Harnack Inequalities and Applications for
Ornstein-Uhlenbeck Semigroups with Jump*

Shun-Xiang Ouyang®?, Michael Réckner”, Feng-Yu Wang®91
%)School of Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China
®)Department of Mathematics, Bielefeld University, D-33501 Bielefeld, Germany
¢)Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, UK

August 20, 2009

Abstract

The Harnack inequality established in [11] for generalized Mehler semigroup is
improved and generalized. As applications, the log-Harnack inequality, the strong
Feller property, the hyper-bounded property, and some heat kernel inequalities are
presented for a class of O-U type semigroups with jump. These inequalities and
semigroup properties are indeed equivalent, and thus sharp, for the Gaussian case.
As an application of the log-Harnack inequality, the HWT inequality is established
for the Gaussian case. Perturbations with linear growth are also investigated.
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1 Introduction

In this paper we aim to establish Harnack inequalities and applications for a class of
Ornstein-Uhlenbeck type SDEs driven by Lévy noises on Hilbert spaces. This problem
has been investigated in [11] by using Mehler type formula for the associated semigroups
and gradient estimates for dimension-free Harnack inequalities developed in [12]. In this
paper, we shall adopt a measure transformation argument to derive a more general and
sharper Harnack inequality, and to present finer estimates of heat kernels. This method
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was initiated in [1] by using coupling and Girsanov transformation to establish Harnack
inequalities for diffusion semigroups on manifolds with unbounded below curvature, and
has been applied in [13, 8, 3| for non-linear SPDEs driven by Gaussian noises and also in
[10] for diffusions with singular drifts and multivalued stochastic evolution equations. In
this paper we shall modify this argument to SPDEs with jumps.

Let us first recall the Harnack inequality derived in [11]. Let H be a real separable
Hilbert space with inner product (-,-) and norm || - ||. Consider the following Lévy driven
stochastic differential equation

(11) dXt = AXtdt + dZt7 X[) =& H,

where A is the infinitesimal generator of a strongly continuous semigroup (7});>o on H,
Zy = A{Z}, uw € H} is a cylindrical Lévy process with characteristic triplet (a, R, M) on
some filtered probability space (€2, . F, (%;)i>0, P), that is, for every v € H and ¢t > 0

E exp(i(Z;, u)) = exp [it(a,u) - %(Ru, u)

_ /H [1— exp(ife, ) + 1z, u) Ljujery ()] M(da)],

where a € H, R is a symmetric linear operator on H such that
t
Ry = / T,RT; ds
0

is trace class for each ¢ > 0, and M is a Lévy measure on H. (For simplicity, we shall
write Z}' = (Z;,u) for every u € H.) In this case, (1.1) has a unique mild solution

t
Xt—Ttx-i-/Tt—stm t>0.
0

Let
Ptf(x) = Ef(Xt)7 S Ha f S '@b(H)7

where %,(H) is the space of all bounded measurable functions on H. Similarly, let %, (H),
¢p(H), €°(H) be the classes of bounded positive, bounded continuous, and smooth func-
tions on H respectively. Let G be the orthogonal complement of KerR'?. Then the
inverse R™'/2 of R'/? is well defined from RY?H to G. The following is the main result
derived in [11].

Theorem 1.1. ([11]) Assume that there exists a sequence of eigenvectors of A* separating
the points of H, R is of trace class, and T,RH C RY?H holds for all t > 0. If

(1.2) |RY?*T,Rz|| < /h(t) |RY?z|, z€H,t>0
holds for some positive function h € C[0,00). Then for any f € %, (H),

IR (2 — y)|I?
fot h(s)~'ds

(13) (Ptf>2(‘r) < eXp |: :|Ptf2(y)7 t> va —yE R1/2H‘



If M =0, then for any o > 1 and f € % (H),

af|[ RV (z — y)|?
2(a — 1) [i h(s)"'ds

(1.4) (P.f)*(z) < exp Pif*(y), t>0,z—ye R"’H.

We note that due to the absence of a chain rule, for the case with jump (i.e. M # 0),
the Harnack inequality was proved in [11] only for @ = 2 (i.e. (1.3)) by using gradient
estimates.

