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Abstract 

In this paper we exploit two equivalent formulations of the average rate of material entropy production in a planetary 

system to propose an approximate splitting between contributions due to vertical and eminently horizontal processes. 

Our approach is based only upon 2D radiative fields at the surface and at the top of atmosphere of a general planetary 

body. Using 2D fields at the top of atmosphere alone, we derive lower bounds to the rate of material entropy production 

and to the intensity of the Lorenz energy cycle. By introducing a measure of the efficiency of the planetary system with 

respect to horizontal thermodynamical processes, we provide insight on a previous intuition on the possibility of defining 

a baroclinic heat engine extracting work from the meridional heat flux. The approximate formula of the material entropy 

production is verified and used for studying the global thermodynamic properties of climate models (CMs) included in the 

PCMDI/CMIP3 dataset in pre-industrial climate conditions. It is found that about 90% of the material entropy production is 

due to vertical processes such as convection, whereas the large scale meridional heat transport contributes only about 

10%. This suggest that the traditional 2-box models used for providing a minimal representation of entropy production in 

planetary systems are not appropriate, while a basic – but conceptually correct – description can be framed in terms of a 

4-box model. The total material entropy production is typically 55 mWK
-1

m
-2

, with discrepancies of the order of 5% and 

CMs’ baroclinic efficiencies are clustered around 0.055. The lower bounds on the intensity of the Lorenz energy cycle 

featured by CMs are found to be around 1.0-1.5Wm
-2

, which implies that the derived inequality is rather stringent as the 

lower bound is about 50% of the actual value. When looking at the variability and co-variability of the considered 

thermodynamical quantities, the agreement among CMs is worse, suggesting that the description of feedbacks is more 

uncertain. The contributions to material entropy production from vertical and horizontal processes are positively 

correlated, so that no compensation mechanism seems in place. Quite consistently among CMs, the variability of the 

efficiency of the system is a better proxy for variability of the entropy production due to horizontal processes than that of 

the large scale heat flux. Observational estimates of the climatology of the thermodynamical bounds are derived for Earth, 

Mars, Titan and Venus from very coarse data on the radiative fluxes at the top of the atmosphere. We discover that, once 

a suitable rescaling based upon the energy input is performed, these celestial objects share bounds that agree within one 

order of magnitude, in spite of the large discrepancies in the atmospheric masses. The possibility of providing constraints 

to the 3D dynamics of the fluid envelope based only upon 2D observations of radiative fluxes seems promising for the 

observational study of planets and for testing numerical models. 
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1. Introduction 

It has long been recognized that adopting a thermodynamical perspective, as pioneered by Lorenz 

(1955, 1967), may prove of great utility for providing a satisfactory theory of climate dynamics able to 

tackle simultaneously balances of physical quantities and dynamical instabilities, and aimed at 

explaining the global structural properties of the climate system, as envisaged by Saltzman (2002). 

This is of great relevance in terms of the pursuit for explaining climate variability and change on a 

large variety of scales, covering major paleoclimatic shifts, almost regularly repeated events such as 

ice ages, as well as the ongoing and future anthropogenic climate change. Additionally, this strategy 

may prove of great relevance for the provision of reliable metrics for the validation of climate models, 

as asked for by the Intergovernmental Panel on Climate Change (IPCC 2007) and discussed, e.g., in 

Held (2005), Lucarini (2008a). See Lucarini and Ragone (2010) for a recent example. 

Along the lines of non-equilibrium macroscopic thermodynamics (Prigogine 1962, De Groot 

and Mazur 1984), the climate can be seen as a non-equilibrium system, which transforms potential 

into mechanical energy like a thermal engine and generates entropy by irreversible processes. When 

the external and internal parameters have fixed values, the climate system achieves a steady state by 

balancing the thermodynamical fluxes with the surrounding environment (Peixoto and Oort 1992).  

The concept of the energy cycle of the atmosphere introduced by Lorenz (1955, 1967) allowed 

for defining an effective climate machine such that the atmospheric and oceanic motions 

simultaneously result from the mechanical work (then dissipated in a turbulent cascade) produced by 

the engine, and re-equilibrate the energy balance of the climate system (Stone 1978a,b, Barry et al. 

2002). Johnson (2000) introduced a Carnot engine–equivalent picture of the climate system by 

defining effective warm and the cold reservoirs and their temperatures. Recently, Tailleux (2009) 
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proposed a fresh outlook on the energetics of the ocean circulation along similar lines. 

The interest towards studying the climate irreversibility largely stems from the proposal of the 

maximum entropy production principle (MEPP) by Paltridge (1975), which suggests that the climate is 

a non-equilibrium nonlinear systems adjusting in such a way to maximize the entropy production 

(Grassl 1981, Mobbs 1982, Kleidon and Lorenz 2005). The MEPP has found applications and has raised 

interest in a large variety of scientific fields (Martyushev and Seleznev 2006). Even if recent claims of 

ab-initio derivation of MEPP (Dewar 2005) have been dismissed (Grinstein and Linsker 2007), strong 

criticisms have arisen within the geophysical community (Goody 2007), and, recently, the relevance of 

the boundary conditions of the analysed system has been underlined (Li 2009), this principle has 

stimulated the re-examination of entropy production in the climate system (Peixoto et al. 1991, 

Peixoto and Oort 1992, Goody 2000, Fraedrich and Lunkeit 2008, Pascale et al. 2009) and the 

development of new strategies for improving the parameterisations of climate models (Kleidon et al. 

2006). Moreover, a more detailed analysis of the various processes responsible for the entropy 

production has lead to clarifying the relative role of contributions due to radiative processes, mainly 

related to the degradation of the photons exergy by the thermalisation of the solar radiation at 

terrestrial temperatures (Wu and Liu 2009), and those due to the turbulent processes related to the 

motions of the fluid envelope of the planet (Goody 2000). The latter contributions, which add up to 

the so-called material entropy production, albeit relatively small, are expected to be of greater 

relevance as diagnostics of the large scale properties of the system (Ozawa et al. 2003, Lucarini 2009).  

In recent years, a great effort has been devoted to improving the thermodynamical description 

of the climate system by taking into account in a more profound way the irreversible processes 

associated with the mixing and phase changes of water vapour (Goody 2000, Pauluis 2000, Pauluis 

and Held 2002a,b, Romps 2008). Whilst these theoretical contributions are crucial for assessing with a 
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higher degree of precision the components of the entropy budget of the climate system, we shall see 

that a simpler and more manageable description of the climate thermodynamics has excellent 

performances for estimating the material entropy production of the system. 

We should note that when the material entropy production of the climate system is analysed, 

most of the attention is devoted to atmospheric processes, with the ocean being of relevance only as 

boundary conditions with a role not qualitatively different from that of land surface.  While being of 

great relevance when the energetics of the climate system is considered, the contribution to the 

material entropy production resulting from ocean processes is indeed negligible (Shinokawa and 

Ozawa 2001), basically because, apart from the mixed layer, the world ocean is up to a good 

approximation an isothermal fluid. The oceanic entropy production is found to be less than 2% of the 

atmospheric one (Pascale et al. 2009). Shinokawa and Ozawa (2001), in an analysis that mirrors the 

investigations on atmospheric thermodynamics discussed above (Goody 2000, Pauluis 2000, Pauluis 

and Held 2002a,b, Romps 2008), also specifically analysed the entropy production due to the 

irreversible mixing of salt in the ocean waters, concluding that it is about three orders of magnitude 

smaller than the contributions due to heat transport.   

Recently, a link has been found between the Carnot efficiency, the intensity of the Lorenz 

energy cycle, the material entropy production and the degree of irreversibility of the climate system 

(Lucarini 2009). Namely, the efficiency of the equivalent thermal machine sets also the proportionality 

between the internal entropy fluctuation of the system and the lower bound to entropy production 

by the fluid compatible with the 2
nd

 law of thermodynamics. Such a bound is basically given by the 

entropy produced by the dissipation of the mechanical energy, whereas the excess of entropy 

production is due to the turbulent transport of heat down the gradient the temperature field.  

These results have paved the way for a new, extensive exploration aimed at understanding the 
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climate response under various scenarios of forcings, of atmospheric composition, and of boundary 

conditions. Recent preliminary efforts using PLASIM (Fraedrich et al. 2005), a simplified yet Earth-like 

climate model, have focused on the impacts on the thermodynamics of the climate system of changes 

in the solar constant, with the analysis of the onset and decay of snowball Earth conditions (Lucarini 

et al. 2010a), and on those due to changing CO2 concentration (Lucarini et al. 2010b). The former 

paper has shown how the changeovers between ice-covered and ice-free planet are related to radical 

changes in the thermodynamics of the climate system, with spontaneous climate transitions 

accompanying a reduction in the efficiency of the climate machine, and the consequent attainment of 

a state closer to equilibrium. The latter paper has instead emphasized the importance of framing 

correctly the hydrological cycle for understanding correctly climate change, as increases in the latent 

heat transports fuelled by the temperature-driven exponential growth of amount of water vapour in 

the atmosphere impact very strongly both the efficiency and the degree of irreversibility of the 

system. These results could also be applied for studying the climates of celestial bodies such as 

extraterrestrial planets and satellites. This is a rather promising and exciting perspective, given the 

ever increasing attention paid to, and data obtained on, these astronomical objects. It is encouraging 

that various models belonging to the PLASIM family have already been adapted to study the 

atmospheres of Titan (Grieger et al. 2004) and Mars (Stenzel at al. 2007). Earlier studies on the MEPP 

have also tackled this point (Lorenz et al. 2001, Ozawa et al. 2003).  

A potentially serious problem when performing a complete analysis of the planetary system in 

terms of the 2
nd

 law of thermodynamics, which boils down to computing the material entropy 

generation, the Carnot efficiency, and the degree of irreversibility of the system is that three 

dimensional, time dependent information on the intensive thermodynamical quantities, of their 

tendencies, and of the forcing terms are required (Lucarini 2009). It has been proved that for a given 
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numerical model constructing the suitable diagnostic tools is feasible and definitely not 

computationally burdensome, as only integral operators (which boil down to weighted sums) are 

involved (Fraedrich and Lunkeit 2008). Moreover, when computing climatological averages of the 

thermodynamical properties, using time averaged fields (e.g. annual means) as opposed to 

instantaneous one does not introduce large biases, even if nonlinear quantities are involved, since 

short-time scale covariability of the involved fields results to be not very relevant (Lucarini 2009).  

