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Abstract

The existence of random attractors for a large class of stochastic partial differential
equations (SPDE) driven by general additive noise is established. The main results
are applied to various types of SPDE, as e.g. stochastic reaction-diffusion equations,
the stochastic p-Laplace equation and stochastic porous media equations. Besides
classical Brownian motion, we also include space-time fractional Brownian Motion and
space-time Lévy noise as admissible random perturbations. Moreover, cases where the
attractor consists of a single point are considered and bounds for the speed of attraction
are obtained.
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1 Introduction

Since the foundational work in [16, 17, 44] the long time behaviour of several examples of
SPDE perturbed by additive noise has been extensively investigated by means of proving
the existence of a global random attractor (cf. e.g. [8, 10, 11, 12, 19, 20, 31, 46, 47]).
However, these results address only some specific examples of SPDE of semilinear type.
To the best of our knowledge the only result concerning a non-semilinear SPDE, namely
stochastic generalized porous media equations is given in [9]. In this work we provide a
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general result yielding the existence of a (unique) random attractor for a large class of
SPDE perturbed by general additive noise. In particular, the result is applicable also to
quasilinear equations like stochastic porous media equations and the stochastic p-Laplace
equation. The existence of the random attractor for the stochastic porous medium equation
(SPME) as obtained in [9] is contained as a special case (at least if the noise is regular
enough, cf. Remark 3.4). We also would like to point out that we include the well-studied
case of stochastic reaction-diffusion equations, even in the case of high order growth of the
nonlinearity by reducing it to the deterministic case and then applying our general results (cf.
Remark 3.2 for details and comparison with previous results). Apart from allowing a large
class of admissible drifts, we also formulate our results for general additive perturbations,
thus containing the case of Brownian motion and fractional Brownian motion (cf. [21, 37]).
We emphasize, however, that the continuity of the noise in time is not necessary. Our
techniques are designed so that they also apply to cádlág noise. In particular, Lévy-type
noises are included (cf. Section 3). Under a further condition on the drift, we prove that
the random attractor consists of a single point, i.e. the existence of a random fixed point.
Hence the existence of a unique stationary solution is also obtained.

Our results are based on the variational approach to (S)PDE. The variational approach
has been used intensively in recent years to analyze SPDE driven by an infinite dimensional
Wiener process. For general results on the existence and uniqueness of variational solutions
to SPDE we refer to [22, 27, 36, 38, 41, 49]. As a typical example of an SPDE in this
framework stochastic porous media equations have been intensively investigated in [4, 5, 6,
7, 18, 26, 33, 35, 43].

Let us now describe our framework, conditions and main results. Let

V ⊆ H ≡ H∗ ⊆ V ∗

be a Gelfand triple, i.e. (H, 〈·, ·〉H) is a separable Hilbert space and is identified with its dual
space H∗ by the Riesz isomorphism i : H → H∗, V is a reflexive Banach space such that it
is continuously and densely embedded into H. V ∗〈·, ·〉V denotes the dualization between V
and its dual space V ∗. Let A : V → V ∗ be measurable, (Ω,F ,Ft,P) be a filtered probability
space and (Nt)t∈R be a V -valued adapted stochastic process. For [s, t] ⊆ R we consider the
following stochastic evolution equation

dXr = A(Xr)dr + dNr, r ∈ [s, t],(1.1)

Xs = x ∈ H.

If A satisfies the standard monotonicity and coercivity conditions (cf. (H1) − (H4) below)
we shall prove the existence and uniqueness of solutions to (1.1) in the sense of Definition
1.1.

Suppose that there exists α > 1 and constants δ > 0, K,C ∈ R such that the following
conditions hold for all v, v1, v2 ∈ V and ω ∈ Ω:

(H1) (Hemicontinuity) The map s 7→ V ∗〈A(v1 + sv2), v〉V is continuous on R.

(H2) (Monotonicity)
2V ∗〈A(v1)− A(v2), v1 − v2〉V ≤ C‖v1 − v2‖2

H .
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(H3) (Coercivity)
2V ∗〈A(v), v〉V + δ‖v‖αV ≤ C +K‖v‖2

H .

(H4) (Growth)
‖A(v)‖V ∗ ≤ C(1 + ‖v‖α−1

V ).

We can now define the notion of a solution to (1.1).

Definition 1.1. An H-valued, (Ft)-adapted process {Xr}r∈[s,t] is called a solution of (1.1)
if X·(ω) ∈ Lα([s, t];V ) ∩ L2([s, t];H) and

Xr(ω) = x+

∫ r

s

A(Xu(ω))du+Nr(ω)−Ns(ω)

holds for all r ∈ [s, t] and all ω ∈ Ω.

Since the solution to (1.1) will be constructed via a transformation of (1.1) into a deter-
ministic equation (parametrized by ω) we can allow very general additive stochastic pertur-
bations. In particular, we do not have to assume the noise to be a martingale or a Markov
process.

Since the noise is not required to be Markovian, the solutions to the SPDE cannot be
expected to define a Markov process. Therefore, the approach to study long-time behaviour
of solutions to SPDE via invariant measures and ergodicity of the associated semigroup is
not an option here. In particular, the results from [28] cannot be applied to prove that
the attractor consists of a single point. Consequently, our analysis is instead based on the
framework of random dynamical systems (RDS), which more or less requires the driving
process to have stationary increments (cf. Lemma 3.1).

Let ((Ω,F ,P), (θt)t∈R) be a metric dynamical system, i.e. (t, ω) 7→ θt(ω) is B(R)⊗F/F
measurable, θ0 = id, θt+s = θt ◦ θs and θt is P-preserving, for all s, t ∈ R.

(S1) (Strictly stationary increments) For all t, s ∈ R, ω ∈ Ω:

Nt(ω)−Ns(ω) = Nt−s(θsω)−N0(θsω).

(S2) (Regularity) For each ω ∈ Ω,

N·(ω) ∈ Lαloc(R;V ) ∩ L2
loc(R;H)

(with the same α > 1 as in (H3)).

(S3) (Joint measurability) N : R× Ω→ V is B(R)⊗F/B(V ) measurable.

Remark 1.1. Although we do not explicitly assume Nt to have cádlág paths, in the ap-
plications the underlying metric dynamical system ((Ω,F ,P), (θt)t∈R) is usually defined
as the space of all cádlág functions endowed with a topology making the Wiener shift
θ : R × Ω → Ω; θt(ω) = ω(· + t) − ω(t) measurable and the probability measure P is
given by the distribution of the noise Nt. Thus, in the applications we will always require
Nt to have cádlág paths.
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We now recall the notion of a random dynamical system. For more details concerning
the theory of random dynamical systems we refer to [16, 17].

Definition 1.2. Let (H, d) be a complete and separable metric space.

(i) A random dynamical system (RDS) over θt is a measurable map

ϕ : R+ ×H × Ω→ H; (t, x, ω) 7→ ϕ(t, ω)x

such that ϕ(0, ω) = id and

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω),

for all t, s ∈ R+ and ω ∈ Ω. ϕ is said to be a continuous RDS if x 7→ ϕ(t, ω)x is
continuous for all t ∈ R+ and ω ∈ Ω.

(ii) A stochastic flow is a family of mappings S(t, s;ω) : H → H, −∞ < s ≤ t < ∞,
parametrized by ω such that

(t, s, x, ω) 7→ S(t, s;ω)x

is B(R)⊗ B(R)⊗ B(H)⊗F/B(H)-measurable and

S(t, r;ω)S(r, s;ω)x = S(t, s;ω)x,

S(t, s;ω)x = S(t− s, 0; θsω)x,

for all s ≤ r ≤ t and all ω ∈ Ω. S is said to be a continuous stochastic flow if
x 7→ S(t, s;ω)x is continuous for all s ≤ t and ω ∈ Ω.

In order to apply the theory of RDS and in particular to apply Proposition 1.2 below, we
first need to define the RDS associated with (1.1). For this we consider the unique ω-wise
solution (denoted by Z(·, s;ω)x) of

(1.2) Zt = x−Ns(ω) +

∫ t

s

A(Zr +Nr(ω))dr, t ≥ s,

and then define

S(t, s;ω)x := Z(t, s;ω)x+Nt(ω),(1.3)

ϕ(t, ω)x := S(t, 0;ω)x = Z(t, 0;ω)x+Nt(ω).(1.4)

Note that S(·, s;ω) satisfies

S(t, s;ω)x = x+

∫ t

s

A(S(r, s;ω)x)dr +Nt(ω)−Ns(ω),

for each fixed ω ∈ Ω and all t ≥ s. Hence S(t, s;ω)x solves (1.1) in the sense of Definition
1.1.
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Theorem 1.1. Under the assumptions (H1)-(H4) and (S1)-(S3), S(t, s;ω) defined in (1.3)
is a continuous stochastic flow and ϕ defined in (1.4) is a continuous random dynamical
system.