To improve this result, we shall adopt a measure transformation argument and the
null controllability of the associated deterministic equation (see Section 2). As a result,
we obtain the Harnack inequality by using the image norm ||I';z|| of the operator

T, := R, '/*T, with domain 2(I';) := {z € H: Tz € R}/*H}.

As explained above, R, Y2 ig defined from Rt1 /’H to the orthogonal complement of Ker Rz /2,

By letting ||Tyx|| = oo for = ¢ Z(T';) and inf ) = oo, we have

|Tez|| = inf {||z] : 2z €H, Rz = Tz}, xeH.

Our first result is an improvement of Theorem 1.1: our Harnack inequality generalizes
(1.3) without the assumptions of Theorem 1.1. Moreover, our argument also implies the
following inequality (1.6), which in particular implies the strong Feller property (even
T - ||-Lipschitz strong Feller property) of P, if T'; is bounded.

Theorem 1.2. For any o > 1 and f € %, (H),

af ez —y)|I*

(1.5 (P < e [T

]Ptf"(y), z,y € H,t > 0.
Consequently, (1.2) implies (1.4) for any f € B, (H). Moreover, for any f € %,(H) and
x,y € H,
|Pof () = Pof(y)I?
(M = 1) min { P f2 (@) — (B (0))%, Pf*(y) = (P ()%}

When T;H C Ri / 2]1-]1, I'; is a bounded operator by the closed graph theorem. In this
case Theorem 1.2 implies the following result.

(1.6)

Theorem 1.3. Lett > 0. The following statements are gradually weaker, i.e. statement
(i) implies statement (i + 1) for 1 <i < 4:

(1) TH C R/’H;
(2) Tl < o and for any o > 1 and f € B, (H),

a([Te - ll= = yl)*

(1.7) (Prf(2))" < exp 2(a— 1)

Ptfa(y)a T,y € HJ




(3) ||IT¢l| < oo and there exists o > 1 such that (1.7) holds for all f € B, (H);
(4) ||Tu|| < oo and for any f € B, (H) with f > 1,

T 2
H tH Hx_yHQa x?Z/EH;

(1.8) Plog f(x) <log P, f(y) + 5

(5) P, is strong Feller.
If, in particular, M = 0, then all the above statements are equivalent.

According to [6, Theorem 3.1], (F;) has a unique invariant probability measure u
provided
(A) tlim [Tya|| = 0 for o € H; sup,sg Tr Ry < oo; [° ds [ (1A || Tox||*) M (dz) < oo;

t t 1 1
lim /Tsads—i—/ ds/Tsx< - )M dx)}
H”{ 0 o Jm L+ | Toxf® 1+ 2] (

exists in H; and R is of trace class.

In this case, if P, is strong Feller then it has a density p;(z,y) w.r.t. u on supp pu,
the support of . As observed in the recent paper [14], the Harnack inequality (1.7) and
the log-Harnack inequality (1.8) are equivalent to the following inequalities for p;(x,y)
respectively:

1

T, 2)\ a1 a(|[Tr] - |l — y||)?
(1.9) /m(%d(pt( )) p(dz) < exp (2]l - i — I , T,y € supp fi;
H

pi(y, 2) 2(a—1)?
pe(w, 2) ||Ft||2 2
1.10 /p x,y) lo dz) < r — , X,y € supp u.
(1.10) ; t(2,Y) 8 o (y.2) p(dz) 5 llz =yl y t

Moreover, if M = 0, by e.g. [5, Theorem 10.3.5], Theorem 1.3 (1) implies that P,LP(H; u) C
¢>°(H) for p > 1 and ¢t > 0. So, we have the following consequence of Theorem 1.3.

Corollary 1.4. Let M = 0 and assume that (P;) has a invariant probability measure
with full support. Then for anyt > 0, (1)=(5) in Theorem 1.3 and the following statements
are equivalent:

(6) For any o > 1, (1.9) holds;

(7) For some a > 1, (1.9) holds;

(8) The entropy inequality (1.10) holds;
(9) For any p > 1, P,LP(H; pn) C € (H).

The following result is a standard consequence of the Harnack inequality (1.7), where
(i) follows from [3, Proposition 4.1], (ii) follows from Lemma [11, Lemma 2.2], and the
proof of (zii) is similar to the those of [11, Theorem 1.5 and Proposition 1.6] (see also [10]
for details).



