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 as 𝑁 → ∞,

and ∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠

→
∫ 𝑡

0

⟨nΓ(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠 as 𝑁 → ∞.

Summing over 𝑘 ≤ 𝑁 in (5.15) and letting 𝑁 → ∞ yield that for all 𝑡 ≥ 0, 𝑃 − 𝑎.𝑠

∣𝑢(𝑡)− 𝑣(𝑡)∣2 + 2

∫ 𝑡

0

⟨𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

≤ 2

∫ 𝑡

0

⟨nΓ(𝑢(𝑠)), 𝑣(𝑠)− 𝑢(𝑠)⟩𝑑𝐿1
𝑠 + 2

∫ 𝑡

0

⟨nΓ(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠.

By Remark 5.4 it follows that

∣𝑢(𝑡)− 𝑣(𝑡)∣2 + 2

∫ 𝑡

0

⟨𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠 ≤ 0.

By (5.14) and Gronwall’s Lemma it follows that

𝑢(𝑡) = 𝑣(𝑡),
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and thus
𝐿1(𝑡) = 𝐿2(𝑡).

□
Combining Theorem 5.16 and 5.18 with the Yamada-Watanabe Theorem, we obtain the

following:

Theorem 5.19 If Γ satisfies Hypothesis 5.1 and 𝐵 in (5.13) satisfies (5.14), then there exists
a Borel set 𝑀 ⊂ 𝐻 with 𝐼Γ ⋅𝜇(𝑀) = 1 such that for every 𝑥 ∈𝑀 , (5.13) has a pathwise unique
continuous strong solution in the sense that for every probability space (Ω,ℱ ,ℱ𝑡, 𝑃 ) with an ℱ𝑡-
Wiener process𝑊 there exists a unique pair of ℱ𝑡-adapted processes (𝑋,𝐿) satisfying Definition
5.17 and 𝑃 (𝑋0 = 𝑥) = 1. Moreover 𝑋(𝑡) ∈𝑀 for all 𝑡 ≥ 0 𝑃 -a.s.

Proof The proof is completely analogous to that of Theorem 5.12. □

6 Reflected OU-processeses on a class of convex sets

Below for a topological space 𝑋 we denote its Borel 𝜎-algebra by ℬ(𝑋). In this section, we
consider the case where 𝐻 := 𝐿2(0, 1), 𝜌 = 𝐼𝐾𝛼 , where 𝐾𝛼 := {𝑓 ∈ 𝐻∣𝑓 ≥ −𝛼}, 𝛼 ≥ 0, and
𝐴 = −1

2
𝑑2

𝑑𝑟2
with Dirichlet boundary conditions on [0,1]. So in this case 𝑒𝑗 =

√
2 sin(𝑗𝜋𝑟), 𝑗 ∈ ℕ,

is the corresponding eigenbases. We recall that (cf [28]) we have 𝜇(𝐶0([0, 1])) = 1. In [28],
L.Zambotti proved the following integration by parts formulae in this situation:∫
𝐾𝛼

⟨𝑙, 𝐷𝜑⟩𝑑𝜇 = −
∫
𝐾𝛼

𝜑(𝑥)⟨𝑥, 𝑙′′⟩𝜇(𝑑𝑥)−
∫ 1

0

𝑑𝑟𝑙(𝑟)

∫
𝜑(𝑥)𝜎𝛼(𝑟, 𝑑𝑥), ∀𝑙 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1

𝑏 (𝐻),

where 𝜎𝛼(𝑟, 𝑑𝑥) = 𝜎𝛼(𝑟)𝜇𝛼(𝑟, 𝑑𝑥), and for 𝛼 > 0, 𝜎𝛼 is a positive bounded function, and for
𝛼 = 0, 𝜎0(𝑟) =

1√
2𝜋𝑟3(1−𝑟)3 , where 𝜇𝛼(𝑟, 𝑑𝑥), 𝛼 ≥ 0, are probability kernels from (𝐻,ℬ(𝐻)) to

([0, 1],ℬ([0, 1])).
Remark 6.1 Since each 𝑙 in𝐷(𝐴) has a second derivative in 𝐿2, its first derivative is bounded,
hence 𝑙 goes faster than linear to zero at any point where 𝑙 is zero, in particular at the boundary
points 𝑟 = 0 and 𝑟 = 1. Hence the second integral in the right hand side of the above equality
is well-defined.

We know by (3.5) that for all 𝑙 ∈ 𝐷(𝐴)

𝐷∗(𝜑(⋅)𝑙) = −⟨𝑙, 𝐷𝜑⟩ − 𝜑⟨𝑙′′, ⋅⟩.

