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Abstract

We prove pathwise uniqueness for stochastic differential equations driven by
non-degenerate symmetric α-stable Lévy processes with values in Rd having
a bounded and β-Hölder continuous drift term. We assume β > 1− α/2 and
α ∈ [1, 2). The proof requires analytic regularity results for the associated
integro-differential operators of Kolmogorov type. We also study differentia-
bility of solutions with respect to initial conditions and the homeomorphism
property.

1 Introduction

In this paper we prove a pathwise uniqueness result for the following SDE

Xt = x+
∫ t

0
b (Xs) ds+ Lt, x ∈ Rd, t ≥ 0, (1.1)

where b : Rd → Rd is bounded and β-Hölder continuous and L = (Lt) is
a non-degenerate d-dimensional symmetric α-stable Lévy process (L0 = 0,
P -a.s.) and d ≥ 1.

Currently, there is a great interest in understanding pathwise uniqueness
for SDEs when b is not Lipschitz continuous or, more generally, when b is
singular enough so that the corresponding deterministic equation (1.1) with
L = 0 is not well-posed. A remarkable result in this direction was proved
by Veretennikov in [25] (see also [27] for d = 1). He was able to prove
uniqueness when b : Rd → Rd is only Borel and bounded and L is a standard
d-dimensional Wiener process. This result has been generalized in various
directions in [9], [13], [26], [6], [7], [5], [8].

The situation changes when L is not a Wiener process but is a symmetric
α-stable process, α ∈ (0, 2). Indeed, when d = 1 and α < 1, Tanaka,
Tsuchiya and Watanabe prove in [24, Theorem 3.2] that even a bounded
and β-Hölder continuous b is not enough to ensure pathwise uniqueness if
α + β < 1 (they consider drifts like b(x) = sign(x) (|x|β ∧ 1) and initial
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condition x = 0). On the other hand, when d = 1 and α ≥ 1, they show
pathwise uniqueness for any continuous and bounded b.

In this paper we prove pathwise uniqueness in any dimension d ≥ 1,
assuming that α ≥ 1 and b is bounded and β-Hölder continuous with
β > 1− α/2. Our proof is different from the one in [24] and is inspired
by [7]. The assumptions on the α-stable Lévy process L which we consider
are collected in Section 2 (see in particular Hypothesis 1). Here we only
mention two significant examples which satisfy our hypotheses. The first is
when L = (Lt) is a standard α-stable process (symmetric and rotationally
invariant), i.e., the characteristic function of the random variable Lt is

E[ei〈Lt,u〉] = e−tcα|u|
α
, u ∈ Rd, t ≥ 0, (1.2)

where cα is a positive constant. The second example is L = (L1
t , . . . , L

d
t ),

where L1, . . . , Ld are independent one-dimensional symmetric stable pro-
cesses of index α. In this case

E[ei〈Lt,u〉] = e−tkα(|u1|α+ ···+|ud|α), u ∈ Rd, t ≥ 0, (1.3)

where kα is a positive constant. Martingale problems for SDEs driven by
(L1

t , . . . , L
d
t ) have been recently studied (see [3] and references therein).

We prove the following result.

Theorem 1.1. Let L be a symmetric α-stable process with α ∈ [1, 2), sat-
isfying Hypothesis 1 (see Section 2). Assume that b ∈ Cβb

(
Rd; Rd

)
for some

β ∈ (0, 1) such that
β > 1− α

2
.

Then pathwise uniqueness holds for equation (1.1). Moreover, if Xx = (Xx
t )

denotes the solution starting at x ∈ Rd, we have:
(i) for any t ≥ 0, p ≥ 1, there exists a constant C(t, p) > 0 (depending also
on α, β and L = (Lt)) such that

E[ sup
0≤s≤t

|Xx
s −Xy

s |p ] ≤ C(t, p) |x− y|p, x, y ∈ Rd; (1.4)

(ii) for any t ≥ 0, the mapping: x 7→ Xx
t is a homeomorphism from Rd onto

Rd, P -a.s.;
(iii) for any t ≥ 0, the mapping: x 7→ Xx

t is a C1-function on Rd, P -a.s..

All these assertions require that L is non-degenerate. Estimate (1.4)
replaces the standard Lipschitz-estimate which holds without expectation
E when b is Lipschitz continuous. Assertion (ii) is the so-called homeomor-
phism property of solutions (we refer to [1], [19] and [14]; see also [20] for the
case of Log-Lipschitz coefficients). Note that existence of strong solutions
for (1.1) follows easily by a compactness argument (see the comment before
Lemma 4.1). On the other hand, existence of weak solutions when b is only
measurable and bounded is proved in [15]. Since Cβ

′

b (Rd,Rd) ⊂ Cβb (Rd,Rd)
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when 0 < β ≤ β′, our uniqueness result holds true for any α ≥ 1 when
β ∈ (1/2, 1). Theorem 1.1 implies the existence of a stochastic flow (see
Remark 4.4).

The proof of the main result is given in Section 4. As in [7] our method
is based on an Itô-Tanaka trick which requires suitable analytic regularity
results. Such results are proved in Section 3. They provide global Schauder
estimates for the following resolvent equation on Rd

λu− Lu− b ·Du = g, (1.5)

where λ > 0 and g ∈ Cβb (Rd) are given and we assume α ≥ 1 and α+β > 1.
Here L is the generator of the Lévy process L (see (2.5), [1] and [22]). If L
satisfies (1.2) then L coincides with the fractional Laplacian −(−4)α/2 on
infinitely differentiable functions f with compact support (see [22, Example
32.7]), i.e., for any x ∈ Rd,

−(−4)α/2f(x) =
∫

Rd

(
f(x+ y)− f(x)− 1{|y|≤1} y ·Df(x)

) c̃α
|y|d+α

dy. (1.6)

It is simpler to prove Schauder estimates for (1.5) when α > 1. In such a
case, assuming in addition that L = −(−4)α/2, i.e., L is a standard α-stable
process, these estimates can be deduced from the theory of fractional powers
of sectorial operators (see [16]). We also mention [2, Section 7.3] where
Schauder estimates are proved when α > 1 and L has the form (1.6) but
with variable coefficients, i.e., c̃α = c̃α(x, y). The limit case α = 1 in (1.5)
requires a special attention even for the fractional Laplacian L = −(−4)1/2.
Indeed in this case L is of the “same order” of b · D. To treat α = 1, we
use a localization procedure which is based on Theorem 3.3 where Schauder
estimates are proved in the case of b(x) = k, for any x ∈ Rd, showing that
the Schauder constant is independent of k (the case α < 1 is discussed in
Remark 3.5).

In order to prove Theorem 1.1, in Section 4 we apply Itô’s formula to
u(Xt), where u ∈ Cα+β

b comes from Schauder estimates for (1.5) when g = b
(in such case (1.5) must be understood componentwise). This is needed to
perform the Itô-Tanaka trick and find a new equation for Xt in which the
singular term

∫ t
0 b(Xs)ds of (1.1) is replaced by more regular terms. Then

uniqueness and (1.4) follow by Lp-estimates for stochastic integrals. Such
estimates require Lemma 4.1 and the condition α/2 + β > 1. In addition,
properties (ii) and (iii) are obtained transforming (1.1) into a form suitable
for applying the results in [14].

We will use the letter c or C with subscripts for finite positive constants
whose precise value is unimportant; the constants may change from propo-
sition to proposition.

2 Preliminaries and notation

General references for this section are [1], [21, Chapter 2], [22] and [28].
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Let 〈u, v〉 (or u ·v) be the euclidean inner product between u and v ∈ Rd,
for any d ≥ 1; moreover |u| = 〈u, u〉1/2. If D ⊂ Rd we denote by 1D the
indicator function of D. The Borel σ-algebra of Rd will be indicated by
B(Rd). All the measures considered in the sequel will be positive and Borel.
A measure γ on Rd is called symmetric if γ(D) = γ(−D), D ∈ B(Rd).

Let us fix α ∈ (0, 2). In (1.1) we consider a d-dimensional symmet-
ric α-stable process L = (Lt), d ≥ 1, defined on a fixed stochastic basis
(Ω,F , (Ft)t≥0, P ) and Ft-adapted; the stochastic basis satisfies the usual
assumptions (see [1, page 72]). Recall that L is a Lévy process (i.e., it is
continuous in probability, it has stationary increments, càdlàg trajectories,
Lt − Ls is independent of Fs, 0 ≤ s ≤ t, and L0 = 0) with the additional
property that the characteristic function of Lt verifies

E[ei〈Lt,u〉] = e−tψ(u), ψ(u) = −
∫

Rd

(
ei〈u,y〉 − 1− i〈u, y〉 1{|y|≤1} (y)

)
ν(dy),

(2.1)
u ∈ Rd, t ≥ 0, where ν is a measure such that

ν(D) =
∫

S
µ(dξ)

∫ ∞
0

1D(rξ)
dr

r1+α
, D ∈ B(Rd), (2.2)

for some symmetric, non-zero finite measure µ concentrated on the unitary
sphere S = {y ∈ Rd : |y| = 1} (see [22, Theorem 14.3]).