Corollary 1.5. Assume that (P;) has a invariant measure and that Ty is bounded for a
fized t > 0, and let p;(z,y) be the density of P, w.r.t. p. Then:

(i) PLP(H;u) C €M) for any p > 1.

(13) For any o > 1,

a7y )2 ) e
pe(, M| porcn g < | [ oxp [ —or—tcllz —yl? ) u(dy)| @ € suppp.
H 2(a—1)

(i13) If there exist some constants € > 0 and a > 1 such that

Ctas)= [ | [ e (—;gle”gnx ~ ol ) utay) T ) < oo,

then P, is hyper-bounded with
|Pllacaqe) < Ot a,e) 705

IfC(t,a,0) < oo then P, is uniformly integrable in L*(H; 1) and hence P; is compact
on L*(H, p) for every s > t.

We shall prove Theorems 1.2 and 1.3 in the next section, and present in Section 3 ap-
plications of the log-Harnack inequality to cost-entropy inequalities of the semigroup and
the HWI inequality in the Gaussian case. Finally, in Section 4 we investigate the Harnack
inequality and strong Feller property for a class of semi-linear stochastic equations by
using a perturbation argument.

2 Proofs of Theorems 1.2 and 1.3

As explained in the last section, Corollary 1.4 is a direct consequence of Theorem 1.3.
Since (2) implying (3) is trivial, (3) implying (4) and (4) implying (5) have been proved in
[14] for Markov semigroups on abstract Polish spaces, and (5) implying (1) follows from
[4, Theorem 9.19], it suffices to prove Theorem 1.2.

Consider the following linear control system on H

(2.1) dz, = Az, dt + RY?u,dt, 9= 2 € H.
According [15, Part IV, Theorem 2.3] (ref. also the appendix of [4] or [5]),

t
(2.2) |T;z||* = inf { / |us||?ds : w e L*([0,t] — H;ds), z0 = 2,2, = O}.
0

This implies the following upper bounds of ||I';z||.



Proposition 2.1. Lett > 0. Then for any strictly positive & € C(]0,t]),

Jo IR Tz |* £2ds

(heas)

where ||R™Y2x|| = oo if x ¢ RY?H. Consequently, (1.2) implies

(2.3) ITear]* <

r € H,

—1/2,.[12
(2.4) |Tx|]* < ”tR—xH, r e H.
Jo h(s)~tds

Proof. We only need to consider the case that T,z € RY?H for ae. s € [0,t] and
{gsRil/ZTsl‘}sE[O,t] € L?([0,t] — H;ds). In this case, for

U 1= S R YTz, s€(0,1],

fygar

one has a null control of the system (2.1); that is, u € L*([0,t] — H;ds) and

t
xe =T + / T, RY?u,ds = 0.
0

Then (2.3) follows from (2.2) by taking £(s) = h(s)™!, s € [0, t]. O

To prove the desired Harnack inequality, we adopt the following Girsanov theorem for
Lévy processes. Let || - [|o be the norm on Hy := RY?(H) with inner product (z,y)o :=
(R™Y2x, R™Y/2y) for 2,y € Hy.

Proposition 2.2. Let t > 0. Suppose that (Zs)o<s<t s an H-valued Lévy process on a

filtered probability space (Q, F, (Fs)o<s<t, P) with characteristic triplet (a, R, M). Denote
by Z' the Gaussian part of Z. For any Hy-valued predictable process 1, independent of

Zs — Z' such that
S , 1 s 9
5 pg 1= exp (Ur,dZ))o — 5 | [lbellgdr
0 2 0

is a Fg-martingale, the process
0,t] 5 s— Zy = 7, —/ Y. dr
0

is also a Lévy process with characteristic triplet (a, R, M) under the probability measure

dP := p,dP.
Proof. We write

Eexp(i(Zs, 2)) = exp[—sth(z) — 202(2)], =z € H,



where

91 (2) = %(Rz, 2)

and

Uo(2) := —i(z,a) —i—/H [1— exp(i(z, ) + i(z, )1 p<1y ()] M(dz).

Correspondingly, the process Z; is decomposed by Z; = Z! 4+ Z" where Z! is the Gaussian
part of Z; with symbol ¥, and Z” is the jump process with symbol J,.