For the proof of Theorem 1.1 as well as the other theorems in this section we refer to the
next section.

With the notion of an RDS above we can now recall the stochastic generalization of
notions of absorption, attraction and Ω-limit sets (cf. [16, 17]).

Definition 1.3. (i) A set-valued map K : Ω→ 2H is measurable if for all x ∈ H the map
ω 7→ d(x,K(ω)) is measurable, where for nonempty sets A,B ∈ 2H we set

d(A,B) = sup
x∈A

inf
y∈B

d(x, y)

and d(x,B) = d({x}, B). A measurable set-valued map is also called a random set.

(ii) Let A, B be random sets. A is said to absorb B if P-a.s. there exists an absorption
time tB(ω) such that for all t ≥ tB(ω)

ϕ(t, θ−tω)B(θ−tω) ⊆ A(ω).

A is said to attract B if

d(ϕ(t, θ−tω)B(θ−tω), A(ω)) −−−→
t→∞

0, P-a.s. .

(iii) For a random set A we define the Ω-limit set to be

ΩA(ω) = Ω(A, ω) =
⋂
T≥0

⋃
t≥T

ϕ(t, θ−tω)A(θ−tω).

Definition 1.4. A random attractor for an RDS ϕ is a compact random set A satisfying
P-a.s.:

(i) A is invariant, i.e. ϕ(t, ω)A(ω) = A(θtω) for all t > 0.

(ii) A attracts all deterministic bounded sets B ⊆ H.

Note that by [14] the random attractor for an RDS is uniquely determined.
The following proposition yields a sufficient criterion for the existence of a random at-

tractor of an RDS.

Proposition 1.2. (cf. [17, Theorem 3.11]) Let ϕ be an RDS and assume the existence of a
compact random set K absorbing every deterministic bounded set B ⊆ H. Then there exists
a random attractor A, given by

A(ω) =
⋃

B⊆H, B bounded

ΩB(ω).

5



We aim to apply Proposition 1.2 to prove the existence of a random attractor for the RDS
associated with (1.1). Thus, we need to prove the existence of a compact globally absorbing
random set K. To show the existence of such a set for (1.1), we require some additional
assumptions to derive an a priori estimate of the solution in a norm ‖ · ‖S, which is stronger
than the norm ‖ · ‖H .

(H5) Suppose there is a subspace (S, ‖·‖S) ofH such that the embedding V ⊆ S is continuous
and S ⊆ H is compact. Let Tn be positive definite self-adjoint operators on H such
that

〈x, y〉n := 〈x, Tny〉H , x, y ∈ H,n ≥ 1,

define a sequence of new inner products on H. Suppose that the induced norms ‖ · ‖n
are all equivalent to ‖ · ‖H and for all x ∈ S we have

‖x‖n ↑ ‖x‖S as n→∞.

Moreover, we assume that Tn : V → V, n ≥ 1, are continuous and that there exists a
constant C > 0 such that

(1.5) 2V ∗〈A(v), Tnv〉V ≤ C(‖v‖2
n + 1), v ∈ V,

and

(1.6) sup
n∈N

∫ 0

−1

‖TnNt‖αV dt ≤ C.

Remark 1.2. (1) Assumption (H5) looks quite abstract at first glance. But it is applicable to
a large class of SPDE within the variational framework, as e.g. stochastic reaction diffusion
equations, stochastic porous media equations and the stochastic p-Laplace equation (see
Section 3 for more examples).

(2) Under assumption (1.5) the following regularity property of solutions to general SPDE
driven by a Wiener process was established in [34]:

E sup
s∈[0,t]

‖Xs‖2
S <∞, for all t > 0.

In order to prove the existence of a random attractor, we need to assume some growth
condition on the paths of the noise.

(S4) (Subexponential growth) For P-a.a. ω ∈ Ω and |t| → ∞, Nt(ω) is of subexponential
growth, i.e. ‖Nt(ω)‖V = o(eλ|t|) for every λ > 0.

Theorem 1.3. Suppose (H1)-(H5) hold for α = 2, K = 0 or for α > 2, and that (S1)-(S4)
are satisfied. Then the RDS ϕ associated with SPDE (1.1) has a compact random attractor.

Remark 1.3. (H1)-(H4) are the classical monotonicity and coercivity conditions for the
existence and uniqueness of solutions to (1.1). It can be replaced by some much weaker
assumptions (e.g. local monotonicity) according to a recent result in [36]. The existence of
random attractors for SPDE with locally monotone coefficients in [36] will be the subject
for future investigation.
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In order to make the proof easier to follow, we first give a quick outline. By Proposition
1.2 we only need to prove the existence of a compact globally absorbing random set K. This
set will be chosen as

K(ω) := BS(0, r(ω))
H
,

where BS(0, r) denotes the ball with center 0 and radius r (depending on ω) in S. Since
S ⊆ H is a compact embedding, K is a compact random set in H. Note that

ϕ(t, θ−tω) = S(t, 0; θ−tω) = S(0,−t;ω).

Hence we need pathwise bounds on S0(= S(0,−t;ω)) in the S-norm. In order to get such
estimates we consider the norms ‖ · ‖n on H for which we can apply Itô’s formula.

Under the following stronger monotonicity condition we prove that the random attractor
consists of a single point:

(H2′) There exist constants β ≥ 2 and λ > 0 such that

2V ∗〈A(v1)− A(v2), v1 − v2〉V ≤ −λ‖v1 − v2‖βH , ∀v1, v2 ∈ V.

Theorem 1.4. Suppose that (H1),(H2′),(H3),(H4) and (S1)-(S3) hold. If β = 2 also
suppose (S4) holds. Then the RDS ϕ associated with SPDE (1.1) has a compact random
attractor A(ω) consisting of a single point:

A(ω) = {η0(ω)}.

In particular, there is a unique random fixed point η0(ω) and a unique invariant random
measure µ· ∈ PΩ(H) which is given by

µω = δη0(ω), P-a.s. .

Moreover,

(i) if β > 2, then the speed of convergence is polynomial, more precisely,

‖S(t, s;ω)x− η0(θtω)‖2
H ≤

{
λ

2
(β − 2)(t− s)

}− 2
β−2

, ∀x ∈ H.

(ii) if β = 2, then the speed of convergence is exponential. More precisely, for every
η ∈ (0, λ) there is a random variable Kη such that

‖S(t, s;ω)x− η0(θtω)‖2
H ≤ 2

(
Kη(ω) + ‖x‖2

H

)
e(λ−η)se−λt, ∀x ∈ H.

Remark 1.4. (1) In case β > 2 we recover the optimal rate of convergence found in the
deterministic case in [3] for the porous media equation.

(2) Note that (H5) and for β > 2 the growth condition for the noise (S4) are not required
in Theorem 1.4.

The paper is organized as follows. The proofs of main theorems are given in the next sec-
tion. In Section 3 we apply the main results to various examples of SPDE such as stochastic
reaction-diffusion equations, the stochastic p-Laplace equation and stochastic porous medium
equations. As the examples of admissible random perturbation (noise), we also show that
assumptions (S1)−(S4) hold not only for Brownian motion, but also for fractional Brownian
motion and Lévy processes.
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2 Proofs of main theorems

2.1 Proof of Theorem 1.1

We need to show that the solution to (1.1) generates a random dynamical system. In order
to verify the cocycle property, we use the standard transformation to rewrite the SPDE (1.1)
as a PDE with a random parameter. This is the reason why we need to restrict Nt to take
values in V instead of H. For simplicity, in the proof the generic constant C may change
from line to line.

Proof. Consider the PDE (1.2) with random parameter ω ∈ Ω and let

Ãω(t, v) := A(v +Nt(ω)),

which is a well defined operator from V to V ∗ since Nt(ω) ∈ V . To obtain the existence
and uniqueness of solutions to (1.2) we check the assumptions of [40, Theorem 4.2.4]. Since
N·(ω) is measurable, Aω(t, v) is B(R)⊗B(V ) measurable. It is obvious that hemicontinuity
and (weak) monotonicity hold for Ãω. For the coercivity, using (H3), (H4) and Young’s
inequality we have

2V ∗〈Ãω(t, v), v〉V = 2V ∗〈A(v +Nt(ω)), v +Nt(ω)−Nt(ω)〉V
≤− δ‖v +Nt(ω)‖αV +K‖v +Nt(ω)‖2

H + C − 2V ∗〈A(v +Nt(ω)), Nt(ω)〉V
≤− δ‖v +Nt(ω)‖αV +K‖v +Nt(ω)‖2

H + C + C
(
1 + ‖v +Nt(ω)‖α−1

V

)
‖Nt(ω)‖V

≤− δ

2
‖v +Nt(ω)‖αV +K‖v +Nt(ω)‖2

H + C (1 + ‖Nt(ω)‖αV )

≤− 2−αδ‖v‖αV + 2K‖v‖2
H + ft,

(2.1)

where ft = 2K‖Nt(ω)‖2
H + C + C‖Nt(ω)‖αV ∈ L1

loc(R) by (S2).
The growth condition also holds for Ãω since

‖Ãω(t, v)‖V ∗ = ‖A(v +Nt(ω))‖V ∗

≤ C(1 + ‖v +Nt(ω)‖α−1
V )

≤ f
(α−1)/α
t + C‖v‖α−1

V .