The measure ν is called the Lévy (intensity) measure of L and (2.1) is
the Lévy-Khintchine formula. The measure ν is a σ-finite measure on Rd

such that ν({0}) = 0 and
∫

Rd(1∧ |y|
2) ν(dy) <∞, with 1∧ | · | = min(1, | · |).

Formula (2.2) implies that (2.1) can be rewritten as

ψ(u) = −
∫

Rd

(
cos(〈u, y〉)− 1

)
ν(dy)

= −
∫

S
µ(dξ)

∫ ∞
0

cos(〈u, rξ〉)− 1
r1+α

dr = cα

∫
S
|〈u, ξ〉|αµ(dξ), u ∈ Rd (2.3)

(see also [22, Theorem 14.13]). The measure µ is called the spectral measure
of the stable process L. In this paper we make the following non-degeneracy
assumption (cf. [23] and [22, Definition 24.16]).

Hypothesis 1. The support of the spectral measure µ is not contained in a
proper linear subspace of Rd.

It is not difficult to show that Hypothesis 1 is equivalent to the following
assertion: there exists a positive constant Cα such that, for any u ∈ Rd,

ψ(u) ≥ Cα|u|α. (2.4)

Condition (2.4) is also assumed in [11, Proposition 2.1]. To see that (2.4)
implies Hypothesis 1, we argue by contradiction: if Supp(µ) ⊂ (M∩ S) where
M is the hyperplane containing all vectors orthogonal to some u0 6= 0, then
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ψ(u0) = 0. To show the converse, note that Hypothesis 1 implies that for
any v ∈ Rd with |v| = 1, we have ψ(v) > 0 (indeed, otherwise, we would
have µ({ξ ∈ S : |〈v, ξ〉| > 0}) = 0 and so Supp(µ) ⊂ {ξ ∈ S : 〈v, ξ〉 = 0}
which contradicts the hypothesis). By using a compactness argument, we
deduce that (2.4) holds for any u ∈ Rd with |u| = 1. Then, writing, for any
u ∈ Rd, u 6= 0,

∫
S |〈u, ξ〉|

αµ(dξ) = |u|α
∫

S
∣∣〈 u|u| , ξ〉∣∣αµ(dξ), we obtain easily

(2.4).
The infinitesimal generator L of the process L is given by

Lf(x) =
∫

Rd

(
f(x+ y)− f(x)− 1{|y|≤1} 〈y,Df(x)〉

)
ν(dy), f ∈ C∞c (Rd),

(2.5)
where C∞c (Rd) is the space of all infinitely differentiable functions with com-
pact support (see [1, Section 6.7] and [22, Section 31]). Let us consider the
two examples of α-stable processes mentioned in Introduction which sat-
isfy Hypothesis 1. The first is when L is a standard α-stable process, i.e.,
ψ(u) = cα|u|α. In this case ν has density Cα

|x|d+α with respect to the Lebesgue

measure in Rd. Moreover the spectral measure µ is the normalized surface
measure on S (i.e., µ gives a uniform distribution on S; see [21, Section 2.5]
and [22, Theorem 14.14]).

The second example is L = (L1
t , . . . , L

d
t ), see (1.3). In this case ψ(u) =

kα(|u1|α + · · · + |ud|α) and the Lévy measure ν is more singular since it is
concentrated on the union of the coordinates axes, i.e., ν has density

cα

(
1{x2=0,...,xd=0}

1
|x1|1+α

+ · · · + 1{x1=0,...,xd−1=0}
1

|xd|1+α

)
with respect to the Lebesgue measure. The spectral measure µ is a linear
combination of Dirac measures, i.e. µ =

∑d
k=1(δek + δ−ek), where (ek) is the

canonical basis in Rd. The generator is

Lf(x) =
d∑

k=1

∫
R

[f(x+sek)−f(x)−1{|s|≤1} s ∂xkf(x)]
cα
|s|1+α

ds, f ∈ C∞c (Rd).

Let us fix some notation on function spaces. We define Cb(Rd; Rk), for
integers k, d ≥ 1, as the set of all functions f : Rd → Rk which are bounded
and continuous. It is a Banach space endowed with the supremum norm
‖f‖0 = supx∈Rd |f(x)|, f ∈ Cb(Rd; Rk). Moreover, Cβb (Rd; Rk), β ∈ (0, 1), is
the subspace of all β-Hölder continuous functions f , i.e., f verifies

[f ]β := sup
x,y∈Rd x6=y

|f(x)− f(y)|
|x− y|β

<∞. (2.6)

Cβb (Rd; Rk) is a Banach space with the norm ‖ ·‖β = ‖ ·‖0 +[·]β. If k = 1, we
set Cβb (Rd; Rk) = Cβb (Rd). Let C0

b (Rd,Rk) = Cb(Rd,Rk) and [·]0 = ‖·‖0. For
any n ≥ 1, α ∈ [0, 1), we say that f ∈ Cn+α

b (Rd) if f ∈ Cn+α(Rd) ∩ Cαb (Rd)
and, for all j = 1, . . . , n, the (Fréchet) derivatives Djf ∈ Cαb (Rd; (Rd)⊗(j+1)).
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The space Cn+α
b (Rd) is a Banach space endowed with the norm ‖f‖n+α

= ‖f‖0 +
∑n

k=1 ‖Dkf‖0 + [Dnf ]α, f ∈ Cn+α
b (Rd). Finally, we will also

consider the Banach space C0(Rd) ⊂ Cb(Rd) of all continuous functions
vanishing at infinity endowed with the norm ‖ · ‖0.

Remark 2.1. Hypothesis 1 (or condition (2.4)) is equivalent to the following
Picard’s type condition (see [17]): there exists α ∈ (0, 2) and Cα > 0, such
that the following estimate holds, for any ρ > 0, u ∈ Rd with |u| = 1,∫

{|〈u,y〉|≤ρ}
|〈u, y〉|2ν(dy) ≥ Cαρ2−α.

The equivalence follows from the computation∫
{|〈u,y〉|≤ρ}

|〈u, y〉|2ν(dy) =
∫

S
|〈u, ξ〉|2µ(dξ)

∫ ∞
0

1{|〈u,ξ〉|≤ ρ
r
} r

1−αdr

= ρ2−α
∫

S
|〈u, ξ〉|2µ(dξ)

∫ ∞
|〈u,ξ〉|

ds

s3−α
=

ρ2−α

2− α

∫
S
|〈u, ξ〉|αµ(dξ).

The Picard’s condition is usually imposed on the Lévy measure ν of a non-
necessarily stable Lévy process L in order to ensure that the law of Lt, for
any t > 0, has a C∞-density with respect to the Lebesgue measure.

3 Some analytic regularity results

In this section we prove existence of regular solutions to (1.5). This will be
achieved through Schauder estimates and will be important in Section 4 to
prove uniqueness for (1.1).

We will use the following three properties of the α-stable process L (in
the sequel µt denotes the law of Lt, t ≥ 0).
(a) µt(A) = µ1(t−1/αA), for any A ∈ B(Rd), t > 0 (this scaling property
follows from (2.1) and (2.3));
(b) µt has a density pt with respect to the Lebesgue measure, t > 0; more-
over pt ∈ C1(Rd) and its spatial derivative Dpt ∈ L1(Rd,Rd) (this is a
consequence of Hypothesis 1);
(c) for any σ > α, we have by (2.2)∫

{|x|≤1}
|x|σν(dx) <∞. (3.1)

The fact that (b) holds can be deduced by an argument of [23, Section 3].
Actually, Hypothesis 1 implies the following stronger result.

Lemma 3.1. For any α ∈ (0, 2), t > 0, the density pt ∈ C∞(Rd) and all
derivatives Dkpt are integrable on Rd, k ≥ 1.
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Proof. We only show that pt ∈ C∞(Rd) and Dpt ∈ L1(Rd,Rd), following
[23]; arguing in a similar way one can obtain the full assertion. By (2.4), we
know that e−tψ(u) ≤ e−Cαt|u|

α
, u ∈ Rd, and so by the inversion formula of

Fourier transform (see [22, Proposition 2.5]) µt has a density pt ∈ L1(Rd) ∩
C0(Rd),

pt(x) =
1

(2π)d

∫
Rd
e−i〈x,z〉e−tψ(z)dz, x ∈ Rd, t > 0. (3.2)

Note that (a) implies that pt(x) = t−d/αp1(t−1/αx). Thanks to (2.4) one can
differentiate infinitely many times under the integral sign and verifies that
pt ∈ C∞(Rd). Let us fix j = 1, . . . , d and check that the partial derivative
∂xjpt ∈ L1(Rd). By the scaling property (a) it is enough to consider t = 1.
By writing ψ = ψ1 + ψ2,

ψ1(u) = −
∫
{|y|≤1}

(
cos(〈u, y〉)− 1

)
ν(dy), ψ2 = ψ − ψ1,

∂xjp1(x) =
1

(2π)d

∫
Rd
e−i〈x,z〉

(
(−izj)e−ψ1(z)

)
e−ψ2(z)dz, x ∈ Rd.