By the Girsanov theorem for Wiener processes on Hilbert space (see [4, Theorem
10.14]),

z;:z;_/ Gndr, 0<s<t
0

is an R-Wiener process under the probability measure P. Consequently, for all 0 < s < ¢
and all z € H, by the martingale property of p, we have

Es[exp(i(z, Z))] = E[ps exp(i(z, Z)))] = Eexp(i(z, Z,)) = exp [=sth(2)],

where E; is the expectation taken for P. Combining this with the independence of Z’ and
Z", we obtain

Es exp (i(z, ZS>> = (Eps exp [i <z, ZH )Eexp (i(z, Z))) = exp [—sth (z) — t¥a(2)].

Thus, under P the characteristic symbol of ZS is also 1 +1v5. This completes the proof. [

By Proposition 2.2, we are able to establish the Harnack inequality by using the null
controllability of the deterministic equation (2.1).

Proposition 2.3. Lett > 0 and z,y € H. Suppose that there exists u € L*([0,t] — H;ds)
such that x; = 0, where x4 solves (2.1) with xo =y — x. Then for any o > 1,

25 (A0 <ow (50 [ Iultds) R, £ e,
Moreover, for any f € B,(H) and x,y € H,

(2.6) |Pof(z) = Pof(y)|* < (el P4 — 1)L f2(y) — (P (y))?).

Proof. Let (Z])o<s<t be the Gaussian part of the Lévy process Zs, which is an R-Wiener
process on H. Let v, = RY?u, € H, for s € [0,t]. Then by Proposition 2.2,

ZS::ZS—/ Yodr, 0<s<t
0

is a Lévy process with characteristic triplet (a, R, M) under the probability measure P.



Let
t
Y = S+ / S, .dZ,,
0

t ~
th = Stx—i—/ St—s dZs
0

Then, by the definition of P; and since Z, and Z are cylindrical Lévy processes with
characteristic triplet (a, R, M) under P and P respectively, we have

@7 P =EF0Y), Pf@) = Eaf(XP) = E[pf(XD)], [ € #,(H).
Moreover, it is easy to see that

X:=Y!—z,, se]0,t].
So, X¥ =Y} due to z; = 0. Combining this with (2.7), for any f € %, (H) we have

Pof(x) = E[pf(X])] = E[pf (V)]
< (B T ®O) T = @A)V (B )

This implies (2.5) by noting that

o t
B = e [ / 413 ds].

Similarly, since Ep, = 1, we have
|[Pif(z) = Pof ()" = [Ef (peX7) — EF (YY)

= [B{(p: = D(F (") = S W)} < {Pf* (W) = (Pif (9))*}Elpi — 1.
This implies (2.6) by noting that

E(p, — 1) =FEp! — 1= efo lusll®ds _ .
[l

Proof of Theorem 1.2. Combining (2.2) with (2.5), we obtain (1.5). If (1.2) holds, then

(1.4) follows from (2.5) according to Proposition 2.1. Finally, (1.6) follows from (2.2) and
(2.6), where the latter holds also by exchanging the positions of = and y. O



3 Application to the HWI inequality

The HWI inequality, established in [9] and reproved in [2] for symmetric diffusions on finite
dimensional Riemannian manifolds, links the entropy, information and the transportation-
cost. In this section, we shall prove it for the present non-symmetric infinite-dimensional
model.

Throughout this section we assume that
(A’) P, has an invariant probability measure p.

This assumption follows from assumption (A) as explained in Section 1. We first
observe that the log-Harnack inequality (1.8) implies an entropy-cost inequality for P;,
the joint operator of P, on L*(H; ).

Proposition 3.1. Assume (A'). Let P} be the adjoint operator of Py on L*(H;p). If
IT¢|| < oo, then

T 1

p((P7f)log P f) < Wa(fu,p)*s f>0,u(f) =1

holds, where W3 is the Warsserstein distance induced by the cost-function (z,y) — ||z —
y|I?; that is,

Walfuop)? = inf / e — y|*r(da, dy)
TE€C(fr,m) JHxH

for €(fu,p) the set of all couplings of fu and p. Consequently, (1.2) implies

Wz(f/t 11)?