On the other side, deducing the thermodynamics of the system from observations is a rather 

complex matter, since it is hard to obtain accurate reconstructions of all the involved 3D 

thermodynamic quantities with sufficient resolution. This problem is especially delicate when 

applications to planets other than the Earth, and especially those not belonging to the Solar system, 

are considered. In most cases, we can rely on remote sensing observational techniques, which 

provide, at the most basic level, information on the 2D fields of “hot” incoming stellar radiation and of 

outgoing radiation emitted at lower temperature by the planet and surely cannot tell us everything 

we need on the internal structure of the planet.  

In this paper we introduce an approximate formula which allows for splitting the material 

entropy production into two contributions, one related to horizontal, planetary scale transport 

processes, the other one related to vertical processes. The two contributions can be computed 

separately using 2D radiative fields at the top of the atmosphere (TOA) and at surface. We focus our 

attention on Earth-like conditions, but the approach can also be used to analyse general planetary 

systems. The contribution to the material entropy production due to horizontal processes can be 

computed using 2D radiative fields at the top of the atmosphere only, so that it is of easier access for 

a larger class of planetary objects. Such estimate allows for computing a lower bound to the total 

values of material entropy production and intensity of the Lorenz energy cycle, or, equivalently, of the 
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average rate of total dissipation of the kinetic energy. Moreover, by combining energy and entropy 

constraints, it is possible to provide insights on a previous intuition on the possibility of defining a 

baroclinic heat engine extracting work from the meridional heat flux (Barry et al. 2002). The proposed 

bounds translate into approximate identities if we can assume a vertically quasi-isothermal 

temperature structure. We first test our theoretical findings by comparing the result of our 

approximate formulas with detailed calculations presented in the literature. We then take advantage 

of our approach to analyse the thermodynamic properties of the pre-industrial (PI) control runs of the 

CMs included in the PCMDI/CMIP3 dataset, thus extending the results of Lucarini and Ragone (2010) 

to the “2
nd

 law of thermodynamics” diagnostics. We take into account first and second moments of 

thermodynamical quantities describing out-of-equilibrium properties, in order to assess their 

climatology and their (co-)variability, thus testing equilibration processes. Finally, in order to test the 

relevance of our approach in conditions where only the radiation fields at the top of the atmosphere 

can be measured, we apply our findings to observational data and obtain some relevant new results 

on the thermodynamic properties of the Earth, Mars, Titan and Venus’ climates. 

The paper is divided as follows. In Section 2 we review two distinct formulas allowing for 

evaluating the material entropy production of a generic planetary system and perform a suitable scale 

analysis. In section 3 we show how to derive the above described approximate formulas and general 

bounds on the material entropy production and on parameters describing the degree of irreversibility 

of the system. We also discuss the relevance of simple 2-box models (Kleidon and Lorenz 2005), 

usually adopted for describing the basic features of entropy production and explain why they miss 

fundamental (and quantitatively dominant) ingredients. We propose that four in the minimum 

number of boxes needed for achieving a conceptually correct description of entropy production in a 

planetary system. In Section 4 we verify the validity of the approximate formula and exploit it to 
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estimate the thermodynamical properties of the CMs included in the PCMDI/CMIP3 dataset in 

preindustrial climate conditions. In section 5 we present specific results for the bounds to the material 

entropy production and intensity of the Lorenz energy cycle for Earth, Mars, Titan and Venus. In 

section 6 we present our conclusions and perspectives for future work. 

 

2. Rate of Material Entropy Production 

2.1 Theoretical Outlook 

The traditional approach for the investigation of the entropy production of the climate system relies 

on separating the contributions due to irreversible processes involving matter and those due to 

irreversible changes in the spectral properties of the radiation.  

The process of thermalisation of the solar radiation gives by far the most important 

contribution to the global planetary entropy production, basically as it involves the transformation of 

electromagnetic energy travelling through space obeying a Planckian spectrum with the temperature 

signature of the Sun’s corona (about 5800 K) into (quantitatively identical) electromagnetic energy 

whose spectral properties are approximately described by a Planckian spectrum at the Earth’s 

emission temperature (about 250 K).  A very detailed and extensive account of these processes and 

their contribution in terms of entropy production has recently been given by Wu and Liu (2009). 

The rest of the irreversible processes taking place in the climate system provide a much 

smaller contribution to the entropy production, basically because much less relevant temperature (or 

chemical potential) differences are involved. The irreversible transformations occurring in the climate 

systems involve in principle a great variety of phenomena, including dissipation of mechanical energy, 

heat transport down the temperature gradient, irreversible mixing and phase transitions.  
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In a system at steady state, the expectation value of the extensive, integrated material 

entropy does not depend on time. Following (Johnson 2000; Goody 2000), it is possible to derive the 

following equation for the total entropy S of the climate system: 
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where Ω is the spatial domain of integration, the dot indicates the operation of time derivative, the 

overbar indicates the operation of long term average, T is the local temperature of the medium, radq&  

is the heating due to the convergence of the radiation fluxes, while turbs&  is the density of entropy 

production due to irreversible processes involving the fluid medium, and is usually referred to as local 

material entropy production (Ozawa et al. 2003). Therefore, we obtain: 
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where matS&  is the average rate of material entropy production of the climate system. This equation 

provides us with two recipes for computing the material entropy production, one based on the direct 

computation of the spatial integral of turbs& , and the other (the “inverse formula”) based on the 

evaluation of the interaction between radiation and matter. Depending on the degree of detail and 

precision we adopt in the representation of the physicochemical properties of the climate system, we 

may derive different expressions for turbs& , which are suited for characterizing a wider or smaller 
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number of irreversible processes.  

At the lowest level of such a hierarchy, one assumes the fluid medium of the planet as 

homogenous, where a monophase fluid “dry air” and a monophase “sea water” are considered and 

phase changes and mixing processes occurring in the atmosphere and in the ocean are altogether 

neglected. In this case, the local material entropy production can be expressed as: 
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where the two contributions to entropy production are given by dissipation 
2ε  of kinetic energy (first 

term) and by the component of sensible heat flux SHF
r

 down the temperature gradient performed by 

turbulent fluxes (second term). Such a model is manifestly insufficient for describing multi-phase 

systems like the Earth System in present conditions, as latent heat fluxes are largely dominant over 

sensible heat fluxes (Peixoto and Oort 1992). The easiest way to account for water phase changes in 

the material entropy budget relies on expressing turbs&  as follows:  
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where 
2ε  includes also the dissipation of kinetic energy due to the friction of the falling 

hydrometeors and LHF
r

 is the flux of latent heat. Such a formula has been widely used for estimating 

the entropy production of the Earth system (Peixoto et al 1991, Peixoto and Oort 1992, Fraedrich and 

Lunkeit 2008, Pascale et al. 2009, Lucarini et al. 2010a, 2010b). Note that, in snowball conditions, 
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where the phase transitions of the water substance are virtually absent due to the extremely cold 

temperature, the two formulations (3) and (4) are virtually equivalent.  

Romps (2008) refers to the representation of the entropy production given by Eq. (4) as 

resulting from a “dry” description of a “moist” atmosphere, because water is treated mainly as a 

passive substance, while processes such as irreversible mixing of the water vapour is altogether 

ignored. More detailed, “moist” descriptions of a “moist” atmosphere have led to formulations of 

atmospheric thermodynamics able to account for these processes (Goody 2000, Pauluis 2000, Pauluis 

and Held 2002a,b, Romps 2008). It is useful to remind that additional contributions to the entropy 

production are given by the irreversible mixing of salt in the ocean (Shinokawa and Ozawa 2001). Such 

more refined formulations of the entropy processes inside the climate system account for a 

consistent treatment of the entropy generated by the hydrological cycle. 

Given the complex nature of the climate system, additional processes contributing to entropy 

production can be highlighted. Kleidon (2009) presents a complete and holistic account of this issue, 

suggesting that biological and geochemical processes, as well as the great variety of chemical 

processes taking place in the atmosphere should in principle be included to get a truly complete 

treatment of the entropy budget of the Earth system.  

Since we aim at a parsimonious but efficient representation of the entropy production of the 

of the climate system science, we would like to be able to choose an approach, which translates into 

an explicit expression for turbs& , which is as simple as possible but, at the same time, provides a good 

approximation to the entropy production.  

The volume integration of Tqrad&−  gives the exact value of the entropy production, so that 

the indirect approach allows on one side to obtain precise estimates, and on the other side to test the 
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validity of different explicit formulations for turbs&  and, consequently, of the level of detail we adopt in 

describing the climatic thermodynamic processes. Interpreting previous climate models’ results is 

definitely useful in this direction. Pascale et al. (2009), who considered two fully coupled atmosphere-

ocean climate models, clearly showed that in present day conditions the identity given by equation (2) 

is obeyed up to an excellent degree of precision when we use for turbs&  the expression given in Eq. (4). 

The observed agreement is within 1% and of the same order of magnitude of the uncertainty in the 

material entropy production due to the bias in the imperfect closure of the energy cycle due to 

spurious energy sinks/sources inside the system (Lucarini et al. 2010a,b; Lucarini and Ragone 2010). 

Already Goody (2000) observed that adopting a more detailed physical description of the atmosphere 

where irreversible water vapour mixing processes are considered changes only slightly the estimate of 

the material entropy production. We may then conclude that whereas the sophisticated 

thermodynamical framework developed in (Pauluis 2000, Pauluis and Held 2002a,b, Romps 2008) is 

crucial for understanding in detail the various terms contributing to the entropy budget of the climate 

system, the simpler formulation (Peixoto et al 1991, Peixoto and Oort 1992, Fraedrich and Lunkeit 

2008, Pascale et al. 2009, Lucarini et al. 2010a, 2010b) provides rather accurate results when only the 

material entropy production is taken into account.  

Note also that in planetary systems other than the Earth, turbulent fluxes related to phase 

transitions which are different from those relevant for the hydrological cycle can be relevant (e.g. CO2 

sublimation on Mars), so that Eq. (4) has to be changed accordingly. 