We find easily that ψ1 ∈ C∞(Rd) and so, using also (2.4) we deduce that
−izj e−ψ1(z) is in the Schwartz space S(Rd). In particular, there exists f1 ∈
L1(Rd) such that the Fourier transform f̂1(z) = (−izj)e−ψ1(z). On the other
hand (see [22, Section 8]), there exists an infinitely divisible probability
measure γ on Rd such that the Fourier transform γ̂(z) = e−ψ2(z). By [22,
Proposition 2.5] we infer that f̂1 ∗ γ = f̂1 · γ̂. By the inversion formula we
deduce that ∂xjp1(x) = (f1 ∗ γ)(x) and this proves that ∂xjp1 ∈ L1(Rd).

Remark that (c) implies that the expression of Lf in (2.5) is meaningful
for any f ∈ C1+γ

b (Rd) if 1 + γ > α. Indeed Lf(x) can be decomposed into
the sum of two integrals, over {|y| > 1} and over {|y| ≤ 1} respectively. The
first integral is finite since f is bounded. To treat the second one, we can
use the estimate

|f(y + x)− f(x)− y ·Df(x)| (3.3)

≤
∫ 1

0
|Df(x+ ry)−Df(x)| |y|dr ≤ [Df ]γ |y|1+γ , |y| ≤ 1.

Note that Lf ∈ Cb(Rd) if f ∈ C1+γ
b (Rd) and 1 + γ > α.

The next result is a maximum principle. A related result is in [10, Section
4.5]. This will be used to prove uniqueness of solutions to (1.5) as well as
to study existence.

Proposition 3.2. Let α ∈ (0, 2). If u ∈ C1+γ
b (Rd), 1 + γ > α, is a solution

to λu− Lu −b ·Du = g, with λ > 0 and g ∈ Cb(Rd), then

‖u‖0 ≤
1
λ
‖g‖0, λ > 0. (3.4)
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Proof. Since −u solves the same equation of u with g replaced by −g, it is
enough to prove that u(x) ≤ ‖g‖0

λ , x ∈ Rd. Moreover, possibly replacing u
by u− infx∈Rd u(x), we may assume that u ≥ 0.

Now we show that there exists c1 > 0 such that, for any ε > 0 we can
find uε ∈ C1+γ

b (Rd) with ‖uε‖0 = maxx∈Rd |uε(x)| and also

‖u− uε‖1+γ < ε c1.

To this purpose let xε ∈ Rd be such that u(xε) > ‖u‖0 − ε and take a
test function φ ∈ C∞c (Rd) such that φ(xε) = 1, 0 ≤ φ ≤ 1, and φ(x) = 0 if
|x−xε| ≥ 1. One checks that uε(x) = u(x)+2ε φ(x) verifies the assumptions.
Let us define the operator L1 = L+ b ·D and write

λuε(x)− L1uε(x) = g(x) + λ(uε(x)− u(x))− L1(uε − u)(x).

Let yε be one point in which uε attains its global maximum. Since clearly
L1uε(yε) ≤ 0, we have (using also (3.3))

λ‖uε‖0 = λuε(yε) ≤ ‖g‖0 + C‖u− uε‖1+γ ≤ ‖g‖0 + C c1 ε.

Letting ε→ 0+, we get (3.4).

Next we prove Schauder estimates for (1.5) when b is constant. The
case of b ∈ Cβb (Rd,Rd) will be treated in Theorem 3.4. We stress that the
constant c in (3.6) is independent of b = k.

The condition α + β > 1 which we impose is needed to have a regular
C1-solution u. On the other hand, the next result holds more generally
without the hypothesis α + β < 2. This is assumed just to simplify the
proof and it is not restrictive in the study of pathwise uniqueness for (1.1).
Indeed since Cβ

′

b (Rd,Rd) ⊂ Cβb (Rd,Rd) when 0 < β ≤ β′, it is enough to
study uniqueness when β satisfies β < 2− α.

Theorem 3.3. Assume Hypothesis 1. Let α ∈ (0, 2) and β ∈ (0, 1) be such
that 1 < α+ β < 2. Then, for any λ > 0, k ∈ Rd, g ∈ Cβb (Rd), there exists
a unique solution u = uλ ∈ Cα+β

b (Rd) to the equation

λu− Lu− k ·Du = g (3.5)

on Rd (L is defined in (2.5)). In addition there exists a constant c indepen-
dent of g, u, k and λ > 0 such that

λ‖u‖0 + λ
α+β−1
α ‖Du‖0 + [Du]α+β−1 ≤ c‖g‖β. (3.6)

Proof. Equation (3.5) is meaningful for u ∈ Cα+β
b (Rd) with α+β > 1 thanks

to (3.3). Moreover, uniqueness follows from Proposition 3.2.
To prove the result, we use the semigroup approach as in [4]. To this

purpose, we introduce the α-stable Markov semigroup (Pt) acting on Cb(Rd)
and associated to L+ k ·Du, i.e.,

Ptf(x) =
∫

Rd
f(z + tk) pt(z − x)dz, t > 0, f ∈ Cb(Rd), x ∈ Rd,
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where pt is defined in (3.2), and P0 = I. Then we consider the bounded
function u = uλ,

u(x) =
∫ ∞

0
e−λtPtg(x)dt, x ∈ Rd. (3.7)

We are going to show that u belongs to Cα+β
b (Rd), verifies (3.6) and solves

(3.5).
I Part. We prove that u ∈ Cα+β

b (Rd) and that (3.6) holds.
First note that λ‖u‖0 ≤ ‖g‖0 since (Pt) is a contraction semigroup.

Then, using the scaling property pt(x) = t−d/αp1(t−1/αx), we arrive at

|DPtf(x)| ≤ t−1/α

td/α

∫
Rd
|f(z+tk)| |Dp1(t−1/αz−t−1/αx)| dz ≤ c0‖f‖0

t1/α
, (3.8)

t > 0, f ∈ Cb(Rd), where c0 = ‖Dp1‖L1(Rd), and so we find the estimate

‖DPtf‖0 ≤
c0

t1/α
‖f‖0, f ∈ Cb(Rd), t > 0. (3.9)

By interpolation theory we know that
(
Cb(Rd), C1

b (Rd)
)
β,∞ = Cβb (Rd), β ∈

(0, 1), see for instance [16, Chapter 1]; interpolating the previous estimate
with the estimate ‖DPtf‖0 ≤ ‖Df‖0, t ≥ 0, f ∈ C1

b (Rd), we obtain

‖DPtf‖0 ≤
c1

t(1−β)/α
‖f‖β, t > 0, f ∈ Cβb (Rd), (3.10)

with c1 = c1(c0, β). In a similar way, we also find

‖D2Ptf‖0 ≤
c2

t(2−β)/α
‖f‖β, t > 0, f ∈ Cβb (Rd). (3.11)

Using (3.10) and the fact that 1−β
α < 1, we can differentiate under the

integral sign in (3.7) and prove that there exists Du(x) = Duλ(x), x ∈
Rd. Moreover Duλ is bounded on Rd and we have, for any λ > 0 with c̃
independent of λ, u, k and g,

λ
α+β−1
α ‖Du‖0 ≤ c̃‖g‖β

(we have used that
∫∞
0 e−λtt−σdt = c

λ1−σ , for σ < 1 and λ > 0).
It remains to prove that Du ∈ Cθb (Rd,Rd), where θ = α− 1 + β ∈ (0, 1).