WP A0 FEf) < 3 B

Proof. Due to Proposition 2.1, it suffices to prove the first assertion. We shall adopt an
argument in [2] by using the log-Harnack inequality (1.8). Let f > 0 such that u(f) = 1.
By an approximation argument, we may assume that f is bounded. So, by Theorem 1.3
we have

[T tH2

Py(log P f)(z) <log(RF; f)(y) + ———llz —ylI*, 2,y €M

Integrating both sides w.r.t. m € €(fu, i), and minimizing in 7, we arrive at

1T tH2

(P f)log P} f) < p(log(P.P; f)) + ——=—Wa(fp, pn)°.

This completes the proof by noting that, since p is invariant for P, and Py,
p(log(PF; f)) <log u(BF/ f) =log1 = 0.
O

According to the above result, to derive the entropy-cost inequality for P;,we shall
need the log-Harnack inequality for the adjoint semigroup P;*. To ensure that P} is again



an O-U type semigroup, we shall simply consider the Gaussian case (i.e. M = 0), and
assume (A). In this case, u is a Gaussian measure with co-variance

Roo = / T,RT*ds.
0
To see that P/ as a generalized Mehler semigroup (in the sense of [6]), we assume further

(B) M =0,R. H C 2(A*), and the operator A = Ry A*RZ} with domain

o0

2(A) = {z € R H: Rjze P(A")}

generates a Co-semigroup T, on H such that
t
R, = / T,RTds
0
1s of trace class fort > 0.

In this case, P} can be calculated explicitly as (see [5, Proposition 10.1.9])

P f(x) = / f(Tux + 9)Ns (dy), | € By(H),

where Np is the centered Gaussian measure with co-variance R;. Thus, P/ is the transition
semigroup of the solution to

dX, = AX,dt + R*dW,
for W; the cylindrical Brownian motion on H. So, the following is a direct consequence

of Theorems 1.2 and 1.3 and Proposition 3.1.
Proposition 3.2. Assume (A), (B). Let I, = R7YPT,. Then

of|Ts(z — )|

(P f)*(x) < P} f*(y) exp ( 2a—1)

), fG%’J(H),:E,yEH.

If T, is bounded, then (1.8) holds for P}, T, in place of P, and Ty respectively. In particular,

(3.1 u((ptozpip) < L

Let Wy be the space of functions f of the form
f(x):F<<§lax>7"' 7<€m7x>)7 v e H

for some m > 1 and F' € ./ (R™,C) (i.e. the Schwartz space of complex-valued functions,
“rapidly decreasing” at infinity as well as their derivatives). Let W be the real-valued
elements of Wy. According to [7], W is dense in LP(u) for any p > 1 and is a core of D(L),
the L?(p1)-domain of the generator L of P,. We are now able to present the following result
on the HWI inequality.

Walp, fr)?, f>0,u(f) =1.

10



Theorem 3.3. Assume (A) and (B). Assume further that A* has a sequence of eigen-
vectors separating the points in H. If (1.2) holds then

I |2

—W2(:u7 f2:u’)27 t> va S VValu’(fz) = 17

(108 %) < 2u(RD1, D) | hapas + 1

where D f is the Fréchet derivative of f.

Proof. Let f € W such that u(f?) = 1. By [11, Theorem 1.3(2)], we have
At 0s) < (o P+ 2( [ nisas) Aeaps D).
Integrating w.r.t. y we obtain
(108 1) < 20(®DFD5) [ his)s + (P log P,

The proof is then completed by combining this with Proposition 3.2. O]

If in particular P; is symmetric (it is the case iff ARY? = RY/2A*), then (1.2) implies

t
1
2log f?) < 2u({RDf, D /h5d8+—W CfPu)?

pu(flog %) < 2u((RDf, Df)) i () > [Th(s)1ds 2 (1, f710)
for all f € W,u(f*) =1,t>0.
4 Semi-linear stochastic equations
Consider the equation
(4.1) dXT = AXFdt + F(XF)dt + RY?dW,, X¥ =2 € H,

where F is a measurable map on H such that F(H) C RY?H, and W, is the cylindrical

Brownian motion on H. We shall establish the Harnack inequality for the associated

semigroup by regarding (4.1) as a perturbation to (1.1) with Z, = RY?W,, i.e. b=0,M =

0. Since we do not assume that F is dissipative, the study is not included in [3]. In general,

this equation only admits a weak solution. In this paper we shall consider the weak

solution for (4.1) constructed from (1.1) with Z, = RY?W, by Girsanov transformations.
Let X7 be the mild solution to

dX? = AXTdt + RV2AW,, X¢ = .