2.2 Scale Analysis: Direct Expression of Entropy Production 

The “direct” expression for the material entropy production is considered first. Using Gauss’ theorem, 

we can write: 
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As discussed in Lucarini (2009), the volume integral of the first term on the right hand side of Eq. (5) 

basically gives us the lower bound to the entropy production compatible with the system having a 

global mean dissipation of kinetic energy (and production of mechanical work) equal to 

∫== dVDW 2ε .  The second term in Eq. (5) vanishes as no material fluxes are present at the top of 

the atmosphere. Turbulent transport occurs mainly in the vertical direction (Peixoto and Oort 1992), 

so that zz FF ∂≈⋅∇
rr

. The material flux F
r

 accounts for both the sensible and heat turbulent heat 

fluxes, so that LHSH FFF
rrr

+= . The two fluxes have rather different properties since sensible heat 

turbulent transport is mostly relevant for the interaction between the surface and the boundary layer 

of the atmosphere, whereas the latent heat turbulent flux is such (on our planet) that it picks up 

water vapour at unsaturated, relatively warm surface conditions and transports it to regions with 

lower temperatures where condensation and precipitation occur. A similar scenario can be envisaged 

also for other planets, where different phase transitions could be involved. Extending the approach by 

Fraedrich and Lunkeit (2008), we can rewrite Eq. (5) in a simpler 2D form as: 
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where SH
SzF ,  and LH

SzF , are the long term averages of the sensible and latent heat fluxes at the surface,  

dissT  is a suitably time averaged 2D field of characteristic temperature for kinetic energy dissipation (

∫∫= dzTdzTdiss
22 εε , with 

22 εε =∫ dz ). For each column of fluid, we can define the following 

characteristic temperatures for the sensible and leant heat exchange processes. +
SHT  and +

LHT  are the 

characteristic 2D fields of temperatures at which sensible and latent heat are removed, while −
SHT  and 

−
LHT  are the 2D fields of characteristic temperatures at which sensible and latent heat are absorbed.  

Formally, this is achieved by dividing each column into two domains in the z-direction, one where 

zz F∂  is positive, and one where zz F∂  is negative. The two temperatures are then defined similarly to 

dissT  described above where the vertical is performed only over the domain with the corresponding 

sign for zz F∂  and values are weighted according to the value of zz F∂ . Note that this operation is 

performed separately for the latent and sensible heat flux. This approach is similar to the net 

exchange formulation proposed by Green (1967) to study radiative transfer proposed (see also 

below). As inside the ocean the gradients of sensible heat fluxes are very weak (and gradients of 

latent heat fluxes do not make any sense), the atmosphere and its lower interface (solid or liquid) 

only contribute to Eq. (6). As in each column most of the sensible and latent heat is removed at or 

very close to surface, we assume SLHSH TTT ≈≈ ++ . Instead, we expect that −
SHT  is closely approximated 

by the temperature of the boundary layer BLT , while we indicate −
LHT  with CT , since it  refers to the 

average condensation temperature.  

Since the turbulent transport of sensible heat is an eminently local process, its contribution 

SH
matS&  to the material entropy production is not very large. Instead, the contribution to the material 
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entropy production coming from latent heat ( LH
matS& ) is largely dominant, and involves evaporation, 

condensation, and transport processes occurring in the context of the hydrological cycle (see also 

Pascale et al. 2009).  

Note that it is possible to define the degree of irreversibility of the system (Lucarini 2009) by 

introducing the parameter ( ) diss
mat

LH
mat

SH
mat SSS &&& +=α  where symbols refer to Eq. (6). The parameter a is 

conceptually equivalent to the Bejan number (Paoletti et al. 1989), which is a commonly studied 

parameter when the performances of engineering systems are considered. When a=0 (and the Bejan 

number, which can be expressed as a+1, is unity), the system features the smallest rate of material 

entropy production compatible with the presence of a Lorenz energy cycle of intensity 

∫== dVDW 2ε . If a=0, all the entropy is generated via dissipation of kinetic energy, with no  

contributions coming from fluxes transporting heat down the gradient of the temperature. Recent 

model simulations have shown that warmer climate conditions trigger a fast increase in the degree of 

irreversibility of the Earth system, the main reason being the large sensitivity of latent heat fluxes to 

increases in the atmospheric and surface temperature (Lucarini et al. 2010a, 2010b).  

In Eq. (6), along the lines of what happens on Earth, we consider just one dominant phase 

transition as relevant for entropy generation. In other planets, we may need to add other terms on 

the right hand side (with distinct characteristic temperatures) to account for various phase 

transitions. 

2.3 Scale Analysis: Indirect Expression of Entropy Production 

The “indirect” expression for the material entropy production is considered now. We emphasize that 

such an approach bypasses the problems related to the details in the representation of the 

atmospheric processes discussed at the beginning of this section. The solar shortwave (SW) radiation 
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heats the system, whereas the infrared longwave (LW) radiation acts as a net cooler. Moreover, we 

split processes occurring within the atmosphere from those occurring at surface, which we interpret 

as boundary between the gaseous medium and the solid and liquid medium, thus moving along the 

lines of the net exchange formulation (Green 1967). Along the same lines followed to derive Eq. (6), 

we write the average rate of material entropy production as follows: 

 

∫∫∫
−

−
−

−
+

−=
A LWA

surfTOA

A SWA

surfTOA

A S

surfsurf

mat d
T

LWLW
d

T

SWSW
d

T

LWSW
S σσσ

,,

& ,  (7) 

 

where surfSW  and surfLW  are the average fluxes of SW and LW radiation at surface, TOASW  and 

TOALW  are the average fluxes of SW and LW radiation at the top of the atmosphere. Similarly to what 

discussed in the previous subsection, SWAT ,  and LWAT ,  represent the 2D fields of characteristic 

atmospheric temperatures at which absorption of SW and LW, respectively, occur. On our planet, 

most of the SW is absorbed at surface or in the first few meters of ocean, so that the atmosphere is 

heated from below. This applies for all planets whose atmosphere is approximately transparent to SW 

radiation. We may rewrite Eq. (7) as follows: 
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We now assume – on a heuristic basis – that 4
,, σTOAELWASWA LWTTT =≈≈ , where ET  is the 2D 

field of the emission temperature of the planet. This means that the vertically averaged characteristic 
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temperature of atmospheric absorption and emission are similar. We then obtain: 
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where in the last passage we have used that the convergence of large scale, non-turbulent reversible 

enthalpy horizontal transport H
r

 balances the net radiative budget at the top of the atmosphere 

when long term averages are considered (Peixoto and Oort 1992, Lucarini and Ragone 2010). 

Equation (9) tells us that the material entropy production can be, alternatively to the splitting 

proposed in Eq. (6), conceptually decomposed into two terms. The term vert
matS&  describes the vertical 

transport of radiation between two reservoirs, one at the surface temperature, the other one at 

temperature of the bulk of the atmosphere, and is closely related to dry and moist convective 

processes (Emanuel 2000). This term treats the fluid envelope as a collection of independent vertical 

columns dominated by fast exchanges and interactions. The term hor
matS&  describes the effect of 

horizontally transporting energy in a 2D fluid system with spatially varying temperature structure, and 

is associated to longer time scales. Both terms are positive, the first because the atmosphere is on the 

average colder than the underlying surface, as the system is heated from below, the second because 

temperature is lower where there is convergence of enthalpy fluxes, and larger where divergence is 

observed, in agreement with the second law of thermodynamics (Peixoto and Oort 1992, Ambaum 
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2010). The two spatial fields whose integrals give hor
matS&

 
and

 
vert
matS& are expected to have different 

properties, as the former should be positive everywhere, because each column is described as a 

quasi-isolated system producing entropy,  whereas the sign of the latter will depend on the sign of the 

radiative budget at TOA.   

Note that a discretised version of the second term in Eq. (9), based upon a 2-box 

approximation of the fluid envelope of the climate system,  has been considered as proxy for the total 

material entropy production (Lorenz et al. 2001, Kleidon 2009). Instead, from Eq. (9) it is apparent 

that a minimal model of the whole material entropy production of a planetary system must include, in 

addition to the box of the warm (Box 1) and cold (Box 2) portions of the fluid envelope of the planet, 

two additional boxes, each representing the planetary surface in the warm (Box 3) and cold (Box 4) 

regions of the planet. See Fig. 1 for a conceptual scheme, where the arrows indicate the couplings 

defining the time evolution of the system. Note that the ocean has a dual role: on one side, it acts a 

lower surface exchanging with the atmosphere sensible and latent heat fluxes (as done by the land 

surface), on the other side, it has the dynamic role of contributing, as part of the fluid envelope of the 

planet, to the transport of heat from the warm to the cold box.  Note that the internal oceanic 

processes have only a minor relevance in terms of entropy production (Pascale et al. 2009).   

    

3. Bounds to the Thermodynamical Properties of a Planetary System  

Since SBL TT ≈ , we have that EBL TT > . Since the water vapour saturation mixing ratio strongly 

increases with temperature, and since on Earth the atmospheric temperature decreases with height, 

the vertical scale of water vapour in globally saturated conditions is smaller than that of the 

atmosphere. The situation is altered as the atmosphere is not saturated, so that we can assume 
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EC TT ≈  (Peixoto and Oort 1992). As the temperature dependence of saturation mixing ratio is 

analogous for general phase transitions, as the non-gaseous reservoirs are mostly located at surface, 

and as the temperature decreases with height if a planet is heated from below, we expect that 

EC TT ≈  is a reasonable assumption for general phase transitions on a generic planet.  Using Eq. (6), 

we obtain:  
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Since at surface energy balance applies, we have that surf
LH
surfz

SH
surfzsurfsurf HFFWLSW

rr
⋅∇=+++ ,, , 

where surfH
rr

⋅∇  is the divergence of the transport performed by the liquid portion of the fluid 

envelope, i.e., in the Earth case, by the ocean. If a planet has a negligible amount of liquid medium, 

this term can be set to zero. By comparing Eqs. (9) and (10), we obtain that the material entropy 

production by dissipation of kinetic energy is bounded from below by the entropy produced by the 

large scale horizontal transport of heat: 
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The second term in the first inequality in expression (11) can be surely neglected if no liquid medium 

is present on the planet. Moreover, under the reasonable hypothesis that ( )ES TT 11 −  is 

approximately constant (roughly corresponding to a spatially homogeneous atmospheric lapse rate), 
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the term is also negligible, since the area integral of the horizontal convergence of subsurface 

enthalpy flux vanishes. Even with a more conservative scale analysis, we basically obtain the same 

result, because ( ) SSEEESE TTTTTTT −×=−>> 1111  and, in the case of Earth, the ocean 

enthalpy transport contributes to only about 30% of the total enthalpy transport (Lucarini and Ragone 

2010). We conclude that Eq. (11) tells us that the material entropy production by dissipation of kinetic 

energy is bounded from below by the entropy produced by the horizontal transport of heat 

performed by the large scale motion.  