We proceed as in the proof of [2, Proposition 4.2] and [18, Theorem 4.2].
Using (3.10), (3.11) and the fact that 2− β > α, we find, for any x, x′ ∈

Rd, x 6= x′,

|Du(x)−Du(x′)| ≤ C‖g‖β
(∫ |x−x′|α

0

1
t(1−β)/α

dt+
∫ ∞
|x−x′|α

|x− x′|
t(2−β)/α

dt
)

≤ c3‖g‖β|x− x′|θ,

and so [Du]α−1+β ≤ c3‖g‖β, where c3 is independent of g, u, k and λ.
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II Part. We prove that u solves (3.5), for any λ > 0.
We use the fact that the semigroup (Pt) is strongly continuous on the

Banach space C0(Rd); see [1, Section 6.7] and [22, Section 31].
Let A : D(A) ⊂ C0(Rd) → C0(Rd) be its generator. By [22, Theorem

31.5]) C2
0 (Rd) ⊂ D(A) and moreover Af = Lf + k ·Df if f ∈ C2

0 (Rd) (we
say that f belongs to C2

0 (Rd) if f ∈ C2
b (Rd) ∩ C0(Rd) and all its first and

second partial derivatives belong to C0(Rd)).
We first show the assertion assuming in addition that g ∈ C2

0 (Rd).
It is easy to check that u belongs to C2

0 (Rd) as well. To this purpose,
one can use the estimates ‖DkPtg‖0 ≤ ‖Dkg‖0, t ≥ 0, k = 1, 2, and the
dominated convergence theorem. On the other hand, by the Hille-Yosida
theorem we know that u ∈ D(A) and λu − Au = g. Thus we have found
that u solves (3.5).
Let us prove the assertion when g ∈ C2

b (Rd).
Note that also u ∈ C2

b (Rd). We consider a function ψ ∈ C∞c (Rd) such
that ψ(0) = 1 and introduce gn(x) = ψ(x/n)g(x), x ∈ Rd, n ≥ 1. It is clear
that gn, un ∈ C2

0 (Rd) (un is given in (3.7) when g is replaced by gn). We
know that

λun(x)− Lun(x)− k ·Dun(x) = gn(x), x ∈ Rd. (3.12)

It is easy to see that there exists C > 0 such that ‖gn‖2 ≤ C, n ≥ 1, and
moreover gn and Dgn converge pointwise to g and Dg respectively. It follows
that also ‖un‖2 is uniformly bounded and moreover un and Dun converge
pointwise to u and Du respectively. Using also (3.3), we can apply the
dominated convergence theorem and deduce that

lim
n→∞

Lun(x) = Lu(x), x ∈ Rd.

Passing to the limit in (3.12), we obtain that u is a solution to (3.5).
Let now g ∈ Cβb (Rd).

Take any φ ∈ C∞c (Rd) such that 0 ≤ φ ≤ 1 and
∫

Rd φ(x)dx = 1. Define
φn(x) = ndφ(xn) and gn = g ∗φn. Note that (gn) ⊂ C∞b (Rd) = ∩k≥1C

k
b (Rd)

and ‖gn‖β ≤ ‖g‖β, n ≥ 1. Moreover, possibly passing to a subsequence still
denoted by (gn), we may assume that

gn → g in Cβ
′
(K). (3.13)

for any compact set K ⊂ Rd and 0 < β′ < β (see page 37 in [12]). Let un
be given in (3.7) when g is replaced by gn. By the first part of the proof, we
know that

‖un‖α+β ≤ C‖gn‖β ≤ C‖g‖β,

where C is independent of n. It follows that, possibly passing to a subse-
quence still denoted with (un), we have that un → u in Cα+β′(K), for any
compact set K ⊂ Rd and β′ > 0 such that 1 < α + β′ < α + β. Arguing as
before, we can pass to the limit in λun(x) − Lun(x) − k · Dun(x) = gn(x)
and obtain that u solves (3.5). The proof is complete.
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Now we extend Theorem 3.3 to the case in which b is Hölder continuous.
We can only do this when α ≥ 1 (see also Remark 3.5). To prove the result
when α = 1 we adapt the localization procedure which is well known for
second order uniformly elliptic operators with Hölder continuous coefficients
(see [12]). This technique works in our situation since in estimate (3.6) the
constant is independent of k ∈ Rd.

We also need the following interpolatory inequalities (see [12, page 40,
(3.3.7)]); for any t ∈ [0, 1), 0 ≤ s ≤ r < 1, there exists N = N(d, k, r, t) such
that if f ∈ C r+t

b (Rd,Rk), then

[f ]s+t ≤ N [f ]s/rr+t [f ]1− s/rt , (3.14)

where [f ]s+t is defined as in (2.6) if 0 < s+t < 1, [f ]0 = ‖f‖0, [f ]1 = ‖Df‖0,
and [f ]s+t = [Df ]s+t−1 if 1 < s+ t < 2. By (3.14) we deduce, for any ε > 0,

[f ]s+t ≤ Ñεr−s[f ]r+t + Ñε−s[f ]t, f ∈ C r+t
b (Rd,Rk). (3.15)

Theorem 3.4. Assume Hypothesis 1. Let α ≥ 1 and β ∈ (0, 1) be such that
1 < α + β < 2. Then, for any λ > 0, g ∈ Cβb (Rd), there exists a unique
solution u = uλ ∈ Cα+β

b (Rd) to the equation

λu− Lu− b ·Du = g (3.16)

on Rd. Moreover, for any ω > 0, there exists c = c(ω), independent of g
and u, such that

λ‖u‖0 + [Du]α+β−1 ≤ c‖g‖β, λ ≥ ω. (3.17)

Finally, we have limλ→∞ ‖Duλ‖0 = 0.

Proof. Uniqueness and estimate λ‖u‖0 ≤ ‖g‖0, λ > 0, follow from the max-
imum principle (see Proposition 3.2). Moreover, the last assertion follows
from (3.17) using (3.14). Indeed, with t = 0, s = 1, r = α + β, we obtain,
for λ ≥ ω,

[Duλ]0 = [uλ]1 ≤ N [Duλ]
1

α+β

α+β−1 [uλ]
1− 1

α+β

0 ≤ Nc̃ λ−
α+β−1
α+β ‖g‖β,

where c̃ = c̃(ω). Letting λ→∞, we get the assertion.
Let us prove existence and estimate [Du]α+β−1 ≤ c‖g‖β, for λ ≥ ω, with

ω > 0 fixed. We treat α > 1 and α = 1 separately.
I Part (the case α > 1). In the sequel we will use the estimate

‖lf‖θ ≤ ‖l‖0‖f‖θ + ‖f‖0[l]θ, l, f ∈ Cθb (Rd), θ ∈ (0, 1). (3.18)

Writing λu(x) − Lu(x) = g(x) + b(x) · Du(x), and using (3.6) and (3.18),
we obtain the following a-priori estimate (assuming that u ∈ Cα+β

b (Rd) is a
solution to (3.16))

[Du]α+β−1 ≤ C‖g‖β + C‖b ·Du‖β (3.19)
≤ C‖g‖β + C‖b‖β‖Du‖0 + C‖b‖0[Du]β,
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where C is independent of λ > 0. Combining the interpolatory estimates
(see (3.15) with t = 0, s = 1 + β, r = α+ β)

[Du]β ≤ Ñεα−1[Du]α+β−1 + Ñε−(1+β)‖u‖0, ε > 0,

and ‖Du‖0 ≤ Ñεα+β−1[Du]α+β−1 + Ñε−1‖u‖0 (recall that α + β > 1 + β)
with the maximum principle, we get for ε small enough the a-priori estimate

[Du]α+β−1 ≤ c1(‖g‖β + C(ε)‖u‖0) (3.20)

≤ c1
(
‖g‖β +

C(ε)
λ
‖g‖0

)
≤ c1

(
‖g‖β +

C(ε)
ω
‖g‖0

)
≤ C1‖g‖β,

for any λ ≥ ω. Now to prove the existence of a Cα+β
b -solution, we use the

continuity method (see, for instance, [12, Section 4.3]). Let us introduce

λu(x)− Lu(x)− δb(x) ·Du(x) = g(x), (3.21)

x ∈ Rd, where δ ∈ [0, 1] is a parameter. Let us define Γ = {δ ∈ [0, 1] : there
is a unique solution u = uδ ∈ Cα+β

b (Rd), for any g ∈ Cβb (Rd)}.
Clearly Γ is not empty since 0 ∈ Γ. Fix δ0 ∈ Γ and rewrite (3.21) as

λu(x)− Lu(x)− δ0b(x) ·Du(x) = g(x) + (δ − δ0)b(x) ·Du(x).

Introduce the operator S : Cα+β
b (Rd)→ Cα+β

b (Rd). For any v ∈ Cα+β
b (Rd),

u = Sv is the unique Cα+β
b -solution to λu(x)−Lu(x) −δ0b(x)·Du(x) = g(x)

+(δ − δ0)b(x) ·Dv(x).
By using (3.20), we get ‖Sv1−Sv2‖α+β ≤ 2|δ − δ0| · c̃1 ‖b‖β ‖v1−v2‖α+β.

By choosing |δ − δ0| small enough, S becomes a contraction and it has a
unique fixed point which is the solution to (3.21). A compactness argument
shows that Γ = [0, 1]. The assertion is proved.

II Part (the case α = 1). As before, we establish the existence of a C1+β
b (Rd)-

solution, by using the continuity method. This requires the a-priori estimate
(3.20) for α = 1.

Let u ∈ C1+β
b (Rd) be a solution. Let r > 0. Consider a function ξ ∈

C∞c (Rd) such that ξ(x) = 1 if |x| ≤ r and ξ(x) = 0 if |x| > 2r.
Let now x0 ∈ Rd and define ρ(x) = ξ(x− x0), x ∈ Rd, and v = uρ. One

can easily check that

Lv(x) = ρ(x)Lu(x) + u(x)Lρ(x) (3.22)

+
∫

Rd
(ρ(x+ y)− ρ(x))(u(x+ y)− u(x)) ν(dy), x ∈ Rd.