We have X7 = W(t) + Tz, where
t
Wa(t) = / T,_ RY2Aw,.
0

11



Since [} T,RTds is of trace class, W4 € L([0,t]; H) for any ¢ > 0. Let

Vo(t) = RTPF(Wa(t) + Ta),

Wi [ s
i =ow ([ watonaw) = 5 [ ato)as).

(4.2) IR™V2F @) < ki + Kofl2|®, = € H

Assume that

holds for some ki,ky > 0. Then by [4, Theorem 10.20] and its proof, Q, := pfP is a
probability measure and X7 is a weak solution to (4.1) under Q, with respect to the
cylindrical Brownian motion W/*. Denote the corresponding “semigroup” by

(4.3) PFf(z) =Eq, f(X]), [ € B(H).

We note that due to the lack of uniqueness, in general PF may not provide a semigroup
(but cf. also [7]). Let P, be the semigroup of X; under P. By Theorem 1.2 we have

a||Ty(z — y)|?

20 1) ) f € %y (H),

(4.4) (P () < Pof™(y) exp (

where I'; = R;l/th. Moreover, by [4, (10.42)], for any p > 0 there exists ¢, > 0 such
that

Cps (t) := Eexp (2p (2p+1) / [Wa(s)ll ds) < oo, te[0,t,).

In particular, if ks = 0 then C,x,(t) =1, ¢ > 0. More precisely, let
1
0= T'r’/ TsRT;ds.
0

We have

[Wa(s)]|?/40

Cy := sup Ee < 0.

s€[0,1]

Thus, for any A > 0,

t
E o IWa(s)%ds _ ot [ AWa@)lds < 1 / EMIWAGI? 4
(4.5) 0

t
< % / (Ee!WaIP/10) 2 g < CoN ¢ e 0,1 A (400) 7).

0

Combining this with (4.3) we obtain the following result.

12



Theorem 4.1. If (4.2) holds, then for any t > 0, o > 1, x,y € H, p,q > 1 with
a/(pg) > 1, and f € B} (H)

ap/(2(p—1)) aq/(2(q—1)) aq||l'y(z —
(PE P2 () < (Cyia(®) (0 ®) P e (MG

J /ot (k1 + k(I TP + Ty ) d3> .

I

[p+1 qg+1
p—1 qlg—1
Consequently, if ||T¢]| < oo for t > 0, then PF is strong Feller provided it is a semigroup.

/

Proof. For simplicity, we denote p' = 1%’ q = q_il, 0 =a/(pq).
P f(x) = Bq, f(X]) = Epf f(X) < (Bf7(X])/"(E(o))")""
= (P.f? (@) /P (B )')¥

< |:Ptf9p(y) exp (—QHF;((;__{U)WH " (E(py )" )7

On the other hand, for any g € 6, (H),
Pig(y) < Erg(XY) = Eq,g(X!) (o)™ < (PFg"(y) 1 (E(p)' ")/
So by taking g = f%

af ez —y)|I*

(B 1) (@) < B (y) exp ( 2p(0=1)

) (o)) (B (o))

This implies the desired Harnack inequality according to the following Lemma 4.2.

Now, assume that Ty is bounded for ¢ > 0 and assume that P/ is a semigroup. Let
[ € % (H). By the first assertion and (4.5), for any o > 1 there exist constants ¢, ¢, > 0
and a positive function H, on (0,%,) such that

(4.6) PP f(x) < (P fo(y) /et tlemvlPHa®) -y e (0,t,).
Then, for any t > 0,

lim sup P f(x) < limsup lim sup lim sup {Pf(Pfisf)a(y)}l/aeC“SJrllz’y”QH“(S)

T—yY a—1 s—0 rT—Y
< lim sup lim sup lim sup {Ptha(y)}l/aecaSJrllx_yH?Ha(s) = Pth(y).
a—1 s—0 T—Y

On the other hand, (4.6) also implies
PE () 2 {PE(PE )V ()} emocs—etaOleul’
> {PFfo(y)} om0l e (0,1,).
So, by first letting z — y then s — 0 and finally o — 1 we arrive at

liminf P/ f(z) > PF f(y).
r—Y
Therefore, P f is continuous on H. O
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Lemma 4.2. Assume (4.2). For anyp> 1, >0 and x € H, then
2p—1 t
B < (Coaa(0) P exp (P [ Gt 2bal T ?)a)

) < (Con0) e ("5 [ b+ 2bafel?ias).

