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Abstract

A relativistic kinetic Fokker-Planck equation that has been recently proposed in the phys-
ical literature is studied. It is shown that, in contrast to other existing relativistic models,
the one considered in this paper is invariant under Lorentz transformations in the absence of
friction. A similar property (invariance by Galilean transformations in the absence of fric-
tion) is verified in the non-relativistic case. In the first part of the paper some fundamental
mathematical properties of the relativistic Fokker-Planck equation are established. In partic-
ular, it is proved that the model is compatible with the finite propagation speed of particles
in relativity. In the second part of the paper, two non-linear relativistic mean-field models
are introduced. One is obtained by coupling the relativistic Fokker-Planck equation to the
Maxwell equations of electrodynamics, and is therefore of interest in plasma physics. The
other mean-field model couples the Fokker-Planck dynamics to a relativistic scalar theory of
gravity (the Nordström theory) and is therefore of interest in gravitational physics. In both
cases the existence of steady states for all possible prescribed values of the mass is established.
In the gravitational case this result is better than for the corresponding non-relativistic model,
the Vlasov-Poisson-Fokker-Planck system, for which existence of steady states is known only
for small mass.

1 Introduction

Fokker-Planck equations provide a continuous description of stochastic particles dynamics. The
most basic example is Brownian’s motion, the stochastic motion of a test particle immersed in a
fluid in thermodynamical equilibrium. Provided the test particle is much heavier than the molecules
of the fluid, it is possible to approximate the microscopic forces acting on the test particle by two
driving mechanisms: Diffusion and friction. The kinetic equation that describes the evolution of the
distribution function f for the test particle is the linear Fokker-Planck (or Kramers) equation [31]:

∂tf + p · ∇xf = ∇p · (βpf + σ∇pf). (1)

The distribution function f is a non-negative function of the variables (t, x, p), where (x, p) are
the phase-space coordinates (position and momentum) and t > 0 is the time variable. We assume
that the mass of the test particle is one. The positive constants β, σ are the friction and diffusion
parameters, respectively. The stochastic differential equations for the trajectory of the test particle
associated to (1) are given by the system (4) in Section 2.

Fokker-Planck equations like (1), or variants thereof, have several applications in different fields
of physics and engineering. In astrophysics, for example, they model the effect of interstellar
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nebulas in a galaxy [32] or even dark matter [12]. In plasma physics, Fokker-Planck equations take
into account the effect of grazing close encounters among the ions (the heavy particles) and the
electrons.

A questionable feature of equation (1) is that the diffusion term σ∆pf in the right hand side
operates with infinite velocity: If the particles are initially distributed in a compact region of
space, that is to say the initial distribution f(0, x, p) is compactly supported, there will be instan-
taneously a non-zero probability (i.e., f > 0) to find particles everywhere in space. This property
is incompatible with the well-established physical law that prevents particles from moving faster
than light. Recent works in the mathematical and physical literature put forward two possible
ways to eliminate this undesirable feature. One consists in replacing the classical linear diffusive
(Laplace) operator with a non-linear diffusion term, as in the so-called “relativistic” heat equation,
see [1]. A mathematically simpler solution is to replace (1) with a model that is still linear and, at
the same time, consistent with the relativistic mechanics of particles, where the property of finite
propagation speed enters in a natural fashion. The purpose of the present article is to begin the
mathematical study of one such relativistic linear models.

The physical literature abounds of proposals for what should represent the correct relativistic
generalization of (1), see for instance [10, 17] (and the reviews [13, 18], which contain also an
historical background to the relativistic theory of Brownian motions). Thus the first problem to
face is the choice of the relativistic Fokker-Planck equation to consider. In this paper we pick the
following equation:

∂tf + p̂ · ∇xf = ∇p · (βfp+ σD∇pf), (2)

where p̂ is the relativistic velocity,

p̂ =
p

√

1 + |p|2
,

and D is the relativistic diffusion matrix given by

D =
I + p⊗ p
√

1 + |p|2
.

The previous model coincides with one of the equations proposed in [17], namely [17, Eq. (47)] and
it is the subject of a recent series of papers by Haba [21, 22, 23, 24]. In these references several
generalizations of (2) are introduced, including models for massless particles, for particles with
spin and models with more general friction terms1.

In Section 2 we justify our choice for the relativistic Fokker-Planck equation (2) by showing that
it maintains certain important physical properties satisfied by the non-relativistic model (1). In
particular we will show that for β = 0, i.e., in the absence of friction, equation (2) is Lorentz
invariant. Similarly, equation (1) is invariant by Galilean transformations when β = 0. (Note that
in both the relativistic and non-relativistic case the friction term breaks the equivalence of inertial
reference systems.) In Section 3 we prove that the solutions of (2) enjoy some other physically
and mathematically desirable properties, in particular that they behave consistently with the finite
propagation speed of particles.

For the applications in astrophysics (resp. plasma physics), it is necessary to add the interaction
of the particles with the self-generated gravitational (resp. electric) field. In the non-relativistic
case this leads to the non-linear Vlasov-Poisson-Fokker-Planck system:

∂tf + p · ∇xf −∇xU · ∇pf = ∇p · (pf +∇pf), (3a)

∆xU = λρ, ρ(t, x) =

∫

Rd

f(t, x, p) dp, (3b)

1We are grateful to Prof. Haba for pointing out his work to us.
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where we set all physical constants equal to one and where λ = 1 in the gravitational case, while
λ = −1 in the plasma physics case. In the second part of the paper (Sections 4-5) we introduce
the corresponding relativistic model. In the plasma physics case we couple the relativistic Fokker-
Planck equation (2) to the Maxwell equations of electrodynamics. The resulting model is the
Vlasov-Maxwell-Fokker-Planck system. Note that this model is different from those considered
in [2, 29, 37], which use the non-relativistic Fokker-Planck equation (1). In the gravitational case
we couple the Fokker-Planck dynamics to a relativistic scalar theory of gravity, the Nordström
theory, which has already been used as a toy model for Einstein’s theory of general relativity, see [4,
5, 6, 33, 34]. Unfortunately there are fundamental difficulties, briefly recalled at the beginning of
Section 5, in formulating a Fokker-Planck model in general relativity. In this paper we prefer to
avoid this issue and consider instead a toy model, which we call the Vlasov-Nordström-Fokker-
Planck system.

Our main result for the Vlasov-Maxwell-Fokker-Planck and Vlasov-Nordström-Fokker-Planck sys-
tems (with an external confining potential) is the existence of steady states solutions for all possible
values of the mass. We do so by variational techniques inspired by [14]. Note that in the grav-
itational case our result is better than for the Vlasov-Poisson-Fokker-Planck system (3)λ=1, for
which the existence of steady states is only known for a properly small mass [3]. The main ad-
vantage of the relativistic model compared to the non-relativistic one is that the energy of the
Vlasov-Nordström-Fokker-Planck system is positive definite.

2 Derivation of the relativistic Fokker-Planck model

A common way to derive Fokker-Planck type equations is to start from a system of stochastic
ordinary differential equations (SODEs). The Fokker-Planck equation is the partial differential
equation satisfied by the law of the stochastic process solving the SODEs. For instance in the case
of the kinetic Fokker-Planck equation (1) the relevant SODEs are given by

ẋ(t) = p(t), ṗ(t) = −βp(t) +
√
2σB(t), (4)

where B(t) is the standard Brownian motion in R
d, i.e., a centered Gaussian process with covari-

ance 〈B(t), B(t′)〉 = δ(t−t′), see [28, 31] for details. Following this approach to derive a relativistic
Fokker-Planck equation is problematic for at least two reasons. Firstly it is not so clear how to
define a “standard” relativistic Brownian motion. Secondly, there are multiple ways to derive a
Fokker-Planck equation from a system of SODEs, which lead to different partial differential equa-
tions for the law of the stochastic process. For instance, equation (1) is obtained from (4) using Itô’s
calculus, whereas a different Fokker-Planck equation would be obtained by using Stratonovich’s
calculus2. As a consequence of these “ambiguities”, there exist different models in the literature
which are named “relativistic Fokker-Planck equation”, see [13, 18] for a review.