Therefore, according to the classical results in [27, 40] (applied to the deterministic case),
(1.2) has a unique solution

Z(·, s;ω)x ∈ Lαloc([s,∞);V ) ∩ C([s,∞), H)

and x 7→ Z(t, s;ω)x is continuous in H for all s ≤ t and ω ∈ Ω.
Now we define S(t, s;ω)x by (1.3) and ϕ(t, ω)x by (1.4). For fixed s, ω, x we abbreviate

S(t, s;ω)x by St and Z(t, s;ω)x by Zt. By the pathwise uniqueness of the solution to equation
(1.2) and (S1) we have

S(t, s;ω) = S(t, r;ω)S(r, s;ω),

S(t, s;ω) = S(t− s, 0; θsω),(2.2)

8



for all r, s, t ∈ R and all ω ∈ Ω.
It remains to prove the measurability of ϕ : R×H × Ω→ H. By (2.2) this also implies

the measurability of (t, s, x, ω) 7→ S(t, s;ω)x. Since ϕ(t, ω)x = Z(t, 0;ω)x + Nt(ω) and
by (S3) it is sufficient to show the measurability of (t, x, ω) 7→ Z(t, 0;ω)x. Note that the
maps t 7→ Z(t, 0;ω)x and x 7→ Z(t, 0;ω)x are continuous, thus we only need to prove the
measurability of ω 7→ Z(t, 0;ω)x.

Let x ∈ H and t ∈ R be arbitrary, fix and choose some interval [s0, t0] ⊆ R such that
t ∈ (s0, t0). By the proof of the existence and uniqueness of solutions to (1.2) we know that
Z(t, 0;ω)x is the weak limit of a subsequence of the Galerkin approximations Zn(t, 0;ω)x in
Lα([s0, t0];V ). Since every subsequence of Zn(t, 0;ω)x has a subsequence weakly converging
to Z(t, 0;ω)x, this implies that the whole sequence of Galerkin approximants Zn(t, 0;ω)x
weakly converges to Z(t, 0;ω)x in Lα([s0, t0];V ).

Let ϕk ∈ C∞0 (R) be a Dirac sequence with supp(ϕk) ⊆ B 1
k
(0). Then (ϕk ∗Zn(·, 0;ω)x)(t)

is well-defined for k large enough. For each such k ∈ N and h ∈ H we have

(ϕk ∗ 〈Zn(·, 0;ω)x, h〉H)(t)→ (ϕk ∗ 〈Z(·, 0;ω)x, h〉H)(t), n→∞.

Since ω 7→ Zn(·, 0;ω)x ∈ Lα([s0, t0];V ) is measurable, so is ω 7→ (ϕk ∗ Zn(·, 0;ω)x)(t).
Consequently, ω 7→ (ϕk ∗ 〈Z(·, 0;ω)x, h〉H)(t) is measurable as it is the ω-wise limit of
(ϕk ∗ 〈Zn(·, 0;ω)x, h〉H)(t). We know that r 7→ Z(r, 0;ω)x is continuous in H. There-
fore, (ϕk ∗ 〈Z(·, 0;ω)x, h〉H)(t) → 〈Z(t, 0;ω)x, h〉H and the measurability of ω 7→ (ϕk ∗
〈Z(·, 0;ω)x, h〉H)(t) implies the measurability of ω 7→ 〈Z(t, 0;ω)x, h〉H .

Since this is true for all h ∈ H and B(H) is generated by σ({〈h, ·〉H | h ∈ H}), this implies
the measurability of ω 7→ Z(t, 0;ω)x. This finishes the proof that ϕ defines a continuous
RDS and consequently, that S defines a continuous stochastic flow.

Note that adaptedness of St to Ft can be shown in the same way as the measurability of
ϕ.

2.2 Proof of Theorem 1.3

Since in Theorem 1.1 we have proved that ϕ defines an RDS, we can apply Proposition 1.2
to show the existence of a random attractor for ϕ. For this we follow the procedure outlined
in the introduction. First we prove the absorption of Z(t, s;ω)x in H at time t = −1.

Lemma 2.1. Suppose (H1)-(H4) hold for α = 2, K = 0 or for α > 2 and that (S1)-(S4)
are satisfied. Then there exists a random radius r1(ω) > 0 such that for all ρ > 0, there
exists s̄ ≤ −1 in such a way that P−a.s. we have

‖Z(−1, s;ω)x‖2
H ≤ r2

1(ω),

which holds for all s ≤ s̄ and all x ∈ H with ‖x‖H ≤ ρ .

Proof. By the coercivity of Ãω proved in the previous section (see (2.1)) we have

d

dt
‖Zt‖2

H = 2V ∗〈Ãω(t, Zt), Zt〉V ≤ −δ0‖Zt‖αV + 2K‖Zt‖2
H + ft,(2.3)
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where δ0 = 2−αδ > 0 and ft = 2K‖Nt(ω)‖2
H + C(‖Nt(ω)‖αV + 1).

If α > 2 or α = 2, K = 0, then there exist constants λ > 0 and C such that

(2.4)
d

dt
‖Zt‖2

H +
δ0

2
‖Zt‖αV ≤ −λ‖Zt‖2

H + ft + C.

By Gronwall’s Lemma for all s ≤ −1 we have,

‖Z−1‖2
H ≤ e−λ(−1−s)‖Zs‖2

H +

∫ −1

s

e−λ(−1−r)(fr + C)dr

≤ 2e−λ(−1−s)‖x‖2
H + 2e−λ(−1−s)‖Ns(ω)‖2

H +

∫ −1

−∞
e−λ(−1−r)(fr + C)dr.

(2.5)

By (S4), i.e. the subexponential growth of Nt(ω) for t→ −∞ we know that the following
quantity is finite for all ω ∈ Ω,

r2
1(ω) = 2 + 2 sup

r≤−1
e−λ(−1−r)‖Nr(ω)‖2

H +

∫ −1

−∞
e−λ(−1−r)(fr(ω) + C)dr.

Applying (S3), i.e. the joint measurability of N in (t, ω), r1(ω) is measurable and then the
assertion follows by taking some s̄ < −1 such that e−λ(−1−s̄)ρ2 ≤ 1.

Remark 2.1. (2.4) also implies the following estimate for the V -norm

(2.6)
δ0

2

∫ 0

−1

‖Zr‖αV dr ≤ ‖Z−1‖2
H +

∫ 0

−1

(fr + C)dr.

The next step is to show compact absorption of Z(t, s;ω) at time t = 0. We proceed
by using the approximation scheme indicated in the outline of proof. By defining Hn :=
(H, 〈·, ·〉n) (see (H5)) we obtain a sequence of new Gelfand triples

V ⊆ Hn ≡ H∗n ⊆ V ∗.

Note that we use different Riesz maps in : Hn → H∗n to identify Hn ≡ H∗n in these Gelfand
triples. Let i denote the Riesz map for H ≡ H∗. Now we recall the following Lemma, which
is proved in [34].

Lemma 2.2. If Tn : V → V is continuous, then in ◦ i−1 : H∗ → H∗n is continuous w.r.t.
‖ · ‖V ∗. Therefore, there exists a unique continuous extension In of in ◦ i−1 to all of V ∗ such
that

(2.7) V ∗〈Inf, v〉V = V ∗〈f, Tnv〉V , f ∈ V ∗, v ∈ V.

Lemma 2.3. Suppose the assumptions of Theorem 1.3 hold. Then there exists a random
radius r2(ω) > 0 such that for all ρ > 0, there exists s̄ ≤ −1 in such a way that P− a.s. we
have

‖Z(0, s;ω)x‖2
S ≤ r2

2(ω),

which holds for all s ≤ s̄ and all x ∈ H with ‖x‖H ≤ ρ.
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Proof. Using the operator In : V ∗ → H∗n we consider the following equation

d

dt
Zt = InA(Zt +Nt),

which is well defined on the new Gelfand triple

V ⊆ Hn ≡ H∗n ⊆ V ∗.