Equation (11) allows us to derive an approximate inequality providing a constraint on the 

intensity of the Lorenz energy cycle ∫== dVDW 2ε . As half of the kinetic energy is dissipated mainly 

at the boundary layer and half in the free atmosphere (Peixoto and Oort 1992), we have 

SBLdissE TTTT ≈≤≤ . Since 2ε  is positive definite and the fractional spatial variation of ST  is 

relatively small, we derive: 
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where the square brackets indicate spatial averaging, and the last inequality derive from the fact that

ES TT ≥ . Note that the safer inequality:  
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where RLWSW TOATOA =+ , allows us to put a constraint on the intensity of the Lorenz energy cycle 

and on the corresponding rate of dissipation of the kinetic energy purely on quantities that can be 

derived from measurements (or model data) evaluated at the top of the atmosphere. If the planet has 

no atmosphere, so that 0=W , the right term of the inequality must also be vanishing. This is 

consistent with the fact that in the absence of a fluid envelope, no enthalpy can be transported 

horizontally, so that when long term averages area considered, 0==+=⋅∇ RLWSWH TOATOAH

rr
. This 

implies that the SW and LW fluxes at the top of the (infinitesimal) atmosphere have to be everywhere 

equal in magnitude and opposite in sign.  

 

3.1 Baroclinic Efficiency 

We can rewrite Eq. (13) as follows:  
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where we have divided the domain in two regions >A  and <A , the former (latter) describing the 

subdomain featuring a positive (negative) radiation budget at the top of the atmosphere. We can 

express Eq. (14) as: 
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where 
>

R  is the spatial average of the net radiative budget performed on the 2D domain >A   

(having measure >A ), with equivalent notation applying for the negative radiative balance case. Note 

that AAA =+ <> . Since 0=∫ σdR
A

, so we have that 0=+ <<>>
ARAR . Instead, >

ET  and <
ET  

are reference temperatures obtained by averaging the emission temperature over the domains >A  

and <A , respectively, and using the value of the net radiative budget as weighting function:  
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We then obtain: 
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where we have assumed that ( )<> +≈ EEE TTT 21  and that ( ) 1<<− <>
EEE TTT . Whereas the first 

assumption is quite obvious, since we are averaging over two regions >A  and <A  of analogous size, 
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we underline that the second assumption is usually verified even in the presence of large spatial 

variability of the radiative balance, as a fourth root is involved in the definition of the emission 

temperature. The quantity hη  links the input of radiative energy at an average rate >>
AR  into the 

warm subdomain at temperature >
ET  to the lower bound to average rate of production of mechanical 

work , and can be interpreted as the climate Carnot-like efficiency related only to differential heating 

at the top of the atmosphere.  

The overall energy balance of the climate system imposes that the fluid envelope of the planet 

transports through large scale motions an amount of enthalpy  >>
= ARF  from the regions of the 

climate system featuring a positive radiative budget at the top of the atmosphere to those which 

constantly lose energy to space (Lorenz 1967, Stone 1978b, Peixoto and Oort 1992, Lucarini and 

Ragone 2010). Due to the fairly zonal nature of the net TOA radiative balance (Peixoto and Oort 

1992), such compensation translates into the fact that in each hemisphere the location of the peak of 

the meridional enthalpy transport coincides with the latitudinal boundary dividing the radiative 

heated low latitudes and the radiatively cooled high latitudes in the northern (southern) hemisphere. 

Moreover, since the two hemispheres are rather similar in terms of average zonal energy budgets and 

inferred meridional transports, as imposed by the constraints given in Stone (1978) and confirmed by 

Lucarini and Ragone (2010), the intensity of the peak of the transport in either hemisphere is 

approximately >> AR21 . The lower bound to the intensity of the Lorenz energy cycle given in Eq. 

(17) can be interpreted as product of an efficiency related to meridional temperature differences and 

the fluxes across such meridional gradients. This provides further theoretical insight and suitable 

conceptual framework to the intuition by Barry et al. (2002) on the possibility of defining a “baroclinic 

heat engine” extracting work from the meridional heat flux. 
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What presented here gives the basic ingredients for providing a rigorous construction of the 

simplified two-box model usually considered in the literature (Lorenz et al. 2001). Such a reduced 

model, which allows for the description of entropy production due to horizontal processes of heat 

exchange only, is enclosed in a dashed rectangle in Fig. 1. The warm box (Box 1) is defined by the 

portion of the fluid envelope of the climate system featuring a positive net radiative balance at TOA 

and has a temperature equal to >
ET . The cold box (Box 2) is defined by the part of the fluid envelope 

of the planet featuring a negative net radiative balance at TOA, i.e. the mid-high latitudes, and has 

temperature equal to <
ET . The irreversible heat transfer >>

= ARF   from warm to cold areas 

generates entropy at rate: 
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3.2 Bound on the degree of irreversibility of the system  

The bound hor
mat

diss
mat SS && >  obtained in Eq. (11) can be used to introduce a further bound to the 

thermodynamical properties of the system. With a trivial manipulation of the expression of the 

parameter of irreversibility a, we obtain: 
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 where ���� is the upper bound to the parameter of irreversibility. Defining ����� = ���� + 1 as 

the upper bound to the Bejan number, one easily obtains that: 
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���!�������                                                                                              (21) 

 

so that the product of the lower bound to the intensity of the Lorenz energy cycle and of the upper 

bound of the Bejan number is equal to the product of the actual Bejan number times the actual 

intensity of the Lorenz energy cycle.  

 

3.3 Vertically isothermal fluid envelope 

If the planet’s fluid envelope is approximately isothermal in the vertical direction, we have that  the 

2D fields BLCSWALWAdissSE TTTTTTT ,,,,,, ,,  are almost indistinguishable. By applying this to Eqs. (6) and 

(9), we obtain that inequalities (11)-(13) become approximate identities: 
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so that a direct estimate of the average rate of entropy production of the system and of the average 

intensity of the Lorenz energy cycle can be obtained just by looking at top of the atmosphere radiative 

budgets. The validity of the estimates (22) and (23) has been confirmed to hold in a recent 

experiment performed with the HadCM3 coupled climate model where energy fluxes have been 

arranged consistently in such a way that the vertical derivative of the air temperature is vanishing 
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(Pascale, private communication, 2010).  

In the case of vertically quasi-isothermal fluid only horizontal gradients of heating are relevant 

for determining generation of available potential energy. Thus, the quantity hη  described in Eq.  (18) 

is expected to agree with the global Carnot climate efficiency η  introduced by Johnson (2000), 

improved by Lucarini (2009),  and computed explicitly in climate models in (Lucarini et al., 2010a, 

2010b). When the temperature vertical profile is not constant, the two quantities η  and hη  are not 

identical: this corresponds to the fact that convective motions resulting from differential heating in 

the vertical direction, captured by η , cannot be described by hη .  

 

4. Estimation of the thermodynamic properties of PCMDI/CMIP3 climate models 

The theory developed in the previous sections is applied to analyse the thermodynamic properties of 

state-of-the-art Climate Models (CMs) using the publicly available output from the PCMDI/CMIP3 

dataset (http://www-pcmdi.llnl.gov/). We have used 100 years long time series of monthly means of 

surface temperature and of radiative fluxes (long-wave and short-wave) at the surface and at the top 

of the atmosphere, from the PI control run scenario. The PCMDI/CMIP3 dataset includes data from 

over 20 CMs, but only 14 CMs were considered in this analysis, due to lacking of some fields and/or 

inconsistencies in the dataset. Models making use of flux adjustments have been excluded too, since 

they provide an unphysical representation of the thermodynamics of the climate system. See table 3 

for the list of models which have been used in this paper. Each model is labelled with a number as in 

Lucarini and Ragone (2010).   

In PI conditions, all the parameters of the model are kept constant (in particular the CO2 

concentration is fixed at 280 ppm), so that the slowest forcing acting on the system is given by the 
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seasonal cycle (the solar cycle, albeit very weak, is considered in some models). Therefore, integrating 

the model over a sufficiently long time period, the system should reach a stationary state. Once the 

steady state is reached, the minimal time averaging windown over which one can expect time-

independent statistical properties is given by one year. In the following, the time-averaging operator 

•( ) used throughout the formulas derived in this paper is considered to act over one year. The 

consideration of one hundred years for each CM allows constructing a suitable, robust statistics for the 

yearly-averaged thermodynamical properties of the corresponding climate. 

In general, the stationary state of a non-equilibrium system is characterized by vanishing global 

balances of energy and entropy (Lucarini 2009) and by time-independent statistical properties for the 

state variables of the system. While this second condition is fulfilled by the climate models here 

considered, basically by definition of PI control run, the first condition is, in general, not satisfied, as 

investigated in Lucarini and Ragone (2010), where significant biases have been found in the global 

energy balances of the system and of its principal subsystems for these models in PI conditions. 

Nevertheless, as discussed below, it is still possible to take care of such unphysical biases in a similar 

way as done in Lucarini and Ragone (2010) when computing the meridional enthalpy transport.  

There are algebraically different ways to define the yearly value of the emission temperature 

field TE . The easiest way is to take:  

 

"# = $%������ &⁄(
           (23) 

 

where LW is the spatial field of annual mean of the longwave emission at TOA. Another possibility is 

to take for each year TE  as the average of the emission temperature fields TE
m  defined through the 
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longwave emission as in the previous equation but considering several subsets of the year, e.g. the 

twelve months. In this case: 

 

"# = "#
!���� = $%�! &⁄(������������

        (24) 

 

A third alternative is to take "#  as the inverse of the annual mean of the inverse of the "#
!, since the 

multiplicative factor to the annual mean of the radiative balance in Eqs. (8) and (9)  is 1/ T , so that: 

 

"# = )1 "#
!⁄�������*+,

       (25) 

 

Thanks to the presence of a fourth square root and to the fact that fluctuations of the temperatures 

are relatively small, the results discussed below are basically unchanged considering any of these 

definitions, so that the  emission temperature TE  results to be a robust descriptor of the system. We 

have chosen the last option as our standard.  