The purpose of this section is to justify our choice for the relativistic Fokker-Planck model which
will be studied in the rest of the paper. In particular we will show that it is possible to “derive”
a relativistic Fokker-Planck equation by merely demanding that certain physical properties of the
non-relativistic model be maintained in the relativistic case. We shall not refer in any moment to
the SODEs for the (relativistic) stochastic process, although it will be finally observed that our
equation coincides with one of the models derived in [17, 18] by stochastic calculus methods.

We are interested in the following two important properties of the non-relativistic Fokker-Planck
equation (1):

2These two difficulties are in some sense equivalent, since one can modify for instance the SODEs (4) to end up
with (1) through Stratonovich’s calculus.
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(NR1) In the absence of friction, i.e. when β = 0, (1) is Galilean invariant3. This means that under
the change of variables

t̃ = t , x̃ = x− ut, p̃ = p− u, f̃(t̃, x̃, p̃) = f(t, x, p),

f̃ is a solution of (1)β=0 if and only if f is a solution, ∀u ∈ R
d.

(NR2) The Maxwellian distribution function

M(p) = e−β|p|
2/2σ

is a static solution of (1). In fact, up to a multiplicative constant, it is the only global
equilibrium of the equation.

We propose now a relativistic generalization of (1) by requiring that the relativistic analogues of
the properties (NR1) and (NR2) hold for the new model. Precisely we require that the relativistic
Fokker-Planck equation should satisfy

(R1) Invariance under Lorentz transformations in the absence of friction, i.e., under the change of
variables4

u0 =
√

1 + |u|2, t̃ = u0t− u · x, x̃ = x− ut+
u0 − 1

|u|2 u(u · x),

p̃ = p− u
√

1 + |p|2 + u0 − 1

|u|2 u(u · p), f̃(t̃, x̃, p̃) = f(t, x, p),

f̃ is a solution of the frictionless equation if and only if f is a solution, ∀u ∈ R
d.

(R2) The function J defined by

J(p) = e−γ
√

1+|p|2 ,

must be a static solution, for some γ > 0. J is known as the Jüttner distribution (or
relativistic Maxwellian).

The simplest and, in our opinion, most natural way to obtain (R1) is the following. Firstly we
replace the transport term in the left hand side of (1) by its relativistic counterpart5

√

1 + |p|2 ∂t + p · ∇x =
d
∑

µ=0

pµ∂µ = pµ∂µ,

with p0 =
√

1 + |p|2, p = (p1, · · · , pd), ∂0 = ∂t and ∂i = ∂xi . Secondly the diffusive operator

∆p = ∇p · ∇p on the right side of (1) is replaced by the Laplace-Beltrami operator ∆
(h)
p over the

Riemannian manifold (Rd, h), where h is the hyperbolic metric, i.e., the Riemannian metric induced
by the Minkowski metric over the hyperboloid H = {(p0, p) : p0 =

√

1 + |p|2}. The fact that the

operator ∆
(h)
p is Lorentz invariant is clear, since the Lorentz transformation in the momentum

variable corresponds to a translation over the hyperboloid H. The components of the metric h in
the base ∂pi ⊗ ∂pj of the linear space of second order covariant tensor fields on H are given by

hij = δij − p̂ip̂j ,

3The friction term ∇p · (βpf) breaks the Galilean invariance of (1), since it corresponds to the microscopic
velocity-dependent force F = −βp(t) in (4), which is measured in the rest frame of the background heat bath.

4We fix c = 1, where c is the speed of light.
5We will adopt the Einstein convention for the sum over repeated indexes. Greek indexes go from 0 to d and

Latin indexes from 1 to d.
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where pk = δklp
l and p̂ = p/p0 is the relativistic velocity. Note that the position of the indexes

(above or below) is changed using the Euclidean metric. Let (h−1)ij = δij+pipj denote the inverse
matrix of hij , i.e., (h

−1)ikhkj = δij , and denote |h| = det(hij) = (1 + |p|2)−1. The action of the

Laplace-Beltrami operator ∆
(h)
p on scalar functions is given by

∆(h)
p f =

1
√

|h|
∂pi
(
√

|h|(h−1)ij∂pjf
)

. (5)

Therefore the frictionless relativistic Fokker-Planck equation is

∂tf + p̂ · ∇xf = σ∂pi

(

δij + pipj
√

1 + |p|2
∂pjf

)

, (6)

where σ > 0 is the diffusion constant.

To achieve (R2) we add a friction term ∂pi(q
i(p)f) to the right hand side of (6) such that the

current

Ai = σ
δij + pipj
√

1 + |p|2
∂pjf + qif

vanishes for f = J. It is straightforward to verify that this happens if and only if qi(p) = γσpi,
leading to the following relativistic Fokker-Planck equation with friction:

∂tf + p̂ · ∇xf = ∂pi

(

βfpi + σ
δij + pipj
√

1 + |p|2
∂pjf

)

, (7)

where β = γσ is the friction parameter.

Our purpose in the rest of the paper is to initiate the mathematical study of (7). Before proceeding,
we modify (7) in two standard ways. Firstly, we set all physical constants to unity, i.e., β = σ =
γ = 1; our results are independent from the value of the physical constants. Moreover, in order to
guarantee the existence of finite mass equilibria in the whole space, we assume that the system is
subject to the action of an external confining potential V = V (x), and write the equation under
study in the following final form6

∂tf + p̂ · ∇xf −∇xV · ∇pf = ∇p · (D∇pf + pf), t > 0, p ∈ R
d, x ∈ R

d, (8)

where D is the matrix Dij = (δij + pipj)/
√

1 + |p|2 (the diffusion matrix). Throughout the paper
we assume V ∈ C1 and

e−V ∈ L1(R3). (9)

To conclude this section we remark that (7) coincides with one of the equations proposed in [17],
namely [17, Eq. (47)]. In this reference the authors derive three different relativistic Fokker-Planck
equations starting from a particular relativistic Langevin dynamics and using the pre-, mid- and
post-point rule of discretization for stochastic integrals, see also [18]. Equation (7) is the only one,
among the equations introduced in [17], that satisfies the properties (R1)-(R2) above.

6The action of the external potential is equivalent to that of a spatially dependent friction term, which can be
seen by writing (8) in the form

∂tf + p̂ · ∇xf = ∇p · (D∇pf + f (p +∇V )).
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3 Basic properties of regular solutions

In this section we prove some fundamental properties of regular solutions of (8). By regular solution
we mean that

0 ≤ f ∈ C([0,∞), L1(Rd × R
d)).

Since the techniques we use are rather standard, some proofs will only be sketched.

3.1 Cauchy problem

We begin by sketching the proof of global existence and uniqueness to the initial value problem in
the class of regular solutions. Let fin denote the initial datum of f , i.e., fin(x, p) = f(0, x, p).

Theorem 3.1. Given 0 ≤ fin ∈ L1(Rd × R
d), there exists a unique global regular solution.

Proof. Approximate the external potential by a smooth function and the initial datum by a se-
quence fin,m of smooth, non-negative functions with compact support. By the result proved in Ap-
pendix A, for each fixed m ∈ N there exists a unique fm ∈ C([0,∞), L2(dν)), solution of (8), where
dν is the measure dν = exp(

√

1 + |p|2 + V )d(p, x). Moreover by standard methods (see [9, 19, 36]
for instance) one can prove the L1-contraction property: ‖fk − fm‖L1 ≤ ‖fin,k − fin,m‖L1 . Thus
the sequence fm converges in L1 to a regular solution. The uniqueness is also a consequence of the
L1-contraction property. The non-negativity of regular solutions can be proved by studying the
evolution of a suitable regularization of sign(f) (see again [9, 19, 36]).

We remark that it is possible to prove global existence and uniqueness of solutions with lower
regularity, see [38] for the non-relativistic case.

In the proof of the next results it will be assumed that the solution is smooth and decays rapidly at
infinity. The generalization to regular solutions is achieved by introducing first a suitable smooth
approximation fε, for which the following calculations hold up to error terms that vanish in the
limit toward a regular solution (i.e., ε→ 0). We refer to [3] for the details of this procedure in the
non-relativistic case.