By Lemma 2.2, (1.5) and (H4) we have

d

dt
‖Zt‖2

n = 2V ∗〈InA(Zt +Nt), Zt〉V

= 2V ∗〈A(Zt +Nt), TnZt〉V
≤ C(‖Zt +Nt‖2

n + 1)− 2V ∗〈A(Zt +Nt), TnNt〉V

≤ C(‖Zt +Nt‖2
n + 1) + 2

(
α− 1

α
‖A(Zt +Nt)‖

α
α−1

V ∗ +
1

α
‖TnNt‖αV

)
≤ C

(
‖Zt‖2

n + ‖Zt‖αV
)

+ C
(
1 + ‖Nt‖2

n + ‖Nt‖αV + ‖TnNt‖αV
)

≤ C
(
‖Zt‖2

n + ‖Zt‖αV
)

+ g
(n)
t ,

where C is some positive constant and

g
(n)
t := C

(
1 + ‖Nt‖2

S + ‖Nt‖αV + ‖TnNt‖αV
)
.

Then Gronwall’s Lemma implies that for all s ≤ 0,

‖Z0‖2
n ≤ e−Cs‖Zs‖2

n + C

∫ 0

s

e−Cr‖Zr‖αV dr +

∫ 0

s

e−Crg(n)
r dr.

Integrating on s over [−1, 0] and using (1.6) we have

‖Z0‖2
n ≤

∫ 0

−1

(
e−Cr‖Zr‖2

S + Ce−Cr‖Zr‖αV
)

dr +

∫ 0

−1

e−Crg(n)
r dr

≤
∫ 0

−1

(
e−Cr‖Zr‖2

S + Ce−Cr‖Zr‖αV
)

dr + C1,

where C1 is a finite constant.
Note that α ≥ 2 and ‖ · ‖S ≤ C‖ · ‖V , hence by taking n→∞ and using (2.6) we have

‖Z0‖2
S ≤ C

∫ 0

−1

e−Cr (1 + ‖Zr‖αV ) dr + C1

≤ C2‖Z−1‖2
H + C2,

where C2 > 0 is a constant. Now the assertion follows from Lemma 2.1.
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Proof of Theorem 1.3: By Lemma 2.3 there exists r2(ω) > 0 such that for all ρ > 0
there exists s̄ ≤ −1 in such a way that P− a.s.

‖S(0, s;ω)x‖S = ‖Z(0, s;ω)x+N0(ω)‖S
≤ ‖Z(0, s;ω)x‖S + ‖N0(ω)‖S
≤ r2(ω) + ‖N0(ω)‖S

holds for all s ≤ s̄ and all x ∈ H with ‖x‖H ≤ ρ.
Hence S(t, s;ω)x is absorbed at time t = 0 by the compact random set

K(ω) = BS(0, r2(ω) + ‖N0(ω)‖S).

By Proposition 1.2 this implies the existence of a random attractor for the RDS ϕ associated
with (1.1).

2.3 Proof of Theorem 1.4

The proof of first Lemma is mainly based on [9, Theorem 5.1]. The strong monotonicity
condition (H2′) leads to the following strong contraction property.

Lemma 2.4. Under the assumptions of Theorem 1.4 with β > 2, for s1 ≤ s2 < t, ω ∈ Ω
and x, y ∈ H we have

‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H ≤

{
‖S(s2, s1;ω)x− y‖2−β

H +
λ

2
(β − 2)(t− s2)

}− 2
β−2

≤
{
λ

2
(β − 2)(t− s2)

}− 2
β−2

.

In particular, for each t ∈ R there exists ηt (independent of x) such that

lim
s→−∞

S(t, s;ω)x = ηt(ω),

where the convergence holds uniformly in x and ω.

Proof. Let ω ∈ Ω, x, y ∈ H and s1 ≤ s2 ≤ s < t, then

S(t, s1;ω)x− S(t, s2;ω)y

=S(s, s1;ω)x− S(s, s2;ω)y +

∫ t

s

(A(S(r, s1;ω)x)− A(S(r, s2;ω)y)) dr.

Note that t 7→ S(t, s1;ω)x− S(t, s2;ω)y is continuous in H. By Itô’s formula and (H2′)

‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H

=‖S(s, s1;ω)x− S(s, s2;ω)y‖2
H

+ 2

∫ t

s
V ∗〈A(S(r, s1;ω)x)− A(S(r, s2;ω)y), S(r, s1;ω)x− S(r, s2;ω)y〉V dr(2.8)

≤‖S(s, s1;ω)x− S(s, s2;ω)y‖2
H − λ

∫ t

s

‖S(r, s1;ω)x− S(r, s2;ω)y‖βHdr.
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The idea of the rest of the proof is to compare ‖S(t, s1;ω)x−S(t, s2;ω)y‖2
H with the solution

to the ordinary differential equation

h′(t) = −λh(t)
β
2 , t ≥ s2; h(s2) = ‖S(s2, s1;ω)x− y‖2

H .(2.9)

However, since ‖S(t, s1;ω)x − S(t, s2;ω)y‖2
H is not necessarily differentiable in t we cannot

apply classical comparison results.
Let

hε(t) =

{
(‖S(s2, s1;ω)x− y‖H + ε)2−β +

λ

2
(β − 2)(t− s2)

}− 2
β−2

.

It is easy to show that hε is a solution of (2.9) with hε(s2) = (‖S(s2, s1;ω)x − y‖H + ε)2.
Now we prove that

(2.10) ‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H ≤ hε(t), t ≥ s2.

Let

Φε(t) = hε(t)− ‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H ,

τε = inf {t ≥ s2| Φε(t) ≤ 0} .
Because Φε(s2) > 0 and by the continuity of Φε we know that τε > s2. Furthermore, note
that by definition we have

hε(t) ≥ ‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H , t ∈ [s2, τε];

hε(t) ≤ (‖S(s2, s1;ω)x− y‖H + ε)2 =: cε, t ≥ s2.

If τε < ∞, then Φε(τε) ≤ 0 by the continuity of Φε. Therefore, by the mean value theorem
and (2.8) for all s2 ≤ s ≤ t ≤ τε we have,

Φε(t) = hε(t)− ‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H

≥ Φε(s)− λ
∫ t

s

(
hε(r)

β
2 −

(
‖S(r, s1;ω)x− S(r, s2;ω)y‖2

H

)β
2

)
dr

≥ Φε(s)−
λβc

β−2
2

ε

2

∫ t

s

Φε(r)dr.

Using Gronwall’s Lemma we obtain

Φε(τε) ≥ Φε(s2) exp

[
−λβ

2
c
β−2
2

ε (τε − s2)

]
> 0.

This contradiction implies that τε =∞, i.e. (2.10) holds.
Since (2.10) holds for any ε > 0 we can conclude that

‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H ≤

{
‖S(s2, s1;ω)x− y‖2−β

H +
λ

2
(β − 2)(t− s2)

}− 2
β−2

≤ ‖S(s2, s1;ω)x− y‖2
H ∧

{
λ

2
(β − 2)(t− s2)

}− 2
β−2

≤
{
λ

2
(β − 2)(t− s2)

}− 2
β−2
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holds for any t > s2.

Lemma 2.5. Suppose the assumptions of Theorem 1.4 with β = 2 and (S4) hold. Then for
each η ∈ (0, λ) there is an R+-valued random variable Kη such that

‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H ≤ 2

(
‖x‖2

He
η
2
s1 +Kη(ω) + ‖y‖2

H

)
e(λ−η)s2e−λt

for all s1 ≤ s2 < t, ω ∈ Ω and x, y ∈ H. In particular, for each t ∈ R there exists ηt
(independent of x) such that

lim
s→−∞

S(t, s;ω)x = ηt(ω),

where the convergence holds locally uniformly in x.

Proof. As in Lemma 2.4 for ω ∈ Ω, x, y ∈ H and s1 ≤ s2 ≤ s < t we obtain

‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H

≤‖S(s, s1;ω)x− S(s, s2;ω)y‖2
H − λ

∫ t

s

‖S(r, s1;ω)x− S(r, s2;ω)y‖2
Hdr.

Thus, by Gronwall’s Lemma

‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H ≤ ‖S(s2, s1;ω)x− y‖2

He
−λ(t−s2)

≤ 2
(
‖S(s2, s1;ω)x‖2

H + ‖y‖2
H

)
e−λ(t−s2).

By [40, Lemma 4.3.8] (H3), (H4) and (H2′) imply that for each η ∈ (0, λ) there exists a
Cη > 0 such that for all v ∈ V

(2.11) 2 V ∗〈A(v), v〉V ≤ −η‖v‖2
H + Cη.