We have

λv(x)− Lv(x)− b(x0) ·Dv(x) = f1(x) + f2(x) + f3(x) + f4(x), x ∈ Rd,

where
f1(x) = ρ(x)g(x), f2(x) = (b(x)− b(x0)) ·Dv(x),
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f3(x) = −u(x)[Lρ(x) + b(x) ·Dρ(x)],

f4(x) = −
∫

Rd
(ρ(x+ y)− ρ(x))(u(x+ y)− u(x)) ν(dy), x ∈ Rd.

By Theorem 3.3 we know that

[Dv]β ≤ C1(‖f1‖β + ‖f2‖β + ‖f3‖β + ‖f4‖β), (3.23)

where the constant C1 is independent of x0 and λ. Let us consider the
crucial term f2. By (3.18) we find

‖f2‖β ≤
(

sup
x∈B(x0,2r)

|b(x)− b(x0)|
)

[Dv]β + ‖Dv‖0‖b‖β.

Let us fix r small enough such that C1 supx∈B(x0,2r) |b(x)−b(x0)| < 1/2. We
get

[Dv]β ≤ 2C1(‖f1‖β + ‖Dv‖0‖b‖β + ‖f3‖β + ‖f4‖β). (3.24)

Note that ‖f1‖β ≤ C(r) ‖g‖β. By the interpolatory estimates (3.15) and the
maximum principle, arguing as in (3.20), we arrive at

[Dv]β ≤ C2(‖g‖β + ‖f3‖β + ‖f4‖β),

for any λ ≥ ω. Let us estimate f4. To this purpose we introduce the
following non-local linear operator T

Tf(x) =
∫

Rd
(ρ(x+ y)− ρ(x))(f(x+ y)− f(x)) ν(dy), f ∈ C1

b (Rd), x ∈ Rd.

One can easily check that T is continuous from C1
b (Rd) into Cb(Rd) and

from C1+β
b (Rd) into C1

b (Rd). To this purpose we only remark that, for any
x ∈ Rd,

|DTf(x)| ≤ 5 ‖ρ‖2‖f‖1
( ∫
{|y|≤1}

|y|2ν(dy) +
∫
{|y|>1}

ν(dy)
)

+5 ‖ρ‖1‖f‖1+β

( ∫
{|y|≤1}

|y|1+βν(dy) +
∫
{|y|>1}

ν(dy)
)
, f ∈ C1+β

b (Rd).

By interpolation theory we know that(
C1
b (Rd), C1+β

b (Rd)
)
β,∞

= C1+β2

b (Rd),

see [16, Chapter 1], and so we get that T is continuous from C1+β2

b (Rd) into
Cβb (Rd) (see [16, Theorem 1.1.6]). Since f4 = −Tu, we obtain the estimate

‖f4‖β ≤ C3‖u‖1+β2 .

We have ‖f4‖β + ‖f3‖β ≤ c3(r) ‖u‖1+β2 and so

[Dv]β ≤ C4(‖g‖β + ‖u‖1+β2),
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where C4 is independent of λ ≥ ω. It follows that [Du]Cβ(B(x0,r)) ≤ C4(‖g‖β+
‖u‖1+β2), where B(x0, r) is the ball of center x0 and radius r > 0. Since C4

is independent of x0, we obtain

[Du]β ≤ C4(‖g‖β + ‖u‖1+β2),

for any λ ≥ ω. Using again (3.15) and the maximum pinciple, we get the
a-priori estimate (3.20) for α = 1. The proof is complete.

Remark 3.5. In contrast with Theorem 3.3, in Theorem 3.4 we can not show
existence of Cα+β

b -solutions to (3.16) when α < 1. The difficulty is evident
from the a-priori estimate (3.19). Indeed, starting from

[Du]α+β−1 ≤ C‖g‖β + C‖b‖β‖Du‖0 + C‖b‖0[Du]β,

we cannot continue, since α < 1 gives Du ∈ Cθb with θ = α + β − 1 < β.
Roughly speaking, when α < 1, the perturbation term b · Du is of order
larger than L and so we are not able to prove the desired a-priori estimates.

4 The main result

We briefly recall basic facts about Poisson random measures which we use
in the sequel (see also [1], [14], [19], [28]). The Poisson random measure N
associated with the α-stable process L = (Lt) in (1.1) is defined by

N((0, t]× U) =
∑

0<s≤t
1U (4Ls) = ]{0 < s ≤ t : 4Ls ∈ U},

for any Borel set U in Rd \ {0}, i.e., U ∈ B(Rd \ {0}), t > 0. Here 4Ls =
Ls−Ls− denotes the jump size of L at time s > 0. The compensated Poisson
random measure Ñ is defined by Ñ((0, t]×U) = N((0, t]×U)−tν(U), where
ν is given in (2.2). Recall the Lévy-Itô decomposition of the process L (see
[1, Theorem 2.4.16] or [14, Theorem 2.7]). This says that

Lt = b̂ t+
∫ t

0

∫
{|x|≤1}

xÑ(ds, dx) +
∫ t

0

∫
{|x|>1}

xN(ds, dx), t ≥ 0, (4.1)

where b̂ = E[L1 −
∫ 1
0

∫
{|x|>1} xN(ds, dx)]. Note that in our case, since ν is

symmetric, we have b̂ = 0.
The stochastic integral

∫ t
0

∫
{|x|≤1} xÑ(ds, dx) is the compensated sum of

small jumps and is an L2-martingale. The process
∫ t
0

∫
{|x|>1} xN(ds, dx)

=
∫
(0,t]

∫
{|x|>1} xN(ds, dx) =

∑
0<s≤t, |4Ls|>14Ls is a compound Poisson

process.
Let T > 0. The predictable σ-field P on Ω × [0, T ] is generated by all

left-continuous adapted processes (defined on the same stochastic basis fixed
in Section 2). Let U ∈ B(Rd \ {0}). In the sequel, we will always consider a
P × B(U)-measurable mapping F : [0, T ]× U × Ω→ Rd.
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If 0 6∈ Ū , then
∫ T
0

∫
U F (s, x)N(ds, dx) =

∑
0<s≤T F (s,4Ls)1U (4Ls) is

a random finite sum.
If E

∫ T
0 ds

∫
U |F (s, x)|2ν(dx) < ∞, then one can define the stochastic

integral

Zt =
∫ t

0

∫
U
F (s, x)Ñ(ds, dx), t ∈ [0, T ]

(here we do not assume 0 6∈ Ū). The process Z = (Zt) is an L2-martingale
with a càdlàg modification. Moreover, E|Zt|2 = E

∫ t
0 ds

∫
U |F (s, x)|2ν(dx)

(see [14, Lemma 2.4]). We will use the following Lp-estimates (see [14,
Theorem 2.11] or the proof of Proposition 6.6.2 in [1]); for any p ≥ 2, there
exists c(p) > 0 such that

E[ sup
0<s≤t

|Zs|p] ≤ c(p)E
[( ∫ t

0
ds

∫
U
|F (s, x)|2ν(dx)

)p/2]
+ c(p)E

[ ∫ t

0
ds

∫
U
|F (s, x)|pν(dx)

]
, t ∈ [0, T ] (4.2)

(the inequality is obvious if the right-hand side is infinite).
Let us recall the concept of (strong) solution which we consider. A

solution to the SDE (1.1) is a càdlàg Ft-adapted process Xx = (Xx
t ) (defined

on (Ω,F , (Ft)t≥0, P ) fixed in Section 2) which solves (1.1) P -a.s., for t ≥ 0.
It is easy to show the existence of a solution to (1.1) using the fact that

b is bounded and continuous. We may argue at ω fixed. Let us first consider
t ∈ [0, 1]. By introducing v(t) = Xt − Lt, we get the equation

v(t) = x+
∫ t

0
b(v(s) + Ls)ds.

Approximating b with smooth drifts bn we find solutions vn ∈ C([0, 1]; Rd).
By the Ascoli-Arzela theorem, we obtain a solution to (1.1) on [0, 1]. The
same argument works also on the time interval [1, 2] with a random initial
condition. Iterating this procedure we can construct a solution for all t ≥ 0.

The proof of Theorem 1.1 requires some lemmas. We begin with a de-
terministic result.

Lemma 4.1. Let γ ∈ [0, 1] and f ∈ C1+γ
b (Rd). Then for any u, v ∈ Rd,

x ∈ Rd, with |x| ≤ 1, we have

|f(u+x)− f(u)− f(v+x) + f(v)| ≤ cγ‖f‖1+γ |u− v| |x|γ , with cγ = 31−γ .

Proof. For any x ∈ Rd, |x| ≤ 1, define the linear operator Tx : C1
b (Rd) →

C1
b (Rd),

Txf(u) = f(u+ x)− f(u), f ∈ C1
b (Rd), u ∈ Rd.