Rather than considering the actual surface temperature fields provided by the CMs, in order to 

be consistent with the idea of estimating the thermodynamics properties starting from radiative fields 

only, the considered surface temperature field TS  has been computed from the outgoing longwave 

radiation at surface by mirroring the procedure described above for computing the 2D TE  fields 

starting from the TOA outgoing longwave radiation, thus assuming an unit value for emissivity 

everywhere and at all times. We have verified that the consideration of the surface temperature fields 

given as outputs by the CMs impacts our results in an entirely negligible way. 

 The presence of a spurious bias in the TOA global energy balance has been automatically cured 
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subtracting at each grid-point in each year the globally averaged TOA global energy imbalance. This is a 

standard procedure when inferring the meridional enthalpy transports, as discussed in Carissimo et al. 

(1985) and Lucarini and Ragone (2010), and it is justified by the fact that the global energy imbalance 

at each year is small if compared to the latitudinal variability of the energy balance (of the order of 1 

W m−2  vs. 100 W m−2 ), which is the quantity we are mostly interested into. When considering entropy 

estimators, it is especially important to remove the bias in the TOA energy balance, because the 

related relative error on the estimate of the horizontal component of the material entropy production 

would be large. 

In the case of the net radiative balance at the surface we do not have a zero-sum constraint 

(latent and sensible heat are not involved in our calculations) because, on the contrary, the typical 

value of the net global radiative balance at the surface is of the order of 100 W m−2 . Thus, it is not 

possible to define a bias by observing the violation of the zero mean constraint. In any case, even if the 

bias were of the order of 10 W m−2 , the resulting error in estimating the vertical contribution to the 

material entropy production would be (see below) of the order of 5%, so that we can safely ignore it.  

We have then computed for each model the yearly value of the total material entropy 

production 
 
&Smat , of its vertical and horizontal components ver

matS&  and hor
matS& , of the equivalent 

temperatures <
ET  and >

ET , of the baroclinic efficiency ηh , and of the lower bound to the intensity of 

the Lorenz energy cycle minW . From the obtained 100-year time series we have then estimated the 

expectation value and the confidence interval of the mean of each quantity using the block-bootstrap 

resampling technique (see, e.g., Lucarini and Ragone (2010)). For all the considered time series the 

standard deviation is very small, so that the width of the 95% confidence interval is in all cases below 

1% of the expectation value. In Table 1 we provide estimates of the expectation values of the 
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considered thermodynamic parameters.  

 

4.1 Mean values  

For explanatory purposes, in Fig. 2a-b we present maps of the average rate of material entropy 

production by vertical and horizontal processes, respectively, while in Fig. 2c we show the field of 

emission temperature "#. All outputs are obtained from CM 13, even if all CMs give similar pictures. In 

the rest of the paper CMs are labeled with numbers as in Table 3.  

In Fig 2a we observe that, consistently with the discussion in Section 2.3, the spatial field whose 

integral gives  �����
��������� is positive everywhere except in small areas at high elevation and latitude where 

very small negative contributions are obtained. These unphysical results are due to the large 

temperature inversion observed in these areas, which somewhat compromises the scaling analysis we 

have adopted. In any case, the global effect of these contributions is entirely negligible. As expected, 

high values are observed where intense evaporation is present, as in the warm pool of the western 

Pacific and Indian Ocean, whereas, consistently, very low values are observed in the cold tongue of the 

Eastern Pacific, near western boundary currents, and in the temperate and cold oceans, while the 

Mediterranean Sea stands out as a warm pool. Land areas typically feature much lower values than 

ocean areas at similar latitudes, except for areas characterized by warm and moist climate, such as in 

the equatorial forests of Amazon, Congo, South-Eastern Asia, where water is always available for 

evaporation and ocean-like values are obtained. The relevance of the vertical latent heat transport in 

determining the entropy production is also clarified by the fact that values close to zero are found in 

deserts (Sahara, Kalahari, Central Asia, Southwestern US and Mexico, Southern Australia, Patagonia), 

even if intense sensible heat exchanges take place, and in mid-high latitudes terrestrial areas.  At polar 

latitudes, vanishing values are obtained since convective processes are very weak and moisture is 
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almost absent. 

Figure 2b shows that the global value of material entropy production due to horizontal 

processes results from the (almost perfect, see below) compensation between positive and negative 

values, with the former dominating the mid-high latitudes and the latter present in the equatorial and 

tropical regions. Interestingly, some of the features observed in Fig. 2a are found also here: the areas 

of vigorous moist convection appear as areas of strong negative values related to divergence of 

(mostly) latent heat. It is also important to note that deserts feature positive values, as they cannot 

contribute to the latent heat transport and are characterized by high albedo.   

Figure 2c shows that, generally, lower (higher) emission temperature "# are found in the A< (A>) 

area, which clarifies that "#
- > "#

/ (see below). Nonetheless, local violations to the simple rule 

“A>→hot & A<→cold” are found. In fact, the Intertropical Convergence Zone (included in A>) features 

relatively low emission temperatures, since deep convection creates LW radiation-opaque clouds at 

very high altitude, whereas, conversely, over deserts (included in A<) very high emission temperatures 

are found, because of the low cloud coverage.  

In Fig. 3 we present a scatter plot of the globally averaged, annual mean values of its vertical 

and horizontal component superimposed on the isolines of the total material entropy production. The 

error bars represent the 95% confidence interval of the estimate. Models are labeled with numbers as 

in Table 3. We can see that, apart from model 10, the typical value of the annual material entropy 

production is between 52 and 58 mWm−2K −1 . These figures match well with the approximate estimate 

by Ambaum (2010). 

Nevertheless, since our method of computing entropy production relies on several assumptions 

and approximations, it would be important to check the accuracy of our approach against the values 
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obtained with the direct method described above. This is possible for CM 13, whose entropy budget 

has been extensively analysed in Pascale et al (2010) in the same conditions as in the PI scenario here 

considered. Our estimate of 54.0 mWm−2K −1  for the material entropy production is in excellent 

agreement with the correct value of 51.8 mWm−2K −1 . This single test is highly encouraging in 

suggesting that our approximate approach provides an accurate guidance and rather stringent 

estimates of the actual material entropy production of the system. 

 The contributions to material entropy production due to vertical and horizontal processes 

typically amount to about 50 mWm−2K −1  and about 5 mWm−2K −1 , respectively, so that the 

contribution due to vertical processes is dominant by about one order of magnitude. Figure 3 suggests 

that the anomalously high total material entropy production of CM 10 is due to a large contribution 

due to vertical processes, while the contribution to horizontal component is consistent with the values 

of the other models. In Lucarini and Ragone (2010), CM 10 was found to be the only model with a 

negative annual global oceanic energy balance. This suggests that an excess of energy is transported 

into the atmosphere, mostly due to convective processes, with a resulting positive anomaly in entropy 

production. 

CM 6 features a small horizontal component of the material entropy production compared to 

the other models, even if this does not impact substantially the value of the total material entropy 

production, given the small weight of the contribution of the horizontal processes. In Lucarini and 

Ragone (2010), CM 6 was found to have the position of the peak of the annual meridional enthalpy 

transport located anomalously near the equator with respect to the other models (most notably in the 

northern hemisphere). This is consistent with CM 6 having a small material entropy production from 

horizontal processes, since in this model most of the transport is realized at lower latitudes, where the 
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meridional temperature gradient is smaller.  

 In Fig. 4 we present a scatter plot of <
ET  and >

ET  together with the corresponding isolines of the 

efficiency 0�, which are almost indistinguishable from straight lines. We can see that models feature 

values of <
ET  between around 240 and 244 K, and values of >

ET  between around 255 K and 260 K, so 

that the typical equivalent temperature difference is about 15 K. Lucarini and Ragone (2010) proposed 

that spurious positive energy imbalances at steady state due to inconsistencies in the treatment of 

energy exchanges throughout the climate system induce the presence of a cold bias when emission 

temperatures are considered. In agreement with this, in the present analysis we find that colder CMs 

are for the most part those featuring rather large positive global energy imbalances in Lucarini and 

Ragone (2010), whereas the warmer CMs feature average global energy balances close to zero. 

Most models feature values of the efficiency ηh  between 0.050 and 0.060, with few models in 

the range 0.040-0.050 on one side and 0.060-0.065 on the other side. Since CMs differ much more on 

>
ET  than on <

ET , the largest and smallest efficiencies are related basically to very high and very low 

values of >
ET , respectively, so that the low latitudes seem to have a prominent role in determining the 

efficiency of the baroclinic engine. By comparing the figures reported in Table 1 on the value of

>>
= ARF  and the sum of the peaks of the meridional transports in the northern and southern 

hemispheres given in Lucarini and Ragone (2010), we find that the meridional heat transport provides 

for all CMs a contribution of about 95% to the total transport from radiatively warmer to radiatively 

cooled areas of the climate system. Therefore, the interpretation of  0�  as the baroclinic efficiency 

introduced by Barry et al. (2002) is definitely appropriate.  

 In Table 1 we also provide for all CMs the estimates of the lower bound to the intensity of the 

Lorenz energy cycle for all considered CMs, computed according to Eq. (15). Most values span the 



35 
 

range 1.0-1.5 Wm
-2

, which definitely captures the right order of magnitude of the Lorenz energy cycle 

(Peixoto and Oort 1992). Fortunately, the scientific literature provides some benchmarks to be used to 

test how stringent our bounds are. In the case of CM 13, Pascale et al. (2009) reports that the intensity 

of the Lorenz energy cycle is about 3.1 Wm
-2

 in simulations mirroring exactly the PI conditions 

simulation considered here. This implies that the lower bound underestimates the actual value by 60%. 

In the case of CM 4, CM 18 and CM 20, Marquez et al. (2010) provide estimates for the intensity of the 

Lorenz energy cycle of 2.7, 3.1 and 3.3 Wm
-2

, respectively, even if the data are referred to XX century 

simulations rather than PI conditions. Nevertheless, since relatively small changes of CO2 

concentration seem to impact only marginally the Lorenz energy cycle (Lucarini et al. 2010b, 

Hernandez-Deckers and von Storch 2010), we conclude that also for these models the lower bound  

underestimates the actual value by around 60%. These results suggest that our approach is 

fundamentally correct and the theoretically obtained lower bound provides a good zero-order 

approximation of the actual value of the intensity of the Lorenz energy cycle. 