3.2 Finite propagation speed

The first property that we want to emphasize is that equation (8) is compatible with the finite
propagation speed of particles in relativity.

Proposition 3.1. Assume that fin = 0 for |x−x0| ≤ t0, where (t0, x0) ∈ (0,∞)×R
d. Then f = 0

for (t, x) ∈ Λ(t0, x0), where

Λ(t0, x0) = {(t, x) ∈ [0, t0]× R
d : |x− x0| ≤ t0 − t}

is the past light cone with vertex on (t0, x0) and base on t = 0. In particular, if fin = 0 for |x| > R,
for some R > 0, then f = 0 for |x| > R+ t, for all t > 0.

Proof. Introduce the density and the current density:

ρ(t, x) =

∫

Rd

f(t, x, p) dp, j(t, x) =

∫

Rd

p̂f(t, x, p) dp.

Clearly |j| ≤ ρ and the continuity equation holds: ∂tρ + ∇x · j = 0. The result then follows by
Lemma B.1 in Appendix B.
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3.3 Mass conservation and entropy identity

Given a regular solution f , the mass is

M [f ](t) =

∫

R2d

f(t, x, p) dp dx, (10)

and the free energy, or (relative) entropy functional is

Q[f ](t) =

∫

R2d

f(t, x, p)
(
√

1 + |p|2 + V (x) + log f(t, x, p)
)

dp dx. (11)

The next proposition studies the evolution of the functionals M,Q.

Proposition 3.2. For a regular solution the following holds.

(i) The mass is constant: M [f ] =M [fin].

(ii) If Q+[fin] <∞, where

Q+[f ] =

∫

R2d

f
(
√

1 + |p|2 + V (x) + log+ f
)

dp dx, log+ f = max(0, log f), (12)

then f log f ∈ C([0,∞), L1(R2d)),

∫ t

0

∫

R2d

Dij(p)∂pi
(
√

f/J
)

∂pj
(
√

f/J
)

Jdp dxds <∞

and the entropy identity holds:

Q[f ] = Q[fin]− 4

∫ t

0

∫

R2d

Dij(p)∂pi
(
√

f/J
)

∂pj
(
√

f/J
)

J dp dxds. (13)

Proof. Proving the conservation of mass is straightforward. As to the entropy identity (13), we
begin computing

dQ
dt

=

∫

R2d

∂tf
(
√

1 + |p|2 + V + log f
)

dp dx.

We define ∂tf = FP [f ]− T [f ], T = p̂ · ∇x −∇xV · ∇p. First we see that

∫

R2d

T [f ]
√

1 + |p|2 dp dx =

∫

R2d

p · ∇xf −
(
√

1 + |p|2
)

∇xV · ∇pf dp dx

=

∫

R2d

∇x ·
(

pf
)

dp dx+

∫

R2d

p̂ · ∇xV f dp dx

=

∫

R2d

p̂ · ∇xV f dp dx. (14)

For the integral of T [f ]V we have
∫

R2d

T [f ]V dp dx =

∫

R2d

(V p̂ · ∇xf − V∇xV · ∇pf) dp dx

= −
∫

R2d

∇xV · p̂f dp dx−
∫

Rd

∇p ·
(

V∇xV f
)

dp dx

= −
∫

R2d

p̂ · ∇xV f dp dx. (15)
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For the integral of T [f ] log f we use that for z = (x, p) and A a vector field such that ∇z · A = 0,
there holds

∇z · [A
(

f log f − f
)

] = A log f · ∇zf

and therefore, taking A = (p̂,−∇xV ), we get
∫

R2d

T [f ]
(

log f
)

dp dx =

∫

R2d

(p̂ · ∇xf(log f)−∇xV · ∇pf(log f)) dp dx =

∫

R2d

A log f · ∇zf dp dx

=

∫

R2d

∇z · [A(f log f − f)] dp dx = 0. (16)

Adding (14)–(16), we see that
∫

R2d

T [f ]
(
√

1 + |p|2 + V + log f
)

dp dx = 0. (17)

Now, for the term FP [·] we integrate by parts and obtain
∫

R2d

FP [f ]
(
√

1 + |p|2 + V + log f
)

dp dx =

∫

R2d

(
√

1 + |p|2 + V + log f
)

∇p ·
(

fp+D∇pf
)

dp dx

= −
∫

R2d

(

p̂i +
1

f
∂pif

)(

fpi +Dij∂pjf
)

dp dx

= −
∫

R2d

1

f

(

f p̂i + ∂pif
)(

fpi +Dij∂pjf
)

dp dx.

Using

Dij p̂i =
δijpi + pj |p|2

1 + |p|2 = pj

and

∂pk
(
√

f/J
)

=
1

2
√

f/J
(J−1f p̂k + J−1∂pkf),

we obtain
∫

R2d

FP [f ]
(
√

1 + |p|2 + V + log f
)

dp dx = −4

∫

R2d

Dij(p)∂pi
(
√

f/J
)

∂pj
(
√

f/J
)

J dp dx. (18)

Adding (17) and (18) concludes the proof.

3.4 Steady states

Recall that e−V ∈ L1. It is clear that, for eachM > 0, there exists a unique regular7 static solution
with mass M of (8), which is given by

f0(x, p) = mM (x, p) =
M

Θ
JV (x, p), (19a)

where JV (x, p) = e−
(√

1+|p|2+V
)

and Θ =

∫

R2d

JV (x, p) dp dx. (19b)

Moreover, as in the non-relativistic case, one can prove that the equilibrium solution is a minimizer
of the entropy functional. To see this, we first recall the following general result proved in [14,
Lemma 1.1], which will play a crucial role also in the following sections.

7In Appendix A it is proved that the operator L, defined by writing the equation (8) in the form ∂tf = Lf , is
hypoelliptic, provided V ∈ C∞. From this property one obtains that the equilibria of (8), which solve Lf = 0, are
automatically smooth.
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Lemma 3.1 ([14]). Let us consider Ω ⊂ R
d measurable and the functional

H[g] =

∫

Ω

g(y) log g(y) dy +

∫

Ω

g(y)h(y) dy, (20)

with g ∈ L1(Ω) non-negative such that g(log g)+ ∈ L1(Ω). If h ∈ L1(Ω; g(y)dy) is such that
e−h ∈ L1(Ω; dy), then g log g ∈ L1(Ω; dy) and

H[g]−H[mg] ≥
1

2

∫

Ω

(
√

g(y)−
√

mg(y)
)2

dy,

where mg(y) =

∫

Ωg dy
∫

Ω
e−h dy

e−h.

An immediate consequence of the previous lemma is a characterization of the minimum of H:

Corollary 3.1. With the same hypotheses of Lemma 3.1,

H(M) = inf

{

H[g] : g ≥ 0, g ∈ L1(Ω),

∫

Ω

g(y) dy =M

}

is bounded from below for any M > 0 and

H(M) = H[ḡ] =M log
( M
∫

Ω
e−h dy

)

with ḡ =M
e−h

∫

Ω
e−h dy

.

In fact, ḡ is the only minimum of H(g).

If we take N = 2d, y = (x, p), Ω = R
2d, g = f and h =

√

1 + |p|2 + V , we have H(g) = Q(f) and
ḡ = mM . Thus we obtain

Corollary 3.2. Assume that f ∈ L1(R2d), f ≥ 0 are such that

Q+[f ] =

∫

R2d

f
(
√

1 + |p|2 + V (x) + log+ f
)

dp dx <∞

and e−V ∈ L1(Rd). Then,

Q[f ]−Q[mM ] ≥ 1

2

∫

R2d

(
√

f(x, p)−
√

mM (x, p)
)2

dp dx

and mM is the unique minimum of

Q(M) = inf

{

Q[f ] : f ≥ 0, f ∈ L1(R2d),

∫

R2d

f(x, p) dp dx =M, Q+[f ] <∞
}

=M log
[ M
∫

R2de
−(
√

1+|p|2+V ) dp dx

]

.

In the next sections we shall generalize this result to the non-linear Vlasov-Maxwell-Fokker-Planck
and Vlasov-Nordström-Fokker-Planck systems.