Let η ∈ (0, λ) and η̃ = η+λ
2
∈ (η, λ). We use (2.11) with η̃, (H3), (H4) and Young’s inequality

to obtain

2 V ∗〈A(v +Nr), v〉V
=2 V ∗〈A(v +Nr), v +Nr −Nr〉V
≤2ε1 V ∗〈A(v +Nr), v +Nr〉V + 2(1− ε1) V ∗〈A(v +Nr), v +Nr〉V

+ 2‖A(v +Nr)‖V ∗‖Nr‖V
≤ε1K‖v +Nr‖2

H − δε1‖v +Nr‖αV + ε1C − η̃(1− ε1)‖v +Nr‖2
H + (1− ε1)Cη̃

+ ε2‖A(v +Nr)‖
α
α−1

V ∗ + Cε2‖Nr‖αV
≤(ε1K − η̃(1− ε1))‖v +Nr‖2

H + (ε2C − δε1)‖v +Nr‖αV + ε1C + (1− ε1)Cη̃

+ ε2C + Cε2‖Nr‖αV ,

where ε1 ∈ [0, 1], ε2 > 0 and C,Cε1 , Cε2 > 0 are some constants.
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Now by taking 0 < ε1 ≤ η̃−η
η̃+K
∧ 1 and ε2 = δε1

C
we have

2 V ∗〈A(v +Nr), v〉V ≤ −η‖v +Nr‖2
H + ε1C + (1− ε1)Cη̃ + ε2C + Cε2‖Nr‖αV

≤ −η
2
‖v‖2

H + η‖Nr‖2
H + ε1C + (1− ε1)Cη̃ + ε2C + Cε2‖Nr‖αV

≤ −η
2
‖v‖2

H + Cη(r),

where Cη(r) = η‖Nr‖2
H + Cε2‖Nr‖αV + ε1C + (1− ε1)Cη̃ + ε2C.

Hence for all t2 ≥ t1 ≥ s,

‖Z(t2, s;ω)x‖2
H = ‖Z(t1, s;ω)x‖2

H + 2

∫ t2

t1

V ∗〈A(Z(r, s;ω)x+Nr(ω)), Z(r, s;ω)x〉V dr

≤ ‖Z(t1, s;ω)x‖2
H −

η

2

∫ t2

t1

‖Z(r, s;ω)x‖2
Hdr +

∫ t2

t1

Cη(r)dr.

By Gronwall’s Lemma

‖S(s2, s1;ω)x‖2
H ≤ 2

(
‖Z(s2, s1;ω)x‖2

H + ‖Ns2(ω)‖2
H

)
≤ 2(‖x‖2

He
− η

2
(s2−s1) +

∫ s2

s1

e−η(s2−r)Cη(r)dr + ‖Ns2(ω)‖2
H).

For s1 ≤ s2 ≤ 0 we conclude that

‖S(t, s1;ω)x− S(t, s2;ω)y‖2
H

≤ 2
(
‖S(s2, s1;ω)x‖2

H + ‖y‖2
H

)
e−λ(t−s2)

≤ 4

(
‖x‖2

He
− η

2
(s2−s1) +

∫ s2

s1

e−
η
2

(s2−r)Cη(r)dr + ‖Ns2(ω)‖2
H +

1

2
‖y‖2

H

)
e−λ(t−s2)

≤ 4

(
‖x‖2

He
η
2
s1e(λ− η

2
)s2 + e(λ− η

2
)s2

∫ s2

s1

e
η
2
rCη(r)dr + eλs2‖Ns2(ω)‖2

H +
eλs2

2
‖y‖2

H

)
e−λt

≤ 4

(
e(λ− η

2
)s2‖x‖2

H + e(λ− η
2

)s2Kη + eλs2‖Ns2(ω)‖2
H +

eλs2

2
‖y‖2

H

)
e−λt

→ 0 as s1, s2 → −∞,

where Kη =
∫ 0

−∞ e
η
2
rCη(r)dr is finite by (S4), i.e. by the subexponential growth of ‖Nt‖V .

Therefore, for all t ∈ R and ω ∈ Ω there exists a limit ηt(ω) (independent of x) such that

lim
s→−∞

S(t, s;ω)x = ηt(ω)

holds locally uniformly in x.

Now we can finish the proof of Theorem 1.4.
Proof of Theorem 1.4 By Lemma 2.4 and 2.5 we may define

A(ω) = {η0(ω)}.
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We shall show that this defines a global random attractor for the RDS associated with (1.1).
Since η0(ω) is measurable, A(ω) is a random compact set. Hence we only need to check

the invariance and attraction properties for A(ω).
The Continuity of x 7→ S(t, 0;ω)x and the flow property imply that

ϕ(t, ω)A(ω) =

{
S(t, 0;ω) lim

s→−∞
S(0, s;ω)x

}
=

{
lim

s→−∞
S(t, s;ω)x

}
=

{
lim

s→−∞
S(0, s− t, θtω)x

}
= {η0(θtω)} = A(θtω), t > 0, x ∈ H.

Since the convergence in Lemma 2.4 is uniform (locally uniform resp. in Lemma 2.5) with
respect to x ∈ H, for any bounded set B ⊆ H we have

d(ϕ(t, θ−tω)B,A(ω)) = sup
x∈B
‖S(t, 0, θ−tω)x− η0(ω)‖H

= sup
x∈B
‖S(0,−t;ω)x− η0(ω)‖H → 0(t→∞),

i.e. A(ω) attracts all deterministic bounded sets.
Therefore, A is a global random attractor for the RDS associated with (1.1).
We now deduce the unique existence of an invariant random measure µ· ∈ PΩ(H). For the

notion of an invariant random measure we refer to [17, Definition 4.1]. By [17, Corollary 4.4]
the existence of a random attractor implies the existence of an invariant random measure.
Moreover, by [15, Theorem 2.12] every invariant measure for ϕ is supported by A = {η0},
i.e. µω({η0(ω)}) = 1 for P-a.a. ω.

The bounds on the speed of attraction follow immediately from the respective bounds in
Lemma 2.4 and 2.5.

3 Applications to concrete SPDE

In this section we present several examples of admissible random perturbations Nt and also
show that (H1)− (H5) and (H2′) can be verified for many concrete SPDE. Hence Theorem
1.3 and 1.4 can be applied to show the existence of a random attractor for those examples.

We will first show that all cádlág processes with stationary increments satisfy (S1)-(S3)
and thus Theorem 1.1 and Theorem 1.4 are applicable. Of course, this contains all Lévy
processes as well as fractional Brownian Motion.

Lemma 3.1. Let (Nt)t∈R be a V -valued process with stationary increments and a.s. cádlág
paths. Then there is a metric dynamical system (Ω,F ,P, θt) and a version Ñt (cf. [42,
Definition 1.6]) on (Ω,F ,P, θt) such that Ñt satisfies (S1)-(S3).

Proof. We choose Ω = D(R;V ) to be the set of all cádlág functions endowed with the
Skorohod topology (cf. [2], pp. 545), F = B(Ω), θt(ω) = ω(t + ·) − ω(t) and P = L(N)
to be the law of Nt (or more precisely its restriction on Ω). Note that F is the trace in Ω
of the product σ-algebra B(V )R and (t, ω) 7→ θt(ω) is measurable. Since Nt has stationary
increments we know that θtP = P. Hence (Ω,F ,P, θt) defines a metric dynamical system
and the coordinate process Ñt on Ω is a version of Nt satisfying (S1), (S2) and (S3).
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We will prove the asymptotic bound (S4) for two classes of processes. The first class
consists of all processes with independent increments (e.g. Lévy processes) where the proof is
based on the strong law of large numbers, and the second class consists of all processes with
Hölder continuous paths (e.g. fractional Brownian Motion), for which we use Kolmogorov’s
continuity theorem and the dichotomy of linear growth for stationary processes.

Lemma 3.2. Let V be a separable Banach space and Nt be a V -valued Lévy process with Lévy
characteristics (m,R, ν) (e.g. cf. [39, Corollary 4.59]). Assume that

∫
V

(‖x‖V ∨ ‖x‖2
V ) dν(x) <

∞, then we have P-a.s.
Nt

|t|
→ ±EN1 (t→ ±∞).