 

4.2  Variability 

We now analyse the mutual correlations of the time series of the yearly values of some of the 

thermodynamic parameters we have derived, in order to improve our understanding of the dynamical 

processes keeping the system at a well-defined stationary state. Our time series are 100 years long 

and feature very weak memory, so that in all cases the 95% confidence interval on the estimates of 

the correlations has a half-width of 0.2.  

 First, we look at potential feedbacks of the system. In Fig. 5 we present a scatter plot of the 

correlation between the yearly time series of the baroclinic efficiency of the system 0� and of the 

total large scale horizontal transport 1 = 234-5-  versus the correlation of the yearly time series of 
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the horizontal and vertical contributions to the material entropy production. The uncertainty range of 

the null-hypothesis is represented by the cross centered in (0,0). We find that nearly all the models 

feature a statistically significant positive correlation between the horizontal and vertical components 

of the material entropy production, even if the range of values is quite wide. This implies that there is 

not such a thing as compensation between the two components, with positive anomalies of one 

component typically corresponding to negative anomalies of the other component, thus determining 

a negative feedback minimizing the variability of the total material entropy production. On the 

contrary, it is apparent that during the years where the total material entropy production has, e.g. a 

positive anomaly, both components change accordingly. Considering also Fig. 2a-b, one may guess 

that the variability of moist convection in the tropics, which gives the dominant contribution to the 

vertical component of the entropy production (Lucarini et al. 2010b), drives the variability of the total 

material entropy production. The positive covariance of the two components of the material entropy 

production implies that their ratio has a small variability, which, following the discussion presented in 

subsection 3.2, suggests that the degree of irreversibility α and the Bejan number Be are well-

constrained parameters of the system. The only qualitative exception is CM 10, which features a 

borderline statistically significant negative correlation between the vertical and the horizontal 

components. Combing this result with the evidence given above on the anomalously high value of 

material entropy production due to vertical processes (see Fig. 3), we propose that CM10 might 

feature some peculiarities in the treatment of vertical exchange processes (basically convection) and 

in their coupling with large scale processes responsible for horizontal transport. 

 Looking at the x-axis in Fig. 5, we discover that among CMs the values the correlation between 

1� and ηh  span a rather wide range, with the majority of models featuring a statistically significant 

negative correlation. Since the efficiency is a normalized measure of the equivalent temperature 
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difference between the warm and the cold box, it is also an integrated measure of the effective 

meridional temperature gradient realized at the stationary state. Therefore, the presence of a 

negative correlation between the efficiency and the meridional total transport suggests that a 

negative feedback acts to dampen large fluctuations of the meridional temperature gradient, in broad 

agreement with the baroclinic adjustment theory by Stone (1978b). Nevertheless, we observe that for 

several models the coupling between the two main major features involved in the large scale re-

equilibration process - the heat transport and the temperature gradient – is quite weak. These 

findings seem to be only partially in agreement with the presence of a feedback keeping hor
matS&  near an 

extremum, as implied by the MEPP hypothesis (Kleidon and Lorenz 2005). 

Since the value of hor
matS&  is proportional to the product of F  times the temperature difference 

between the warm and the cold box (see Eq. (19)), and since the correlation between F  and ηh  is in 

general not very strong, it seems of relevance to check out which of the two factors F  and ηh  is 

more strongly correlated to hor
matS& . This would help answering the question on whether the variability 

of the entropy production is driven more by the temperature differences or by the total heat flux.  

In Fig. 6 we see that all CMs feature a very strong positive correlation between the horizontal 

component of the material entropy production and the efficiency. All values are above 0.7 and several 

CMs feature correlations above 0.9. Instead, the correlation with the total transport spans over a 

larger set of values (from -0.5 to 0.6), so that qualitatively different properties are found among CMs. 

Surprisingly, only a minority of CMs feature a statistically significant positive correlation between hor
matS&  

and F . Therefore, the presence of an anomalously high efficiency or, equivalently, of a high equator-

to-pole temperature gradient is definitely a better statistical predictor of high entropy production due 

to horizontal processes. This result suggests that simplified parameterisations of entropy production 
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could be written efficiently in the form ( )h
hor
mat

hor
mat SS η&& = , which provides further evidence of the 

relevance of the efficiency  parameter introduced here.  

These results definitely suggest that, as opposed to the climatological averages considered 

above, CMs are much less consistent with each other in the representation of the second moments of 

the large scale thermodynamical properties. This hints at the need for further explorations of the 

related climate feedbacks. 

 

5.  Observational Estimates: Earth, Mars, Titan, Venus.  

The computation, or at least the estimation of F , >
ET , <

ET , hη , hor
matS& , and minW  requires only a very 

limited amount of data, of much coarser resolution than what considered in the previous section. It is 

necessary to know only the (net) integrated incoming shortwave radiation and outgoing longwave 

radiation at the top of the atmosphere in the two areas of positive and negative net radiative balance 

( >A  and <A , respectively), and use the Stefan-Boltzmann law to derive the relevant temperatures. 

Alternatively, it is necessary to know the globally averaged incoming radiation, the globally averaged 

albedo, and the net average radiative budget at the top of the atmosphere in >A  or in <A . We note 

that, with respect to the case where we can/want to exploit the full 2D fields, when using integrated 

data a slight cold (stronger warm) bias is introduced when evaluating >
ET  ( <

ET ), because in the correct 

definition given in Eq. (16), emission temperatures are weighted according to the absolute value of 

net radiative budget. Therefore, the contributions coming from the equatorial is dominant in 

determining >
ET , and, similarly, <

ET  happens to be mainly determined by the temperature of the polar 

regions. As a consequence, integrated data will provide a slight underestimation of the efficiency hη , 
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and, consequently, of hor
matS& , and minW . Note that, since the latitudinal variations of the emission 

temperature profile are much gentler in the low latitudes, the resulting bias for >
ET  should be rather 

small.  

We wish to present a preliminary, but hopefully instructing, example of how it could be 

possible to obtain information on the thermodynamical properties of celestial objects for which only a 

very coarse resolution observations of radiative fields at the top of the atmosphere is available. We 

have then considered the observative radiative datasets provided by Goody (2007) for Earth, Venus, 

Mars, and Titan and the knowledge of the geometrical radius of each of these celestial objects. We 

also take the simplifying but reasonable approximation that for in each celestial bodies >A  and <A  

have identical size and have a purely zonal structure. This implies that only meridional large scale 

transports are considered, with the effect of underestimating the value of F . 

It is valuable to compare the figures obtained for Earth with what obtained in the previous 

section for the CMs runs. Obviously, the comparison is not exactly appropriate because the 

simulations refer to PI conditions and the observations are taken in the satellite era, but, as discussed 

in Lucarini et al. (2010b), the variations of the large scale thermodynamic parameters are not very 

rapid with the changes in the CO2 concentrations (even assuming a re-equilibrated state), so that we 

can draw at least qualitative conclusions. 

We first note that the "#
-  derived from observations is in the upper range of the values 

simulated by models, the observed value of  "#
/  is out of the range of values given by the CMs by 

about 5 K, resulting in a relatively warm cold reservoir. Instead, the value of F
 
is in the lower range of 

the values given by the CMs. Consistently, the observational data give for hη , hor
matS& , and minW  values 

which are in the lower range of the CMs results (and very similar to those given by CM 6). Considering 
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the combined effect of the bias introduced in the estimate of the emission temperature and transport 

from coarse resolution data discussed above, and the fact that global warming impacts heavily the 

albedo of the high-latitude regions by reducing its value between PI and XX century data, we can say 

that a more than satisfactory agreement is found, and that coarse resolution data on planetary bodies 

can be of great relevance for studying their thermodynamic properties.    

Whereas we have several estimates of the material entropy production and of the intensity of 

the Lorenz energy cycle of the fluid envelope of the terrestrial system, no estimates of these 

fundamental thermodynamical quantities for the other planets could be found in the literature. 

Therefore, our bounds could provide useful guidance. Results are reported in Table 3.  

We observe that Mars has the largest baroclinic efficiency hη , as it has a large meridional 

temperature gradient for the emission temperature. Therefore, in spite of a relatively weak 

meridional transport, which is hindered by the fact that this planet has a rather thin atmosphere and 

by the relatively weak irradiance, the lower bound to the Lorenz energy cycle (as well as that to the 

material entropy production) per unit area is only about one order of magnitude smaller than the 

Earth’s. Since the atmospheric mass per unit area in Mars is about two orders of magnitude smaller 

than that of our planet, we deduce that the Martian bound per unit mass is higher than that of the 

Earth.  

Instead, the very thick (average surface pressure is about 90 times the Earth’s) atmosphere of 

Venus manages to flatten out the meridional gradient of the emission temperature thanks to 

relatively strong large scale heat  transports F , in such a way that a rather small value of hη  is 

realized. Consequently, the material entropy production due to horizontal processes hor
matS&  is relatively 

low (especially considering the huge mass of the atmosphere) and so is the corresponding lower 
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bound minW  to the intensity of the Lorenz energy cycle. Since Venus features an Hadley cell-like 

pattern of circulation extending to the poles (basically because rotation is negligible) with weak 

surface winds, our estimates might be informative even if our 2D analysis captures only a limited 

portions of the contributions to the thermodynamics of the system. 

In the case of Titan, the relatively thick (average surface pressure is about 1.5 times the 

Earth’s) atmosphere manages to reduce greatly, thanks to Hadley-cells of large scale circulation, the 

radiative imbalance between the warm and cold parts of the satellite, so that a only small 

temperature gradient is realized. Anyway, the much lower values for the thermodynamic bounds 

hor
matS&  and minW  with respect to the three analysed terrestrial planets depend mainly upon the much 

weaker incoming radiation. 

 

5.a Energy Scaling 

The differences in thermodynamical properties of the considered celestial bodies are mainly due to 

the discrepancies in the value of the globally averaged absorbed solar energy, which can be 

approximately expressed as ( )α−14/S , where S  is the average solar irradiance along the trajectory 

of the planet, and α  is the average albedo, with the geometrical factor 4 taking care of the ratio 

between the surface of the planet and the area of its cross section.  

If a hypothetical universal thermodynamics of celestial bodies existed and if the only 

determining factor were the energy input, the thermodynamics of all celestial bodies would be 

identical once we have the proper scaling properties expressing how the values of the thermodynamic 

parameters as a function of the energy input. Of course, we do not believe that such universal 

properties exist, but, in order to compare the thermodynamic properties of the different celestial 
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bodies modulo the energy input, we need to remove, at least at first order, the effect of the 

differential energy input. 