4 The Vlasov-Maxwell-Fokker-Planck system

In the present and next sections we consider two non-linear mean field models built on the rel-
ativistic Fokker-Planck equation (8). These models provide a relativistic generalization of the
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Vlasov-Poisson-Fokker-Planck system in the plasma physics case (present section) and in the grav-
itational case (next section). For simplicity we shall consider only the three dimensional case, i.e.,
x, p ∈ R

3 (the field equations change with the dimension).

The relativistic model for plasmas is obtained by coupling the relativistic Fokker-Planck equation

∂tf + p̂ · ∇xf + F · ∇pf = ∂pi
(

fpi +Dij∂pjf
)

, (t, x, p) ∈ [0,∞)× R
3 × R

3, (21a)

for the Lorentz force field (with external potential)

F : [0,∞)× R
3 × R

3 → R
3, F = E + p̂×B −∇xV (21b)

and the system of Maxwell equations given by8

∂tE = ∇x ∧B − j, (i) ∇x · E = ρ, (ii)
∂tB = −∇x ∧ E, (iii) ∇x · B = 0, (iv)

(21c)

with

ρ(t, x) =

∫

R3

f(t, x, p) dp, j(t, x) =

∫

R3

p̂f(t, x, p) dp, (21d)

where E,B : [0,∞)× R
3 → R

3 are functions of (t, x) that represent the electric and the magnetic
field, respectively. Note that (ρ, j) satisfies the local conservation of charge

∂tρ+∇x · j = 0, (22)

as a direct consequence of (21a), which makes it consistent to couple the Maxwell equations and
the Fokker-Planck equation.

The system (21) will be called the (relativistic) Vlasov-Maxwell-Fokker-Planck system, or VMFP
for short. It generalizes the Vlasov-Poisson-Fokker-Planck (VPFP) system in the plasma physics
case. Therefore (21) takes into account relativistic effects in a plasma, such as the propagation of
electromagnetic waves. We remark that there exist other models in the literature which are named
“Vlasov-Maxwell-Fokker-Planck”, see [2, 29, 37]. These systems couple Maxwell’s equations to the
non-relativistic Fokker-Planck equation (1).

This section continues by proving the mass conservation and the entropy identity of time-dependent
solutions and the existence of steady states to VMFP. The analysis of time-dependent solutions is
only formal, since there is no proof of the existence of solutions with enough regularity to which
apply the argument below. We shall use the terminology “regular solution” of VMFP in a loose
sense, meaning that the solution is non-negative and sufficiently regular to enable the following
calculations.

4.1 Formal properties of regular solutions

The mass of regular solutions of (21) is defined by (10); the entropy functional is defined as

K[f, E,B] =

∫

R6

f
(
√

1 + |p|2 + V + log f
)

dp dx+
1

2

∫

R3

(

|E|2 + |B|2
)

dx. (23)

Proposition 4.1. For regular solutions of (21) we have:

(i) The mass is preserved: M(t) = const.

8Up to a suitable normalization of the physical constants.
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(ii) The entropy functional satisfies

dK
dt

= −4

∫

R6

Dij(p)∂pi
(
√

f/J
)

∂pj
(
√

f/J
)

J dp dx. (24)

(iii) Let e−V ∈ L1(R3). Regular static solutions of (21) with mass M verify

(f0(x, p), E0(x), B0(x)) = (mM (x, p),−∇U(x), 0), (25a)

where

mM (x, p) =
M

Θ
JV (x, p)e

−U(x), Θ =

∫

R6

e−U(x)JV (x, p) dp dx, (25b)

and U is a solution of

−∆U = ρ, ρ =

∫

R3

mM (x, p) dp. (25c)

Proof. Proving (i) is straightforward. To achieve (ii) we write K = Q+I, where Q is given by (11).
Thus

dK
dt

=
dQ
dt

+
dI
dt

=

∫

R6

∂tf
(
√

1 + |p|2 + V + log f
)

dp dx+
dI
dt
.

Let ∂tf = FP [f ]−T [f ], where in this case F = E+ p̂×B−∇xV for T [·]. Therefore we only need
to calculate the derivative of I[E,B] and the part of dQ/dt containing the term E + p̂×B in T [·],
since the other terms from T [·] and FP [·] are the same as in the linear case, cf. Proposition 3.2.
Using (21ci) y (21ciii), we have

dI
dt

=

∫

R3

(E · ∂tE +B · ∂tB) dx

=

∫

R3

(E ·
(

∇x ∧B − j
)

+B ·
(

−∇x ∧E
)

) dx

=

∫

R3

[(

E ·
(

∇x ∧B
)

−B ·
(

∇x ∧ E
))

− E · j
]

dx

=

∫

R3

∇x ·
(

B × E
)

− E · j dx = −
∫

R3

E · j dx.

Moreover
∫

R6

(

E + p̂×B
)

· ∇pf
(

log f + V
)

dp dx =

∫

R6

∇p ·
[(

E + p̂×B
)

(f log f − f)
]

dp dx

+

∫

R3

∇p ·
(

V
(

E + p̂×B
)

f
)

dp dx = 0.

We also have
∫

R6

√

1 + |p|2
(

E + p̂×B
)

· ∇pf dp dx = −
∫

R6

p̂ ·
(

E + p̂×B
)

f dp dx = −
∫

R3

E · j dx.

The second equality is due to the orthogonality between p̂ and p̂×B and the definition of j. The
proof of (ii) follows easily. As to (iii), we first notice that from (21ciii) and since ∂tB0 ≡ 0, we
have 0 = ∂tB0 = −∇∧ E0 ⇒ ∃U(x) such that E0 = −∇U(x). Using (21cii) we obtain −∆U = ρ.
Moreover by (24) applied to static solutions we observe that f0(x, p) = α(x)J(p) for some non-
negative function α = α(x). In particular, j = 0 (since it is the integral of an odd function) and
the equations for the field B0 are equivalent to ∇ × B0 = ∇ · B0 = 0 ⇒ B0 ≡ 0. Now replacing
f0 = αJ, E0 = −∇U and B0 = 0 in (21a) we obtain

p̂ · ∇α+ αp̂ · ∇(U + V ) = 0.

It is clear that the only non-trivial regular solution of the previous equation is α = Ce−U−V , where
C is any positive constant. The value C =M/Θ follows by the definition of M .
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4.2 Existence of steady states

In this section we prove the existence of (regular) static solutions for the system (21). In particular,
we want to show that the free energy functional

K[f, E,B] = Q[f ] + I[E,B]

=

∫

R6

f
(
√

1 + |p|2 + V + log f
)

dp dx+
1

2

∫

R3

(

|E|2 + |B|2
)

dx,

subject to

∇ ·E = ρ, ∇ · B = 0,

∫

R6

f dp dx =M,

attains its minimum exactly in the static solution of (21) with mass M . The following proof
generalizes the one given in [14, Prop. 2.2] for the VPFP system. Note that the variational problem
for VMFP differs from that of VPFP studied in [14] in two aspects. Firstly, the electromagnetic
field appears as an independent variable in the entropy functional, while for VPFP the electric
field is given by the convolution product of ρ with 1/(4π|x|). Secondly, in the variational problem
for VMFP there appear the local constraints ∇ · E = ρ, ∇ · B = 0. Nevertheless we will be able
to reduce the problem at hand to the equivalent one for the VPFP system considered in [14]. In
particular we will show that the above minimization problem is equivalent to minimizing a reduced
entropy functional Kred that resembles the free energy in the non-relativistic case. To this purpose
we use the following simple result.

Lemma 4.1. The solutions of the variational problem

inf
h∈D

R(h) = inf
h∈D

∫

R3

|h|2 dx,

where D = {h ∈ L2(R3) : ∇ · h = g}, g ∈ L1(R3), are of the form h = −∇U , where −∆U = g.

Proof. Let φ be a test function. The first variation of R evaluated on a critical point has to vanish,
which implies

d

dt
R(h+ tφ) |t=0 =

∫

R3

d

dt
|h+ tφ|2 |t=0 dx =

∫

R3

2h · φdx = 0.