Proof. Since N̄t := N−t is also a Lévy process satisfying the assumptions and EN̄1 = −EN1,
it is sufficient to prove the assertion for t→ +∞. By the Lévy-Itô decomposition for Banach
space valued Lévy processes (cf. [1, Theorem 4.1]) we have

Nt = mt+Wt +

∫
B1(0)

xÑ(t, dx) +

∫
Bc1(0)

xN(t, dx),

where m ∈ V , Wt is a V -valued Wiener process and∫
B1(0)

xÑ(t, dx) := lim
n→∞

∫
{ 1
n+1
≤||x||V <1}

xÑ(t, dx) = lim
n→∞

n∑
k=1

∫
{ 1
k+1
≤||x||V < 1

k
}
xÑ(t, dx)(3.1)

is a P-a.s. limit of compensated compound Poisson processes.
By an analogous calculation to [39, pp. 49] we have

E‖
∫
{ε≤‖x‖V <1}

xÑ(t, dx)‖2
V ≤ 2t

∫
{ε≤‖x‖V <1}

‖x‖2
V dν(x) + 4

(
t

∫
{ε≤‖x‖V <1}

‖x‖V dν(x)

)2

,

and

E‖
∫
Bc1(0)

xN(t, dx)‖2
V ≤ t

∫
Bc1(0)

‖x‖2
V dν(x) +

(
t

∫
Bc1(0)

‖x‖V dν(x)

)2

.

Thus,

sup
n

E‖
n∑
k=1

∫
{ 1
k+1
≤‖x‖V < 1

k
}

xÑ(t, dx)‖2 = sup
n

E‖
∫

{ 1
n+1
≤‖x‖V <1}

xÑ(t, dx)‖2(3.2)

≤2t

∫
B1(0)

‖x‖2
V dν(x) + 4

(
t

∫
B1(0)

‖x‖V dν(x)

)2

<∞.

By (3.1)
∫
B1(0)

xÑ(t, dx) is the limit of a P-a.s. converging series of independent random

variables and by [32, Theorem 3.4.2] the bound (3.2) implies that the convergence in (3.1)
also holds in L2(Ω;V ). Hence Nt ∈ L2(Ω;V ) and

ENt = t

(
m+

∫
Bc1(0)

xdν(x)

)
= tEN1.
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Let now Nt be centered (i.e. ENt = 0) and note

Nn = Nn −Nn−1 +Nn−1 −Nn−2 + ...+N1,

then by the law of large numbers for Banach space valued random vectors (cf. [25, Theorem
III.1.1]) we have P-a.s.

Nn

n
→ E[N1] = 0 (n→∞).

It remains to derive the bound for Nt −N[t]. Let

Sn := sup
s∈[0,1]

||Nn+s −Nn||V .

Since Nt is centered and has first moment, it is a martingale. Thus ‖Nt‖V is a non-negative
cádlág submartingale and Doob’s maximal inequality implies that

ES0 = E sup
s∈[0,1]

||Ns‖V ≤ 2(E‖N1‖2
V )

1
2 <∞.

Since Sn are i.i.d., by the strong law of large numbers we have for N →∞∑N
n=1 Sn
N

→ E[S1], P-a.s..

In particular, we have SN
N
→ 0, P-a.s.. Consequently,

‖Nt‖V
t
≤ [t]

t

(
‖Nt −N[t]‖V

[t]
+
‖N[t]‖V

[t]

)
≤ [t]

t

(
S[t]

[t]
+
‖N[t]‖V

[t]

)
→ 0 (t→∞), P-a.s. .

For Nt not necessarily centered we have

Nt

t
=
Nt − ENt

t
+

ENt

t
=
Nt − ENt

t
+ EN1 → EN1, (t→∞), P-a.s. .

We now prove an asymptotic bound for processes satisfying the assumptions of Kol-
mogorov’s continuity theorem. The proof is similar to [37, Lemmas 2.4 and 2.6] where the
case of fractional Brownian Motion with Hurst parameter H ∈ (1

2
, 1) is considered. However,

note that we do not require γ = 2 in (3.3), hence here we can include fractional Brownian
Motion with any Hurst parameter H ∈ (0, 1) (see Lemma 3.5).

Lemma 3.3. Let (Nt)t∈R be a process on a metric dynamical system (Ω,F ,P, θt) with values
in a Banach space V such that (S1) holds. Assume that there exist constants γ > 1, α > 0
and C ∈ R such that

(3.3) E‖Nt −Ns‖γV ≤ C|t− s|1+α, ∀t, s ∈ R.
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Then there exists a θt-invariant set Ω0 ⊆ Ω with P(Ω0) = 1 and for any ε > 0, ω ∈ Ω0,
0 < β < α

γ
and any interval [s0, t0] ⊆ R there exist constants C1 = C1(ε, ω, β), C2 =

C2(ω, β, s0, t0) > 0 such that

‖Nt(ω)‖V ≤ ε|t|2 + C1, ∀t ∈ R and

‖N·(ω)‖Cβ([s0,t0];V ) ≤ C2.

In particular, Nt satisfies (S4).

Proof. Since N̄t := N−t also satisfies the assumptions, it is enough to prove the assertion for
t > 0. Firstly, we have

‖Nt(ω)‖V = ‖Nt(ω)−N[t](ω) +N[t](ω)−N[t]−1(ω) + ...+N1(ω)−N0(ω) +N0(ω)‖V
= ‖Nt−[t](θ[t]ω)−N0(θ[t]ω) +N1(θ[t]−1ω)−N0(θ[t]−1ω) + ...

+N1(ω)−N0(ω) +N0(ω)‖V(3.4)

≤ ‖N·(θ[t]ω)‖Cβ([0,1];V ) + ‖N·(θ[t]−1ω)‖Cβ([0,1];V ) + ...+ ‖N·(ω)‖Cβ([0,1];V )

+ ‖N0(ω)‖V , t ∈ R+.

Hence we need to derive a bound for ‖N·(θrω)‖Cβ([0,1];V ) as a function of r.
Using Kolmogorov’s continuity theorem (cf. [29, Theorem 1.4.1]) and (3.3) we obtain

‖N·(ω)‖Cβ([s,t];V ) ≤ K(ω, β, s, t) ∈ Lγ(Ω,FP,P) ⊆ L1(Ω,FP,P), ∀ s < t,

where FP is the completion of F with respect to P. Note that

‖N·(θrω)‖Cβ([s,t];V ) = sup
u6=v,u,v∈[s,t]

‖Nu(θrω)−Nv(θrω)‖V
|u− v|β

(3.5)

= sup
u6=v,u,v∈[s,t]

‖Nu+r(ω)−Nv+r(ω)‖V
|u− v|β

= ‖N·(ω)‖Cβ([s+r,t+r];V ),

for all s < t and r ∈ R. Hence

sup
r∈[0,1]

‖N·(θrω)‖Cβ([s,t];V ) ≤ ‖N·(ω)‖Cβ([s,t+1];V ) ∈ L1(Ω), ∀ s < t.

The dichotomy of linear growth for stationary processes (cf. [2, Proposition 4.1.3 (ii)]) states
that any measurable map f : Ω → R on a metric dynamical system (Ω,F ,P, (θt)t∈R) with
supt∈[0,1] f

+(θt·) ∈ L1(Ω) grows sublinearly, i.e.

lim sup
t→±∞

1

|t|
f(θtω) = 0,

on an invariant set of full P measure. We conclude that there is a θt-invariant set Ω0 ⊆ Ω
with P(Ω0) = 1 such that

lim
|t|→∞

1

|t|
‖N·(θtω)‖Cβ([0,1];V ) = 0, ∀ ω ∈ Ω0.
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Hence for every ε > 0, ω ∈ Ω0 there exists a constant T := T (ε, ω) ∈ N such that

‖N·(θtω)‖Cβ([0,1];V ) ≤ ε|t|, |t| ≥ T.

By (3.4) this implies

‖Nt(ω)‖V ≤
[t]∑
k=T

‖N·(θkω)‖Cβ([0,1];V ) +
T−1∑
k=0

‖N·(θkω)‖Cβ([0,1];V ) + ‖N0(ω)‖V

≤ ε[t]2 + T‖N·(ω)‖Cβ([0,T ];V ) + ‖N0(ω)‖V
≤ ε[t]2 + TK(ω, β, 0, T ) + ‖N0(ω)‖V , t ∈ R+.

Corollary 3.4. Let (Nt)t∈R be a V -valued process with stationary increments and a.s. cádlág
paths. Assume that (3.3) or the assumptions of Lemma 3.2 hold, then there is a metric
dynamical system (Ω,F ,P, θt) and a version Ñt on (Ω,F ,P, θt) such that Ñt satisfies (S1)-
(S4).

Now we show that (3.3) holds for fractional Brownian Motion (fBM) with any Hurst
parameter. We first recall the definition of Banach space-valued fBM.

Definition 3.1 (Fractional Brownian Motion). Let H ∈ (0, 1) and R : V ∗ → V be a bounded
linear and non-negative symmetric operator. A V -valued P-a.s. continuous centered Gaussian
process BH

t starting at 0 is called an R-fBM with Hurst parameter H if the covariance is
given by

E[ V ∗〈x,BH
t 〉V V ∗〈y,BH

s 〉V ] =
1

2
(t2H + s2H − |t− s|2H) V ∗〈x,Ry〉V

for all x, y ∈ V ∗, t, s ∈ R+.