The scaling laws can be derived as follows. The Stephan-Boltzmann law suggests that 

( )( ) 411~, α−>< STT EE , while dimensional analysis hints at ( )α−1~ SF . Using Eq. (18), we obtain that 

( )( )01~ αη −Sh , while Eq. (17) and Eq. (19)  imply that ( )α−1~min SW  and ( )( ) 431~ α−SS hor
mat
& , 

respectively.  

We can exploit these scaling properties for a more intrinsic evaluation of the differences in the 

properties of the circulation of planetary atmospheres. For simplicity, the Earth is taken as reference 

system, so that in Table 4 we report for each planet P, in correspondence to the thermodynamic 

parameter Φ  mentioned above (
hor
mathEE SFTT & , , ,, , η><=Φ ), the nondimensionalized value pΦ~ . The 

nondimensionalized values are defined as ( )[ ] ( )[ ]αα αα peepp SS −−ΦΦ=Φ 11
~

, where pΦ  is the 

actual physical value of the parameter, and the exponent α  changes with the choice of Φ  according 

to the scaling given above (e.g. 41=α  if one considers >=Φ ET ) . Therefore, all the rescaled 

thermodynamic parameters for the Earth have unitary values.  

We find that the terrestrial fluid envelope is characterised by the largest values of hor
matS&  and of  

minW , but all celestial bodies, in spite of their huge differences in terms of physical and chemical 

properties, feature values within one order of magnitude. It is also interesting to observe that the 

three bodies with thick fluid envelope (Earth, Venus, and Titan) have very similar rescaled values of 

meridional enthalpy transport, which may suggest a “saturation effect”. Mars, due to its thin 

atmosphere, features a rather weak transport, but, since temperature differences are large, the 

values of hor
matS&  and of minW  are comparatively large. 
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6. Conclusions 

In this paper we have performed a re-examination of material entropy production in a general 

planetary system by proposing theoretical advances and by presenting new results derived from 

control runs of state-of-the-art GCMs and from the corresponding climate change experiments, as 

well as from coarse-resolution observative data of Earth, Venus, Mars and Titan.    

We have first discussed various approaches recently discussed in the literature for analyzing 

the entropy budget in the climate system and concluded, from the critical appraisal of recent results 

presented by Pascale et al. (2009), that the simplified approach of considering a “dry” description of a 

“moist” atmosphere (Romps 2008), where water is treated mainly as a passive substance which 

provides/removes latent heat, is well suitable when studying the material entropy production.  

We have introduced an approximate splitting between material entropy production 

contributions due from vertical processes, mostly related to convection and characterized by short 

time scales, and those due eminently to horizontal processes, mostly g related to the large scale 

motions in the climate system and characterized by longer time scales. Notably, such an approach 

allows for computing up to very high precision the material entropy production of the climate system 

using only 2D radiative fields at the top of the atmosphere and at surface. By comparing our 

approximate formulas results with the “quasi-exact” treatment by Pascale et al. 2009, we find that 

our 2D, simplified calculations are correct to within 4%. 

 We have derived bounds to basic thermodynamical properties of the climate system based 

only upon time averaged TOA radiative data only. This can in principle be particularly promising 

especially when one deals with planetary objects, such as distant extra-solar planets, where the 
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amount of observational data is limited. We have proved that the material entropy produced by the 

horizontal large scale enthalpy transports, whose divergence is equal to the net radiative budget at 

the top of the atmosphere, when long term averages are considered (Lucarini and Ragone 2010), is a 

lower bound to the total material entropy production and, in particular, to its portion related to the 

dissipation of mechanical energy.  From this, a lower bound is derived for the average rate of the 

Lorenz energy cycle. The Lorenz energy cycle results to be larger than the product of the net input of 

radiative energy in the positive energy balance regions times a suitably defined baroclinic efficiency, 

proportional to the difference between the average emission temperatures of areas of the planet 

with positive and negative radiative balance at the top of the atmosphere. This provides a 

generalization of the idea that the atmospheric circulation can be described as resulting from a 

baroclinic heat engine extracting work from the meridional heat flux (Barry et al. 2002). As the 

meridional heat flux by atmospheric eddies contribute substantially to the total meridional heat flux 

and, at the same time, play a fundamental role in the Lorenz Energy cycle by transforming zonal into 

eddy available potential energy, the presence of such constraints is not so surprising. 

We have also proved that the product of the lower bound of the intensity of the Lorenz energy 

cycle times the derived upper bound to the Bejan number gives the product of the actual Lorenz 

energy cycle times the actual Bejan number. 

When the temperature structure of the planet fluid envelope has no vertical structure, it is 

possible to prove that the inequalities translate into approximate equalities, so that our methods 

allows for reconstructing basically all large scale thermodynamic properties of the system. This also 

clarifies the relevance of 2-box models representative of planetary circulations discussed in, e.g., 

Lorenz et al. (2001). These models, by neglecting vertical processes, cannot provide a plausible 

description of the material entropy production of a planetary system, nor can be used to test MEPP. 



45 
 

Instead, a minimal model of material entropy production in a planetary system (schematically 

depicted in Fig. 1) requires at least four boxes, representing cold and warm pools of fluid and cold and 

warm surfaces beneath, and taking care of representing both horizontal and vertical transport 

processes. 

The evaluation of the contributions to the material entropy production due to horizontal and 

vertical processes on state-of-the-art GCMs runs provides rather interesting insights. We discover that 

models agree within about 10% on the value of total material entropy production, and specifically, 

the disagreements are within about 10% on the value of the vertical term, which is the largely 

dominant one, whereas larger disagreements (of the order of 20%) exist on the horizontal term, 

which is about one order of magnitude smaller. Two models seem to be somewhat out of this picture. 

CM 10 presents a much higher value (by about 20%) of the total material entropy production, where 

the discrepancy is mostly due to a large overestimate of the contribution due to vertical processes. 

This hints at some problems in the representation of convective processes, whose parameterisation is 

especially problematic in a coarse resolution model such as CM 10. Quite reassuringly, the figure we 

obtain for the total material entropy production for CM 10 agrees with what found by Goody (2000) 

in a similar version of the same model. Instead, CM 6 presents an anomalously low (by about 30%) 

value of the material entropy production due to horizontal processes. This may depend on the fact 

that this model features a peak of the meridional heat transport located anomalously close to the 

equator with respect to the other CMs considered here (Lucarini and Ragone 2010), so that  heat 

transport takes place among fluid masses of more uniform temperature.   

As the entropy production due to horizontal processes can be interpreted as resulting from 

the large scale heat transport from low (warm) to high  latitude (cold) regions, its intensity depends at 

first order on the product between the maximum intensity of the meridional transport times the 
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differences between the emission temperature of the two regions. Obvious physical balances would 

suggest that the two factors should be, model-wise, negatively correlated, so that one expects that 

the agreement among CMs should be better for the entropy production rather than for the transport 

diagnostics. Instead, in Lucarini and Ragone (2010) it is shown that discrepancies on the total (and 

atmospheric) meridional transports among models are also around 20% - it could be argued a role is 

played by disagreements on their meridional gradients of albedo (see Probst et al. (2010) for a related 

analysis on total cloud cover). As a result, the baroclinic efficiency of the models disagrees 

substantially, as do the lower bounds to the intensity of the Lorenz energy cycle. For the CMs where 

independent data on the intensity if the Lorenz energy cycle are available, we find that such bounds 

are relatively stringent (within a factor of about 2), which supports the relevance of our theoretical 

results. 

We have then explored the second moments of the thermodynamic parameters discussed 

above by looking at the properties of their correlations, in order to grasp some understanding of the 

large feedbacks acting on the system. We discover that CMs disagree quantitatively to a much greater 

extent than when looking at climatological values of the thermodynamic parameters. Anyway, a 

robust feature of most models is the positive correlation of the contributions to material entropy 

production due to vertical and to horizontal processes. The variability of the moist convection in the 

tropics seems to be the common driver of both contributions. This suggests that no compensation 

mechanism is in place to control the total material entropy production. Similarly, most models feature 

a negative correlation between the intensity of the large scale heat transport and the difference 

between the effective emission temperatures of the radiatively heated and cooled areas of the 

planet, in broad (but far from exact) agreement with the theory of baroclinic adjustment. Finally, we 

discover that such temperature difference (or, equivalently, the baroclinic efficiency of the system) is 
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much stronger proxy for the material entropy production due to horizontal processes than the heat 

flux, thus suggesting its great relevance of large scale indicator of the climate system. 

We have then applied our analysis to four specific celestial objects, namely the Earth, Mars, 

Venus, and Titan, and provided actual estimates for the baroclinic efficiency, the material entropy 

production due to horizontal processes, and the lower bound to the Lorenz energy cycle. We have 

used data with the lowest possible resolution compatibly with the goal of studying out-of-equilibrium 

properties, as we have considered for each planet only two regions, those where the TOA balance is 

negative and positive, respectively. This ensures that entropy production and the related bounds are 

underestimated, as an effect of coarse graining. Note that the results by Aoki (1983), who computed 

the total entropy production of several celestial objects, is not very informative for the 

thermodynamical properties of the fluid envelope, as the estimates are largely dominated by the 

(dynamically irrelevant) thermal degradation of radiation (Wu and Liu 2009). In the case of our planet, 

the bounds are obeyed both in observation and in model data, whereas in the case of the other 

celestial objects they could, in absence of accurate direct estimates of these thermodynamical 

parameters, be of useful guidance. In particular, we expect that our lower bounds could closely 

approximate the actual value of the thermodynamic quantities in the case of celestial objects with 

thin atmospheres, as in the case of Mars.  

Interestingly, once we suitably rescale the values of the thermodynamic parameters in order 

to take into account the rather different values of energy input from the Sun, we discover that for all 

celestial objects the values of the thermodynamical bounds are within an order of magnitude, even if 

the actual masses of the atmospheres vary by around four orders of magnitude, and the Rossby 

numbers also widely differ.   