In particular, we can consider test functions of the form φ = ∇ ∧ v, which entails

0 =

∫

R3

h · ∇ ∧ v dx = −
∫

R3

∇ ∧ h · v dx,

for all v ∈ C∞
c (R3). From here we infer that ∇ ∧ h = 0 and as a consequence, there exists U such

that h = −∇U . Substituting this value in ∇ · h = g concludes the proof.

Next we define

Kred(f) =

∫

R6

f
(
√

1 + |p|2 + 1

2
U + V + log f

)

dp dx,

with −∆U = ρ and ρ =
∫

R3f dp.

Proposition 4.2. Recall the definition (12) of Q+[f ]. Let

K(M) = inf
{

K[f, E,B] : f ≥ 0, f ∈ L1(R6), ‖f‖L1(R6) =M, Q+[f ] <∞,

(E,B) ∈ L2(R3)× L2(R3), ∇ · E = ρ, ∇ ·B = 0
}

and assume that e−V ∈ L1(R3). Then,

12



(i) K(M) = inf
{

Kred(f) : f ≥ 0, f ∈ L1(R6), ‖f‖L1(R6) =M, Q+[f ] <∞
}

;

(ii) K(M) is bounded from below for any M > 0;

(iii) The minimizer is unique and is given (25), i.e., K(M) = Kred(mM ).

Proof. To show (i), let X denote the minimizing space and define

X1 =
{

f ∈ L1(R6) : f ≥ 0, ‖f‖L1(R6) =M, Q+[f ] <∞
}

,

X2 =
{

(E,B) ∈ L2(R3)× L2(R3) : ∇ ·E = ρ, ∇ ·B = 0
}

.

The minimum (if it exists) verifies:

K(M) = inf
X

{K(f, E,B)} = inf
X1

{

inf
X2

{I(E,B)} +Q(f)

}

ρ=
∫
fdp

= inf
X1

{

1

2

∫

R3

|∇U |2 dx+Q(f)

}

ρ=
∫
fdp

= inf
X1

{Kred(f)} ,

since by Lemma 4.1, for g1 = ρ and g2 = 0, we have E = −∇U , −∆U = ρ and B = −∇Ũ ,
−∆Ũ = 0, which implies Ũ ≡ 0. On the other hand, we see that

1

2

∫

R3

|∇U |2 dx =
1

2

∫

R3

−U∆U dx =
1

2

∫

R3

ρU dx =

∫

R6

1

2
fU dp dx

and the original problem is therefore reduced to minimize the functional Kred(f), which, up to
substituting

√

1 + |p|2 with |p|2/2, coincides with the free energy in the non-relativistic case. Thus
the claims (ii) and (iii) can be established as in [14, Prop. 2.2].

To conclude this section we remark that the existence of steady states to the VMFP system can be
established also by studying directly the equation (25c), as done in [20] for the non-relativistic case.
The non-existence results proved there when e−V /∈ L1 (see also [14]) are valid in the relativistic
case as well.

5 The Vlasov-Nordström-Fokker Planck system

In this section we introduce yet another new model, which represents a relativistic generalization
of the VPFP system in the gravitational case. It would be desirable to obtain such a model in
the framework of general relativity, since the latter is the physically correct relativistic theory of
gravity (as far as we know...), but this would lead inevitably to face fundamental difficulties. In
fact the consistent modeling of dissipative systems in general relativity is not yet understood, not
even at a formal level, the main reason being that the Einstein equations by themselves imply that
the mass/energy/momentum of the system must be conserved9. To overcome this (still unresolved)
fundamental issue, instead of general relativity we shall use an alternative relativistic theory of
gravity, the Nordström theory, which has already been used in the collisionless case as a toy
model for the more complicated Einstein-Vlasov system [5]. The resulting system—the Vlasov-
Nordström-Fokker-Planck system—will be derived using an argument similar to the one applied
in Section 2.

9The situation is similar to what happens in electrodynamics, where the Maxwell equations alone imply the
conservation of charge (22) and therefore the dynamics of the coupled matter model must be compatible with it
(which is true for the relativistic Fokker-Planck equation considered in the previous section).
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5.1 Derivation of the model

While for the VMFP system the background space-time is given by the manifold (R4, η), where η is
the Minkowski metric, in the present case we assume that the space-time is given by the Lorentzian
manifold (R4, g), where

g = e2φη,

with φ : R4 → R a scalar field, which will play the role of the gravitational field. Let (t, x1, x2, x3) a
system of coordinates which set the Minkoski metric in the canonical form ηµν = diag(−1, 1, 1, 1).
Then

g = −e2φdt2 + e2φδijdx
idxj . (26)

The geodesics of the metric (26) are the solutions of the following system of ODEs:

dt

ds
= p0,

dxi

ds
= pi,

dpµ

ds
= −Γµνσp

νpσ, (27)

where s is the geodesic parameter and Γµνσ are the Christoffel symbols of g:

Γµνσ =
1

2
gµγ
(

∂νgσγ + ∂σgνγ + ∂γgνσ
)

= δµν ∂σφ+ δµσ∂νφ− e−2φηνση
µρ∂ρφ. (28)

Let us consider a system of particles with unit mass that move along the geodesic curves. The
geodesic motion reflects the physical property that the particles interact only through the gravita-
tional field. If we want to interpret pµ as the four-momentum of the particles, we need to impose
that pµ has length equal to −1, i.e., gµνp

µpν = −1. This entails

p0 =
√

e−2φ + |p|2, |p|2 = δijp
ipj. (29)

Let f(t, x, p), x = (x1, x2, x3) and p = (p1, p2, p3), be the distribution function of particles in the
position x at time t and with four-momentum pµ = (p0, p) = (

√

e−2φ + |p|2, p). Having assumed
that the solutions of (27) are the particles trajectories, we obtain that f satisfies the equation

p0∂tf + p · ∇xf − Γiµνp
µpν∂pif = 0,

where p0 is given by (29). Substituting (28) in the last equation we obtain

p0∂tf + p · ∇xf −
[

2
(

p0∂tφ+ p · ∇xφ
)

p+ e−2φ∇xφ
]

· ∇pf = 0.

The previous equation is the Vlasov equation for collisionless particles. For the Fokker-Planck
equation, we need to add a diffusion and a friction term in the right hand side. Motivated by the

discussion in Section 2, for the diffusion term we pick ∆
(h)
p f , where h is the metric induced by (26)

over the hyperboloid p0 =
√

e−2φ + |p|2. It can be verified that10

hij = e2φ
(

δij −
pipj

e−2φ + |p|2
)

, pi = δijp
j .

We have

|h| = deth =
(

e−2φ + |p|2
)−1

e4φ, (h−1)ij = e−2φδij + pipj .

10Although the metric g is not Euclidean, we keep using the metric δij for moving up and down indexes.
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Therefore,

∆(h)
p f =

1
√

|h|
∂pi
(
√

|h|(h−1)ij∂pjf
)

= e−2φ
√

e−2φ + |p|2 ∂pi
(e−2φδij + pipj
√

e−2φ + |p|2
∂pjf

)

.

We then obtain the Fokker-Planck equation in the absence of friction in the following form:

Sf −
[

2Sφp+∇x

(

√

e−2φ + |p|2
)]

· ∇pf = e−2φ∂pi
(e−2φδij + pipj
√

e−2φ + |p|2
∂pjf

)

, (30a)

where
Su = ∂tu+

p
√

e−2φ + |p|2
· ∇xu. (30b)

For the scalar gravitational field φ we postulate the non-linear wave equation

2φ := ∂2t φ−∆xφ = −e6φ
∫

R3

f(t, x, p)
√

e−2φ + |p|2
dp, (30c)

which has been justified in [4]. Now, doing the change of variables f̃(t, x, p) = f(t, x, e−2φp), the
system (30) takes the form

∂tf̃ +∇p

(

√

e2φ + |p|2
)

∇xf̃ −∇x

(

√

e2φ + |p|2
)

∇pf̃ = ∂pi
(

Λijφ (p)∂pj f̃
)

, (31a)

2φ = −e2φ
∫

R3

f̃(t, x, p)
√

e2φ + |p|2
dp, (31b)

where

Λijφ (p) =
e4φδij + e2φpipj
√

e2φ + |p|2
. (31c)

The system (31) is the Vlasov-Nordström-Fokker-Planck system in the absence of friction. It is
invariant under the Lorentz type transformations given in [7]. To introduce a friction term, we
first notice that for any given time independent scalar function φ0 = φ0(x), the left hand side of
(31a) vanishes for

f̃ = f̃0(x, p) = e−
√
e2φ0+|p|2 . (32)

This suggests to introduce a friction term of the form ∇p · (qf̃) on the right side of (31a) such that

Λijφ (p)∂pj f̃ + qif̃ = 0, if f̃ = e−
√
e2φ+|p|2 .