Hence ∫
𝐾𝛼

𝐷∗(𝜑(⋅)𝑙)𝑑𝜇 =

∫ 1

0

𝑙(𝑟)

∫
𝜑(𝑥)𝜎𝛼(𝑟, 𝑑𝑥)𝑑𝑟 ∀𝑙 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1

𝑏 (𝐻). (6.1)

Now take

𝑐𝑗 :=

{
(𝑗𝜋)

1
2
+𝜀, if 𝛼 > 0

(𝑗𝜋)𝛽, if 𝛼 = 0,
(6.2)
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where 𝜀 ∈ (0, 3
2
] and 𝛽 ∈ (3

2
, 2] respectively, and define

𝐻1 := {𝑥 ∈ 𝐻∣
∞∑
𝑗=1

⟨𝑥, 𝑒𝑗⟩2𝑐2𝑗 <∞},

equipped with the inner product

⟨𝑥, 𝑦⟩𝐻1 :=
∞∑
𝑗=1

𝑐2𝑗⟨𝑥, 𝑒𝑗⟩⟨𝑦, 𝑒𝑗⟩.

We note that 𝐷(𝐴) ⊂ 𝐻1 continuously for all 𝛼 ≥ 0, since 𝜀 ≤ 3
2
, 𝛽 ≤ 2. Furthermore,

(𝐻1, ⟨, ⟩𝐻1) is a Hilbert space such that 𝐻1 ⊂ 𝐻 continuously and densely. Identifying 𝐻 with
its dual we obtain the continuous and dense embeddings

𝐻1 ⊂ 𝐻(≡ 𝐻∗) ⊂ 𝐻∗
1 .

It follows that

𝐻1⟨𝑧, 𝑣⟩𝐻∗
1
= ⟨𝑧, 𝑣⟩𝐻∀𝑧 ∈ 𝐻1, 𝑣 ∈ 𝐻,

and that (𝐻1, 𝐻,𝐻
∗
1 ) is a Gelfand triple.

The following is the main result of this section.

Theorem 6.2 𝐼𝐾𝛼 ∈ 𝐵𝑉 (𝐻,𝐻1) ∩H.

Proof First for 𝜎𝛼 as in (6.1) we show that for each 𝐵 ∈ ℬ(𝐻) the function 𝑟 7→ 𝜎𝛼(𝑟,𝐵) is in
𝐻∗

1 and that the map 𝐵 7→ 𝜎𝛼(⋅, 𝐵) is in fact an 𝐻∗
1 -valued measure of bounded variation, i.e

sup{
∞∑
𝑛=1

∥𝜎𝛼(⋅, 𝐵𝑛)∥𝐻∗
1
: 𝐵𝑛 ∈ ℬ(𝐻), 𝑛 ∈ ℕ, 𝐻 = ∪̇∞

𝑛=1𝐵𝑛} <∞,

that is,

sup{
∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎𝛼(𝑟, 𝐵𝑛) sin(𝑗𝜋𝑟)𝑑𝑟)
2)1/2 : 𝐵𝑛 ∈ ℬ(𝐻), 𝑛 ∈ ℕ, 𝐻 = ∪̇∞

𝑛=1𝐵𝑛} <∞,

where ∪̇∞
𝑛=1𝐵𝑛 means disjoint union.

For 𝛼 > 0 we have

∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎𝛼(𝑟,𝐵𝑛) sin(𝑗𝜋𝑟)𝑑𝑟)
2)1/2

≤
∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎𝛼(𝑟,𝐵𝑛)𝑑𝑟)
2)1/2

≤𝐶
∞∑
𝑛=1

∫ 1

0

𝜎𝛼(𝑟, 𝐵𝑛)𝑑𝑟

=𝐶

∫ 1

0

𝜎𝛼(𝑟)𝑑𝑟 <∞.
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For 𝛼 = 0 using that ∣ sin(𝑗𝜋𝑟)∣ ≤ 2𝑗𝜋𝑟(1− 𝑟) ∀𝑟 ∈ [0, 1], we have

∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎0(𝑟, 𝐵𝑛) sin(𝑗𝜋𝑟)𝑑𝑟)
2)1/2

≤
∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎0(𝑟, 𝐵𝑛)2𝑗𝜋𝑟(1− 𝑟)𝑑𝑟)2)1/2

≤𝐶
∞∑
𝑛=1

∫ 1

0

𝜎0(𝑟, 𝐵𝑛)𝑟(1− 𝑟)𝑑𝑟

=𝐶

∫ 1

0

𝜎0(𝑟)𝑟(1− 𝑟)𝑑𝑟 <∞

Thus 𝜎𝛼 in (6.1) is of bounded variation as an 𝐻∗
1 -valued measure. Hence by the theory of

vector-valued measures (cf [2, Section 2.1]), there is a unit vector field 𝑛𝛼 : 𝐻 → 𝐻∗
1 , such that

𝜎𝛼 = 𝑛𝛼∥𝜎𝛼∥, where ∥𝜎𝛼∥(𝐵) := sup{∑∞
𝑛=1 ∥𝜎𝛼(⋅, 𝐵𝑛)∥𝐻∗

1
: 𝐵𝑛 ∈ ℬ(𝐻), 𝑛 ∈ ℕ, 𝐵 = ∪̇∞

𝑛=1𝐵𝑛} is
a nonnegative measure, which is finite by the above proof. So (6.1) becomes∫