It is easy to see that BH
t has stationary increments. Thus, according to Lemma 3.1 we

will always consider the canonical realization of fBM in this paper.
Let

V ⊆ H ⊆ V ∗

be a Gelfand triple, BH
t be an R-fBM in H and λk ≥ 0, ek ∈ H such that Rek = λkek. Then

BH
t has the representation

(3.6) BH
t =

∞∑
k=1

√
λkβ

H
k (t)ek,

where βHk are independent real-valued fBM and the convergence holds P-a.s. as well as in
each Lp(Ω;H).

Lemma 3.5. Let BH
t be a fBM in H with representation (3.6) and assume that K =∑∞

k=1

√
λk‖ek‖V < ∞. Then BH

t satisfies (3.3), more precisely, for each m ∈ N there is
a constant C > 0 such that

E ‖BH
t −BH

s ‖2m
V ≤ CK|t− s|2Hm, s, t ∈ R.
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Proof. By the comparability of Gaussian moments (cf. [30, Corollary 3.2]) we have[
E‖BH

t −BH
s ‖2m

V

] 1
2m =

[
E‖BH

t−s‖2m
V

] 1
2m ≤ CE‖BH

t−s‖V ,

where C > 0 is a constant depending only on m.
By our assumption we know that the convergence in (3.6) also holds in L1(Ω;V ). Hence

we have [
E‖BH

t −BH
s ‖2m

V

] 1
2m ≤ CE‖BH

t−s‖V

= C lim
N→∞

E‖
N∑
k=1

√
λkβ

H
k (t− s)ek‖V

≤ C lim
N→∞

N∑
k=1

√
λk‖ek‖VE|βHk (t− s)|

≤ CK|t− s|H , s, t ∈ R.

In particular, choosing m such that 2Hm > 1 we get (3.3).

We now proceed to examples of SPDE satisfying (H1) − (H5) and (H2′). Note that
most of those assumptions are well known and have been used extensively in recent years
for investigating SPDE within the variational framework, e.g. see (H1) − (H4) in [23, 24,
33, 34, 35, 40] and (H2′) in [18, 33, 35]. It has also been proved that (1.5) in (H5) holds for
many SPDE in [34]. Hence, we only need to verify (1.6) in (H5).

The following elementary lemma is crucial for verifying (H2′) (cf. [33, 35]). For the proof
see e.g. [35].

Lemma 3.6. Let (E, 〈·, ·〉) be a Hilbert space and ‖ · ‖ denote its norm. Then for any r ≥ 0
we have

(3.7) 〈‖a‖ra− ‖b‖rb, a− b〉 ≥ 2−r‖a− b‖r+2, a, b ∈ E.

Example 3.7. Let Λ be an open bounded domain in Rd and Lp := Lp(Λ) for some fixed
p ≥ 2. Consider the following triple

V := Lp ⊆ H := L2 ⊆ (Lp)∗ ≡ L
p
p−1

and the stochastic equation

(3.8) dXt = f(Xt)dt+ dNt, t ∈ R,

where Nt is an Lp-valued process with stationary increments and a.s. cádlág paths, f : Rd →
Rd is continuous and satisfies the following conditions:

〈f(x)− f(y), x− y〉 ≤ −λ|x− y|β;

〈f(x), x〉 ≤ −δ|x|p +K|x|2 + C;(3.9)

|f(x)| ≤ C(|x|p−1 + 1), x, y ∈ Rd,
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where C, λ > 0, δ > 0, β > 2 are some constants and 〈·, ·〉 is the inner product on Rd. Then
the RDS generated by (3.8) has a unique random fixed point and the other assertions in
Theorem 1.4 also hold. If β = 2 in (3.9), then the conclusions still hold, provided Nt also
satisfies (S4).

Proof. Using a similar argument as in [40, Example 4.1.5], one can show that (H1),(H2′),
(H3) and (H4) hold for (3.8) with α = p. Hence Theorem 1.4 applies.

Remark 3.1. (i) A typical example for f is as follows (cf. [34, 35, 40]):

f(x) = −|x|p−2x+ ηx, η ≤ 0.

(ii) The first inequality in (3.9) implies that

〈f(x), x〉 ≤ −λ
2
|x|β + C.

Therefore, if β ≥ p, then the second inequality (so called coercivity condition) in (3.9)
automatically holds.

(iii) If Nt is a finite-dimensional fBM, the existence of a random fixed point for (3.8)
has also been studied in [21]. Compared with the result in [21], we only require a coercivity
condition (the second inequality in (3.9)) on f instead of assuming f to be continuously
differentiable as in [21]. Another improvement is that we can allow equation (3.8) to be
driven by infinitely many fractional Brownian motions or by Lévy noise.

Example 3.8. (Stochastic reaction-diffusion equation)
Let Λ be an open bounded domain in Rd. We consider the following triple

V := W 1,2
0 (Λ) ⊆ L2(Λ) ⊆ (W 1,2

0 (Λ))∗

and the stochastic reaction-diffusion equation

(3.10) dXt = (∆Xt − |Xt|p−2Xt + ηXt)dt+ dNt,

where 1 ≤ p ≤ 2 and η are some constants, Nt is a V -valued process with stationary incre-
ments and a.s. cádlág paths.

(1) If η ≤ 0 and (S4) holds, then all assertions in Theorem 1.4 hold for (3.10) with β = 2.

(2) If η > 0, N·(ω) ∈ L2([−1, 0];W 3,2(Λ)) for P-a.e. ω and satisfies (S4), then the stochas-
tic flow associated with (3.10) has a compact random attractor.

Proof. (1) By Lemma 3.1 we know that (S1)-(S3) hold. It is also well known that (H1)-(H4)
hold for (3.10) (cf. [33, 35, 40]). If η ≤ 0, then it is easy to show that (H2′) holds with
β = 2. Therefore, all assertions in Theorem 1.4 hold for (3.10).

(2) According to Theorem 1.3 one only needs to verify (H5). Let S = W 1,2
0 (Λ) and ∆ be

the Laplace operator on L2(Λ) with Dirichlet boundary conditions. We define

Tn = −∆(1− ∆

n
)−1.
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Let {Pt}t≥0 and E denote the semigroup and Dirichlet form corresponding to ∆. It is easy
to show that Tn are continuous operators on W 1,2

0 (Λ) by noting that

Tn = n

(
I −

(
I − ∆

n

)−1
)
.

Then we have

V ∗〈∆u, Tnu〉V = V ∗〈∆u,−∆(1− ∆

n
)−1u〉V

= V ∗〈∆u, nu− n(1− ∆

n
)−1u〉V

= −n
∫ ∞

0

e−t〈∇u,∇u−∇P t
n
u〉L2(Λ)dt

≤ −n
∫ ∞

0

e−t(E(u, u)− E(u, P t
n
u))dt

≤ 0,

where the last step follows from the contraction property of the Dirichlet form E .
By using a similar argument one can show that

V ∗〈−|u|p−2u+ ηu, Tnu〉V ≤ η‖u‖2
n, u ∈ W

1,2
0 (Λ).

Hence (1.5) holds. Using the fact that Pt is bounded onW 1,2
0 (Λ) andN·(ω) ∈ L2([−1, 0];W 3,2(Λ))

for P-a.e. ω we have ∫ 0

−1

‖TnNt‖2
V dt =

∫ 0

−1

‖ −∆(I − ∆

n
)−1Nt‖2

V dt

=

∫ 0

−1

‖(I − ∆

n
)−1(∆Nt)‖2

V dt

≤ C

∫ 0

−1

‖∆Nt‖2
V dt <∞,

(3.11)

where the third step follows from the following formula

(I − ∆

n
)−1v =

∫ ∞
0

e−tP t
n
vdt, v ∈ V.

Hence (1.6) holds. Then the existence of the random attractor for (3.10) follows from The-
orem 1.3.

Remark 3.2. In Example 3.8 we had to restrict to reaction terms of at most linear growth.
This restriction is due to the fact that the variational approach to SPDE as presented in
[27, 40] does not apply to nonlinearities of arbitrary high order. However, we only used the
results from [27, 40] to construct the associated RDS. Therefore, as soon as we can obtain
the corresponding RDS by some other method, our arguments can be used without change
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to prove the existence of the random attractor. More precisely, let Λ be an open bounded
domain in Rd. We consider the following triple

V := W 1,2
0 (Λ) ∩ Lp(Λ) ⊆ H := L2(Λ) ⊆ (W 1,2

0 (Λ) ∩ Lp(Λ))∗

and the stochastic reaction-diffusion equation

(3.12) dXt = (∆Xt − |Xt|p−2Xt + ηXt)dt+ dNt,

where 2 < p, η ∈ R are some constants and Nt is a V -valued process with stationary in-
crements and a.s. cádlág paths. Note that (3.12) does not satisfy (H3)-(H4) with the same
parameter α. Nevertheless, the associated RDS can be defined by an analogous transfor-
mation into a random PDE. The existence and uniqueness of solutions for the transformed
equation (1.2) follows by a standard proof via Galerkin approximations (cf. [45, pp. 91]).
The proof of condition (H5) carries over without change. If η ≤ 0 then Theorem 1.4 can be
applied with β = p. If η > 0, N·(ω) ∈ L2([−1, 0];W 3,2

0 (Λ))∩Lp([−1, 0];W 2,p
0 (Λ)) for P-a.e. ω

and satisfies (S4), then the same arguments as for Theorem 1.3 yield the existence of the
random attractor.