It can be verified that q = e2φp. Adding this friction term and an external potential to (31a), we
get

∂tf +∇p

(

√

e2φ + |p|2
)

· ∇xf −∇x

(

√

e2φ + |p|2 + V (x)
)

· ∇pf (33a)

= ∂pi
(

Λijφ (p)∂pjf + e2φpif
)

,

2φ = −e2φ
∫

R3

f(t, x, p)
√

e2φ + |p|2
dp, (33b)

where Λijφ (p) is given by (31c) and where we removed the tilde for notational simplicity. The
system (33) will be called the Vlasov-Nordström-Fokker-Planck (VNFP) system.
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5.2 Formal property of regular solutions

Besides regularity, we assume that the solutions of VNFP are such that eφ is bounded in any finite
interval of time. This is true as soon as the initial data for the field equation (33b) are bounded.
To see this, note that regular solutions of (33b) verify φ = φhom + ψ, where φhom solves the wave
equation 2φhom = 0 with the same data of φ and ψ solves (33b) with zero data. Since the right
hand side of (33b) is non-negative, then ψ ≤ 0, and therefore eφ = eφhomeψ ≤ eφhom is bounded,
as we claimed.

The mass of regular solutions of VNFP is defined by (10). The entropy functional is

K[f, φ, ∂tφ] =

∫

R6

f
(

√

e2φ + |p|2 + V (x) + log f
)

dp dx+
1

2

∫

R3

(

|∂tφ|2 + |∇xφ|2
)

dx

= Q[f, φ] + I[φ, ∂tφ]. (34)

Note that the energy part of the entropy functional is positive definite, in contrast to the case of
the gravitational VPFP system.

Proposition 5.1. For regular solutions of (33), we have:

(i) M(t) ≡constant.

(ii) The entropy functional satisfies

dK
dt

= −4

∫

R6

Λijφ (p)∂pi
(

√

f/Jφ
)

∂pj
(

√

f/Jφ
)

J
φ dp dx, (35)

where Jφ(x, p) = e−
√
e2φ+|p|2 .

(iii) Let e−V ∈ L1. Static solutions of VNFP with mass M > 0 are of the form

(f0(x, p), φ0(x)) = (mM (x, p), φ0(x)), (36a)

where11

mM (x, p) =
M

Θ
JV (x, p), JV = e−

√
e2φ0+|p|2−V , Θ =

∫

R6

JV (x, p) dp dx, (36b)

and φ0 solves

∆φ0 = e2φ0

∫

R3

mM (x, p)
√

e2φ0 + |p|2
dp. (36c)

Proof. The proof of (i) is straightforward. To show (ii), we first observe that

dQ
dt

=

∫

R6

∂tf
(

√

e2φ + |p|2 + V + log f
)

dp dx+

∫

R6

fe2φ∂tφ
√

e2φ + |p|2
dp dx. (37)

Again we split ∂tf = FP [f ]− T [f ], where T = ∇x(
√

e2φ + |p|2 − V ) · ∇p −∇p(
√

e2φ + |p|2) · ∇x.
For the integral containing T we have

∫

R6

T [f ]
√

e2φ + |p|2 dp dx = −
∫

R6

p · ∇xV
√

e2φ + |p|2
dp dx,

∫

R6

T [f ] log f dp dx = 0,

∫

R6

T [f ]V dp dx =

∫

R6

p · ∇xV
√

e2φ + |p|2
dp dx.

11Note that JV ∈ L1(R6), because eφ0 is bounded.
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Thus the term involving T [f ] gives no contribution. Moreover
∫

R6

FP [f ]
(

√

e2φ + |p|2 + V + log f
)

dp dx =

∫

R6

(

p̂i +
1

f
∂pif

)(

e2φfpi + Λijφ (p)∂pjf
)

dp dx

= −4

∫

R6

JφΛijφ (p)∂pi
(

√

f/Jφ
)

∂pj
(

√

f/Jφ
)

dp dx,

where we used that

e2φpj = Λijφ (p)p̂i and ∂pk
(

√

f/Jφ
)

=
(Jφ)−1

2
√

f/Jφ

(

f p̂k + ∂pkf
)

.

On the other hand,

dI
dt

=

∫

R3

(

∂tφ∂
2
t φ+∇xφ · ∇∂tφ

)

dx =

∫

R3

∂tφ2φdx,

which cancels the last term in (37) due to the field equation (33b). This concludes the proof of
(ii). For the last statement, we use that, by (ii), static solutions must have the form f0(x, p) =
α(x)Jφ0 (x, p). Substituting in (33a) we obtain the equation p · (∇α + α∇xV ) = 0 and therefore
α = Ce−V .

5.3 Existence of steady states

The existence of steady states for the VPFP system in the gravitational case is not yet well-
understood. We mention that a small mass result is proved in [3] for the VPFP system using a
fixed point argument inspired by [15, 16]. This argument applies mutatis mutandis to the VNFP
system: Consider the equation for the gravitational potential of steady states, eq. (36c), which we
rewrite in terms of u = −φ0 as

∆u = − e−VMe−2u

∫

R6e
−
√
e−2u+|p|2−V dp dx

∫

R3

e−
√
e−2u+|p|2

√

e−2u + |p|2
dp. (38)

Define by K the solution operator of (38), i.e., the convolution of the r.h.s. with 1/(4π|x|). By
standard estimates one can prove that, for M small enough, the operator K is a contraction in
the space X = {v ∈ L∞(R3) : 0 ≤ v ≤ 1} and so by the fixed point theorem we have the following
result.

Proposition 5.2. There exists M0 > 0 such that, for all M < M0, the equation (38), with
the boundary condition lim|x|→∞ u = 0, has a unique solution u ∈ L∞. This solution defines,
through (36), a steady state of the VNFP system.

However in the relativistic case we can do much better, and prove existence of steady states for all
masses. Let us denote

ΓM = {f : R6 → R : f ∈ L1(R6) , ‖f‖L1(R6) =M , Q+[f ] <∞},
where Q+ is defined by (12), and recall that the space D1(R3) is defined as

D1(R3) = {φ ∈ L1
loc(R

3) : ∇φ ∈ L2 and φ vanishes at infinity},
where the condition of φ vanishing at infinity means that the set {x ∈ R

3 : |φ(x)| > a} has finite
(Lebesgue) measure, for all a > 0. Functions in the space D1(R3) satisfy the Sobolev inequality

‖φ‖L6 ≤ η‖∇φ‖L2 , η =
2√
3
π−2/3, (39)

see [30, Thm. 8.3].
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Theorem 5.1. For all M > 0 there exists at least one solution12 φ0 of (36c). Moreover the
corresponding steady state, given by (36b), is a minimizer of the entropy functional:

K(M) = inf{K(f, φ, ψ) , f ∈ ΓM , φ ∈ D1(R3) , ψ ∈ L2(R3)},

where K is defined by (34), i.e., K(M) = K(mM , φ0, 0).

Proof. First we notice that
K(M) = inf

ΓM×D1

E(f, φ),

where E(f, φ) = K(f, φ, 0). We divide the proof in five steps.

Step 1: K(M) is bounded from below. We have

E(f, φ) ≥
∫

R6

f(|p|+ V (x) + log f) dp dx. (40)

Using Lemma 3.1 with g = f , h = |p|+ V , Ω = R
2d we get

E(f, φ) ≥M log
( M
∫

R6 e−|p|−V dp dx

)

.