𝐾𝛼

𝐷∗(𝜑(⋅)𝑙)𝑑𝜇 =

∫
𝐻1⟨𝜑(𝑥)𝑙, 𝑛𝛼(𝑥)⟩𝐻∗

1
∥𝜎𝛼∥(𝑑𝑥) ∀𝑙 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1

𝑏 (𝐻),

which by linearity extends to all 𝐺 ∈ (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 . Thus by Theorem 3.1(iii), we get that

𝐼𝐾𝛼 ∈ 𝐵𝑉 (𝐻,𝐻1).
𝐼𝐾𝛼 ∈ 𝑄𝑅(𝐻) follows by Remark 4.1. □

Remark 6.3 It has been proved by Guan Qingyang that 𝐼𝐾𝛼 is not in 𝐵𝑉 (𝐻,𝐻).

Thus we have Theorem 3.2 in this situation. More precisely:

Theorem 6.4 Let 𝜌 := 𝐼𝐾𝛼 and consider the measure ∣𝜎𝛼∣ and 𝑛𝛼 appearing in Theorem
6.1. Then there is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆, under 𝑃𝑧 there exists
an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that the sample paths of the associated distorted
OU-process 𝑀𝜌 on 𝐹 satisfy the following: for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊𝑠⟩+ 1

2

∫ 𝑡

0
𝐻1⟨𝑙, 𝑛𝛼(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∣𝜎𝛼∣

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 𝑃𝑧 − 𝑎.𝑒.

Here 𝐿
∣𝜎𝛼∣
𝑡 is the real valued PCAF associated with ∣𝜎𝛼∣ by the Revuz correspondence, satisfying

𝐼{𝑋𝑠+𝛼 ∕=0}𝑑𝐿∣𝜎𝛼∣
𝑠 = 0, (6.3)

and for 𝑙 ∈ 𝐻1 with 𝑙(𝑟) ≥ 0 we have∫ 𝑡

0
𝐻1⟨𝑙, 𝑛𝛼(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∣𝜎𝛼∣

𝑠 ≥ 0. (6.4)

Furthermore, for all 𝑧 ∈ 𝐹

𝑃𝑧[𝑋𝑡 ∈ 𝐶0[0, 1] for a.e. 𝑡 ∈ [0,∞)] = 1. (6.5)
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Proof The first part of the assertion follows by Theorem 3.2 and the uniqueness part of
Theorem 3.1 (ii). (6.3) and (6.4) follow by the property of 𝜎𝛼 in [28]. By [22, p.135 Theorem
2.4], we have 𝐶0[0, 1] is a Borel subset of 𝐿2[0, 1]. By [10, (5.1.13)], we have

𝐸𝜌𝜇[

∫ 𝑘

𝑘−1

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠] = 𝜌𝜇(𝐹 ∖ 𝐶0[0, 1]) = 0 ∀𝑘 ∈ ℕ,

hence

𝐸𝜌𝜇[

∫ ∞

0

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠] = 0.

Since 𝐸𝑥[
∫∞
0

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠] is a 0-excessive function in 𝑥 ∈ 𝐾𝛼, it is finely continuous with
respect to the process 𝑋. Then for ℰ𝜌 − q.e. 𝑧 ∈ 𝐹 ,

𝐸𝑧[

∫ ∞

0

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠] = 0,

thus, for ℰ𝜌 − q.e. 𝑧 ∈ 𝐹 ,

𝑃𝑧[

∫ ∞

0

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠 = 0] = 1.

As a consequence, we have that Λ0 := {𝑋𝑡 ∈ 𝐶0[0, 1] for a.e. 𝑡 ∈ [0,∞)} is measurable and for
ℰ𝜌 − q.e. 𝑧 ∈ 𝐹

𝑃𝑧(Λ0) = 1.

As Λ0 = ∩𝑡∈ℚ,𝑡>0𝜃
−1
𝑡 Λ0 and since by [4] we have that the semigroup associated with 𝑋𝑡 is strong

Feller, by the Markov property as in [8, Lemma 7.1], we obtain that for any 𝑧 ∈ 𝐹, 𝑡 ∈ ℚ, 𝑡 > 0,

𝑃𝑧(𝜃
−1
𝑡 Λ0) = 1.

Hence for any 𝑧 ∈ 𝐹 we have

𝑃𝑧[𝑋𝑡 ∈ 𝐶0[0, 1] for a.e. 𝑡 ∈ [0,∞)] = 1.

□

Remark 6.5 From the above theorem, it follows that the solution in [19, Theorem 1.3] is
the strong solution to an infinite-dimensional Skorohod problem.
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[8] G. Da Prato and M. Röckner, Singular disspative stochastic equations in Hilbert spaces.
Probability Theory Related Fields. 124 (2002), 261-303
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[17] Z. M. Ma, and M. Röckner, ”Introduction to the theory of (non-symmetric) Dirichlet
forms,” Springer-Verlag, Berlin/Heidelberg/New York, 1992
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