Proof. According to the proof of [4, Theorem 10.20], for any A € R, the process

e [ twtsramy =5 [ ‘s

is a martingale. So,

E(p7)?

=E exp (p/oth(s),d / [4a(s H2d5> exp< / 14 (5)] ds)
< [Eexp (2p/0t<%(8),dws> _ 2p2/0 H%(s)|]2ds)]l/2

‘ []Eexp (p(Zp -1 /Ot H@Z’m(S)Hst)} 2
_ [E exp (p(Qp 1) /Ot ||¢w(5)\|2ds>] 1/2.

This implies the first inequality since (4.2) and the boundedness of T, imply
[z ($)II* < Ky + 2k [Wals)|* + 2kl z]|*.
Similarly, the second inequality follows by noting that

E(p;)~°

“sexp (=5 [[{ostona =5 [ puatoas) e (CE5ED [usgsyieas)

< [E exp (—2(5 /Ot(wx(s),dWs> _ 982 Ot H%(S)Hst)T/Q

[z (ses 1) [ t fo(olds) | "
~[Eew (52041 [ t fo.9)Pds)| "

14



References

1]

8]

[9]

[10]

[11]

[12]

M. Arnaudon, A. Thalmaier, F.-Y. Wang, Harnack inequality and heat kernel es-
timates on manifolds with curvature unbounded below, Bull. Sci. Math. 130(2006),
223-233.

S.G. Bobkov, I. Gentil, M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,
J. Math. Pures Appl. (9) 80(2001), 669-696.

G. Da Prato, M. Rockner, F.-Y. Wang, Singular stochastic equations on Hilbert

spaces:  Harnack inequalities for their transition semigroups, J. Funct. Anal.
257(2009), 992-1017.

G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Vol. 44 of En-
cyclopedia of Mathematics and its Applications, Cambridge University Press, Cam-
bridge, 1992.

G. Da Prato and J. Zabczyk, Second order partial differential equations in Hilbert
spaces, London Mathematical Society Lecture Note Series, vol. 293, Cambridge Uni-
versity Press, Cambridge, 2002.

M. Fuhrman and M. Rockner, Generalized Mehler semigroups: the non-Gaussian
case, Potential Anal. 12 (2000), no. 1, 1-47.

P. Lescot and M. Rockner, Perturbations of generalized Mehler semigroups and ap-
plications to stochastic heat equations with Lévy noise and singular drift, Potential
Anal. 20(2004), 317-344.

W. Liu and F.-Y. Wang, Harnack inequality and strong Feller property for stochastic
fast-diffusion equations, J. Math. Anal. Appl. 342(2008), 651-662.

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with
the logarithmic Sobolev inequality, J. Funct. Anal. 173(2000), 361-400.

S.-X. Ouyang, Harnack inequalities and applications for stochastic equations,
Ph.D. thesis, Bielefeld University, available on http://bieson.ub.uni- biele-
feld.de/volltexte/2009/1463/pdf/ouyang.pdf (2009).

M. Rockner, F.-Y. Wang, Harnack and functional inequalities for generalized Mehler
semigroups, J. Funct. Anal. 203(2003), 237-261.

F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds,
Probab. Theory Related Fields 109(1997), 417-424.

F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous
media equations, Ann. Probab. 35(2007), 1333-1350.

F.-Y. Wang, Heat kernel inequalities for convexity of manifold and curvature condi-
tion, 2009.

15



[15] J. Zabczyk, Mathematical Control Theory, Modern Birkhduser Classics, Birkhduser
Boston Inc., Boston, MA, 2008, an introduction, Reprint of the 1995 edition.

16