Step 2: Weak convergence of minimizing sequences. Let (fn, φn) be a minimizing sequences. Since
φn is uniformly bounded in D1, and by the Sobolev inequality (39), there exists a subsequence,
still denoted by φn, and φ0 ∈ D1 such that

φn⇀φ0 in L6 and ∇xφn ⇀ ∇xφ0 in L2. (41)

Next we establish the weak convergence of fn in L1 by using the argument in [14, pag. 129]. Let
us show first that fn does not concentrate. If it did, we could find ε > 0, a bounded sequence
xn ∈ R

3 and a sequence Rn → ∞ such that

∫

|xn−x|≤Rn

fn(x, p) dp dx = ε, for all n ∈ N.

From (40) and Lemma 3.1 we have

E(fn, φn) ≥
∫

|x−xn|>Rn

fn(log fn + |p|+ V (x)) dp dx +

∫

|xn−x|≤Rn

fn(log fn + |p|+ V (x)) dp dx

≥ (M − ε) log
( M − ε
∫

|xn−x|>Rn
e−|p|−V dp dx

)

+ ε log
( ε
∫

|xn−x|≤Rn
e−|p|−V dp dx

)

. (42)

Since e−|p|−V ∈ L1, we have

lim
n→∞

∫

|xn−x|>Rn

e−|p|−V dp dx = 0, and lim
n→∞

∫

|xn−x|≤Rn

e−|p|−V dp dx = ‖e−|p|−V ‖L1(R6)

and so (42) implies E(fn, φn) → ∞ as n → ∞, which contradicts the fact that (fn, φn) is a
minimizing sequence. Now we prove that fn is tight. If not, we can find ε > 0 such that, for all
R0 > 0, there exists R > R0 such that

lim
n→∞

∫

|x|+|p|>R

fn dp dx > ε.

12By Proposition 5.2, the solution is unique for M small.
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Whence, using again (40) and Lemma 3.1,

E(fn, φn) ≥
(

∫

|x|+|p|>R

fn dp dx
)[

log

∫

|x|+|p|>R

fn dp dx− log

∫

|x|+|p|>R

e−|p|−V dp dx
]

and so

lim
R→∞

∫

|x|+|p|>R

e−|p|−V dp dx ≥ εe−K(M)/ε > 0,

which contradicts the fact that e−|p|−V ∈ L1. We conclude that there exists f0 ∈ L1 and a
subsequence fn such that

fn ⇀ f0 in L1. (43)

Step 3: Pointwise convergence of minimizing sequences. As proved in [30, Cor. 8.7], the weak
convergence (41) implies that

φn → φ0, pointwise a.e. (44)

again up to the extraction of a subsequence. Moreover, by the argument used in [6, Lemma 5], we
may assume that φn ≤ 0 almost everywhere. Next we show that fn converges pointwise a.e. (up
to subsequences). Given a minimizing sequence (fn, φn), define

mn =
M

∫

R6 e
−
√
e2φn+|p|2−V dp dx

e−
√
e2φn+|p|2−V .

By Lemma 3.1 we have

E(fn, φn)− E(mn, φn) ≥
1

2

∫

R6

(
√

fn −√
mn)

2 dp dx.

This implies on one hand that (mn, φn) is again a minimizing sequence and, on the other hand, that
after extracting a suitable subsequence we have limn→∞(fn −mn) = 0 pointwise a.e. Moreover,
since

e−
√
e2φn+|p|2−V → e−

√
e2φ0+|p|2−V , pointwise a.e.

and (by dominated convergence)

∫

R6

e−
√
e2φn+|p|2−V dp dx→

∫

R6

e−
√
e2φ0+|p|2−V dp dx, pointwise a.e.

then

fn → M
∫

R6 e
−
√
e2φ0+|p|2−V dp dx

e−
√
e2φ0+|p|2−V = f0, pointwise a.e.

In particular we notice that f0 is strictly positive and bounded.

Step 4: (f0, φ0) is a minimizer. We prove that E is weakly lower semicontinuous. Clearly

lim inf
n→∞

∫

|∇xφn|2 dx ≥
∫

|∇xφ0|2 dx.

Moreover, by Fatou’s lemma,

lim inf
n→∞

∫

R6

fn(
√

e2φn + |p|2 + V + log fn) dp dx ≥
∫

R6

f0(
√

e2φ0 + |p|2 + V + log f0),

and the claim follows: K(M) = E(f0, φ0).
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Step 5: (f0, φ0) is a steady state of the VNFP system. Since we already proved in step 3 that

f0 =
M

∫

R6 e
−
√
e2φ0+|p|2−V dp dx

e−
√
e2φ0+|p|2−V ,

we only need to show that φ0 solves the non-linear elliptic equation (36c). To this purpose we
define φh = φ0 + hη, where η = η(x) is any C∞ function with compact support and h ∈ R. Using
that 0 < f0 < ∞ and φ0 ≤ 0, it is straightforward to show that E(f0, φh) is differentiable in h.
The derivative at h = 0 must vanish and this entails that φ0 solves

∆φ0 = e2φ0

∫

R3

f0
√

e2φ0 + |p|2
dp dx

in the sense of distributions. This completes the proof of the theorem.
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A Appendix: The Cauchy problem for the Fokker-Planck

equation on a Riemannian manifold

In this appendix we discuss the initial value problem for the equation (8). In fact we shall study
the problem for a more general equation than (8), where we allow for a general (positive definite)
diffusion matrix D, a general velocity field (with non-zero gradient) in the transport operator and
a general friction potential. Precisely we shall consider the initial value problem for the following
equation:

∂th+ v(p) · ∇xh−∇xV · ∇ph = ∆(g)
p h+Wh, t > 0, x ∈ R

d, p ∈ R
d, (45)

where ∆
(g)
p denotes the Laplace-Beltrami operator of a Riemannian metric g on R

d, see (5), and
W, v are the vector fields

Wh = g−1∇p log u · ∇ph, u =
√

det g e−E , v = ∇pE, (46)

for some non-negative function E = E(p). Equation (8) can be written in the form (45) by setting
g = D−1, E(p) =

√

1 + |p|2, f = e−E−V h. We prove the following:

Theorem A.1. Assume g, E, V ∈ C∞ satisfy e−E, e−V ∈ L1(R3) and, for all p ∈ R
d,

det(∂pivj) 6= 0,

∂pi(g
ij∂pjE) ≤ ω, for some ω > 0,

gij∂piE ∂pjE ≥ θ|∇pE|2, for some θ > 0, (47)

where gij is the inverse matrix of g, i.e., gijgjk = δik. Furthermore we assume that

gij(p)

|p|2 → 0, as |p| → ∞ ∀ i, j = 1, . . . d. (48)

Then for all hin ∈ C1
c (R

d × R
d) there exists a unique

h ∈ C([0,∞), L2(dµ)),
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solution of (45) with initial datum hin, where µ is the probability measure defined by

dµ = Θ−1e−E−V dp dx, Θ =

∫

R2d

e−E(p)−V (x) dp dx.

For the proof we need the following lemma.

Lemma A.1. Let A = −L + T , where L = ∆
(g)
p + W and T = v(p) · ∇x − ∇xV · ∇p, and

f, f1, f2 ∈ C∞. Then

(a)
∫

Rd hLh e
−E dp = −

∫

Rd g
ij∂pih ∂pjh e

−E dp;

(b)
∫

R2d hTh dµ = 0;

(c) A(f1f2) = f1Af2 + f2Af1 − 2gij∂pif1 ∂pjf2.

Proof. The proof of (a) can be found in [8]. For the second statement we use that

∫

R2d

h(v(p) · ∇xh−∇xV · ∇ph) e
−E−V dp dx =

∫

R2d

(−∇xh · ∂pE h+∇ph · ∇xV )h e−E−V dp dx,

using that v(p) = ∇pE and integrating by parts. The proof of (c) follows by Leibnitz’s rule.

Proof of Theorem A.1. We generalize the proof of [25, Prop. 5.5], where the following argument is
applied to the non-relativistic Fokker-Planck equation (1) (with external potential), and the proof
in [8, App. A], which studies the Cauchy problem for (45) when x ∈ T

d (the d−dimensional torus)
without external potential.