Since ‖Txf‖0 ≤ ‖Df‖0|x| and ‖D(Txf)‖0 ≤ 2‖Df‖0, it follows that Tx
is continuous and ‖Txf‖1 ≤ (2 + |x|) ‖f‖1, f ∈ C1

b (Rd). Similarly, Tx is
continuous from C2

b (Rd) into C1
b (Rd) and

‖Txf‖1 ≤ |x| ‖f‖2, f ∈ C2
b (Rd).
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By interpolation theory
(
C1
b (Rd), C2

b (Rd)
)
γ,∞

= C1+γ
b (Rd), see for instance

[16, Chapter 1]; we deduce that, for any γ ∈ [0, 1], Tx is continuous from
C1+γ
b (Rd) into C1

b (Rd) (cf. [16, Theorem 1.1.6]) with operator norm less
than or equal to (2 + |x|)1−γ |x|γ .

Since |x| ≤ 1, we obtain that ‖Txf‖1 ≤ cγ |x|γ ‖f‖1+γ , f ∈ C1+γ
b (Rd).

Now the assertion follows noting that, for any u, v ∈ Rd,

|f(u+ x)− f(u)− f(v + x) + f(v)| = |Txf(u)− Txf(v)| ≤ ‖DTxf‖0 |u− v|.

The proof is complete.

In the sequel we will consider the following resolvent equation on Rd

λu− Lu−Du · b = b, (4.3)

where b : Rd → Rd is given in (1.1), L in (2.5) and λ > 0 (the equation must
be understood componentwise, i.e., λui− Lui − b · Dui = bi, i = 1, . . . , d).
The next two results hold for SDEs of type (1.1) when b is only continuous
and bounded.

Lemma 4.2. Let α ∈ (0, 2) and b ∈ Cb(Rd,Rd) in (1.1). Assume that, for
some λ > 0, there exists a solution u ∈ C1+γ

b (Rd,Rd) to (4.3) with γ ∈ [0, 1],
and moreover

1 + γ > α.

Let X = (Xt) be a solution of (1.1) starting at x ∈ Rd. We have, P -a.s.,
t ≥ 0,

u(Xt)− u(x) (4.4)

= x−Xt +Lt +λ

∫ t

0
u(Xs)ds+

∫ t

0

∫
Rd\{0}

[u(Xs−+x)−u(Xs−)]Ñ(ds, dx).

Proof. First note that the stochastic integral in (4.4) is meaningful thanks
to the estimate

E

∫ t

0
ds

∫
Rd
|u(Xs− + x)− u(Xs−)|2ν(dx) (4.5)

≤ 4t‖u‖20
∫
{|x|>1}

ν(dx) + t‖u‖21
∫
{|x|≤1}

|x|2ν(dx) <∞.

The assertion is obtained applying Itô’s formula to u(Xt) (for more details
on Itô’s formula see [1, Theorem 4.4.7] and [14, Section 2.3]).

Let us fix i = 1, . . . , d and set ui = f . A difficulty is that Itô’s formula is
usually stated assuming that f ∈ C2(Rd). However, in the present situation
in which L is α-stable, using (3.1), one can show that Itô’s formula holds
for f(Xt) when f ∈ C1+γ

b (Rd). We give a proof of this fact.
We assume that γ > 0 (the proof with γ = 0 is similar). By convolution

with mollifiers, as in (3.13) we obtain a sequence (fn) ⊂ C∞b (Rd) such that
fn → f in C1+γ′(K), for any compact set K ⊂ Rd and 0 < γ′ < γ.
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Moreover, ‖fn‖1+γ ≤ ‖f‖1+γ , n ≥ 1 . Let us fix t > 0. By Itô’s formula for
fn(Xt) we find, P -a.s.,

fn(Xt)− fn(x)

=
∫ t

0

∫
Rd\{0}

[fn(Xs− + x)− fn(Xs−)] Ñ(ds, dx)

+
∫ t

0
ds

∫
Rd

[fn(Xs− + x)− fn(Xs−)− 1{|x|≤1} x ·Dfn(Xs−)]ν(dx)

+
∫ t

0
b(Xs) ·Dfn(Xs)ds. (4.6)

It is not difficult to pass to the limit as n → ∞; we show two arguments
which are needed. To deal with the integral involving ν, one can apply the
dominated convergence theorem, thanks to the following estimate similar to
(3.3),

|fn(Xs− + x)− fn(Xs−)− x ·Dfn(Xs−)| ≤ [Df ]γ |x|1+γ , |x| ≤ 1

(recall that
∫
{|x|≤1} |x|

1+γν(dx) <∞ since 1 + γ > α). To pass to the limit

in the stochastic integral with respect to Ñ , one uses the isometry formula

E
∣∣∣ ∫ t

0

∫
Rd\{0}

[fn(Xs− + x)− fn(Xs−)− f(Xs− + x) + f(Xs−)]Ñ(ds, dx)
∣∣∣2

(4.7)

=
∫ t

0
ds

∫
{|x|≤1}

E|fn(Xs− + x)− f(Xs− + x)− fn(Xs−) + f(Xs−)|2ν(dx)

+
∫ t

0
ds

∫
{|x|>1}

E|fn(Xs− + x)− f(Xs− + x)− fn(Xs−) + f(Xs−)|2ν(dx).

Arguing as in (4.5), since ‖fn‖1+γ ≤ ‖f‖1+γ , n ≥ 1, we can apply the
dominated convergence theorem in (4.7). Letting n→∞ in (4.7) we obtain
0. Finally, we pass to the limit in probability in (4.6) and obtain Itô’s
formula when f ∈ C1+γ

b (Rd).
Noting that, for any i = 1, . . . , d,

Lui(y) =
∫

Rd
[ui(y + x)− ui(y)− 1{|x|≤1} x ·Dui(y)]ν(dx), y ∈ Rd,

and using that u solves (4.3), i.e., Lu + b ·Du = λu − b, we can replace in
the Itô formula for u(Xt) the term∫ t

0
Lu(Xs)ds+

∫ t

0
Du(Xs)b(Xs)ds

=
d∑
i=1

(∫ t

0
Lui(Xs)ds +

∫ t

0
Dui(Xs) · b(Xs)ds

)
ei

with −
∫ t
0 b(Xs)ds+ λ

∫ t
0 u(Xs)ds = x−Xt + Lt + λ

∫ t
0 u(Xs)ds and obtain

the assertion.
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The proof of Theorem 1.1 will be a consequence of the following result.

Theorem 4.3. Let α ∈ (0, 2) and b ∈ Cb(Rd,Rd) in (1.1). Assume that, for
some λ > 0, there exists a solution u = uλ ∈ C1+γ

b (Rd,Rd) to the equation
(4.3) with γ ∈ [0, 1], such that cλ = ‖Duλ‖0 < 1/3. Moreover, assume that

2γ > α.

Then the SDE (1.1), for every x ∈ Rd, has a unique solution (Xx
t ).

Moreover, assertions (i), (ii) and (iii) of Theorem 1.1 hold.

Proof. Note that 2γ > α implies the condition 1 + γ > α of Lemma 4.2.
We provide a direct proof of pathwise uniqueness and assertion (i). This

uses Lemmas 4.2 and 4.1 together with Lp-estimates for stochastic integrals
(see (4.2)). Statements (ii) and (iii) will be obtained by transforming (1.1)
in a form suitable for applying the results in [14, Chapter 3].

Let us fix t > 0, p ≥ 2 and consider two solutions X and Y of (1.1)
starting at x and y ∈ Rd respectively. Note that Xt is not in Lp if p ≥ α
(compare with [14, Theorem 3.2]) but the difference Xt − Yt is a bounded
process. Pathwise uniqueness and (1.4) (for any p ≥ 1) follow if we prove

E[ sup
0≤s≤t

|Xs − Ys|p] ≤ C(t) |x− y|p, x, y ∈ Rd, (4.8)

with a positive constant C(t) independent of x and y. Indeed in the special
case of x = y estimate (4.8) gives uniqueness of solutions.

We have from Lemma 4.2, P -a.s.,

Xt − Yt = [x− y] + [u(x)− u(y)] + [u(Yt)− u(Xt)] (4.9)

+
∫ t

0

∫
Rd\{0}

[u(Xs− + x)− u(Xs−)− u(Ys− + x) + u(Ys−)]Ñ(ds, dx)

+λ
∫ t

0
[u(Xs)− u(Ys)]ds.

Since ‖Du‖0 ≤ 1/3, we have |u(Xt) − u(Yt)| ≤ 1
3 |Xt − Yt|. It follows the

estimate |Xt − Yt| ≤ 3
2Λ1(t) +3

2Λ2(t) +3
2Λ3(t) + 3

2Λ4, where

Λ1(t) =
∣∣∣ ∫ t

0

∫
{|x|>1}

[u(Xs−+x)−u(Xs−)−u(Ys−+x)+u(Ys−)]Ñ(ds, dx)
∣∣∣,

Λ2(t) = λ

∫ t

0
|u(Xs)− u(Ys)|ds,

Λ3(t) =
∣∣∣ ∫ t

0

∫
{|x|≤1}

[u(Xs−+x)−u(Xs−)−u(Ys−+x)+u(Ys−)]Ñ(ds, dx)
∣∣∣,

Λ4 = |x− y|+ |u(x)− u(y)| ≤ 4
3 |x− y|. Note that, P -a.s.,

sup
0≤s≤t

|Xs − Ys|p ≤ Cp|x− y|p + Cp

3∑
k=1

sup
0≤s≤t

Λk(s)p.
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The main difficulty is to estimate Λ3(t). Let us first consider the other
terms. By the Hölder inequality

sup
0≤s≤t

Λ2(s)p ≤ c1(p) tp−1

∫ t

0
sup

0≤s≤r
|Xs − Ys|p dr.