Future investigations will move along the following lines. First, it would be of great interest to 
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study how the increase of greenhouse gases impacts the details of the material entropy production 

on Earth by taking advantage of the PCMDI/CMIP3 dataset. While we expect an overall positive 

sensitivity of such thermodynamic parameter - see Lucarini et al. (2010b) – it will be interesting to 

analyse how climate change effects the contributions to material entropy production due to vertical 

and horizontal processes. Preliminary analyses on the SRESA1B scenario runs suggest that the impact 

has opposite sign for the two terms, with an increase in entropy production due to vertical processes 

increases in all CM. This anticipated result, which is apparently at odds with the positive covariability 

of the annual time series described above in the PI run, casts further doubts in the straightforward 

applicability of the properties of the natural variability of the climate system properties for inferring 

the properties of long term, forced climate variations (Lucarini 2008b,2009b). As suggested by the 

maps showing the spatial properties of the thermodynamic fields considered in this work, the theory 

presented in this paper can be used also for devising diagnostic tools to be used to analyze local 

processes and specific geographical features of the climate.   

Second, a detailed examination of the Lorenz energy cycle and entropy production of the 

other celestial objects discussed here (Mars, Titan, Venus) seems of great relevance for its own sake 

and for understanding the relevance of the thermodynamical bounds proposed here. It is encouraging 

to note that various models belonging to the PLASIM family (Fraedrich et al. 2005) have already been 

adapted to study the atmospheres of Titan (Grieger et al. 2004) and Mars (Stenzel at al. 2007).  

Third, it would be important to reconcile the definition of thermodynamic efficiency proposed 

by Johnson (2000) and Lucarini (2009) with that proposed by Ambaum (2010). In this direction, 

concepts borrowed from endoreversible thermodynamics (Hoffman et al. 1997) could be of great 

help.  

Finally, a theoretical effort will be directed at understanding how to reconcile in this context 
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the statistical mechanical formula of physical entropy production of a non-equilibrium system in 

contact with several heat reservoirs at different temperatures, which is proportional to minus the 

sum of all the Lyapunov exponents of the system (Gallavotti 2004), with the macroscopic formulas 

used in this publication. This may prove of interest for developing theoretically more refined 

approaches for analysing the thermodynamics of the planetary systems. 
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Table 1: Thermodynamic parameters of PCMDI/CMIP3 climate models in Pre-Industrial conditions. 

 
Models - PI scenario "#

/  
(6) 

"#
/ 

(6) 

0�  1� 5⁄  

( �7+8) 

� �9! 5⁄  

( �7+8) 

�����  �����
��������� 5⁄  

( �6+,7+8) 

�����
���������� 5⁄  

( �6+,7+8) 

�����
������ 5⁄  

( �6+,7+8) 

1 - BCCR BCM2.0 241.9 257.6 0.061 20.6 1.25 10.0 5.2× 10+; 47.2× 10+; 52.4× 10+; 

4 - CNRM CM3 241.5 256.2 0.057 19.2 1.10 

[3.1]
♦

 

11.7 

[4.1]
∗
 

4.6× 10+; 49.2× 10+; 53.8× 10+; 

6 - CSIRO Mk3.5 243.8 254.5 0.042 21.7 0.92 14.5 3.8× 10+; 51.4× 10+; 55.2× 10+; 

7 - FGOALS 240.1 256.3 0.063 21.0 1.33 10.2 5.6× 10+; 52.0× 10+; 57.6× 10+; 

8 - GFDL CM2.0 242.9 257.0 0.055 21.6 1.19 11.3 4.9× 10+; 50.5× 10+; 55.4× 10+; 

9 - GFDL CM2.1 243.6 258.0 0.056 21.7 1.21 11.2 5.0× 10+; 51.4× 10+; 56.4× 10+; 

10 - GISS AOM 243.1 257.2 0.055 24.0 1.31 12.1 5.4× 10+; 60.4× 10+; 65.8× 10+; 

13 - HAD CM3 243.5 259.0 0.060 21.6 1.29 

[3.1]
♣

 

10.0  

[4.2]
♠♣

 

[4.1]
∗
 

5.3× 10+; 48.7× 10+; 54.0× 10+; 

14 - HAD GEM 243.4 259.8 0.063 22.6 1.43 9.4 5.9× 10+; 50.5× 10+; 56.4× 10+; 

15 - INM CM3.0 243.5 255.5 0.047 23.9 1.13 12.7 4.6× 10+; 53.9× 10+; 58.5× 10+; 

16 - IPSL CM4 243.5 258.1 0.057 24.9 1.41 9.5 5.8× 10+; 49.5× 10+; 55.3× 10+; 

17 - MIROC3.2 hires 243.4 257.3 0.054 20.5 1.11 12.1 4.5× 10+; 50.2× 10+; 54.7× 10+; 

18 - MIROC3.2 

medres 

242.3 255.9 0.053 21.4 1.14 

[2.7]
♦

 

11.2 

[4.7]
♠♦

 

4.7× 10+; 48.4× 10+; 53.1× 10+; 

20 - ECHAM5/MPI 

OM 

242.8 256.8 0.055 24.6 1.34 

[3.3]
♦

 

[2.6]
♥

 

10.4 

[4.2]
♠♦

 

[5.3]
♠♥

 

5.6× 10+; 53.1× 10+; 58.7× 10+; 

                                                           
♦ Actual value of the intensity of the Lorenz Energy cycle in XX century simulation runs (Marquez et al. 2010).  
∗ True Bejan number obtained from the entropy production diagnostics reported for the PI simulation run (Pascale et al. 2009). 
♣ Actual value of the intensity of the Lorenz Energy cycle in the PI simulation run (Pascale et al. 2009). 
♠ True Bejan number computed using Eq. (22) in the text using data of  ���!�������, � , and �����. 
∗ True Bejan number obtained from the entropy production diagnostics reported for the PI simulation run (Pascale et al. 2009). 
♥ Actual value of the intensity of the Lorenz Energy cycle in the PI simulation run, but using lower resolution (Hernandez-Deckers and Von Storch 2010) 
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Table 2: Correlations between thermodynamic parameters of PCMDI/CMIP3 climate models in Pre-Industrial conditions. 

Statistically significant values are depicted in bold, where the half-width of the 95% confidence interval is 0.2. 

Models - PI scenario < =�����
���������, 0�> < =�����

���������, 1�> <(1���������, 0�) < =�����
���������, �����

����������> 

1 - BCCR BCM2.0 0.81 0.60 0.02 0.51 

4 - CNRM CM3 0.86 0.19 -0.34 0.74 

6 - CSIRO Mk3.5 0.99 -0.46 -0.59 0.59 

7 - FGOALS 0.82 0.38 -0.22 0.52 

8 - GFDL CM2.0 0.90 -0.27 -0.65 0.06 

9 - GFDL CM2.1 0.70 0.18 -0.58 0.24 

10 - GISS AOM 0.84 0.04 -0.51 -0.20 

13 - HAD CM3 0.78 0.53 -0.13 0.40 

14 - HAD GEM 0.93 0.04 -0.34 0.08 

15 - INM CM3.0 0.96 0.36 0.07 0.55 

16 - IPSL CM4 0.87 0.18 -0.33 0.61 

17 - MIROC3.2 hires 0.90 0.23 -0.23 0.24 

18 - MIROC3.2 medres 0.82 0.52 -0.06 0.56 

20 - ECHAM5/MPI OM 0.88 0.29 -0.19 0.69 
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Table 3:  Thermodynamic parameters of some celestial objects. Parameters are computed starting from data reported 

in Goody (2007). 

Celestial Body ( )2−Wm

S

 
α

 
( )2mA  ( )KTE

<
 ( )KTE

>
 hη  ( )2−Wm

AF
 ( )21 −− mWK

AS hor
mat
&

 ( )2

min

−Wm

AW
 

Earth 1373 0.31 5.1µ10
14

 248.3 259.8 0.045 21.0 3.7µ10
-3

 9.5µ10
-1

 

Mars 589 0.21 1.4µ10
14

 201.9 222.5 0.093 0.55 2.5µ10
-4

 5.1µ10
-2

 

Venus 2624 0.76 4.1µ10
14

 227.9 231.0 0.013 15.2 8.7µ10
-4

 2.0µ10
-1

 

Titan 15.2 0.26 8.3µ10
13

 82.8 85.0 0.026 0.24 7.2µ10
-5

 6.1µ10
-3
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Table 4: Same as Table 1, but values are rescaled to terrestrial ones by using the scaling ( )( ) 411~, α−>< STT EE
, 

( )( )01~ αη −Sh
, ( )( ) 431~ α−SAS hor

mat
& , ( )α−1~min SAW , ( )α−1~max SAF . 

Celestial Body 
<ET  

>ET  hη  AF  AS hor
mat
&  AWmin  

Earth 1 1 1 1 1 1 

Mars 0.971 1.023 2.09 0.055 0.115 0.115 

Venus 1.016 0.985 0.301 1.089 0.328 0.328 

Titan 1.010 0.991 0.573 0.963 0.552 0.552 
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Figure 1: Minimal conceptual for the material entropy production of a planetary systems as deduced from Eq. (9). Boxes 

1 and 2 represent warm (low latitudes) and cold (high latitudes) fluid domains, coupled by enthalpy transport. Boxes 3 

and 4 represent warm (low latitudes) and cold (high latitudes) surface domains, coupled vertically to the corresponding 

fluid boxes, but not to each other. The dashed rectangle encloses the reduced two-box model usually considered in 

previous literature. 
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3 4 
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a)  

b)  

c)  

Figure 2: CM 13’s average spatial fields of a) material entropy production via vertical processes (values in ?@+AB+C); 

b) material entropy production via horizontal processes (values in ?@+AB+C); c) emission temperature (values in @). 

In b) and c) the solid black line separates the area A> with positive net energy budget at TOA from the area A< where the 

net budget is negative.   
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Figure 3: Material Entropy Production in PCMDI/CMIP3 climate models in the pre-industrial scenario runs. The 

contributions due to horizontal and vertical processes are depicted. Isolines of the total value of the material entropy 

production are shown as solid lines.  
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Figure 4: Equivalent temperatures of warm and cold boxes of PCMDI/CMIP3 climate models in Pre-Industrial conditions. 

Isolines of efficiency are indicated with solid lines. 
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Figure 5: Strength of the large scale thermodynamic feedbacks for PCMDI/CMIP3 climate models in Pre-Industrial 

conditions. Correlation between total large scale heat transport and the baroclinic efficiency (x-axis) vs correlation 

between horizontal and vertical components of the material entropy production (y-axis) and and vertical component (y-

axis). 
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Figure 6: Correlations between horizontal component of material entropy production and total meridional transport (x-

axis) and efficiency (y-axis).  

 

 

 

 

  

 