Denote H = L2(dµ). Let us consider the operator

A = v(p) · ∇xh−∇xV · ∇ph−∆(g)
p h−Wh = T − L

defined on D(A) = C∞
c (R2d). Equation (45) takes the form ∂th + Ah = 0. Our goal is to show

that the closure of the operator A generates a contraction semigroup on H. To this purpose it
suffices to prove that A is accretive and that the range of A + λI is dense in H for some λ > 0,
see [25, Sec. 5.2].

That A is accretive follows by (a) and (b) of the previous lemma:

〈h | Ah〉H = −〈h | Lh〉H + 〈h | Th〉H =

∫

gij∂pih ∂pjh dµ ≥ 0.

Next we show that A is hypoelliptic. Let a =
√

g−1, the positive definite matrix such that
a2 = g−1. A direct computation shows that

−A =

d
∑

i=1

Y 2
i + Y0,

where Y0, Yi denote the vector fields

Y0h = (divpa) · a∇ph− gij∂piE ∂pjh− Th,

Yih = aki ∂pkh.
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In order to prove that A is hypoelliptic, it is enough to show that −A satisfies a rank 2 Hormander’s
condition, i.e., the vector fields Yi and Zi := [Y0, Yi] form a basis of R2d, see [26]. Observe that

Zi = Bki ∂pk + Cji ∂xj ,

where Cji = aki ∂pkv
j and B is a d× d matrix whose exact form is irrelevant for what follows. Thus

we can represent the linear transformation {∂xi, ∂pj} → {Yk, Zl} by the matrix

F =
( 0 a
C B

)

,

whose determinat is |detF | = det a|detC| = det g|det(∂pkvj)|, which is positive because det(∂pivj)
is non-zero by assumption. Therefore, {Yi, Zj} is a basis of R2d.

Finally, we prove that the range of λ + A is dense in H for some λ > 0. If h ∈ H, we must show
that if

〈h|(λ+A)f〉H = 0, for all f ∈ D(A), (49)

then h = 0. Equation (49) is equivalent to h being a distributional solution of

(λ− L− T )h = 0.

Since the operator in the left hand side of the latter equation is hypoelliptic, then we can assume
h ∈ C∞. Now setting f1 = φ, f2 = φh in (c) of Lemma A.1, multiplying by h, integrating and
using that

〈

h|(λ+A)(φ2h)
〉

H
= 0, by (49), we obtain

λ

∫

φ2h2 dµ+

∫

gij∂pi(φh) ∂pj (φh) dµ =

∫

h2gij∂piφ∂pjφdµ−
∫

h2φTφdµ. (50)

Setting f = he−E/2−V/2 we get

∫

gij∂pi(φh) ∂pj (φh) dµ =

∫

gij∂pi(φf) ∂pj (φf)Θ
−1 dp dx+

1

4

∫

φ2h2gij∂piE ∂pjE dµ

+
1

2

∫

gij∂pi(φ
2f2) ∂pjEΘ−1 dp dx

and integrating by parts in the last term we get

1

2

∫

gij∂pi(φ
2f2) ∂pjEΘ−1 dp dx = −1

2

∫

φ2h2 ∂pi(g
ij∂pjE) dµ ≥ −ω

∫

φ2h2 dµ.

The identity (50) leads therefore to the inequality

(λ− ω)

∫

φ2h2 dµ+
1

4

∫

φ2h2gij∂piE ∂pjE dµ ≤
∫

h2gij∂piφ∂pjφdµ−
∫

h2φTφdµ.

Let k = (k1, k2) ∈ N
2 and φ = φk(x, p) = ψ(x/k1)ψ(p/k2), where ψ ∈ C∞

c , 0 ≤ ψ ≤ 1, ψ = 1 on
B(0, 1/2) and supp ψ ⊂ B(0, 1). We obtain, denoting by C any positive constant,

(λ− ω)

∫

φ2kh
2 dµ+

1

4

∫

φ2kh
2gij∂piE ∂pjE dµ ≤ C

k22

∫

h2 sup
i,j

|gij |χ|p|<k2 dµ

+ | 〈φkh∇pE · ∇xφk, h〉H |
+ | 〈φkh∇xV · ∇pφk, h〉H |. (51)
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Using Young’s inequality, we can estimate the last two terms of (51) as

| 〈φkh∇pE · ∇xφk, h〉 | ≤
C

k1

( 1

4ǫ1

∫

φ2kh
2|∇pE|2dµ+ ǫ1

∫

h2dµ
)

,

| 〈φkh∇xV · ∇pφk, h〉 | ≤
Cζ(k1)

k2

( 1

4ǫ2

∫

φ2kh
2dµ+ ǫ2

∫

h2dµ
)

,

for all ǫ1, ǫ2 > 0, where ζ(k1) = sup|x|≤k1{|∇xV |}. Taking ǫ1 = C/(θk1) in the first line, ǫ2 =
Cζ(k1)/(4k2) in the second line and using (47), we get

(λ − ω − 1)

∫

φ2kh
2dµ ≤ C

k22

∫

h2 sup
i,j

|gij |χ|p|<k2dµ+ C
( 1

k21
+
C2
k1

k22

)

∫

h2dµ.

We see that h = 0, taking first the limit k2 → ∞ and then k1 → ∞. This concludes the proof of
the theorem.

B Appendix: Finite propagation speed of relativistic kinetic

equations

This appendix is devoted to prove a general result that can be used to establish the finite propa-
gation speed property for all relevant relativistic kinetic equations. It is obtained by adapting the
proof of a celebrated uniqueness theorem for non-linear wave equations due to Fritz John [27], see
also [35].

Lemma B.1. Let ρ, j ∈ C1(R× R
d) verify

∂tρ+∇x · j = 0, t ≥ 0, x ∈ R
d, (52)

and |j| ≤ ρ. If ρ(0, x) = 0, for |x− x0| ≤ t0, then ρ(t, x) = 0, for (t, x) ∈ Λ(t0, x0), where

Λ(t0, x0) = {(t, x) ∈ [0, t0]× R
d : |x− x0| ≤ t0 − t}.

Proof. Consider the function

Φ(s, x) = t0 − [(t0 − s)2 + t−2
0 (2t0s− s2)|x− x0|2]1/2.

Note that
Φ(0, x) = 0, lim

s→t0
Φ(s, x) = t0 − |x− x0|, and Φ||x−x0|=t0

= 0. (53)

Moreover, denoting Rs(t0, x0) = {(t, x) : t ≤ Φ(s, x), |x− x0| ≤ t0}, we have

Λ(t0, x0) = ∪0≤s<t0Rs(t0, x0).

Next we define
ρ∩(s, x) = ρ(Φ(s, x), x), j∩(s, x) = j(Φ(s, x), x).

Since ρ, j satisfy (52), then ρ∩, j∩ verify

∂sρ∩ = −∇x · j∩∂sΦ+ ∂sj∩ · ∇xφ.
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Whence, using (53),

∫

|x−x0|<t0

ρ∩(s, x) dx =

∫

|x−x0|<t0

∫ s

0

∂τρ∩(τ, x) dτ dx

=

∫

|x−x0|<t0

∫ s

0

(−∇x · j∩∂τΦ+ ∂τ j∩ · ∇xφ) dτ dx

= −
∫

|x−x0|<t0

∇x · j∩ Φ(s, x) dx

=

∫

|x−x0|<t0

j∩ · ∇xφ(s, x) dx ⇒
∫

|x−x0|<t0

(ρ∩ − j∩ · ∇xφ) dx = 0.

Moreover it is easy to verify that |∇xφ(s, x)| ≤ θ(s) < 1, for all 0 ≤ s < t0; thus, since in addition
|j| ≤ ρ, we get

∫

|x−x0|<t0

ρ∩ dx = 0 ⇒ ρ = 0 on Λ(t0, x0).

The preceding lemma can be applied to any relativistic kinetic equation which is compatible with
the continuity equation (52). Precisely, to any kinetic equation of the form

∂tf + p̂ · ∇xf = Q[f ],

where Q is a (possibly non-linear) operator such that

∫

Rd

Q[f ](t, x, p)dp = 0.

The previous identity implies that

ρ =

∫

Rd

f dp, j =

∫

Rd

f p̂dp

satisfy the continuity equation (52). Moreover, since |p̂| ≤ 1, then |j| ≤ ρ and Lemma B.1 applies.
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