By (4.2) with U = {x ∈ Rd : |x| > 1} we find

E[ sup
0≤s≤t

Λ1(s)p]

≤ c(p)E
[( ∫ t

0
ds

∫
{|x|>1}

|u(Xs−+x)−u(Ys−+x)+u(Ys−)−u(Xs−)|2ν(dx)
)p/2]

+ c(p)E
∫ t

0
ds

∫
{|x|>1}

|u(Xs− + x)− u(Ys− + x) + u(Ys−)− u(Xs−)|pν(dx).

Using |u(Xs−+x)−u(Ys−+x) +u(Ys−)−u(Xs−)| ≤ 2
3 |Xs−−Ys−| and the

Hölder inequality, we get

E[ sup
0≤s≤t

Λ1(s)p] ≤ C1(p) (1 + tp/2−1) ·

·
(∫
{|x|>1}

ν(dx) +
( ∫
{|x|>1}

ν(dx)
)p/2)∫ t

0
E[ sup

0≤s≤r
|Xs − Ys|p]dr.

Let us treat Λ3(t). This requires the condition 2γ > α. By using (4.2) with
U = {x ∈ Rd : |x| ≤ 1, x 6= 0} and also Lemma 4.1, we get

E[ sup
0≤s≤t

Λ3(s)p] ≤ c(p)‖u‖p1+γ E
[( ∫ t

0
ds

∫
{|x|≤1}

|Xs − Ys|2|x|2γν(dx)
)p/2]

+ c(p)‖u‖p1+γ E

∫ t

0
ds

∫
{|x|≤1}

|Xs − Ys|p|x|γpν(dx).

We obtain
E[ sup

0≤s≤t
Λ3(s)p] ≤ C2(p) (1 + tp/2−1) ‖u‖p1+γ ·

·
(( ∫

{|x|≤1}
|x|2γν(dx)

)p/2 +
∫
{|x|≤1}

|x|γpν(dx)
) ∫ t

0
E[ sup

0≤s≤r
|Xs − Ys|p] dr,

where
∫
{|x|≤1} |x|

pγν(dx) < +∞, since p ≥ 2 and 2γ > α. Collecting the
previous estimates, we arrive at

E[ sup
0≤s≤t

|Xs−Ys|p] ≤ Cp |x−y|p + C4(p) (1+tp−1)
∫ t

0
E[ sup

0≤s≤r
|Xs−Ys|p] dr.

Applying the Gronwall lemma we obtain (4.8) with C(t) = Cp exp
(
C4(p) (1+

tp−1)
)
. The assertion is proved.

Now we establish the homeomorphism property (ii) (cf. [14, Chapter 3],
[1, Chapter 6] and [19, Section V.10]).
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First note that, since ‖Du‖0 < 1/3, the classical Hadamard theorem (see
[19, page 330]) implies that the mapping ψ : Rd → Rd, ψ(x) = x + u(x),
x ∈ Rd, is a C1-diffeomorphism from Rd onto Rd. Moreover, Dψ−1 is
bounded on Rd and ‖Dψ−1‖0 ≤ 1

1−cλ <
3
2 thanks to

Dψ−1(y) = [I +Du(ψ−1(y))]−1 =
∑
k≥0

(−Du(ψ−1(y)))k, y ∈ Rd. (4.10)

Let r ∈ (0, 1) and introduce the SDE

Yt = y +
∫ t

0
b̃(Ys)ds (4.11)∫ t

0

∫
{|z|≤r}

g(Ys−, z)Ñ(ds, dz) +
∫ t

0

∫
{|z|>r}

g(Ys−, z)N(ds, dz), t ≥ 0,

where b̃(y) = λu(ψ−1(y))−
∫
{|z|>r}[u(ψ−1(y) + z)− u(ψ−1(y))]ν(dz) and

g(y, z) = u(ψ−1(y) + z) + z − u(ψ−1(y)), y ∈ Rd, z ∈ Rd.

Note that (4.11) is a SDE of the type considered in [14, Section 3.5]. Due to
the Lipschitz condition, there exists a unique solution Y y = (Y y

t ) to (4.11).
Moreover, using (4.4) and the formula

Lt =
∫ t

0

∫
{|x|≤r}

xÑ(ds, dx) +
∫ t

0

∫
{|x|>r}

xN(ds, dx), t ≥ 0

(due to the fact that ν is symmetric) it is not difficult to show that

ψ(Xx
t ) = Y

ψ(x)
t , x ∈ Rd, t ≥ 0. (4.12)

Thanks to (4.12) to prove our assertion, it is enough to show the homeomor-
phism property for Y y

t . To this purpose, we will apply [14, Theorem 3.10]
to equation (4.11). Let us check its assumptions.

Clearly, b̃ is Lipschitz continuous and bounded. Let us consider [14,
condition (3.22)]. For any y ∈ Rd, z ∈ Rd, |g(y, z)| ≤ |z|(1 + ‖Du‖0)
≤ K(z), with K(z) = 4

3 |z| (recall that
∫
|z|≤1 |z|

2ν(dz) < ∞); further by
Lemma 4.1 and (4.10) we have, for any y, y′ ∈ Rd, z ∈ Rd with |z| ≤ 1,

|g(y, z)− g(y′, z)| ≤ L(z)|y − y′| where L(z) = C1‖u‖1+γ |z|γ ,

with
∫
|z|≤1 L(z)2ν(dz) <∞, since 2γ > α. Note that we may fix r > 0 small

enough in (4.11) in order that K(r)+L(r) < 1 (according to [14, Section 3.5],
this condition is needed to study the homeomorphism property for equation
(4.11) without

∫ t
0

∫
{|z|>r} g(Ys−, z)N(ds, dz); see also [14, Remark 1, Section

3.4]).
By [14, Theorem 3.10] in order to get the homeomorphism property, it

remains to check that, for any z ∈ Rd, the mapping:

y 7→ y + g(y, z) is a homeomorphism from Rd onto Rd. (4.13)
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Let us fix z. To verify the assertion, we will again apply the Hadamard
theorem. We have

Dyg(y, z) = [Du(ψ−1(y) + z)−Du(ψ−1(y))] [Dψ−1(y)]

and so by (4.10) (since ‖Du‖0 < 1/3) we get ‖Dyg(·, z)‖0 ≤ 2cλ
1−cλ < 1. We

have obtained (4.13). By [14, Theorem 3.10] the homeomorphism property
for Y y

t follows and this gives the assertion.
Now we show that, for any t ≥ 0, the mapping: x 7→ Xx

t is of class C1

on Rd, P -a.s. (see (iii)).
We fix t > 0 and a unitary vector ek of the canonical basis in Rd. We

will show that there exists, P -a.s., the partial derivative lims→0
X
x+sek
t −Xx

t
s

= DekX
x
t and, moreover, that the mapping x 7→ DekX

x
t is continuous on

Rd, P -a.s..
Let us consider the process Y y = (Y y

t ) which solves the SDE (4.11). If
we prove that the mapping y 7→ Y y

t is of class C1 on Rd, P -a.s., then we
have proved the assertion. Indeed, P -a.s.,

DekX
x
t = [Dψ−1(Y ψ(x)

t )][DY ψ(x)
t ]Dekψ(x), x ∈ Rd.