In [17, Section 5] the existence of a random attractor for stochastic reaction diffusion
equations perturbed by finite dimensional Brownian noise is obtained under the assumption
that the noise takes values in H2(Λ)∩H1

0 (Λ)∩W 2, p
p−1 (Λ). In comparison, we can allow infinite

dimensional noise and include fractional Brownian motion as well as Lévy type noise, but
we need to require slightly more regular noise taking values in H3(Λ) ∩H1

0 (Λ) ∩W 2,p(Λ).

Remark 3.3. Simple examples of noises satisfying the assumptions are given by finite dimen-
sional noise. Let N ∈ N and

(3.13) Nt =
N∑
n=1

ϕnβ
H
n (t)

(
or Nt =

N∑
n=1

ϕnLn(t)

)
, t ∈ R,

where ϕn ∈ W 3,2
0 (Λ) ∩W 2,p

0 (Λ) and βHn are independent two-sided fractional Brownian mo-
tions with Hurst parameter H ∈ (0, 1) (or Ln are independent two-sided Lévy processes). It
is easy to show that the noise (3.13) satisfies all assumptions required in the above example.
Noise of this form can also be used for those examples below as well by choosing appropriate
spaces for ϕn.

Example 3.9. (stochastic porous media equation)
Let Λ be an open bounded domain in Rd. For r > 1 we consider the following triple

V := Lr+1(Λ) ⊆ H := W−1,2
0 (Λ) ⊆ V ∗

and the stochastic porous media equation

(3.14) dXt =
(
∆(|Xt|r−1Xt) + ηXt

)
dt+ dNt,

where η is a constant, Nt is a V -valued process with stationary increments and a.s. cádlág
paths.
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(1) If N·(ω) ∈ Lr+1 ([−1, 0];W 2,r+1(Λ)) for P-a.e. ω and satisfies (S4), then the stochastic
flow associated with (3.14) has a compact random attractor.

(2) If η ≤ 0, then all assertions in Theorem 1.4 hold for (3.14).

Proof. (1) According to [40, Example 4.1.11; Remark 4.1.15] we know that (H1)-(H4) hold
for (3.14). By Lemma 3.1 and the assumptions we know (S1)-(S4) also hold. Hence we only
need to verify (H5) in Theorem 1.3.

Let S = L2(Λ) and ∆ be the Laplace operator on L2(Λ) with Dirichlet boundary condi-
tions. We define

Tn = −∆(I − ∆

n
)−1 = n

(
I − (I − ∆

n
)−1

)
.

It is well known that the heat semigroup {Pt} (generated by ∆) is contractive on Lp(Λ) for
any p > 1. Then by the same argument as in (3.11) we know that (1.6) holds.

In order to show that Tn are continuous operators on Lr+1(Λ) we use the formula

(I − ∆

n
)−1u =

∫ ∞
0

e−tP t
n
udt.

By Hölder’s inequality and the contractivity of {Pt} on Lr+1(Λ) we have

V ∗〈∆(|u|r−1u) + ηu,−∆(1− ∆

n
)−1u〉V

= 〈|u|r−1u, nu− n(1− ∆

n
)−1u〉L2 + η‖u‖2

n

= −n
∫ ∞

0

e−t
(∫

Λ

|u|r+1dx−
∫

Λ

|u|r−1u · P t
n
udx

)
dt+ η‖u‖2

n

≤ η‖u‖2
n, ∀u ∈ Lr+1(Λ).

Hence (1.5) holds and the assertion follows from Theorem 1.3.
(2) If η ≤ 0, then by Lemma 3.6 it is easy to show that (H2′) holds with β = r + 1 (cf.

[33, 35]). Hence all assertions in Theorem 1.4 hold for (3.14).

Remark 3.4. In [9] the existence of a random attractor for generalized porous media equations
perturbed by finite dimensional Brownian noise has been proven under the assumption that
the noise takes values in W 1,r+1

0 . In the case of the standard porous medium equation our
results thus extend [9] to infinite dimensional noise and fractional Brownian motion as well
as Lévy type noise, if the noise is more regular, i.e. takes values in W 2,r+1.

Example 3.10. ( Stochastic p-Laplace equation)
Let Λ be an open bounded domain in Rd with convex and smooth boundary. We consider the
following triple

V := W 1,p(Λ) ⊆ H := L2(Λ) ⊆ (W 1,p(Λ))∗

and the stochastic p-Laplace equation

(3.15) dXt =
[
div(|∇Xt|p−2∇Xt)− η1|Xt|p̃−2Xt + η2Xt

]
dt+ dNt,

where 2 < p < ∞, 1 ≤ p̃ ≤ p, η1 ≥ 0, η2 ∈ R are some constants and Nt is a V -valued
process with stationary increments and a.s. cádlág paths.
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(1) If N·(ω) ∈ Lp([−1, 0];W 3,p(Λ)) for P-a.e. ω and satisfies (S4), then the stochastic flow
associated with (3.15) has a compact random attractor.

(2) If η2 ≤ 0, then all assertions in Theorem 1.4 hold for (3.15).

Proof. (1) According to [40, Example 4.1.9] and the assumptions, we only need to verify
(H5) in Theorem 1.3.

Let S = W 1,2(Λ) = D(
√
−∆), where ∆ is the Laplace operator on L2(Λ) with Neumann

boundary conditions. It is well known that the corresponding semigroup {Pt} is the Neumann
heat semigroup (i.e. the corresponding Markov process is Brownian Motion with reflecting
boundary conditions). Moreover, we know that Pt maps Lp(Λ) into W 1,p(Λ) continuously
(see [13, Section 2] for more general results). Then for all t ≥ 0, Pt : W 1,p(Λ)→ W 1,p(Λ) is
continuous.

Now we define

Tn = −∆(I − ∆

n
)−1 = n

(
I − (I − ∆

n
)−1

)
.

It is easy to show that Tn are also continuous operators on W 1,p(Λ) since

(I − ∆

n
)−1u =

∫ ∞
0

e−tP t
n
udt.

Moreover, since the boundary of the domain is convex and smooth, we have the following
gradient estimate (cf. [48, Theorem 2.5.1])

(3.16) |∇Ptu| ≤ Pt|∇u|, u ∈ W 1,p(Λ).

Since {Pt} is a contractive semigroup on Lp(Λ), it is easy to see that {Pt} is also a contractive
semigroup on W 1,p(Λ) by (3.16). Therefore,

V ∗〈div(|∇u|p−2∇u), Tnu〉V

= V ∗〈div(|∇u|p−2∇u), nu− n(1− ∆

n
)−1u〉V

= n

∫ ∞
0

e−tV ∗〈div(|∇u|p−2∇u), u− P t
n
u〉V dt

= −n
∫ ∞

0

e−t
(∫

Λ

|∇u|pdx−
∫

Λ

|∇u|p−2∇u · ∇P t
n
udx

)
dt

≤ 0, u ∈ W 1,p(Λ),

where in the last step we used Hölder’s inequality and the contractivity of {Pt} on W 1,p(Λ)
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to conclude ∫
Λ

|∇u|p−2∇u · ∇Psudx

≤
(∫

Λ

|∇u|pdx
) p−1

p

·
(∫

Λ

|∇Psu|pdx
) 1

p

≤
(∫

Λ

|∇u|p
) p−1

p

·
(∫

Λ

|Ps|∇u‖pdx
) 1

p

≤
∫

Λ

|∇u|pdx.

Using the same argument we obtain

V ∗〈−η1|u|p̃−2u− η2u, Tnu〉V ≤ η2‖u‖2
n, u ∈ W 1,p(Λ).

Hence (1.5) holds.
Note that (1.6) also holds due to the same argument as in (3.11). Therefore, the assertion

follows from Theorem 1.3.
(2) If η2 ≤ 0, then by Lemma 3.6 it is easy to show that (H2′) holds with β = p (cf.

[33, 35]). Hence all assertions in Theorem 1.4 hold for (3.15).
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Ph.D. thesis, 1975.

[39] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise,
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