We rewrite (4.11) as

Yt = y + λ

∫ t

0
u(ψ−1(Yr))dr +

∫ t

0

∫
Rd\{0}

h(Yr−, z)Ñ(dr, dz) + Lt, (4.14)

t ≥ 0, y ∈ Rd, where

h(y, z) = u(ψ−1(y) + z)− u(ψ−1(y)) = g(y, z)− z,

and note that the statement of [14, Theorem 3.4] about the differentiability
property holds for SDEs of the form (4.14), provided that the coefficients
λu ◦ ψ−1 and h satisfy [14, conditions (3.1), (3.2), (3.8) and (3.9)]. Indeed
the presence of Lt in the equation does not give rise to any difficulty. To
check this fact, remark that, for any t ≥ 0, y ∈ Rd, s 6= 0, we have the
equality

Y y+sek
t − Y y

t

s
= ek +

(
λ

∫ t

0

u(ψ−1(Y y+sek
r ))− u(ψ−1(Y y

r ))
s

dr

+
∫ t

0

∫
Rd\{0}

h(Y y+sek
r− , z)− h(Y y

r−, z)
s

Ñ(dr, dz)
)
,

where Lt is disappeared. Thus we can apply the same argument which is
used to prove [14, Theorem 3.4] (see also the proof of [14, Theorem 3.3]),
i.e., we can provide estimates for

E
[

sup
0≤t≤T

∣∣∣Y y+sek
t − Y y

t

s

∣∣∣p] and E
[

sup
0≤t≤T

∣∣∣Y y+sek
t − Y y

t

s
− Y

y′+s′ek
t − Y y′

t

s′

∣∣∣p],
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p ≥ 2, s, s′ 6= 0, y, y′ ∈ Rd, by using (4.2) and the Gronwall lemma (remark
that in [14] the term s−1 (Y y+sek

t − Y y
t ) is denoted by Nt(y, s)), and then

apply the Kolmogorov criterion in order to prove that y 7→ Y y
t is of class C1

on Rd, P -a.s..
Let us check that λu ◦ ψ−1 and h satisfy the assumptions of [14, The-

orem 3.4] (i.e., respectively, [14, conditions (3.1), (3.2), (3.8) and (3.9)]).
Conditions (3.1) and (3.2) are easy to check. Indeed λu(ψ−1(·)) is Lips-
chitz continuous on Rd and, moreover, thanks to Lemma 4.1 and to the
boundeness of Dψ−1,

|h(y, z)− h(y′, z)| ≤ C‖u‖1+γ(1{|z|≤1}|z|γ + 1{|z|>1}) |y − y′|, z ∈ Rd,

y, y′ ∈ Rd, with
∫

Rd(1{|z|≤1}|z|γ + 1{|z|>1})p ν(dz) < ∞, for any p ≥ 2. In
addition, |h(y, z)| ≤ L0(z), z ∈ Rd, y ∈ Rd, where, since ‖Du‖0 < 1/3,

L0(z) =
1
3

1{|z|≤1}|z| + 2‖u‖01{|z|>1} with
∫

Rd
L0(z)pν(dz) <∞, p ≥ 2.

Assumptions [14, (3.8) and (3.9)] are more difficult to check. They require
that there exists some δ > 0 such that (setting l(x) = λu(ψ−1(x)))

(1) sup
y∈Rd

|Dl(y))| <∞; |Dl(y)−Dl(y′)| ≤ C|y − y′|δ, y, y′ ∈ Rd.

(2) |Dyh(y, z))| ≤ K1(z); |Dyh(y, z)−Dyh(y′, z)| ≤ K2(z) |y−y′|δ, (4.15)

for any y, y′ ∈ Rd, z ∈ Rd, with
∫

Rd Ki(z)p ν(dz) < ∞, for any p ≥ 2,
i = 1, 2. Such estimates are used in [14] in combination with the Kolmogorov
continuity theorem to show the differentiability property.

Let us check (1) with δ = γ, i.e., Dl ∈ Cγb (Rd,Rd). Since, for any
y ∈ Rd, Dl(y) = λDu(ψ−1(y))Dψ−1(y), we find that Dl is bounded on Rd.
Moreover, thanks to the following estimate (cf. (3.18))

[Dl]γ ≤ λ‖Du‖0[Dψ−1]γ + λ[Du]γ‖Dψ−1‖1+γ
0 ,

in order to prove the assertion it is enough to show that [Dψ−1]γ < ∞.
Recall that for d× d real matrices A and B, we have (I +A)−1− (I +B)−1

= (I + A)−1(B − A)(I + B)−1 (if (I + A) and (I + B) are invertible). We
obtain, using also that Dψ−1 is bounded,

|Dψ−1(y)−Dψ−1(y′)| = |[I +Du(ψ−1(y))]−1 − [I +Du(ψ−1(y′))]−1|

≤ c1 [Du]γ |y − y′|γ , y, y′ ∈ Rd

and the proof of (1) is complete with γ = δ. Let us consider (2). Clearly,

Dyh(y, z) = [Du(ψ−1(y) + z)−Du(ψ−1(y))]Dψ−1(y)

verifies the first part of (2) with K1(z) = c2‖Du‖γ(1{|z|≤1}|z|γ + 1{|z|>1}).
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Let us deal with the second part of (2). We choose γ′ ∈ (0, γ) such that
2γ′ > α and first show that, for any f ∈ Cγb (Rd,Rd), we have

[Txf ]γ−γ′ ≤ C[f ]γ |x|γ
′
, x ∈ Rd, (4.16)

where (as in Lemma 4.1) for any x ∈ Rd, we define the mapping Txf : Rd →
Rd as Txf(u) = f(x+ u)− f(u), u ∈ Rd. Using also (3.14), we get

[Txf ]γ−γ′ ≤ N [Txf ]
γ−γ′
γ

γ [Txf ]
1− γ−γ′

γ

0 ≤ cN [f ]γ |x|γ(1−
γ−γ′
γ

) ≤ cN |x|γ′ [f ]γ ,

for any x ∈ Rd. By (4.16) we will prove (2) with δ = γ − γ′ > 0.
First consider the case when |z| ≤ 1. By (4.16) with Du = f , we get

|Dyh(y, z)−Dyh(y′, z)|

= |Du(ψ−1(y) +z)−Du(ψ−1(y))−Du(ψ−1(y′) +z)+Du(ψ−1(y′))| ‖Dψ−1‖0
≤ C1[Du]γ |y − y′|δ |z|γ

′
,

for any y, y′ ∈ Rd. Let now |z| > 1; we find, for y, y′ ∈ Rd with |y − y′| ≤ 1,

|Dyh(y, z)−Dyh(y′, z)| ≤ C2[Du]γ |y − y′|γ ≤ C2[Du]γ |y − y′|γ−γ
′
.

On the other hand, if |y − y′| > 1, |z| > 1, |Dyh(y, z) − Dyh(y′, z)| ≤
4‖Du‖0|y − y′|γ−γ′ . In conclusion, the second part of (2) is verified with
δ = γ − γ′ and

K2(z) = C3‖Du‖γ (1{|z|≤1}|z|γ
′
+ 1{|z|>1}).

(note that
∫

Rd K2(z)p ν(dz) < ∞, for any p ≥ 2, since 2γ′ > α). Since
Cγb
(
Rd,Rd

)
⊂ Cγ−γ

′

b

(
Rd,Rd

)
, we deduce that both (1) and (2) hold with

δ = γ − γ′.
Arguing as in [14, Theorem 3.4], we get that y 7→ Y y

t is C1, P -a.s.,
and this proves our assertion. We finally note that [14, Theorem 3.4] also
provides a formula for Hy

t = DY y
t , i.e.,

Hy
t = I + λ

∫ t

0
Du(ψ−1(Y y

s ))Dψ−1(Y y
s )Hy

s ds

+
∫ t

0

∫
Rd\{0}

(
Dyh(Y y

s−, z)H
y
s−

)
Ñ(ds, dz), t ≥ 0, y ∈ Rd.

The stochastic integral is meaningful, thanks to (2) in (4.15) and to the
estimate sup0≤s≤tE[|Hs|p] < ∞, for any t > 0, p ≥ 2 (see [14, assertion
(3.10)]). The proof is complete.

Proof of Theorem 1.1. We may assume that 1− α/2 < β < 2− α. We will
deduce the assertion from Theorem 4.3.

Since α ≥ 1, we can apply Theorem 3.4 and find a solution uλ ∈
C1+γ
b (Rd,Rd) to the resolvent equation (4.3) with γ = α − 1 + β ∈ (0, 1).

By the last assertion of Theorem 3.4, we may choose λ sufficiently large in
order that ‖Du‖0 = ‖Duλ‖0 < 1/3. The crucial assumption about γ and α
in Theorem 4.3 is satisfied. Indeed 2γ = 2α− 2 + 2β > α since β > 1−α/2.
By Theorem 4.3 we obtain the result.
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Remark 4.4. Thanks to Theorem 1.1 we may define a stochastic flow associ-
ated to (1.1). To this purpose, note that by (ii) we have Xx

t = ξt(x), t ≥ 0,
x ∈ Rd, P -a.s.., where ξt is a homeomorphism from Rd onto Rd. Let ξ−1

t be
the inverse map. As in [14, Section 3.4], we set ξs,t(x) = ξt ◦ ξ−1

s (x), 0 ≤
s ≤ t, x ∈ Rd.

The family (ξs,t) is a stochastic flow since verifies the following properties
(P -a.s): (i) for any x ∈ Rd, (ξs,t(x)) is a càdlàg process with respect to t and a
càdlàg process with respect s; (ii) ξs,t : Rd → Rd is an onto homeomorphism,
s ≤ t; (iii) ξs,t(x) is the unique solution to (1.1) starting from x at time s;
(iv) we have ξs,t(x) = ξu,t(ξs,u(x)), for all 0 ≤ s ≤ u ≤ t, x ∈ Rd, and
ξs,s(x) = x.
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